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Observation of negative line tensions from Plateau borders regions in dry foam films.

J.-C. Géminard, A. Żywociński◦, F. Caillier, and P. Oswald.
Laboratoire de Physique de l’E.N.S. de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex.

◦ Institute of Physical Chemistry, Polish Academy of Sciences, PL-01-224 Warsaw 42, Poland.

We measure the angles produced in the Plateau border region of ”dry” soap films. In a simple
experimental geometry, we demonstrate that a negative line tension can be attributed to these
regions. This result has important consequences for the theoretical description of foams approaching
the dry limit.

I. INTRODUCTION.

Foams are collections of gas bubbles trapped in a com-
plex network of thin liquid or solid films and they have a
great deal of practical importance in industrial processes
as well as in the everyday life (food, shaving foam, insula-
tors. . . ) [1]. Establishing the relations between the phys-
ical properties of the films and gas, and those of the re-
sulting material remains a fascinating, yet puzzling, prob-
lem which has motivated numerous experimental and
theoretical studies. Interestingly, understanding foam
physics exhibits the same types of challenges as those one
is faced with when studying granular materials. In these
materials, the relations between the individual properties
of the solid grains and their collective behavior are still
only partially understood [2]. In foams, the problem is
further complicated by the possibility for the gas bubbles
to deform, which necessitates complete understanding of
the local geometry in these systems.
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FIG. 1. Cross section of the Plateau border joining three
planar soap films.
Within the triangle (dotted lines), the surface free energy,
associated to the air-water interface (black lines), is less than
that of the skeleton (white lines) which corresponds to the
dry limit, r → 0.

Idealization of liquid foams commonly consists in con-
sidering the films as surfaces of negligible thickness, the
liquid being entirely contained in curved Plateau borders
of triangular section at the junctions (Fig.1)[3]. This
limit, convenient for a theoretical study, is that of the so-
called ”dry foam”; the water content approaches zero and
one is left with a skeleton of interconnected thin films. In
two dimensions, the Decoration Theorem states that the
structure of a 2D-foam of finite liquid fraction, φl, cor-
responds to that of the appropriate dry skeleton (i.e. a
limiting structure for zero liquid fraction in which the
vertices shrink to points); in other words, from the dry
limit, the increase in φl leaves the overall foam geometry
unchanged. The liquid accumulates in the Plateau bor-
ders and decorates the initial point-like vertices of the dry
skeleton [4]. In three dimensions, there is no equivalent
for the Decoration Theorem. In the following, we demon-
strate theoretically that a negative line tension is associ-
ated to the accumulation of water in the Plateau border
regions. By direct observation of an annular Plateau bor-
der, we give the first experimental evidence that such a
line tension plays a role in the structure of simple 3D-
foams at finite liquid fraction.

II. THEORETICAL BACKGROUND

An increase in the amount of water in the Plateau bor-
der leads to a decrease in the total surface free energy
and, as a consequence, the corresponding line tension is
negative. This can be easily demonstrated by consider-
ing the case of three planar soap films, assumed to make
120-degrees angles between them and connected by a rec-
tilinear Plateau border (Fig.1, [5]). In this case, the cross
section of the air-water interface in the Plateau border
region is a circle (radius r). Relative to the dry limit
(r → 0), the variation of the surface free energy per unit
length can be written

∆εs = γ
(
π − 2

√
3
)
r ' −0.32γr (1)

where γ denotes the surface free energy of the air-water
interface. The decoration energy ∆εs is negative and pro-
portional to the radius of curvature r. Thus, the surface
free energy per unit length of Plateau border decreases
when the liquid fraction increases. One can determine
the corresponding line tension T , by considering a length
l of the Plateau border and by calculating the variation
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of the associated surface free energy at constant water
volume, V . One gets the negative line tension

T =
∂l∆εs
∂l

∣∣∣∣
V

=
∆εs

2
. (2)

In the dry limit (r → 0), three soap films are predicted
to make 120-degree angles between them at the vertices
[6]. In the following, we will show both theoretically and
experimentally that, because of the line tension T , the
angles can differ significantly from 120 degrees.

III. EXPERIMENTAL SITUATION AND
RESULTS

One can easily produce a catenoidal film by stretching
soap between two horizontal annular frames. Cutting the
initial catenoid in the horizontal plane with the help of
a wet spatula, one can add to the system a horizontal
circular soap film hanging between two catenoidal films
(Fig.2). After a short transient (about 5 minutes), during
which drainage occurs, the system equilibrates. Kept in
contact with a humid atmosphere in order to avoid exces-
sive drying, the equilibrated system can be observed for
several minutes during which our measurements do not
exhibit any systematic evolution with time. The radius
R of the Plateau border, which surrounds the horizontal
film, is altered by changing either the diameter D of the
annular frames (usually 1 cm) or the distance H (up to
∼ 0.4D) between them [7]. The volume of water in the
Plateau border, and consequently the radius r, depend
on the preparation of the system.

Using a CCD camera (Panasonic, WV-CL700), we ac-
quire images of the system from the side along the hori-
zontal axis (Fig.3). These images are subsequently digi-
tized and analyzed with the help of a PC equipped with
a frame grabber board (Data Translation, DT2255) and
a data analysis software (Wavemetrics, Igor Pro 4). We
carefully analyzed, and then excluded, the deformations
of the images induced by the optical system; we im-
aged a grid in the same optical conditions as the soap
films and found that the only deformation is due to the
small anisotropy of the CCD, which we measured to be
1.71 ± 0.01%. The measurements consist in detecting
the profile ρ(z) of the films, above and below the Plateau
border. In order to achieve the required accuracy, the nu-
merical procedure scans first the image from top to bot-
tom, detecting the outline of the catenoidal films within
1 pixel; the position ρ(z) is then detected within about
0.1 pixel by interpolating with a gaussian function sev-
eral intensity profiles, obtained along lines normal to the
initial outline. In order to exclude the possible residual
tilt of the image (always less than 1 degree) and to de-
termine accurately the axis of revolution, the profile ρ(z)
is detected on both the right- and left-hand sides of the
image. Both the lower and upper experimental profiles
are then simultaneously interpolated with two different
catenoidal profiles (hyperbolic cosines), allowing the free

FIG. 2. Sketch of the experimental situation.
A circular soap film is suspended by two catenoidal films at-
tached to two horizontal annular frames. The radius R of
the Plateau border, that connects the three films, is altered
by changing either the diameter D of the frames or the dis-
tance H between them. The upper (resp. lower) catenoidal
film makes the angle θ (resp. α) with the horizontal plane.
Experimentally, accurate values of the angles θ and α are ob-
tained by carefully detecting the profile ρ(z).

rotation of the image. We determine three quantities in
the plane of the horizontal film, where the two catenoidal
profiles intersect: the angle θ (resp. α) that the upper
(resp. lower) film makes with the horizontal plane and
the radius R of the Plateau border (Fig.2). We mea-
sure the radius r by direct interpolation of the air-water
interface observed on additional images taken at higher
magnification.

FIG. 3. Picture of the experimental situation.
Three soap films are stretched with the help of two horizontal
annular frames. The central part of the structure is made of
a horizontal circular film held by two catenoidal films. In this
side view, the horizontal film is hidden by the thick annular
Plateau border (The angle between the two catenoidal films
equals 120.3±0.1 degrees).

For large radii, r, the weight of water in the Plateau
border is not necessarily negligible and the experimen-
tal situation needs further analysis before we can draw
conclusions [Note that the upper and lower films are not
symmetric with respect to the horizontal film in figure



3

(3)]. Taking into account the line tension, T , and the
weight of water per unit length, ρsg, one can write the
two relations imposed by the local mechanical equilib-
rium of the Plateau border in the horizontal plane and
along the vertical

cos θ + cosα= 1 +
T

2γR
(3)

sin θ + sinα=
ρsg

2γ
(4)

where γ denotes the surface free energy of the air-water
interface, ρ the density of water, g the acceleration due
to gravity, and s =

(√
3− π/2

)
r2 the surface area of the

Plateau-border cross section. We point out that equa-
tions (3) and (4) apply to the skeleton and must be eval-
uated in the plane of the horizontal film. Summing the
squares of equations (3) and (4), one obtains that the
angle β ≡ θ − α satisfies

cosβ = −1

2
+

1

8

(
s

l2c

)2

+
1

2

T

γR
+

1

8

(
T

γR

)2

(5)

where lc =
√
γ/ρg is the gravitational capillary length.

According to equation (5), in the dry limit (r → 0),
the angle β → 120 deg. The weight of water tends to
decrease the angle β when the characteristic size of the
Plateau border, r, compares to the capillary length, lc.
By contrast, the negative line tension T tends to increase
the angle β when the radius of curvature R approaches
the typical size r of the Plateau border. From equation
(5), one can deduce that the correction to β due to gravity
is negligible in comparison to that due to the line tension
only in the limit lc � 4

√
Rr3. This condition is usually

not satisfied in our experimental conditions. Thus, in
order to compare accurately the experimental results to
the theory, one must consider the relevant quantity Σ =
cos(θ) + cos(α) which is not altered by gravity (Eq.3).
Moreover, one can better appreciate the magnitude of
the line tension effects on the geometry of the structure
by considering rather the angle β∗ ≡ 2 cos−1

(
Σ/2

)
than

Σ. We expect, from equation (3) in the limit T � γR,

β∗ =
2π

3
+

(
1− π

2
√

3

)
r

R
+O

[(
1− π

2
√

3

)2
r2

R2

]
(6)

Because of the small value (1− π
2
√
3
) ∼ 0.1 of the prefac-

tor, the non-linear terms in equation (6) are negligible in
any experimental situation. The angle β∗ corresponds to
the value of the angle β ≡ θ−α expected from measure-
ments in absence of gravity. In the dry limit (r → 0),
β∗ = 120 degrees. Because of the negative line tension
T , the angle β∗ is of about 121 degrees for R/r = 5 and
remains larger than 120.2 degrees for R/r = 20. The
agreement in figure (4) between our experimental mea-
surements and equation (6) demonstrates clearly that the
negative line tension T , defined by equation (2), is asso-
ciated to the Plateau border region.

We point out, that the cross section of the air-water
interface in the Plateau border region is not circular
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FIG. 4. Experimental angle β∗ vs. experimental ratio r/R.
Circles: experimental data; Solid line: equation (6). The
angles are known to within 0.1 deg whereas the radius r is
measured to within 1 pixel (to be compared to R ∼ 150 pix-
els).

anymore when the Plateau border is curved, because of
the additional curvature ∼ 1/R in the horizontal plane.
Moreover, because of the line-tension T itself, the angles
between the films differ from 120 degrees. As a conse-
quence, the line tension T differs slightly from the value
given by equation (2), which is exact only in the limit
of a rectilinear Plateau border. Writing the Lagrange
equation minimizing the total surface free energy of the
system at constant water volume, we computed the ex-
act shape of the air-water interface in the Plateau border
region as well as that of the films in our experimental
geometry (Fig.2). We found that the discrepancy be-
tween the line tension T and the approximation given by
equation (2) agree quantitatively to within ∼ 2.2r/R %.
Thus, equation (2) provides a good approximation of the
line tension T in most of the practical cases.

IV. CONCLUSION

In conclusion, negative line tension is associated to fi-
nite water volumes in the Plateau borders joining soap
films. This latter line tension affects the overall geom-
etry in 3D; as observed experimentally, the angles that
the films make at the Plateau border junction can differ
significantly from 120 degrees. This effect, which is not
due to gravity, is often neglected in the theoretical de-
scription of foams, usually studied in the dry limit, and
could be important when the volume fraction of water
is increased. Weaire and Kern suggested recently, that
negative decoration energy and line tension must be in-
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troduced in the modelling of foams approaching the dry
limit [8]. Our experimental results reinforces their theo-
retical approach consisting in considering a dry skeleton,
whose properties are evaluated in the presence of a neg-
ative tension.
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