
A Library for Symbolic Floating-Point Arithmetic

Claude-Pierre Jeannerod, Nicolas Louvet, Jean-Michel Muller, Antoine Plet

To cite this version:

Claude-Pierre Jeannerod, Nicolas Louvet, Jean-Michel Muller, Antoine Plet. A Library for
Symbolic Floating-Point Arithmetic. 2016. <hal-01232159v2>

HAL Id: hal-01232159

https://hal.inria.fr/hal-01232159v2

Submitted on 3 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52294572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01232159v2

A Library for Symbolic Floating-Point Arithmetic

Claude-Pierre Jeannerod (Inria),
Nicolas Louvet (UCBL),

Jean-Michel Muller (CNRS),
Antoine Plet (ENS de Lyon).

(firstname.lastname@ens-lyon.fr)

LIP laboratory (CNRS, ENS de Lyon, Inria, UCB Lyon 1),
Université de Lyon, France.

August 3, 2016

Abstract

To analyze a priori the accuracy of an algorithm in �oating-point arithmetic, one usually
derives a uniform error bound on the output, valid for most inputs and parametrized by the
precision p. To show further that this bound is sharp, a common way is to build an input example
for which the error committed by the algorithm comes close to that bound, or even attains
it. Such inputs may be given as �oating-point numbers in one of the IEEE standard formats
(say, for p = 53) or, more generally, as expressions parametrized by p, that can be viewed as
symbolic �oating-point numbers. With such inputs, a sharpness result can thus be established for
virtually all reasonable formats instead of just one of them. This, however, requires the ability
to run the algorithm on those inputs and, in particular, to compute the correctly-rounded sum,
product, or ratio of two symbolic �oating-point numbers. The goal of this paper is to show how
these basic arithmetic operations can be performed automatically. We introduce a way to model
symbolic �oating-point data, and present algorithms for round-to-nearest addition, multiplication,
fused multiply-add, and division. An implementation as a Maple library is also described, and
experiments using examples from the literature are provided to illustrate its interest in practice.

1 Introduction

When designing �oating-point algorithms that are building blocks for numerical computing (for ex-
ample, arithmetic operations on complex numbers, or the evaluation of small-degree polynomials), it
is important to provide rigorous and sharp error bounds, that can be safely used for analyzing the
behavior of larger algorithms based on them.

To establish the sharpness of an error bound for a �oating-point algorithm, one way is to provide
input examples for which the error generated is very close to, or reaches the bound. A possible
approach to �nd such examples is to run the algorithm on a set of random inputs, or to perform
exhaustive tests in small precisions. However, since the number of possible inputs is exponential in
the precision p, one can hardly expect to �nd examples in practical precisions (p = 24 or 53 for the
commonly used binary32 and binary64 formats [7]) with such approaches. Hence, it is common to
build examples parametrized by the precision p, and to show that the error committed by the algorithm
either attains the error bound, or is equivalent to the error bound as p→∞; see for example [3, 8, 9].

Let us cite an example taken from [8]. In that paper, the authors analyze the algorithm below,
due to Kahan (Algorithm 1), for evaluating x = ad − bc, where a, b, c, d are �oating-point numbers,
and assuming that a fused multiply-add instruction is available. Here and hereafter, RN denotes the
function that rounds a real to the �oating-point number nearest to it and, in case of tie, whose last
signi�cand digit is even.

Assuming base β and precision p, [8] show the following result: if no under�ow or over�ow occurs,
then |x̂ − x| 6 2u|x| with u = 1

2β
1−p the unit roundo�; moreover, for any �xed, even value of β

1

Algorithm 1 (Evaluation of x = ad− bc)
algorithm Kahan(a, b, c, d)
ŵ ← RN(bc);
e← RN(ŵ − bc);
f̂ ← RN(ad− ŵ);
x̂← RN(f̂ + e);

this relative error bound is asymptotically optimal as p → ∞. In particular, to prove asymptotic
optimality the authors introduce the following �oating-point inputs, parametrized by β and p:

a = b = βp−1 + 1,

c = βp−1 + β
2β

p−2,

d = 2βp−1 + β
2β

p−2;

(1)

then, they show that for such inputs the relative error on the �nal result has the form

2u

1 + 2u
,

which is equivalent to 2u as u → 0 (or, β being �xed, as p → ∞). Note that in this example, the
inputs a, b, c, d are expressed as functions of the base β and the precision p.

Examples as in (1) can be built by �rst computing the error generated by the algorithm with small
values of the precision p, then guessing some �generic� inputs parametrized by β and p, and �nally
carrying paper-and-pencil calculations, that are in general tedious and error prone, to check if those
guessed inputs e�ectively correspond to cases we are looking for. Our goal in this paper is to show
how to automate this last step in order to save time, to avoid possible errors, and to be able to try
many more candidates.

We refer to functions representing �oating-point numbers parametrized by the precision p (with
β > 2 �xed and even) as symbolic �oating-point numbers. In this paper, we propose to manipulate
symbolic �oating-point numbers, in a computer algebra system such as Maple, very much as real
numbers or polynomials can be manipulated within such a system.

Floating-point arithmetic has already been formalized in various interactive theorem provers: see
for example [6, 4], and more recently the description of the Flocq library in [2], that was designed for
the Coq proof assistant. Such a formalization can be used to generate formal proofs of properties of
�oating-point algorithms and programs. Also, multiple-precision �oating-point computations can be
performed using Flocq for veri�cation purposes (see [10] for details), but in that case the precision
for each operation is �xed: a particular format with a �xed precision p ∈ N is de�ned for each
intermediate operation. In contrast, when computing with symbolic �oating-point numbers as we are
going to de�ne them in this paper, the precision p is a linear function of an integer variable k, which
allows us to deal with �generic� examples as in (1).

Let us brie�y recall how conventional �oating-point arithmetic can be formalized. The set Fp of
�oating-points numbers (with an unbounded exponent range), in base β and precision p, is a subset
of Q containing all the numbers of the form M · βe, with |M | ∈ Z less than βp, and e ∈ Z. The result
of an elementary operation (+, −, × or /) between two elements of Fp is a rational number in Q, and
the computed result is the exact one rounded to an element in Fp according to a speci�ed rounding
function.

In a similar way, we �rst de�ne in this paper the set L of a�ne functions that will be used to
represent both the precision and the exponent of symbolic �oating-point numbers. We also de�ne
the set SQ that will be used to represent the exact results of arithmetic operations before rounding.
Then, we introduce the set SZ of symbolic integers, and we show how elements in SQ can be rounded
to elements in SZ. Using the notion of symbolic integer, we �nally de�ne the set SFp of symbolic
�oating-point numbers in base β and precision p ∈ L. The following table summarizes the matching
between numerical data and their symbolic counterparts:

2

Numerical data Symbolic data

Z L
Q SQ
Z SZ
Fp SFp

The exact results of elementary operations on elements of SFp can always be represented in SQ, and
then rounded to an element of SFp. We will focus in this paper on rounding to the nearest symbolic
�oating-point numbers, but the directed rounding modes are provided as well in the library.

Outline. In this paper, we �rst de�ne in Section 2 the set SQ as the fraction �eld of sums of
exponentials functions of a symbolic integer variable k, that will serve as the input domain of the
rounding function, and we give properties that will be used for handling the elements of SQ. In
Section 3, we de�ne the set SZ of symbolic integers as the subset of elements in SQ that evaluates
to integers if k is large enough. Considering the precision p as a linear function of k, we introduce
in Section 4 the set SFp of symbolic �oating-point numbers in precision p. We then de�ne a round-
to-nearest partial function RNp from SQ to SFp, we give an algorithm to compute it in practice, and
we show how it matches the roundTiesToEven rounding-direction attribute of the IEEE 754 standard
for �oating-point arithmetic [7]. An implementation as a Maple library is described in Section 5, and
experiments using examples from the literature are provided to illustrate its usefulness. We conclude
in Section 6 with some practical time measurements.

Notation. Here and hereafter, k is an integer variable and β is a �xed integer corresponding to the
�oating-point base. We assume that β is even and at least two, and in practice we shall take β = 2
or β = 10 as prescribed by the IEEE 754-2008 standard [7].

We write Z and N to denote the integers and the nonnegative integers, respectively. To indicate
that a property holds asymptotically, we will often write �P (k) as k →∞� as a shortcut for the fact
that �there exists k0 ∈ N such that P (k) holds for all k > k0.�

Let L denote the set of linear functions in k with integer coe�cients:

L = {ak + b : a, b ∈ Z};

let also
L>τ = {` ∈ L : `(k) > τ as k →∞}, τ ∈ R.

Given a function g : X → R such that minx∈X g(x) is well de�ned, we denote by argminx∈X g(x)
the set {

x∗ ∈ X : g(x∗) = minx∈X g(x)
}
.

2 Fractions of sums of exponentials with base β

Before introducing symbolic integers and �oating-point numbers, we have to formalize a more general
set SQ which will be the domain of the exact calculations. In this section, we �rst de�ne the set E
of sums of exponentials in base β, with integer coe�cients and exponents linear in k. We then de�ne
SQ as the set of fractions of elements of E and derive several useful properties of that set.

2.1 Sums of exponentials

Let E be the set of sums of exponentials

f(k) =

n∑
i=1

ciβ
ei(k), k ∈ N, (2)

where n ∈ N and where, for n > 1, the ci and ei satisfy

|ci| ∈ {1, 2, . . . , β − 1} and ei ∈ L, (3)

e1(k) > e2(k) > · · · > en(k) as k →∞; (4)

3

Figure 1: The linear functions e1(k) = 2k − 2, e2(k) = k − 1, and e3(k) = −k + 4 such that
e1(k) > e2(k) > e3(k) for all integer k > 3.

for n = 0, we take f(k) = 0.
If we de�ne the ring R = Z[β−1] = {n/βe : n ∈ Z, e ∈ N} of β-adic fractions, which generalizes

dyadic fractions to values of β other than 2, then the elements of E are functions from N to R, and
can be seen as special cases of so-called exponential polynomials, with base β and exponents linear
in k; see for example [5, p. 7].

The asymptotic ordering of these linear exponents is illustrated by Figure 1 for n = 3. Writing

ei(k) = aik + bi, i = 1, . . . , n, (5)

we see in particular that the ordering of the ei in (4) implies

a1 > a2 > · · · > an. (6)

For later use, we give the following property that provides an asymptotic equivalent of any nonzero
element in E as k →∞.

Property 2.1. Let f ∈ E as in (2) and (5) with n > 1, and let c ∈ Q such that

c =
∑

i : ai=a1

ciβ
bi−b1 . (7)

Then
f(k) ∼ c βe1(k) as k →∞.

Proof. We use (6) to rewrite f(k) as

f(k) =
∑

i : ai=a1

ciβ
ei(k) +

∑
i : ai<a1

ciβ
ei(k) =

(
c+

∑
i : ai<a1

ciβ
ei(k)−e1(k)

)
βe1(k),

with c as in (7). Note that the ci are independent of k, and that for ai < a1, ei(k) − e1(k) tends to
−∞ as k →∞. Hence the ratio f(k)/βe1(k) tends to c as k →∞, which establishes the result.

Representations for E There are at least two ways of representing the functions in E. A �rst
possible representation is directly suggested by (2) and (5), and consists of the �nite sum

n∑
i=1

ciβ
aik+bi . (8)

Because of the redundancy in the digit set used for the ci, two or more di�erent sequences of terms
can represent the same function. For example, since βk − βk−1 = (β − 1)βk−1, one can also represent
f(k) = 2k−1 by 2k−2k−1. This is of course similar to classical redundant, signed-digit number systems
à la Avizienis [1].

4

An alternative representation consists of using the change of variable βk = X, and identifying
f ∈ E with the Laurent polynomial

f̃(X) =

n∑
i=1

ciβ
biXai . (9)

More precisely, since ai, bi, ci ∈ Z, we have f̃ ∈ R[X,X−1]. By expanding the positive elements of R

in base β, it is easy to check that the map ϕ : f 7→ f̃ is bijective.
Both representations will be useful in this paper, and we shall use one or the other depending on

what is most convenient for the operation at hand.

Example 2.2. We introduce two examples in base 2 that will be used repeatedly:

ξ1 = 22k − 5 · 2k−1 = 22k − 2k+1 − 2k−1 and ξ2 = −2k + 5 · 2−1 − 3 · 2−k (10)

are sums of exponentials that can be represented by the polynomials

ξ̃1(X) = X2 − 5

2
X and ξ̃2(X) = −X +

5

2
− 3

X

using the change of variable 2k = X. One should notice that the polynomial representation gathers
the terms in the sum of exponentials that contain the same slope in their exponents.

Addition and multiplication in E Since the map ϕ is bijective and since R[X,X−1] is a com-
mutative ring with 1 (for the usual + and × on polynomials), the set E inherits the same algebraic
structure, with addition and multiplication de�ned as

f1 op f2 = ϕ−1
(
ϕ(f1) opϕ(f2)

)
for f1, f2 ∈ SQ and op = +,×.

In practice, this implies that the system E is closed under addition and multiplication, and that
operating on two functions f1, f2 ∈ E given in the representation (8) can be done simply by convert-
ing them into their polynomial counterparts (9), operating on the latter using standard polynomial
arithmetic, and converting the result back from (9) to (8).

2.2 The fraction �eld SQ
Since E is an integral ring, we de�ne SQ as the �eld of fractions of E. In particular, E ⊂ SQ but
2k/3 and (2k +1)/(1− 21−k) are elements of SQ that do not belong to E. One should notice that the
denominator of an element of SQ may evaluate to zero for �nitely many values of k. However, any
f ∈ SQ is a well de�ned function from N>k0 to Q for some k0 ∈ N, depending on f . For instance, for
(2k + 1)/(1− 21−k) in the previous example, the domain of de�nition is N>1.

Moreover, since ϕ is a ring isomorphism from E to R[X,X−1], it can be extended to a �eld
isomorphism from SQ to Frac(R[X,X−1]) = R(X) = Z(X), so that elements in SQ can be represented
by rational functions with integer coe�cients.

Example 2.3. The fractions

ξ3 =
2 + 22 · 2−k

3
and ξ4 =

−23k − 5 · 22k−1

26k + 25k+1
(11)

belong to SQ as ratios of elements of E, and can be represented respectively by

ξ̃3(X) =
2X + 22

3X
and ξ̃4(X) =

−2X − 5

2X4 + 4X3
.

As ξ1 and ξ2, these two examples are used as running examples in the following.

5

2.3 Sign, absolute value, and exponent of elements of SQ
Besides +, −, × and ÷, it is useful to de�ne several low-level functions on elements of SQ. Especially,
the rational numbers have a sign, and when they are nonzero, they also have a base-β exponent (the
base-β exponent of x 6= 0 is the largest integer e such that βe 6 |x|). These low-level functions are
essential when de�ning and manipulating conventional �oating-point numbers, we will also need them
to deal with symbolic �oating-point numbers.

Given a nonzero f = g/h ∈ SQ, with g, h ∈ E, let g(k) ∼ cgβ
eg,1(k) and h(k) ∼ chβ

eh,1(k) be the
asymptotic equivalents of g and h obtained according to Property 2.1. We have

f(k) =
g(k)

h(k)
∼ cg
ch
βeg,1(k)−eh,1(k) as k →∞, (12)

which shows that any nonzero function f ∈ SQ is eventually either positive or negative, that is, there
exists k0 ∈ N such that either f(k) > 0 for all k > k0, or f(k) < 0 for all k > k0. Hence there
is a unique s ∈ {−1, 1} such that s = sign(f(k)) as k → ∞. This allows us to de�ne the function
sign : SQ→ {−1, 0, 1} as follows:

sign(f) =

{
sign

(cg
ch

)
if f = g

h ∈ SQ− {0},
0 if f = 0.

Consequently, we can de�ne further the comparison operations =, 6=, 6, <, >, > for two elements
of SQ by computing the sign of their di�erence. Also, recalling that SQ is a commutative �eld with
1, we get an absolute value by multiplying any element of SQ by its sign:

|f | = sign(f)f.

Using the comparisons and absolute value in SQ, we have the following property.

Property 2.4. Given f = g/h ∈ SQ− {0}, there exists a unique e ∈ L satisfying

βe 6 |f | < βe+1.

Moreover, given cg, ch ∈ Q and eg,1, eh,1 ∈ L as in (12), let ec be the unique integer such that
βec 6 |cg/ch| < βec+1. Then we have

e =

{
eg,1 − eh,1 + ec − 1 if |f | < βeg,1−eh,1+ec ,

eg,1 − eh,1 + ec otherwise.
(13)

Proof. Property 2.1 and (12) imply that |f | = |cg/ch|βeg,1−eh,1(1+ ε) with ε(k)→ 0 as k →∞. Hence

|f | = βeg,1−eh,1
(
βec−1 + µ

)
= βeg,1−eh,1

(
βec+1 + ν

)
,

with µ = |cg/ch|(1 + ε) − βec−1 and ν = |cg/ch|(1 + ε) − βec+1. By de�nition of ec, since β > 1, we
have βec−1 < |cg/ch| < βec+1, hence ν(k) < 0 < µ(k) as k →∞. Then, we have

βeg,1−eh,1+ec−1 < |f | < βeg,1−eh,1+ec+1,

and the existence of e as de�ned above follows from comparing βeg,1−eh,1+ec to |f |.
Since the elements of L are integer-valued, if e′ ∈ L satis�es βe

′
6 |f | < βe

′+1, then e′(k) = e(k)
as k →∞, so that e′ = e, which shows the uniqueness of e.

Property 2.4 allows us to take the exponent of any element of SQ by de�ning the following function
SQ→ L:

exponent(f) =

{
e as in (13) if f ∈ SQ− {0},
0 if f = 0.

Example 2.5. We consider again ξ1 and ξ4 given by (10) and (11) respectively. Since ξ1(k) > 0 for
k > 2, we have sign(ξ1) = 1, and since 22k−1 6 ξ1(k) < 22k for k > 3, we have exponent(ξ1) = 2k−1.
On the other hand, since ξ4(k) ∼ −2−3k as k → ∞, we have sign(ξ4) = −1 and the exponent of
ξ4 is either −3k or −3k − 1. Moreover, checking that 2−3k 6 |ξ4(k)| for k > 1, we deduce that
exponent(ξ4) = −3k.

6

3 Symbolic integers

In this section, we �rst de�ne the notion of symbolic integers, that will be used in the next section
for de�ning symbolic �oating-point numbers. We then show how symbolic integers can be used
to approximate other elements of SQ, and next we focus on a particular approximation, namely
�rounding-to-nearest�.

3.1 De�nition and �rst properties

The set of symbolic integers is de�ned as the set of the elements in SQ that evaluate to integers as k
tends to in�nity.

De�nition 3.1. SZ is the subset of functions f ∈ SQ for which f(k) ∈ Z as k →∞.

Since Z is a commutative ring with 1, SZ inherits the same structure of commutative ring with 1.

Example 3.2. ξ1 in (10) is clearly an element of SZ because each of its terms evaluates to an integer
for k > 1. On the contrary, ξ2 does not belong to SZ because for k large enough (namely, k > 3), we
have −2k + 2 < ξ2(k) < −2k + 3, so that it cannot evaluate to an integer. Let us introduce another
example:

ξ′3 =
2k + 11

3
. (14)

For any ` ∈ N, ξ′3(2`+ 1) = 22`+1+11
3 /∈ Z, as 22`+1 + 11 ≡ 1 (mod 3). Hence ξ′3 /∈ SZ. However, for

any ` ∈ N, we have ξ′3(2`) ∈ Z, that is, ξ′3(2k) ∈ SZ.

De�nition 3.3. We say that f ∈ SZ is even if f(k) is even as k → ∞, and odd if f(k) is odd as
k →∞.

The following theorem will help us proving that any symbolic integer is either even or odd; see
Corollary 3.7 below. This theorem states that the rational function representing f ∈ SZ through the
change of variable X = βk is a polynomial with rational coe�cients. The converse is in general not
true, since for example 1/3 /∈ SZ.

Theorem 3.4. If f ∈ SZ, then f(k) = f̃(βk) with f̃ ∈ Q[X].

Proof. Let f̃ = P1/P2 ∈ Z(X) be such that f(k) = f̃(βk). The Euclidean division of P1 by P2 in
Q[X] leads to Q1, R1 ∈ Q[X] such that P1(X) = Q1(X) ·P2(X)+R1(X), with deg(R1) < deg(P2). If
λ ∈ N>0 is a multiple of all denominators in this equality, then λP1(X) = Q(X) ·P2(X)+R(X), with
Q(X) = λQ1(X) ∈ Z[X], R(X) = λR1(X) ∈ Z[X] and we still have deg(R) < deg(P2). Moreover, for
k large enough, λP1(β

k)/P2(β
k) = Q(βk) + R(βk)/P2(β

k) ∈ Z. We deduce that R(βk)/P2(β
k) is an

integer that goes to 0 as k →∞. Hence R = 0, so that P1/P2 = Q/λ ∈ Q[X].

Theorem 3.4 directly implies the following corollary about the asymptotic behavior of symbolic
integers: bounded symbolic integers are classical integers.

Corollary 3.5. Given f ∈ SZ, either |f(k)| → +∞ as k → +∞, or f ∈ Z.

Example 3.6. Since neither ξ̃3(X) nor ξ̃4(X) belongs to Q[X], we deduce from Theorem 3.4 that ξ3
and ξ4 are not symbolic integers. Note that ξ3(k)→ 2/3 /∈ Z as k →∞, hence Corollary 3.5 can also
be used to conclude in this case.

Moreover, it allows us to prove that the notion of parity is well de�ned.

Corollary 3.7. Any f ∈ SZ is either odd or even.

Proof. According to Theorem 3.4, f(k) can be written as f(k) = σ(k)/v, with σ(k) =
∑n
i=0 uciβ

ik+d,
n ∈ N, u, v, d, ci ∈ Z (i = 0, . . . , n), and gcd(β, v) = 1. Then, for k large enough, we have σ(k) ∈ Z,
which implies that uc0β

d belongs to Z, and since β is even and gcd(β, v) = 1, it can be checked that
the following assertions are equivalent: uc0β

d is even; σ is even; f(k) is even.

7

3.2 Symbolic integral approximations

In this subsection, we introduce the notion of symbolic integral approximation that will be used to
de�ne rounding from SQ to SZ.

De�nition 3.8. Given f ∈ SQ, g ∈ SZ is a symbolic integral approximation of f if f(k)−g(k) ∈ O(1)
as k →∞.

Before illustrating this de�nition, we give two simple properties that follow directly from De�ni-
tion 3.8: the �rst one shows that symbolic integral approximations remain valid when reducing the
domain of their input variable, and the second one summarizes their additive properties.

Property 3.9. Let f, g ∈ SQ such that g is an integral approximation of f . Then, for all ω ∈ N∗ and
ϕ ∈ Z, g(ωk + ϕ) is an integral approximation of f(ωk + ϕ).

Property 3.10. If g is an integral approximation of f ∈ SQ, then the set of integral approximations
of f is exactly g+Z. Moreover, if g1, g2 are integral approximations of f1, f2 ∈ SQ, respectively, then
g1 + g2 is an integral approximation of f1 + f2.

Example 3.11. It is straightforward to deduce a symbolic integral approximation of ξ2 in (10) : it
su�ces to truncate the sum before the constant term to get −2k. This strategy works �ne for elements
of E; however, some elements of SQ have no such approximation.

For example, let us prove by contradiction that ξ′3 given by (14) cannot have any symbolic integral
approximation. If g ∈ SZ is an approximation of ξ′3, then we deduce from Property 3.9 that g(2k) is
an approximation of ξ′3(2k). Moreover, since ξ′3(2k) ∈ SZ, it is its own approximation and we can use
Property 3.10 to get g(2k) = ξ′3(2k) + n, for n ∈ Z. Therefore, since two rational functions that are
equal at in�nitely many points are equal everywhere, we have g = ξ′3 + n, which implies that ξ′3 ∈ SZ,
whereas we have seen in Example 3.2 that ξ′3 /∈ SZ: this proves that ξ′3 has no integral approximation.
Note however that ξ′3(2k) admits an integral approximation: this result is generalized in Theorem 3.12
to any symbolic number.

We detail a third example, in which we compute a symbolic integral approximation for a fraction
in SQ. Let us consider

ξ′4 =
−23k+1 − 5 · 22k

2k+2 + 8
, and its counterpart ξ̃′4(X) =

−2X3 − 5X2

4X + 8
. (15)

We �rst compute in Q[X] the Euclidean division of the numerator of ξ̃′4(X) by its denominator, and
we get

ξ̃′4(X) = −X
2

2
− X

4
+

1

2
+

R(X)

4X + 8
.

where R(X)/(4X + 8) → 0 as X → ∞. Then, if we remove this last term R(X)/(4X + 8), we have
an expression that belongs to E and proceed as we did for ξ2. We de�ne

g̃′4(X) = −X
2

2
− X

4
, and its counterpart g′4 = −22k−1 − 2k−2.

Since g′4 ∈ SZ and g′4−ξ′4 = 2k/(2k+1+4) < 1/2, we known that g′4 is a symbolic integral approximation
of ξ′4.

The following theorem states that, given a symbolic number, we can always divide its input do-
main into �nitely many subdomains so that there exists an integral approximation on each of these
subdomains.

Theorem 3.12. For every f ∈ SQ, there exists ω ∈ N>0 such that for all ϕ ∈ Z, f(ωk + ϕ) admits
an integral approximation h(ωk + ϕ).

In the proof of Theorem 3.12, we �rst approximate f using a sum of functions of the form k 7→ cβak,
with c ∈ Q and a ∈ N. Lemma 3.13 below shows that integral approximations of such functions can
always be computed on a subdomain of their inputs. Then, an integral approximation of f can be
deduced using Property 3.10.

8

Lemma 3.13. Let g(k) = cβak ∈ SQ with c ∈ Q and a ∈ N. There exists ω ∈ N>0 such that for all
ϕ ∈ Z, g(ωk + ϕ) admits an integral approximation h(ωk + ϕ).

Proof. If a = 0, then g(k) = c so that ω = 1 and h = 0 give a solution for any value of ϕ. Let us
now assume that a > 0. We start by rewriting c as uβd/v with u, v, d ∈ Z, and gcd(β, v) = 1, so that
g(k) = uβak+d/v. Since β and v are co-prime, there exists

α = min{j ∈ N>0 : βj ≡ 1 (mod v)},

and we de�ne

ω =
lcm(α, a)

a
∈ N>0.

Let us pick out any ϕ ∈ Z. We de�ne r ∈ {0, 1, · · · , v − 1} such that r ≡ uβaϕ+d (mod v), and
h(k) = (uβak+d−r)/v ∈ SQ. We now prove that h(ωk+ϕ) is an integral approximation of g(ωk+ϕ).
We have g(k)− h(k) = r/v ∈ O(1) as k →∞. Therefore, we just have to prove that h(ωk+ϕ) ∈ SZ.
We de�ne τ = uβaωk+aϕ+d− r, so that h(ωk+ϕ) = τ/v. Since aωk+ aϕ+ d is a nonnegative integer
for k large enough, we have τ ∈ SZ. Moreover, by de�nition of ω, we have aωk + aϕ + d ≡ aϕ + d
(mod α), so that uβaωk+aϕ+d ≡ r (mod v). Hence τ ≡ 0 (mod v) which implies h(ωk + ϕ) ∈ SZ, so
that h(ωk + ϕ) is an integral approximation of g(ωk + ϕ).

Proof of Theorem 3.12. We detail the computation of a suitable ω before building an integral approx-
imation of f(ωk + ϕ).

Let f̃ ∈ Z(X) be such that f(k) = f̃(βk), and let g̃(k) =
∑n
i=0 ciX

i ∈ Q[X] be the quotient in the

Euclidean division of the numerator of f̃(X) by its denominator. We have f̃(X) − g̃(X) ∈ O(1) as
X →∞. Let us also de�ne g(k) = g̃(βk) ∈ SQ. Since f̃(X)−g̃(X) ∈ O(1), any integral approximation
of g is also an integral approximation of f , and we can now focus on �nding an integral approximation
of g. We de�ne gi(k) = ciβ

ik, so that g(k) =
∑n
i=0 gi(k), and we apply Lemma 3.13 to each of the

gi's to get a corresponding ωi. We then de�ne ω = lcm(ω0, ω1, ω2, · · · , ωn).
Now, given ϕ ∈ Z, let us �nd an integral approximation of g(ωk+ϕ) =

∑n
i=0 gi(ωk+ϕ). According

to Property 3.10, it is enough to sum the integral approximations of each gi(ωk+ϕ). Therefore, we only
consider a given i ∈ {0, 1, 2, · · · , n} and build an integral approximation of gi(ωk + ϕ). By de�nition
of ωi, we know that there exists hi such that hi(ωik+ϕ) is an integral approximation of gi(ωik+ϕ).
Since wi divides ω, we deduce from Property 3.9 that hi(ωk + ϕ) is an integral approximation of
gi(ωk + ϕ). Hence, de�ning h =

∑n
i=0 hi, h(ωk + ϕ) is an integral approximation of f(ωk + ϕ).

3.3 Rounding to symbolic integers

The following theorem will allow us to de�ne a rounding to the nearest symbolic integer whenever it
exists, and gives a necessary and su�cient condition for its existence, related to the notion of symbolic
approximation.

Theorem 3.14. Given f ∈ SQ, f admits an integral approximation if and only if d = min{|g − f | :
g ∈ SZ} is de�ned, in which case d 6 1/2.

Proof. If h ∈ SZ is an integral approximation of f ∈ SQ, then there exists M ∈ N>0 such that
|h−f | 6M . Since {|h+n−f | : n ∈ Z, |n| 6 2M} is a nonempty and �nite set, it admits a minimum
at n0 ∈ Z. Let us prove that for all g ∈ SZ, |h+ n0 − f | 6 |g − f |, which shows that h+ n0 realizes
min{|g − f | : g ∈ SZ}.

Given g ∈ SZ, if g is not an integral approximation of f , then by De�nition 3.8 we have |g − f | >
|h+n0− f |. On the contrary, if g is an integral approximation of f , Property 3.10 implies g = h+n1
with n1 ∈ Z. Either |n1| 6 2M , in which case by de�nition of n0 we have |g − f | > |h + n0 − f |,
or |n1| > 2M . In the latter case, the triangular inequality gives |g − f | > |n1| − |h − f |, and since
|n1| > 2M > 2|h − f |, this implies |g − f | > |h − f |. Since |0| 6 2M , the de�nition of n0 gives
|g−f | > |h+n0−f |. In any case we have |g−f | > |h+n0−f |, and min{|g−f | : g ∈ SZ} is reached
at h+ n0.

Conversely, if min{|g−f | : g ∈ SZ} is well de�ned, then there exists h ∈ SZ such that |h−f | = d.
Since h−1, h+1 ∈ SZ, it implies that |h−f | 6 |h+1−f | and |h−f | 6 |h−1−f |, that is f 6 h+1/2
and f > h − 1/2, respectively. Therefore, we know that d 6 1/2 which implies that h is an integral
approximation of f .

9

De�nition 3.15. Given a tie-breaking function s, we de�ne a rounding-to-the-nearest-integer partial
function as follows: if σ = argmin{|g − f | : g ∈ SZ}, then

bfe =

unde�ned if σ = ∅,
g if σ is a singleton {g},
s(σ) ∈ σ if σ is a pair.

According to Theorem 3.14, as soon as f ∈ SQ admits an integral approximation, the nearest
symbolic integer, is de�ned. In this de�nition, s is a selection function over the pairs of consecutive
integers. Indeed, if σ = {g1, g2}, then Theorem 3.14 implies that g2 = g1 + 1, up to a renaming.
Moreover, we assume in the following that this tie-breaking function is odd, that is

s({−g1,−g2}) = −s({g1, g2}). (16)

In particular, �ties-to-even�, that breaks ties to the even integer is a valid tie-breaking function ac-
cording to Corollary 3.7, as well as �ties-to-away�, that selects the integer with the largest absolute
value. For example, 2k+1/2 rounds to 2k when breaking ties to the even integer, and to 2k+1 if ties
are rounded away from zero.

We now give Algorithm 2 below that computes ω ∈ N>0 and r ∈ SQ, with r(ωk) = bf(ωk)e,
following the proof of Theorem 3.12. This algorithm is described using the matching f(k) = f̃(βk),
and a function round that rounds a rational to a closest integer.

Algorithm 2 (Rounding to the nearest integer)

algorithm bfe
g̃(X)← Euclidean quotient of the numerator of f̃(X) by its denominator

// g̃(X) =
∑n
i=0 ciX

i and g̃(X)− f̃(X) ∈ O(1)
for each monomial ciX

i, compute ωi and h̃i following Lemma 3.13, with ϕ = 0

// h̃i(β
ωik) is an integral approximation of ciβ

ωik

ω ← lcm(ω0, ω1, ω2, · · · , ωn)
h̃←

∑n
i=0 h̃i

// from Theorem 3.12, h̃(βωk) is an integral approximation of f̃(βωk)

c← limx→∞(f̃(x)− h̃(x))
// since h̃(βωk) is an integral approximation of f̃(βωk), c ∈ Q
t̃← h̃+ round(c)

δ ← f̃ − t̃
if |δ| < 1/2 then r̃ ← t̃

elif |δ| = 1/2 then r̃ ← s({t̃, t̃+ sign(δ)})
elif |δ| > 1/2 then r̃ ← t̃+ sign(δ)

After computing ω and h̃, since f̃(X) − h̃(X) ∈ Z(X), c = limx→∞(f̃(x) − h̃(x)) is either a

�nite number in Q, or ±∞. Moreover, following the proof of Theorem 3.12, h̃(βωk) is an integral

approximation of f̃(βωk), which implies that c ∈ Q. Since t̃ = h̃ + round(c) and δ = f̃ − t̃, we then
have limx→∞ δ(x) = ` ∈ [−1/2, 1/2]. In particular, δ(βωk) → ` as k → ∞. This does not imply
δ(βωk) ∈ [−1/2, 1/2], as can be seen in the following example: 1/2 + 5β−2k → 1/2, as k → ∞,
but 1/2 + 5β−2k > 1/2. However, for any ε > 0, we have |δ(βωk)| < 1/2 + ε, and if ε = 1/2,
then |δ(βωk)| < 1. Hence, a last correction step may be required to ensure that r̃ = bf(ωk)e. This
correction is performed in the last two lines of the algorithm by adding ±1 to t̃ according to the sign
of δ, or by using the tie-breaking function.

When f admits an integral approximation, the �oor and the ceiling of f can be de�ned in a
similar way as its rounding to the nearest symbolic integer: bfc = max{g : g ∈ SZ, g 6 f}, and
dfe = min{g : g ∈ SZ, g > f}. It is possible to provide algorithms for these two directed rounding
functions, by adapting Algorithm 2.

Example 3.16. We �rst consider ξ2 de�ned by (10). We saw in Example 3.11 that −2k is a symbolic
integral approximation of ξ2, which is a good starting point to �nd a nearest symbolic integer. We

10

then compute limk→∞ ξ2(k) − (−2k) = 5/2. It implies that ξ2 is surrounded by the two consecutive
symbolic integers −2k + 2 and −2k + 3, which correspond to the two integers nearest to 5/2 and are
therefore the two candidates. We can already deduce that

bξ2c = −2k + 2 and dξ2e = −2k + 3.

Moreover, comparing |ξ2 − (−2k + 2)| to 1/2 allows us to conclude that bξ2e = −2k + 2.
Let us consider a second example given by ξ′4 as in (15). Example 3.11 gives g′4 as a symbolic

integral approximation of ξ′4. In this case, ξ′4(k)− g′4(k)→ 1/2 as k →∞, with ξ′4− g′4 < 1/2, so that

bξ′4c = g′4, dξ′4e = g′4 + 1 and bξ′4e = g′2.

4 Symbolic �oating-point arithmetic

In this section, using the de�nition of symbolic integers, we �rst de�ne symbolic �oating-point numbers
as particular elements of SQ. We then de�ne a round-to-nearest partial function from SQ to SFp,
and next we show the relationship between this partial function and the classical round-to-nearest
function from Q to F.

4.1 Symbolic �oating-point numbers

In conventional base-β �oating-point arithmetic (and assuming an unlimited exponent range), a
nonzero precision-p �oating-point number is a number that can be written Mβe, where M is an
integer in the range [βp−1, βp) and e is an integer. The formalism introduced earlier allows us to
de�ne a set of symbolic �oating-point numbers, with M a symbolic integer in SZ, and e a linear
exponent in L. More precisely,

De�nition 4.1. Given a function p ∈ L>2, let us de�ne

SFp = {0} ∪ {Mβe : M ∈ SZ, e ∈ L, βp−1 6 |M | < βp}.

We have SFp ⊂ SQ, and every function f ∈ SFp satis�es the following: there exists k0 ∈ N such
that for all k > k0, its value f(k) is a �oating-point number in base β and precision p(k) ∈ N>2.

The set SFp can thus be considered as a set of �symbolic �oating-point numbers� whose precision p
is parametrized by the variable k. In particular, 0 ∈ SFp and SFp = −SFp. Moreover, if f ∈ SFp−{0}
and ef = exponent(f), then f can be written as f = F · βef−p+1, with M ∈ SZ and βp−1 6 |F | < βp:
we call |F | the signi�cand of f .

The ulp function (unit in the last place function) locates the pth signi�cant digit in the unsigned
and possibly in�nite representation of a nonzero symbolic number.

De�nition 4.2. Given p ∈ L>2 and f ∈ SQ− {0}, ulpp(f) = βef−p+1.

With this de�nition we can write f ∈ SFp − {0} as

f = F · ulpp(f), (17)

with F ∈ SZ and βp−1 6 |F | < βp. Hence, f ∈ SQ − {0} is a symbolic �oating-point number
in precision p if and only if f/ulpp(f) ∈ SZ, as the de�nition of ulpp already implies that βp−1 6
|f/ulpp(f)| < βp.

Example 4.3. It can be checked that ξ1 and ξ2 given by (10) are symbolic �oating-point numbers in
precision p = 2k. In the case of ξ2, we have ulpp(ξ2) = 2−k and ξ2/2

−k ∈ SZ. We have ξ2 = M · 2e,
with M = ξ2/2

−k and e = −k, hence ξ2 ∈ SFp.
On the other hand, according to (17), ξ3 as in (11) is not a symbolic �oating-point number in

precision p = k, as we proved in Example 3.2 that ξ3/ulpp(ξ3) = ξ′3 /∈ SZ. In fact, whatever the
precision is, ξ3 cannot be a symbolic �oating-point number. Let us assume, by contradiction, that
ξ′3 ∈ SFp for p ∈ L>2. Then ξ3/ulpp(ξ3) = (2p + 11 · 2p−k)/3 ∈ SZ, which means that there exists

k0 ∈ N>0 such that for k > k0, (2p(k) + 11 · 2p(k)−k)/3 ∈ Z. Hence, 2p(k) + 11 · 2p(k)−k ∈ Z and

11

2p(k) + 11 · 2p(k)−k ≡ 0 (mod 3). But 2p(k) + 11 · 2p(k)−k ≡ (−1)p(k)(1 + (−1)k+1) (mod 3), so that k
must even, which is not always the case.

However, if we assume that k is even, there is no more contradiction and ξ3 is a symbolic �oating-
point number as soon as p(k) > k (which is equivalent to 2p + 11 · 2p−k ∈ SZ). Formally, it means
that ξ3(2k) ∈ SFp if and only if p(k) > 2k.

4.2 Rounding to symbolic �oating-point numbers

We now de�ne a round-to-nearest partial function from SQ to SFp. For some f ∈ SQ, there is no
element of SFp that is closer to f than any other, in which case RNp(f) remains unde�ned. Moreover,
when σ′ = argmin{|h− f | : h ∈ SFp} is not empty, it contains at most two elements.

A tie-breaking function s′p is needed when σ′ is a pair {h1, h2} of consecutive symbolic �oating-
point numbers : given any pair of consecutive elements in SFp, s′p selects one element in the pair. We
assume in the following that s′p satis�es, for e ∈ L,

s′p({βe · h1, βe · h2}) = βe · s′p({h1, h2}) and s′p({−h1,−h2}) = −s′p({h1, h2}). (18)

Moreover, noticing that the pairs of consecutive integers in [βp−1, βp] match the pairs of consecutive
�oating-point numbers in precision p in the same interval, we make the additional assumption that,
for any precision p ∈ L>2 and any h ∈ SZ ∩ [βp−1, βp),

s′p({h, h+ 1}) = s({h, h+ 1}), (19)

where s is a tie-breaking function for rounding to the nearest symbolic integer, as de�ned in Subsec-
tion 3.3. For instance, �ties-to-even�, that selects the symbolic �oating-point number whose signi�cand
is even, and �ties-away�, that selects the one with the largest absolute value, satisfy the hypothesis
above with their integer counterparts.

De�nition 4.4. Given p ∈ L>2, and a tie-breaking function s′p, the round-to-nearest function RNp is
de�ned as a partial function from SQ to SFp as follows:

RNp(f) =

unde�ned if σ′ = ∅
h if σ′ = {h}
s′p(σ

′) ∈ σ′ if σ′ is a pair.

Note that RNp is nondecreasing: given f1, f2 ∈ SQ such that RNp(f1) and RNp(f2) are de�ned,

f1 6 f2 ⇒ RNp(f1) 6 RNp(f2).

Moreover, the regularity assumptions (18) about the tie-breaking function s′p transfer to RNp: given
f ∈ SQ, we have

RNp(β
e · f) = βe · RNp(f) and RNp(−f) = −RNp(f).

The following theorem provides a practical way of evaluating this RNp function, which is related
to the rounding-to-integer function previously de�ned.

Theorem 4.5. Let p ∈ L>2, and let s and s′p be two tie-breaking functions for symbolic integers and
�oating-point numbers respectively, satisfying (19). For any f ∈ SQ− {0}, we have

RNp(f) = ulpp(f) ·
⌊ f

ulpp(f)

⌉
.

Proof. We �rst prove that, de�ning

σ = argmin{|g − f/ulpp(f)| : g ∈ SZ} and σ′ = argmin{|h− f | : h ∈ SFp},

we have
σ′ = ulpp(f) · σ. (20)

Since changing f to −f modi�es both σ and σ′ to −σ and −σ′, respectively, we can assume without loss
of generality that f > 0. We note ef = exponent(f) so that βef 6 f < βef+1 and ulpp(f) = βef−p+1.

12

If h∗ ∈ σ′, since βef and βef+1 are both symbolic �oating-point numbers in precision p, and are
surrounding f , it can be deduced that h∗ satisfy βef 6 h∗ 6 βef+1. We de�ne g∗ = h∗/ulpp(f): it can
be checked that g∗ ∈ SFp, and we will show that it belongs to σ. Let g be any element in SZ. If g <
βp−1 or βp < g, since both βp−1 and βp are symbolic integers, then g cannot minimize |g−f/ulpp(f)|.
Hence we assume βp−1 6 g 6 βp, which implies βef 6 g · ulpp(f) 6 βef+1 and g · ulpp(f) ∈ SFp.
Hence, by de�nition of h∗, we have |h∗−f | 6 |g ·ulpp(f)−f | so that |g∗−f/ulpp(f)| 6 |g−f/ulpp(f)|.

Conversely, if g∗ ∈ σ, then we de�ne h∗ = g∗ · ulpp(f), and we will check that h∗ ∈ σ′. Since βp−1
and βp are both symbolic integers, and are surrounding f/ulpp(f), we deduce that β

p−1 6 g∗ 6 βp.
Hence, h∗ ∈ SFp. Moreover, since βef 6 f < βef+1, any h ∈ SFp minimizing |h − f | must satisfy
βef 6 h 6 βef+1, in which case h/ulpp(f) ∈ SZ and βp−1 6 h/ulpp(f) 6 βp. Then, by de�nition of
g∗, we have |g∗ − f/ulpp(f)| 6 |h/ulpp(f) − f/ulpp(f)|, so that |h∗ − f | 6 |h − f |, which concludes
the proof of (20).

If σ′p is empty or is a singleton, then the result follows directly from (20). If σ′p is a pair, then we
can use (20), (18) and (19) successively to get the result.

Example 4.6. In base 2 and precision p = 2k, we consider

ξ4 =
−23k − 5 · 22k−1

26k + 25k+1
.

Then, we have ulpp(ξ4) = 2−5k+1 and ξ4/ulpp(ξ4) = ξ′4, with ξ
′
4 as in (15). Applying Theorem 4.5,

and the result in Example 3.16, we deduce that

RNp(ξ4) = −2−3k − 2−4k−1.

4.3 Relationship with the classical �oating-point arithmetic

In this section, we prove that the symbolic rounding of an element f in SQ evaluates, for k large
enough, to the classical rounding of f(k) to an element in Fp(k).

For this purpose, we assume that we are given a family of tie-breaking functions (s′′p)p∈N>2
that

choose one element among pairs of consecutive �oating-point numbers in Fp(k). Moreover, if {h1, h2} is
a pair of consecutive symbolic �oating-point numbers in SFp, then it can be checked that {h1(k), h2(k)}
is a pair of consecutive �oating-point numbers in Fp(k), for k large enough. Therefore, we can make the
following assumption: for all precisions p ∈ L>2, and any pair of consecutive elements {h1, h2} ⊂ SFp,

s′p({h1, h2}) = s′′p(k)({h1(k), h2(k)}) as k →∞. (21)

This assumption basically means that ties are broken using the same strategy when rounding to SFp
and rounding to Fp(k). Hence, we will use the same notation s′p for all tie-breaking functions in this
subsection. Also, we will denote by RNp(k) the classical function that rounds any real to Fp(k) using
the tie-breaking function s′p(k).

Theorem 4.7. Under the assumption (21), given p ∈ L>2 and f, f̂ ∈ SQ such that f̂ = RNp(f), we
have

f̂(k) = RNp(k)(f(k)) as k →∞.

Proof. If f = 0, then f̂ = 0 and the result is clear. We consider f ∈ SQ − {0} and de�ne ef =
exponent(f). For k large enough, the de�nitions of the symbolic exponent and ulp functions match
the numerical ones, that is, ef (k) is the numerical exponent of f(k), and (ulpp(f))(k) = ulpp(k)(f(k)).

Since ±βef and ±βef+1 are symbolic �oating-point numbers in precision p, by de�nition of f̂ we have
βef 6 |f̂ | 6 βef+1. Moreover, we deduce from Theorem 4.5 and Theorem 3.14 that

|f̂ − f | 6 1

2
ulpp(f). (22)

If the inequality in (22) is strict, then, for k large enough, we have βef (k) 6 |f̂(k)| 6 βef (k)+1 and

|f̂(k)− f(k)| < 1
2ulpp(k)(f(k)), and the result follows.

13

In the case of equality in (22), there are two nearest symbolic �oating-point numbers to f , namely

f̂ and h2 = f̂ + sign(f − f̂) · ulpp(f). Hence, f̂ is resulting from the tie-breaking function s′p,

that is f̂ = s′p({f̂ , h2}). Therefore, RNp(k)(f(k)) = s′p(k)({f̂(k), h2(k)}), and the result then follows

from (21).

Let us brie�y check that (21) is satis�ed for �ties-to-even� and �ties-to-away� tie-breaking functions.
Let h1 and h2 be two consecutive elements in SFp, and let us assume that h1 is selected by �ties-to-
even�. If h1 = H1 · ulpp(h1) and h2 = H2 · ulpp(h2), then we know that |H1| is even and |H2| is odd.
Moreover, for k large enough, the signi�cand of h1(k) is |H1(k)|, which is even, and the signi�cand of
h2 is |H2(k)|, which is odd. Hence, hypothesis (21) is satis�ed. For �ties-to-away� hypothesis (21) is
also satis�ed as a direct consequence of de�nition of the comparisons in Section 2.

5 Implementation and experiments

In Sections 2 and 4, we de�ned the arithmetic over the symbolic data in SQ and SFp as k → ∞. In
practice, we want to compute a lower bound for k from which this asymptotic behavior is reached.
Here, we explain how we implemented this aspect. We then describe the features of our library, and
give three examples to illustrate its use.

5.1 Practical handling of the asymptotic behavior

To compute a lower bound from which the asymptotic behavior is reached, every element of SQ is
given with an additional k0 ∈ N that ensures that the denominator does not vanish. The heuristic to
compute such a k0 is to �nd the minimal value of k realizing (4) for the denominator, that is,

e1(k) > e2(k) > · · · > en(k) for all k > k0.

Moreover, for any operation on elements of SQ, given with their own k0, the result is also given with
a new k0 realizing the asymptotic behavior of the function.

We also chose in our implementation to force the new value of k0, coming with the result, to be
greater than or equal to any k0 given as input. For example, if f and k0 are given by (2) with n > 1,
the exponent function computes a pair (e, k′0) ∈ L×N such that k′0 > k0 and β

e(k) 6 |f(k)| < βe(k)+1

for all k > k′0. Hence, we ensure a nondecreasing behavior for the k0's, and the last k0 obtained after
a sequence of operations guarantees that the asymptotic behavior is reached for every operation in
this sequence.

All the updates of k0 come from the algorithm comparing two exponents in L. It is then the
building block for the computation of a valid k0, together with the nondecreasing behavior of k0
we enforce. When comparing two exponents a1k + b1 and a2k + b2 in L, either a1 = a2 and the
ordering is valid for every k ∈ N, or a1 6= a2 and the comparison is valid as soon as k > k0, with
k0 = b(b2 − b1)/(a1 − a2)c+ 1.

5.2 Description of the library

Our Maple library de�nes a procedure that, given an even �xed base β and a symbolic variable k,
builds a Maple package for a symbolic �oating-point arithmetic in base β. This package de�nes the
class of symbolic numbers SQ, overloading the basic operations (+, -, *, / and ^). It also de�nes a
set of functions over SQ objects for a symbolic integer arithmetic and a symbolic �oating-point one.
Elements of SZ and SFp are just objects of the same class SQ.

More precisely, an object f of the class SQ contains 3 attributes:

• fun: representing f as a rational function over a local variable according to the change of
variable X = βk;

• k0: meaning that the calculations that led to f are correct for k > k0;

• ω: meaning that the calculations that led to f are correct for k multiple of ω.

This class implements the following methods:

14

• a constructor SQ, that takes as parameters a value ∈ SQ, parametrized by k. It computes an
initial k0 that ensures that the denominator does not vanish, and sets ω = 1;

• the overloaded exact operations +, -, *, / and ^ on SQ;

• the accessors get_fun, that returns fun as a procedure, get_k0 and get_omega;

• update_k0 that replaces the previous k0 of f ∈ SQ by the maximum between the previous and
the new k0, and returns f .

The package de�nes 3 elements of SQ (zero, oneHalf and one), and the following functions over
SQ:

• sign: returns (s, k0) ∈ {−1, 0, 1} × N such that s is the sign of f(k) for k > k0;

• cmp(f1, f2) and abs(f): return respectively sign(f1 − f2)| and |f |;

• exponent(f): returns (e, k0) ∈ L× N such that βe(k) 6 |f |(k) < βe(k)+1 for k > k0;

• tiesToEven and tiesAway: two tie-breaking rules for the rounding to the nearest integer, whose
parameters are two consecutive symbolic integers; tiesToEven selects the even symbolic integer
and tiesAway the largest one comparing the absolute values;

• floor, ceil, and round: rounding functions from SQ to SZ, overloading the classical ones;
the tie-breaking rule for round can be given as a second parameter and is set by default to
tiesToEven;

• ulp(f, p): returns g ∈ SQ such that g(k) = ulpp(k)(f(k)) for k > get_k0(g);

• rd, ru, rn: rounding functions from SQ to SFp, where p ∈ L is the second parameter; they
rely on the rounding-to-integer functions so that the tie-breaking rule can be chosen similarly
to round, using an optional third parameter;

• expr_ur(f, p, u), where u is a symbolic variable: expresses f as a rational function with respect
to the unit roundo� β1−p/2 = u. If a and b are such that p = ak+ b, since X = βk, the function
performs the change of variable X = (β1−b/u)1/a in the internal representation of f as a rational
function.

5.3 Examples

Below, we give three examples that illustrate the use of our Maple library. The �rst example is devoted
to the computation of a two-by-two determinant with Kahan's algorithm (see Algorithm 1); we run
this algorithm on a set of inputs parametrized by the precision p in (1) for which the relative error
is equivalent to 2u as u → 0 (or p → ∞ while β is �xed). It provides a certi�cate of asymptotic
optimality for the relative error bound 2u.

The second example concerns the algorithm CompDivS given in [9] to compute a complex �oating-
point quotient, that is an approximation x̂ + i ŷ to (a + ib)/(c + id) where all variables are taking
�oating-point values. The authors of [9] are interested in the componentwise relative error. Example
8 in that paper provides inputs parametrized by the precision for which the computation of the real
part leads to a relative error equivalent to the a priori bound of 5u. In this example, we use the
division operation and an even precision.

In the last example of this subsection (taken from [3]), we brie�y illustrate the use of get_omega()
to �gure out if an additional condition on the divisibility of p is needed, when such a condition is not
known in advance.

Before any computation, the package has to be built and loaded, for a �xed base. One possible
way to do so in base 10 is the following command lines:

> read("libsfp0.6.mpl"):

> beta := 10:

> SF10 := SF(beta, k):

> with(SF10):

15

After reading the �les and setting the base to 10, the third line creates a package for a symbolic
�oating-point arithmetic in base 10, with the parameter k. This package is then loaded for an easy
use.

5.3.1 Kahan's algorithm

The algorithm is implemented as a Maple procedure as follows, using the exact operations in SQ, and
the RN function from our Maple library:

> Kahan := proc(a, b, c, d, p)

> wh := rn(bc, p);

> e := rn(wh - bc, p);

> fh := rn(ad - wh, p);

> rn(fh + e, p)

> end proc:

Then we set the input variables as Maple expressions parametrized by k as in (1), and we compute
an expression for the exact result x:

> p := k:

> a := SQ(beta^(p-1) + 1):

> b := a:

> c := SQ(2*beta^(p-1) + (beta/2)*beta^(p-2)):

> d := SQ(beta^(p-1) + (beta/2)*beta^(p-2)):

> x := ad - bc;

x := 10^(2k-2) + 10^(k-1)

Next, we apply the symbolic version of Kahan's algorithm to get the approximate result xh, in
precision p = k:

> xh := Kahan(a, b, c, d, p);

xh := 10^(2k-2)

> get_omega(xh);

1

> get_k0(xh);

3

The paper and pencil computation of xh is rather tedious and occupies half a page in [8]. Since
get_omega(xh) returns 1 and get_k0(xh) returns 3, we know that the computed result is valid for
any k > 3, that is for p > 3, and using a numerical evaluation, it can be checked that for p = 2 the
algorithm returns 120 while xh(2) = 100.

We now compute the error and express it with respect to u = 1/2 · 101−p using the representation
as a rational function over X = 10k = 5/u.

> err := abs((x - xh)/x);

err := 2/(4^k + 2)

> simplify(get_fun(err)(5/u));

2*u/(1+2*u)

These computations double-check the certi�cate of optimality for the relative error bound of Ka-
han's algorithm for β = 10. The last instruction can be replaced by simplify(expr_ur(err, p, u).

5.3.2 Complex �oating-point division

This example deals with �oating-point division, and illustrates how to handle the case of an even
precision, in base 2. The pen-and-paper computation of the result is more involved than in the
previous case, especially for rounding the quotient, while it is of course much more e�cient with our
library. We �rst build the appropriate package:

> read("libsfp0.6.mpl"):

> beta := 2:

> SF2 := SF(beta, k):

> with(SF2):

Since p is even, we set p = 2k:

16

> p := 2*k:

> a := SQ(beta^p-5*beta^(p/2-1)):

> b := SQ(-beta^(p/2) + 5/beta - 3*beta^(-p/2)):

> c := SQ(beta^p - beta):

> d := SQ(beta^(3*p/2)+beta^p):

As previously mentioned, a, b, c, d are built into the data structure. We compute the exact real
part of the result r and the approximate one rh using the algorithm provided in [9]:

> r := (a*c+b*d)/(c^2+d^2):

> Dh := rn(c^2 + rn(d^2, p), p):

> Gh := Kahan(a, -b, d, c, p):

> rh := rn(Gh/Dh, p);

rh := -8^(-k)-(1/2)*16^(-k)

> get_omega(rh);

1

> get_k0(rh);

4

Since get_omega(xh) and get_k0(xh) return respectively 1 and 3, we know that the computed result
is valid for any k > 4. In fact, it can be checked by numerical evaluation for k = 3 that the algorithm
and the expression rh produce the same value. Hence, rh is valid for all k > 3.

Next, we compute the relative error, express it with respect to the unit roundo� u = 2−2k and
compute an equivalent as u→ 0.

> err := (rh - r)/r:

> series(expr_ur(err, p, u), u=0, 3) assuming u > 0:

This gives err = 5u− 23
2 u

3/2 +O(u2) when u→ 0, which con�rms the result given in [9].

5.3.3 Complex �oating-point multiplication

Finally, we illustrate the use of get_omega() when an additional condition on the divisibility of k is
needed. The example we give is taken from Corollary 4 in [3]: the authors provide a set of parametrized
inputs to prove that, in base 2 and assuming that the precision is even, the relative error bound

√
5u

for the complex �oating-point multiplication is asymptotically optimal. Let us consider only one of
the inputs proposed, namely f = 2/3 · (1 + 11 · 2−p), and see if it possible to use this input for any
precision. For this purpose, we ignore the assumption on the parity of p, and we round f using the
rn function from the library:

> beta := 2: p := k:

> f := SQ(2/3*(1+11*beta^(-p))):

> fh := rn(f, p);

fh := 2/3+(22/3)*2^(-k)

> get_k0(fh);

6

> get_omega(fh);

2

Note that get_omega(fh) returns 2, which is the attribute ω of the computed result fh. From the
integer returned by get_k0(fh), we know that `k > 6 even' is a su�cient condition to ensure that
the computed rounding is correct. Under this condition, since rn(f, p) = f , we known that f is a
symbolic �oating-point number in precision p = k.

If we want to determine the rounding of f when p is odd, it is of course possible to redo the
computation in precision p = 2k + 1:

> beta := 2: p := 2*k+1:

> f := SQ(2/3*(1+11*beta^(-p))):

> fh := rn(f, p);

fh := 2/3+(23/6)*4^(-k)

> get_k0(fh);

3

> get_omega(fh);

1

As indicated by get_k0(fh) and get_omega(fh), the computed rounding is then valid for any
k > 3.

17

Table 1: Timings for checking examples with our library.

Example (base 2) #rn Timing

• From [8]:

Example 3.7 (p even) 4 17 ms

Example 3.7 (p odd) 4 16 ms

Example 4.4 4 12 ms

Example 4.6 4 13 ms

Example 6.2 4 15 ms

Example 6.3 (p even) 4 15 ms

Example 6.3 (p odd) 4 15 ms

Example 6.4 (p even) 4 16 ms

Example 6.6 (1st part) 4 12 ms

Example 6.6 (2d part) 4 12 ms

Example 6.7 (1st part) 4 13 ms

Example 6.7 (2d part) 4 13 ms

• From [11]:

Example 6 21 ms

• From [3]:

Example (p even) 6 18 ms

Example (p odd) 6 19 ms

Example (base 2) #rn Timing

• From [9]:

Example 1 3 10 ms

Example 2 3 12 ms

Example 3 (p even) 3 10 ms

Example 4 2 9 ms

Example 5 (p even) 6 21 ms

Example 5 (p odd) 6 20 ms

Example 6 (p even) 2 10 ms

Example 6 (p odd) 2 10 ms

Example 7 (p even) 2 11 ms

Example 8 (p even) 12 43 ms

Example (base 10) #rn Timing

• From [8]:

Example 3.7 (p even) 4 16 ms

Example 3.7 (p odd) 4 16 ms

Example 4.4 4 13 ms

Example 4.6 4 12 ms

6 Conclusion

We �nally report some practical computing times to show that our library is not only of theoretical
interest, but that it can be used to e�ciently check examples from the literature, taken from [3, 8, 9, 11].

The individual measured computing times for each example (average on 100 runs) are reported in
Table 1: the measurements were performed with the command time[real]() under Maple 18, on a
laptop equipped with an Intel Core i5 (4310U, 2 GHz) running Linux 3.16. All the examples listed
here use rounding to the nearest only, with tiesToEven: we report in the column �#rn� the number
of calls to the library function rn() required by the examples, as a rough indication of their �size�.

Although the code is not designed with high performance as the primary target, each example is
checked within a few tens of milliseconds, even Example 8 from [9] involving a symbolic division and
12 calls to the rounding function. Overall, the library checks 29 examples (25 in base 2, and 4 in base
10) similar to the ones given in Subsection 5.3, in less than 0.5 second of CPU time on a recent laptop,
which we consider as su�ciently fast for our purposes.

These experiments con�rm that it is possible to e�ciently check examples from the literature
involving symbolic �oating-point numbers in a computer algebra system. We also hope that this work
will make easier the analysis of small yet important building blocks of numerical computing.

References

[1] Algirdas Avizienis. Signed-digit number representations for fast parallel arithmetic. IRE Trans-
actions on Electronic Computers, 10:389�400, 1961.

[2] Sylvie Boldo and Guillaume Melquiond. Flocq: A uni�ed library for proving �oating-point
algorithms in coq. In 20th IEEE Symposium on Computer Arithmetic (ARITH), Tübingen,
Germany, pages 243�252, Los Alamitos, CA, USA, 2011. IEEE Computer Society Press.

18

[3] Richard Brent, Colin Percival, and Paul Zimmermann. Error bounds on complex �oating-point
multiplication. Mathematics of Computation, 76:1469�1481, 2007.

[4] Marc Daumas, Laurence Rideau, and Laurent Théry. A generic library for �oating-point numbers
and its application to exact computing. In 14th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs'01), Edinburgh, Scotland, UK, pages 169�184, Berlin Heidelberg,
2001. Springer-Verlag.

[5] Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward. Recurrence Se-
quences, volume 104 of Mathematical Surveys and Monographs. American Mathematical Society,
Providence, RI, USA, 2003.

[6] John Harrison. A machine-checked theory of �oating point arithmetic. In 12th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs'99), Nice, France, pages 113�
130, Berlin Heidelberg, 1999. Springer-Verlag.

[7] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. IEEE Computer Society,
New York, August 2008. available at http://ieeexplore.ieee.org/servlet/opac?punumber=
4610933.

[8] Claude-Pierre Jeannerod, Nicolas Louvet, and Jean-Michel Muller. Further analysis of Kahan's
algorithm for the accurate computation of 2 × 2 determinants. Mathematics of Computation,
82:2245�2264, 2013.

[9] Claude-Pierre Jeannerod, Nicolas Louvet, and Jean-Michel Muller. On the componentwise ac-
curacy of complex �oating-point division with an FMA. In 21st IEEE Symposium on Computer
Arithmetic (ARITH), Austin, TX, USA, pages 83�90, Los Alamitos, CA, USA, 2013. IEEE
Computer Society Press.

[10] Guillaume Melquiond. Floating-point arithmetic in the Coq system. Information and Computa-
tion, 216:14�23, 2012.

[11] Jean-Michel Muller. On the error of computing ab+cd using Cornea, Harrison and Tang's method.
ACM Transactions on Mathematical Software, 41(2):7:1�7:8, 2015.

19

