
Predicting the System Performance by Combining

Calibrated Performance Models of its Components

Thomas Begin, Alexandre Brandwajn

To cite this version:

Thomas Begin, Alexandre Brandwajn. Predicting the System Performance by Combining Cal-
ibrated Performance Models of its Components : A Preliminary Study. 7th ACM/SPEC Inter-
national Conference on Performance Engineering (ICPE 2016), Mar 2016, Delft, Netherlands.
ICPE ’16 Proceedings of the 7th ACM/SPEC on International Conference on Performance
Engineering pp.95-100, <10.1145/2851553.2858658>. <hal-01241703>

HAL Id: hal-01241703

https://hal.archives-ouvertes.fr/hal-01241703

Submitted on 30 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52295306?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01241703

Predicting the System Performance by Combining
Calibrated Performance Models of its Components

A Preliminary Study

Thomas Begin
LIP, CNRS - ENS Lyon - UCB Lyon 1 - Inria 5668

France
DIVA Lab, University of Ottawa

Canada

Alexandre Brandwajn
Baskin School of Engineering

University of California Santa Cruz
PALLAS International Corporation

San Jose, CA, USA

ABSTRACT
In this paper we consider the problem of combining cal-
ibrated performance models of system components in or-
der to predict overall system performance. We focus on
open workload system models, in which, under certain con-
ditions, obtaining and validating the overall system perfor-
mance measures can be a simple application of Little’s law.
We discuss the conditions of applicability of such a simple
validation methodology, including examples of successful ap-
plication, as well as examples where this approach fails.

Additionally, we propose to analyze the deviations be-
tween the model predictions and system measurements, so
as to decide if they correspond to “measurement noise” or if
an important system component has not been correctly rep-
resented. This approach can be used as an aid in the design
of validated system performance models.

Keywords
performance models; component-level models; overall sys-
tem performance; validation; calibration.

1. INTRODUCTION
Faced with increasingly complex system architectures, an

obvious and commonly used approach is to characterize the
behavior of selected system components deemed crucial to
overall system performance. These performance components
have then to be combined in a global system model so as to
produce the desired overall system performance characteri-
zation. A number of methods have been employed to effect
such combination.

For closed system models, fixed-point iterations (e.g. [18]),
state-dependent equivalence (e.g. [8]), and near- decompo-
sability (e.g. [11]) are just a very partial list of methods
that were employed in this area. The resulting overall per-
formance model must then be validated against real or sim-
ulated system performance measurements. In an open sys-
tem, under certain conditions, obtaining and validating the

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

overall system performance measures can be a simple appli-
cation of Little’s law.

In this paper, we focus on open workload system mod-
els, but several aspects of our discussion are applicable to
closed systems as well. We discuss the conditions of appli-
cability of such simple validation methodology using Little’s
law, including examples of successful application, as well as
examples where this approach fails. Even if the applicabil-
ity conditions are met, some degree of deviation between
the model and the system measurements is expected. We
propose to analyze these deviations, so as to decide if they
correspond to simple “measurement noise” or if an impor-
tant system component has not been correctly represented.
As such, this approach can be used as an aid in the design
of validated system performance models.

In the next section, we review related work. In Section 3
we discuss the simple use of Little’s law in open models and
its applicability conditions. Section 4 is devoted to examples
of application of this methodology, and in Section 5 we dis-
cuss the use of this approach to discover and model hidden
system components. Section 6 concludes this paper.

2. RELATED WORK
From the early days of computer system and network

models, it was clear that “divide and conquer” approaches
may be beneficial when dealing with complex systems. This
gave rise to many flavors of decomposition approaches where
different parts of a system are analyzed in isolation (X-model
[14], Kühn [15], near- decomposability [11], Norton equiva-
lent [10, 4], equivalence and decomposition, etc). For in-
stance, it is usually considerably easier to analyze the I/O
subsystem separately from the complexity of CPU priority
scheduling when analyzing the performance of a computer
system.

Of course, we need a way to combine the results of the
analysis of decomposed subsystems to obtain the desired
overall system performance metrics. Depending on the de-
composition approach used, such “assembly” of the decom-
posed models may be accomplished by replacing a whole
subsystem by a simple delay representing the average time
a task spends in the subsystem (X-model). In other ap-
proaches, the performance of a subsystem may be repre-
sented as a state-dependent server (Norton, near- decompo-
sability, equivalence and decomposition). As shown in [9],
many of these approaches may be viewed in a unified way as
relying (implicitly or explicitly) on the use of marginal and
conditional probabilities, which provides, at least in theory,

a clean way to assemble the results of the analysis of decom-
posed subsystems.

Present-day systems often comprise a number of compo-
nents that work together to process incoming requests. As
mentioned above, it may be easier to model the performance
of each individual component than directly that of the whole
system. The component modeling may be performed using
a constructive approach requiring knowledge and expertise,
or using a “black box” approach, which parameterizes pre-
defined models by observing the relationships between the
component input and output parameters [6, 2, 3]. Several
approaches have been proposed in the literature for combin-
ing component-level models into system-level performance.

In the context of disk I/O requests, a case in point is the
work done by Ganger and Patt [12]. At that time, accurate
and sound models have been proposed for I/O subsystem
performance. But it was unclear how the improvements of
subsystems will be reflected in the overall system perfor-
mance. Among other things, the authors stress that looking
to improve the overall system performance is not directly the
same as improving the I/O subsystem performance. This is
because composing the performance of subsystems is not al-
ways straightforward.

The issue of predicting performance of a system based on
the behavior of its components has also been addressed in
the area of autonomic systems. Harbaoui et al. have pro-
posed a framework to predict the performance of a target
configuration when planning a system reconfiguration [13].
They decompose a distributed application into black boxes,
identifying the queue model for each black box and assem-
bling these models into a queueing network according to the
candidate target configuration.

More recently, Kraft et al. have studied the response times
experienced by disk I/O requests in consolidated virtualized
environments [16, 17]. The authors have shown how to ex-
trapolate the model of a single Virtual Machine (VM) into
a model to predict the degree of contention when multiple
VMs are accessing a remote storage server.

These previous works have emphasized the need and pro-
posed a specific-area solution to the problem of combining
models of components to represent the performance of a sys-
tem. In this paper, we attempt to propose a more general
framework for this problem.

3. FROM LOCAL TO GLOBAL SYSTEM
PERFORMANCE

We concentrate on systems in which requests (tasks, trans-
actions, jobs) arrive from an outside source, are processed
by the system and eventually depart from the system. We
refer to such systems as “open systems”.

The system considered consists of K known components
(see Figure 1) that are deemed important with respect to
a specific average performance measure F (e.g. mean num-
ber of requests in system (L), mean response time (R) or
loss probability (P)). We assume that we have a set of I
system-level measurement points {xexpS , fexp

S }, i = 1, . . . , I,
where xexpS denotes the mean measured system throughput,
i.e., the number of requests successfully processed by the
system per time unit, and fexp

S is the corresponding value of
the selected performance measure. We use the superscript
exp to refer to measured values and the superscript mod to
denote values obtained from a model. We assume that cali-
brated models have been developed for each of the K system

Arrivals of
requests

Departures 	
of requests

Component #1

Component #3 Component #4

Component #5Component #2

Losses	
of requests

system-components.pdf

Figure 1: A system with K = 5 components.

components. Our K component models can be viewed as a
set of K functions fmod

k (xmod
k) with k = 1, . . . ,K.

In order to be able to use our component models to assess
overall system performance, we must know the relationship
between the overall system throughput XS and the compo-
nent throughputs Xk, k = 1, . . . ,K. This is an essential
assumption. In practice, this relationship will be known
from the nature of the system or from measurements. An-
other essential assumption is that a given request occupies
a single component at a time.

Given this assumption, obviously, if the selected perfor-
mance measure is the mean number of requests L, the over-
all mean number of requests in the system should be equal
to the sum of the mean numbers obtained from the com-
ponent models for throughput levels that correspond to the
measured system throughput levels {xexpS }i.

If the selected performance measure is the mean response
time R, Little’s formula [7] can be used to obtain the overall
mean response time for arbitrary values of system through-
put xmod

S :

rmod
S =

∑K
k=1(rmod

k xmod
k)

xmod
S

(1)

Clearly, to attempt to validate this approach, we select
system throughput values xmod

S = xexpS and we compare the
mean response time values obtained from Formula (1) with
those known from measurements rexpS for the same values of
system throughput.

If the loss probability is the selected performance measure,
the overall loss probability can be expressed as:

pmod
S =

1

1 +
xmod
S∑K

k=1
xmod
k

.pmod
k

/(1−pmod
k

)

(2)

Formula (2) allows us to assess the overall loss probability
in terms of component-level loss probabilities and request
throughputs.

As mentioned earlier, for our approach to work, we need to
know the relationship between the overall system through-
put and the throughputs of individual components. If this
relationship is not obvious or known from the structure of
the system, we may be able to determine it using measure-
ments. To this end, we need at least one set of reasonably
synchronized measurements of xexpS and xexpk , k = 1, . . . ,K.
If only one set of synchronized measurements is available,
the best one can do is to assume that the observed ratios
xexpk /xexpS carry over to other workload levels, i.e., remain
constant as the overall system throughput varies. With mul-
tiple measurement points, one can check if this is indeed the
case or possibly try to infer a more involved relationship
between throughputs.

p13

font size : 14!
passer à 16 peut être

p12

p11

p20 = p30

p21 = p31

�

�

pAA

pAB

pAC

pB̄ = pC̄

pBA = pCA

A

B

C

Comp-1

Comp-2

Comp-3

fig:system-centralized

Figure 2: A centralized system architecture.

Note that the throughput ratios discussed above are analo-
gous to the so-called visit ratios in analytical modeling meth-
ods such as Mean Value Analysis [19, 20] or BCMP theorem
[5]. With few exceptions, in general solution methods, these
ratios are taken to be constant. Additionally, the general
analytical solutions require specific restrictions on the types
of service discipline and service time distributions in order
to be applicable. On the other hand, our approach requires
no specific assumptions on service disciplines and distribu-
tions or arrivals of requests (even if we may assume that the
throughput ratios remain constant).

4. ILLUSTRATIVE CASES
4.1 Successful case

In this first case we focus on the mean response time, RS ,
for a system with a centralized architecture and a total of
K = 3 components, one of which, is referred to as the central
server(s) and the remaining K-1 components are referred as
the peripheral servers. Our goal is to study how well RS can
be determined from correctly calibrated performance models
of the components.

Centralized architectures are common in telecommunica-
tion and computer network. In our example, we assume
that the incoming tasks, representing the system workload,
require first a burst of service from the central server(s).
Upon completion of a service burst, a task may request an-
other service burst at the central server(s) or it may need
service from one of the peripheral servers. Upon completion
of service at a peripheral server, a task may require another
round of processing at the central server or it may leave the
system.

For the sake of convenience and reproducibility, the “mea-
sured”values of the overall system performance, {xexpS , rexpS }i,
i = 1, . . . , I as well as those of its components, were obtained
using a discrete-event simulation. The system simulated is
the machine repairman network shown in Figure 2. The
task arrivals are represented through a Poisson process of
rate λ. The central server(s) and the peripherals are each
represented by a single queue, labeled Comp-1, Comp-2 and
Comp-3, respectively. Table 1 gives the details of the sim-
ulated system parameters. Thus, in our system: (i) 30% of
tasks require another burst of service at the central server(s)
after completing a service burst (p11 = 0.3), (ii) two re-
quests can be processed simultaneously at the central servers
(C1 = 2), (iii) the service time of Comp-2 is considerably
faster than at Comp-3 (mst3 = 5.mst2), (iv) the variability
of service times is much larger for Comp-2 than for Comp-3
(although the mean time is less) (cvs2 = 4.cvs3), (v) 70% of
requests return to the central servers queue upon completion
of service at a peripheral server (p21 = p31 = 0.7).

As discussed above, we assume that accurate and cali-
brated models have been developed for each of the 3 com-
ponents (Comp-1, Comp-2 and Comp-3) of the system. In

Table 1: Parameters used for Figure 2.

Comp-1 C1 Number of servers 2
mst1 Mean service time 1
cvs1 Coefficient of variation for service time 3
p11 Probability of returning to Comp-1

upon request completion
0.3

p12 Probability of going to Comp-2 upon
request completion

0.6

p13 Probability of going to Comp-3 upon
request completion

0.1

Comp-2 C2 Number of servers 1
mst2 Mean service time 2
cvs2 Coefficient of variation for service time 2
p20 Probability of leaving the system upon

request completion
0.3

p21 Probability of going to Comp-1 upon
request completion

0.7

Comp-3 C3 Number of servers 1
mst3 Mean service time 10
cvs3 Coefficient of variation for service time 0.5
p30 Probability of leaving the system upon

request completion
0.3

p31 Probability of going to Comp-1 upon
request completion

0.7

other words, the model of the k-th component (Comp-k)
provides a function rmod

k (xmod
k) that returns a predicted

level of mean response time for any given value of the mean
throughput at the given component. Note that we used the
high-level modeling approach [6] to find calibrated models
for the components. In our case, these happen to be based
on queueing theory but any other approach would work pro-
vided that the resulting models are accurate. Figure 3 illus-
trates the accuracy of the component models by showing the
“measured” and the model-predicted performance for each
system component. We observe that our component models
match well the “measured” performance values throughout
the range of workload values under consideration.

Having in hand a calibrated model for each of the system
components, we can now use Formula (1) to determine the
mean response time for the whole system as a function of
the mean system throughput. All we need is to know are
the throughput ratio of each component, namely xexpk /xexpS ,
k = 1, . . . ,K. These quantities may be smaller or larger
than 1 as they represent the relative rate of request arrivals
at component k as compared to that at the system level.
In our example, it is easy to compute these ratios from
the system topology (see Figure 2). The corresponding val-
ues are 1

(1−p11)(1−p21)
= 4.762, p12

(1−p11)(1−p21)
= 2.857 and

p13
(1−p11)(1−p31)

= 0.4762 for component Comp-1, Comp-2 and

Comp-3, respectively. As mentioned in Section 3, in other
cases, these values can be discovered thanks to synchronized
measurements of throughput. Next, in order to obtain rmod

S

as a function of xmod
S , we simply “convert” any given value

of xmod
S into values of xmod

k , k = 1, . . . ,K by multiplying
it by the respective throughput ratio, and then we call the
component models to compute the values of rmod

k associated
to xmod

S , and thereby applying Formula (1). We performed
this step for many levels of workload, including low and high
levels. Figure 4 shows the resulting overall system perfor-
mance values obtained using this approach. Clearly, and
perhaps not surprisingly, we observe that the performance
of the composed model {xmod

S , rmod
S } match very well those

measured in the simulation {xexpS , rexpS }, validating the pro-
posed approach for this example.

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

M
ea

n
 r

es
p
o
n
se

 t
im

e
(R

)

Mean throughput (X)

Measurements
Calibrated Model

(a) Comp-1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.1 0.2 0.3 0.4 0.5 0.6

M
ea

n
 r

es
p
o
n
se

 t
im

e
(R

)

Mean throughput (X)

Measurements
Calibrated Model

(b) Comp-2

 0

 10

 20

 30

 40

 50

 60

 0 0.02 0.04 0.06 0.08 0.1

M
ea

n
 r

es
p
o
n
se

 t
im

e
(R

)

Mean throughput (X)

Measurements
Calibrated Model

(c) Comp-3

Figure 3: Performance measurements and modeling for each of the 3 components of the centralized system.

 0

 50

 100

 150

 200

 250

 300

 0 0.05 0.1 0.15 0.2

M
ea

n
 r

es
p
o
n
se

 t
im

e
(R

)

Mean throughput (X)

Measurements
Modeling Prediction

Figure 4: Predictions of system performance against mea-
surements for the centralized system.

4.2 Cases of failure
As illustrated by examples in this section, considerably

inaccurate performance predictions can be expected when
the applicability conditions are not met.

p13

font size : 14!
passer à 16 peut être

p12

Comp-1

Comp-2

Comp-3

system-whittle.pdf

Figure 5: System with state-dependent routing.

Table 2: Parameters used for Figure 5.

Comp-1 C1 Number of servers 1
mst1 Mean service time 1
cvs1 Coefficient of variation for service time 1
p12 Probability of going to Comp-2 upon

request completion
1 or .5

p13 Probability of going to Comp-3 upon
request completion

0 or .5

Comp-2 C2 Number of servers 1
mst2 Mean service time 2
cvs2 Coefficient of variation for service time 1

Comp-3 C3 Number of servers 1
mst3 Mean service time 2
cvs3 Coefficient of variation for service time 1

We now consider a system with 3 components in which,
unlike the previous example, the routing probabilities de-
pend on the current state of components. Such state-depen-
dencies may occur in systems with load-balancing policies.
Figure 5 illustrates the topology of our example. In this
system, the incoming requests, which arrive according to a
Poisson process with rate λ, go through two components.
They start with Comp-1 and, if the current number of re-
quests waiting or being served in Comp-2 is larger than 10,

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

M
ea

n
 r

es
p
o
n
se

 t
im

e
(R

)

Mean throughput (X)

Measurements
Modeling Prediction

Figure 6: Predictions of system performance against mea-
surements for the system with state-dependent routing prob-
abilities.

they are routed to Comp-3. Otherwise, they are equally
likely to be dispatched to Comp-2 and Comp-3. Table 2
summarizes the system parameters used in our simulation.
Note that the buffers at each component are assumed to be
large enough to avoid overflows.

Assuming we have calibrated models to capture the per-
formance of each component, we apply the proposed ap-
proach to estimate the mean response time of the whole
system as a function of the mean throughput following For-
mula (1). Here, the predicted values do not match well those
actually observed (“measured”) in the simulation. Figure 6
illustrates this discrepancy.

The reason for the discrepancy shown in Figure 6 is clear:
unlike in the previous example, the throughput ratios for
components Comp-2 and Comp-3 are not constant. Indeed,
as the workload increases, the number of requests waiting or
being served in Comp-2 increases, so that requests leaving
Comp-1 become more likely to be routed to Comp-3 (up
to half of them). In the proposed approach, however, the
throughput ratio for each queue was derived at a lower level
of workload, and it was applied for other levels of workload
considered.

State-dependencies causing failure of the proposed ap-
proach can appear in seemingly different examples. Consider
a system in which the arrivals and departures of requests
may occur at several places in the system. Such behavior
may occur in systems exhibiting internal losses of requests
(e.g. due to buffer overflow, transmission errors, dynamic
routing). Figure 7 shows a system where incoming requests
may be routed to Comp-1 or directly to Comp-2 depending
on the current number of requests waiting in Comp-1. If
the number of queued requests is less than 7, then incom-

font size : 14!
passer à 16 peut être

Arrivals

Comp-1 Comp-2 Comp-3
p30

p02

Arrivals

p01

p20

Departures

Departures

system-internal.pdf

Figure 7: System with internal losses and arrivals.

Table 3: Parameters used for Figure 7.

Comp-1 C1 Number of servers 1
mst1 Mean service time 2
cvs1 Coefficient of variation for service time 1
p01 Probability for new requests to enter

at Comp-1
1 or 0

Comp-2 C2 Number of servers 1
mst2 Mean service time 1
cvs2 Coefficient of variation for service time 1
p02 Probability for new requests to enter

at Comp-2
0 or 1

p20 Probability of leaving the system upon
completion of Comp-2

0 or 1

Comp-3 C3 Number of servers 1
mst3 Mean service time 2
cvs3 Coefficient of variation for service time 1

ing requests go to Comp-1. Otherwise, they skip Comp-1
and go directly to Comp-2. Similarly, if the current number
of requests at Comp-3 is less than 7, requests completed at
Comp-2 are routed to Comp-3. Otherwise, upon completion
at Comp-2, they skip Comp-3 and leave the system. Table 3
gives the details of the system parameters used in our simu-
lation. As in our preceding example, request arrivals form a
Poisson process and the buffer sizes at each component are
assumed to be large enough to avoid overflows.

Again, with accurately calibrated performance models for
each component, we apply Formula (1) to predict the mean
response time of the whole system for different levels of mean
system throughput. Here too, as illustrated in Figure 8, the
proposed approach is doomed to failure since the throughput
ratios of Comp-1 and Comp-3 are not constant.

As discussed above, the proposed approach would work
if the rate of arrivals at Comp-2 and the rate of departures
from Comp-2 were known in advance or if they were sim-
ply proportional to the overall system workload (as would
be the case, for example, if requests departures represented
transmission errors in a communication network).

In addition to cases in which the throughput ratios vary
with workload levels and their variation is not known in ad-
vance, the proposed approach is not applicable for systems
in which requests may simultaneously “occupy” two or more
resources. For instance, in order to get fully processed by a
“primary” component, the requests, while holding the com-
ponent resource, need to receive service from a “secondary”
component. The latter may be shared with other competing

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

M
ea

n
 r

es
p
o
n
se

 t
im

e
(R

)

Mean throughput (X)

Measurements
Modeling Prediction

Figure 8: Predictions of system performance against mea-
surements for the system with internal losses and arrivals.

sources of requests. Systems like databases and certain disk
controllers may exhibit this behavior.

Figure 9 illustrates a simple example of a system with si-
multaneous resource possession. The service time in Comp-1
is represented as a two-stage process where the second stage
represents the resource holding time while the request poten-
tially waits for and accesses the shared resource at Comp-2.
Here, any calibrated model of component Comp-1 is in fact
a good candidate to predict the mean response time of the
whole system since both coincide. Comp-1 and Comp-2 are
too strongly coupled (Comp-2 can be seen as being embed-
ded within Comp-1) and cannot be combined as described in
Section 3. Similarly, systems with fork and join mechanisms
would cause problems.

font size : 14!
passer à 16 peut être

Comp-1

Comp-2

Arrivals Departures

External arrivals

Comp-1

Comp-2

Arrivals Departures

External arrivals

system-overlap.pdf

Figure 9: System with simultaneous resource possession.

5. DISCOVERY OF UNKNOWN SYSTEM
COMPONENTS

Our next system of interest is similar to that discussed
in Section 4.1 but it includes an additional component, viz.
Comp-4. We assume that available measurements points
pertain to the overall system performance as well as to com-
ponents Comp-1, Comp-2 and Comp-3 with the exception of
Comp-4. This latter may have been considered unimportant
for the overall system performance or simply overlooked by
or unknown to the performance analyst. Comp-4 may repre-
sent for example access to internal tables or buffers deemed
so fast that it is unlikely to be a factor in the overall system
performance. Figure 10 illustrates the corresponding system
with a gray box around Comp-4. We re-use the same sys-
tem parameters for components 1 through 3 as in Table 1
and indicate the parameters for Comp-4 in Table 4. The
parameters for Comp-4 were chosen so that it can become
a bottleneck because of the frequency with which requests
visit it while each visit is very short.

p13

p12

p11

p20 = p30

p21 = p31

�

Comp-1

Comp-2

Comp-3

p44

Comp-4

system-centralized2.pdf

p13

p12

p11

p20 = p30

p21 = p31

�

Comp-1

Comp-2

Comp-3

p44

Comp-4

Figure 10: System with an “unknown” component.

Table 4: Parameters used for Figure 10.

Comp-4 C4 Number of servers 1
mst4 Mean service time 0.1
cvs4 Coefficient of variation for service time 0
p44 Probability of returning to Comp-4

upon request completion
0.96

Having developed a calibrated performance model for each
of the components Comp-1, Comp-2 and Comp-3, we ap-
plied the proposed method following Formula (1) to derive
the performance of the whole system. Figure 11a displays
the corresponding results. Clearly, the proposed approach is
missing something. Now, assuming this missing something

 0

 50

 100

 150

 200

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

M
ea

n
 r

es
p
o
n
se

 t
im

e
(R

)

Mean throughput (X)

Measurements
Modeling Prediction

(a) Initial performance prediction

 0

 5

 10

 15

 20

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

M
ea

n
 n

u
m

b
er

 (
L

)

Mean throughput (X)

Measurements
Calibrated Model

(b) Modeling the residual performance

 0

 50

 100

 150

 200

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

M
ea

n
 r

es
p
o
n
se

 t
im

e
(R

)

Mean throughput (X)

Measurements
Modeling Prediction

(c) Refined performance prediction

Figure 11: Predictions of system performance against measurements for the centralized system with an unknown component.

is an additional component that was not measured (and per-
haps even not instrumented) and therefore not modeled, we
consider the difference in the performance metric between
the system measurement points and the performance curve
given by Formula (1). Given this residual pattern of per-
formance, we apply a black-box modeling approach [6] to
find a model that reproduces adequately this behavior. It
turns out that a simple M/M/1 queue can fit the data (see
Figure 11b).

If the pattern was more chaotic and could not be matched
by a reasonable model, it might imply that the residual
performance difference is just measurement “noise”, or that
something else is amiss and that the system does not com-
ply with the set of assumptions required for the proposed
approach to work. A possible approach to try to determine
whether the residual performance difference is due to “mea-
surement noise”would be to apply simple statistical tests [1].

Now, having in hand a calibrated model for each of the
four system components, we can re-apply the proposed ap-
proach to forecast the system performance. The correspond-
ing results are shown in Figure 11c and clearly, including a
new component was the right choice in our case.

6. CONCLUSIONS
In this paper we consider the problem of combining cali-

brated performance models of individual system components
into an accurate system-level performance model. We con-
centrate on open workload systems and we show that under
certain conditions the straightforward application of Little’s
law allows one to effect this integration. We give exam-
ples to illustrate the successful application of the proposed
approach, as well as examples that show the extent of inac-
curacies if the applicability conditions are not met.

Additionally, we show that by analyzing the discrepancies
between the model predictions and the measurements it may
be possible to determine if an important system component
has not been correctly represented. This can be of help in
the design of calibrated system performance models.

As future work, the authors plan to further investigate the
important issue of distinguishing “measurement noise” from
errors due to missing components. Another area of investi-
gation pertains to the extensions of the proposed framework
to closed systems.

7. REFERENCES
[1] Allen, A. O. (1990). Probability, Statistics, and Queueing

Theory: With Computer Science Applications, Academic
Press.

[2] Awad, M., & Menascé, D. A. (2014). On the Predictive
Properties of Performance Models Derived through

Input-Output Relationships. Computer Performance
Engineering.

[3] Awad, M., & Menascé, D. A. (2014). Dynamic Derivation
of Analytical Performance Models in Autonomic
Computing Environments. In Proc. of CMG.

[4] Balsamo, S., & Iazeolla, G. (1982). An extension of
Norton’s theorem for queueing networks. IEEE
Transactions on Software Engineering.

[5] Baskett, F., Chandy, K. M., Muntz, R. R., & Palacios, F.
G. (1975). Open, closed, and mixed networks of queues
with different classes of customers. Journal of the ACM.

[6] Begin, T., Brandwajn, A., Baynat, B., Wolfinger, B. E., &
Fdida, S. (2010). High-level approach to modeling of
observed system behavior. Performance Evaluation.

[7] Bolch, G., Greiner, S., Meer, H., & Trivedi, K. (2005).
Queueing Networks and Markov Chains.

[8] Brandwajn, A. (1974). A model of a time sharing virtual
memory system solved using equivalence and
decomposition methods. Acta Informatica.

[9] Brandwajn, A. (1985). Equivalence and decomposition in
queueing systems - A unified approach. Performance
Evaluation.

[10] Chandy, K. M., Herzog, U., & Woo, L. (1975). Parametric
analysis of queuing networks. IBM Journal of Research
and Development.

[11] Courtois, P. J. (2014). Decomposability: queueing and
computer system applications, Academic Press.

[12] Ganger, G. R., & Patt, Y. N. (1993). The process-flow
model: examining I/O performance from the system’s
point of view. In Proc. of ACM SIGMETRICS.

[13] Harbaoui, A., Salmi, N., Dillenseger, B., & Vincent, J. M.
(2010). Introducing queuing network-based performance
awareness in autonomic systems. In Proc. of IEEE ICAS.

[14] Herzog, U. (1974). Some remarks concerning the extended
analytic models for system evaluation. IBM RR 4975.

[15] Kühn, P. (1976). Analysis of Complex Queueing Networks
by Decomposition. In Proc. of IEEE ITC.

[16] Kraft, S., Casale, G., Krishnamurthy, D., Greer, D., &
Kilpatrick, P. (2011). IO performance prediction in
consolidated virtualized environments. In Proc. of ACM
SIGSOFT.

[17] Kraft, S., Casale, G., Krishnamurthy, D., Greer, D., &
Kilpatrick, P. (2013). Performance models of storage
contention in cloud environments. Software and Systems
Modeling.

[18] Marie, R. (1979). An approximate analytical method for
general queueing networks. IEEE Transactions on Software
Engineering.

[19] Reiser, M. (1979). Mean Value Analysis fo Queueing
Networks - A New Look at an Old Problem. In Proc. of
IFIP PERFORMANCE.

[20] Reiser, M., & Lavenberg, S. S. (1980). Mean-value analysis
of closed multichain queuing networks. Journal of the
ACM.

