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Abstract

Reconstructing convective flow in the Earth’s mantle is a crucial issue for a diversity of disciplines,
from seismology to sedimentology. The common and fundamental limitation of these reconstructions
based on geodynamic modelling is the unknown initial conditions. Because of the chaotic nature
of convection in the Earth’s mantle, errors in initial conditions grow exponentially with time and
limit forecasting and hindcasting abilities. In this work we estimate for the first time the limit of
predictability of Earth’s mantle convection. Following the twin experiment method, we compute
the Lyapunov time (i.e. e-folding time) for state-of-the art 3D spherical convection models, varying
rheology and Rayleigh number. Our most Earth-like and optimistic solution gives a Lyapunov time
of 136±13 My. Rough estimates of the uncertainties in best guessed initial conditions are around
5%, leading to a limit of predictability for mantle convection of 95 My. Our results suggest that error
growth could produce unrealistic convective structures over timescales shorter than that of Pangea
dispersal.

1. Introduction

Reconstructing the history of convection in
the Earth’s mantle is a fundamental issue for
a diversity of disciplines. The evolving den-
sity structure within the planet controls, for in-
stance, the evolution of sea-level, vertical mo-
tion of continents or Earth’s moment of iner-
tia. In the past 15 years, the primary strategy
for establishing the history of mantle flow has
been to force convection and temperature re-
distribution by imposing surface velocities de-
rived from plate tectonic reconstructions [e.g.
?]. Time-dependent surface kinematics drives
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the large-scale transport of thermal and chemical
heterogeneities. This approach was successful in
predicting, to first order, seismic velocity varia-
tions [?], deep mantle chemical heterogeneities
[?] and dynamic topography [?]. Despite diffi-
culties in reconstructing plate kinematics before
200 Ma [?], ? attempted to push mantle con-
vection reconstructions back to 450 Ma.

The common and crucial limitation of these
models is the unknown initial conditions. In the
absence of constraints, the initial condition for
the thermal field is commonly approximated by
a statistically steady state solution, obtained by
imposing the most ancient known surface veloc-
ity field at all times [see ?]. To overcome this
problem, backward advection of a seismically
derived temperature and density field has been
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used, but was limited to several tens of million
years, over which thermal diffusion is considered
negligible [???]. To take into account the effects
of thermal diffusion, variational data assimila-
tion methods have been pioneered to compute
the initial condition up to 100 My ago [???].
These methods employ a present-day thermal
field derived from seismic tomography for the
assimilated data, and reconstructed surface ve-
locities to drive the convective flow.

Convection in the Earth’s mantle is chaotic
[??]. As a consequence, two initially very
close convective states diverge quickly from each
other in time to ultimately produce two uncor-
related thermal structures [?]. This is known
as the Butterfly effect: a small wobbling of the
Iceland plume could set off subduction in the
Pacific. Hence, there is an intrinsic limit of
predictability for any chaotic system, which any
mantle convection reconstruction strategy faces.
Backward advection is limited not only by ther-
mal diffusion, but also by the chaotic nature of
the flow. So is data assimilation, and even more
reconstructions, starting from less constrained
solutions.

The predictability limit of mantle convection
has never been quantified. In this paper, we fol-
low the twin experiment approach initially de-
veloped by ? and used in climate sciences [?],
geomagnetism [?] and solar dynamics [?], to
evaluate the range of predictability of 3D spher-
ical convection models with diverse rheologies.

2. Limit of predictability

The time-dependence of convection at high
Rayleigh number is strong enough to develop
a chaotic regime. The presence of lateral vis-
cosity variations in the Earth’s mantle results
in a significant toroidal component of the sur-
face velocity field [??] that further enhances
the chaotic nature of the system [?]. Determin-
istic chaos of mantle convection implies that two
slightly different initial states, evolving accord-
ing to the same physical laws and same material
properties, will result in two significantly differ-
ent states after some time. Predictions based
on mantle convection calculations are therefore
intrinsically limited to a certain duration. The
limit of predictability depends on the uncertain-

ties in initial conditions, the growth rate of the
errors in the convection calculations, and the tol-
erance error of the predicted state.
? described experimentally the growth rate

of errors in atmospheric models. Later, us-
ing the theory of dynamical systems, physicists
proved that the differential equations governing
the error growth in convective atmospheric sys-
tems can be linearized under certain conditions
[e.g. ??]. Hence, the evolution with time t of a
temperature perturbation E(t), initially equal to
E(0) and sufficiently small, can be approximated
by:

E(t) = E(0)eλt
[
1 +O(e−(λ−λ2)t)

]
. (1)

Here λ and λ2 are the two largest characteris-
tic Lyapunov exponents of the system [?]. For
chaotic convection, λ is positive, i.e. the error
grows exponentially as exp(λt). We can thus
define a characteristic time of the system, the
Lyapunov time: τ = 1/λ. The limit of pre-
dictability tpred is linearly proportional to τ and
depends on the initial and tolerance errors on
the prediction, E(0) and ∆ respectively [e.g. ?]:

tpred = τ ln
∆

E(0)
. (2)

In order to evaluate tpred for mantle convection,
we first need to evaluate the Lyapunov time.
The classic methodology to do so is the twin ex-
periment method, developed by ? for dynamic
meteorology and repeatedly used in various fields
of geophysics, from climate sciences [?] to ge-
omagnetism [?] and solar dynamics [?]. A twin
experiment is defined as the comparison of two
initially very close dynamical trajectories. The
timescale of divergence of these two trajecto-
ries provides the Lyapunov time by integration
of Eq. (??).

First, we use a convection model to generate a
statistically steady-state solution for the temper-
ature field. This state is used as the initial condi-
tion for one of the twins, referred hereafter as the
reference twin. We create the initial condition of
the other twin by adding a perturbation to the
initial condition of the reference twin. Here, we
introduce random perturbations of temperature
uniformally distributed in space, which produce
a white noise, i.e. errors at all scales from the
smallest to the largest. The Lyapunov exponent
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is intrisic and expected not to depend on the
lengthscale of the error, as verified by ? for the
Earth’s core.

The magnitude of the local perturbations is
required to be small for Eq. (??) to be valid.
We set the magnitude to 0.01-1% of the aver-
age temperature depending on our calculation,
making sure negative temperatures are filtered.
The corresponding volume averaged differences
of the temperature fields of the two twins are
0.002-0.2% (see Table 1). We monitor the value
of this difference through time:

E(t) =

∫
VΩ

|Tp(x, t)− T (x, t)|
T (x, t)

dV (x)

VΩ
(3)

where T (x, t) and Tp(x, t) represent the tem-
perature at position x of the reference twin and
the perturbed twin, respectively. VΩ is the vol-
ume of the model in which the temperature is
not imposed by boundary conditions. We then
use a least-squares method to fit the evolution
of E(t) using Eq. (??). The end of the exponen-
tial growth can be difficult to estimate precisely.
Hence, we fit the Lyapunov time for all time win-
dows in the exponential growth phase having a
number of points >10 and a low misfit, and we
choose the mode of the fitted Lyapunov times
(> 1000) to define the Lyapunov time of the
twin experiment.

For each set of convection parameters, we pro-
ceed to multiple evaluation of the Lyapunov time
by computing a family of twins differing in the
magnitude of the initial perturbation. In general,
we compute 3 twin experiments for a given set of
convection parameters. We define the Lyapunov
time for this set of convection parameters as the
average of the Lyapunov times of this family of
twin experiments. The computational cost of 3D
spherical convection models was a limiting factor
for the number of numerical solutions we com-
puted. Varying the initial conditions for the ref-
erence twin, the type of perturbation, and com-
puting more twin experiments would improve the
accuracy of our estimates.

Once the Lyapunov time is estimated for a
variety of dynamic models, we evaluate tpred for
mantle convection by estimating uncertainties in
the initial conditions and the tolerance error rel-
evant to the Earth.

3. Convection Model

We compute time-dependent solutions for in-
compressible mantle convection in 3D spherical
geometry using the code StagYY [?]. The res-
olutions used here are 45 km close to the sur-
face for cases with Rayleigh numbers lower than
or equal to 106, and 23 km for higher Rayleigh
numbers. Here, the Rayleigh number Ra is given
by:

Ra =
ρgα∆TL3

κη0
, (4)

where ρ, g, α, ∆T , L, κ and η0 are den-
sity, gravitational acceleration, thermal expan-
sivity, temperature scale, mantle thickness, ther-
mal diffusivity and reference viscosity obtained
at non-dimensional temperature T = 1, respec-
tively. Because computational power is limited,
we have restricted our study to purely internally
heated convection, neglecting the effects of hot
plumes. The non-dimensional internal heating
rate H is chosen for each calculation to obtain
a non-dimensional temperature drop of 1 across
the mantle (see Table ??). We have further fo-
cused the exploration of the parameter space on
rheological aspects, since choosing a rheology
for mantle rocks has a decisive impact on the
time-dependent structure of convective flow and
the strength of the toroidal component of the
surfave velocity field. In this study, we present
32 different 3D spherical calculations we com-
puted, resulting in 22 twin experiments (see Ta-
ble ??).

The models with uniform viscosity (named
ISO for isoviscous) displays short-lived cold
plumes operating at small scales (Fig. ??a). We
compute models with viscosity increasing in the
lower mantle (named LV for layered viscosity),
as required by geophysical constraints [??]. Be-
cause the radial viscosity structure remains dif-
ficult to resolve finely, we implement a grad-
ual viscosity increase by a factor of 40 between
800 and 1000 km depth. In these calculations,
strongly time-dependent, drip-like small-scale in-
stabilities persist in the upper mantle, but the
more sluggish lower mantle introduces a long-
wavelength flow component [??], that ultimately
dominates the power spectrum of the tempera-
ture field (see Fig. ??b).
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Lateral viscosity variations are required to ex-
plain surface features on Earth like the toroidal
component of the surface velocity field [??].
Hence, we investigated models with pseudo-
plasticity, in which the viscosity is temperature-
and stress-dependent (named PL for plate-like
behavior). When the stress exceeds the yield
stress, the viscosity is decreased to reduce the
stress back to the yield stress. We used the
same formulation as in ?, and indeed observed
that convection with plate-like behavior leads to
stable large-scale flow (Fig. ??c) with a toroidal
component of the surface velocity amounting to
23% in this case. Length scales of the flow are
here even larger than those produced by layered
viscosity alone, as described by ?.

We also computed solutions with both
pseudo-plasticity and a viscosity dependence
with depth (named PLLV for plate-like behavior
and layered viscosity), the viscosity for a given
temperature increasing by a factor of 30 between
800 and 1000 km depth. The overall structure
of the flow is similar to cases with plate-like be-
havior, but the downwellings are slowed down
and buckle in the more sluggish deeper mantle.
The toroidal component of the surface velocity
is close to 38%.

We finally computed solutions with pseudo-
plasticity and continental rafts (named PLC for
plate-like behavior and continents), following ?
but with Earth-like shapes and starting from a
configuration similar to Pangea, 200 My ago.
The combination of plate-like behavior and con-
tinental rafts produces mantle convection that
matches, to first order, basic tectonic features
observed on Earth [??]. Large scale convection
is also developed in these simulations (Fig. ??d)
with a toroidal component of 41% of the surface
velocity field.

To compare our calculations both to the Earth
and to each other, time is scaled by the tran-
sit time tt = L/vsurf where vsurf is the time
and space averaged surface velocity. Assuming
a surface velocity of 3.4 cm.y−1 and a mantle
thickness of 2900 km, the transit time is 85 My
for the Earth’s mantle. Thus, time is dimension-
alized as t = tModel × tEarth

t /tModel
t .

4. Sensitivity of the Lyapunov Time

The initial error grows in three main phases:
(1) a short diffusion phase where error decreases,
(2) an exponential growth phase and (3) a sat-
uration phase (Fig. ??). During the first phase,
the smallest scale perturbations are smeared out
by thermal diffusion before advection becomes
significant. The duration of this phase does not
depend on the amplitude of the initial perturba-
tion.

The growth phase consists of the transport
and dissemination of the error described by
Eq. (??), causing significant and global mod-
ifications in the flow structure. The duration
of this phase, much longer than the diffusion
phase, depends on the amplitude of the initial
error: the smaller E(0), the longer the exponen-
tial growth. However, the Lyapunov time does
not depend on E(0) (as long as it is small, see
Fig. ??) as predicted by Eq. (??).

The saturation phase starts when the error
does not grow anymore. From then on, the per-
turbed solution evolves with no apparent corre-
lation to the reference solution and initial twins
cannot be recognized. The value of the sat-
uration does not depend on E(0) and reaches
∼10% in our models. Scaled to the Earth’s
mantle, this value represents an average local
temperature difference of ∼150 K between per-
turbed and reference solutions.

We obtain the Lyapunov time through fitting
the slope of the exponential growth stage. The
larger the initial error, the faster the saturation is
reached, and the less precise the determination
of the Lyapunov time. Averaging individual Lya-
punov times obtained for the initial errors E(0)=
0.2%, 0.02%, and 0.002%, the Lyapunov time
is 35± 0.5 My and 236± 36 My for ISO and PL
models respectively (Table ??).

Fig. ?? shows the influence of the Ra on the
Lyapunov time for isoviscous convection and for
convection with plate-like behavior. We per-
formed twin experiments for Ra=105, 3 × 105,
106, 5 × 106 and 107 for a diversity of initial
perturbations (Table ??). As seen in Fig. ??,
where experiments conducted with E(0) =
0.2% are presented, the rate of exponential
growth increases with Ra and tends to satu-
rate at high Ra. In isoviscous models, τ drops
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from 78 My at Ra=3 × 105 (ISO1) to 35 My
at Ra=107 (ISO4,5,6), while in models with
plate-like behavior, τ drops from ∼ 400 My at
Ra=105 (PL1,2) to ∼ 220 My at Ra≥ 3 × 105

(PL3,4,5,6,7,8).

The decrease of the Lyapunov time to a min-
imum value corresponds to the evolution to-
wards fully developed chaotic regime. For Ra
higher than 5 × 106 in ISO cases, the man-
tle flow structure shows transient formation and
development of new boundary-layer instabilities.
This regime of thermal turbulence [?], also called
“plume-dominated” regime [?], is strongly time-
dependent and rapidly fluctuating, which en-
sures deterministic chaos. In this convection
regime, the non-dimensional Lyapunov time de-
pends only on the inverse of convective veloci-
ties (v α Ra2/3) and reaches its minimum value.
Hence, choosing to scale with the transit time
implies that the dimensional Lyapunov time is
not dependent on Ra in the fully chaotic regime.
The scaling of mixing times for mantle convec-
tion is similar [?].

Hence, we measured τ when Ra is large
enough to ensure a fully chaotic regime, for each
rheology considered here. The corresponding Ra
is below Earth’s values, so we were able to reach
an Earth-like chaotic regime despite our calcula-
tion limitations. The transition into fully devel-
oped chaos occurs at a lower Ra for PL than for
ISO models (Fig. ??). The existence of a signif-
icant toroidal component of the surface velocity
field in models with plate-like behavior is prob-
ably fundamental in this phenomenon. We ob-
tained τ=210±26 My and τ=236±36 My for PL
calculations at Ra=3×105 and Ra=106, respec-
tively. Because the convective structures (tem-
perature anomalies with respect to the adiabatic
state) are thinner and thermal mixing is more ef-
ficient at higher Ra, the saturation error slightly
decreases with convective vigor (Fig. ??).

The Lyapunov time strongly depends on man-
tle rheology (Fig. ??). Each twin experiment is
carried out at Ra high enough to ensure that
τ has reached its minimum value (Ra=107 for
ISO and LV models, Ra=106 for PL, PLLV and
PLC models). In the four cases presented in
Fig. ??, E(0) is 0.2%, but the corresponding
Lyapunov times were also reproduced by twin
experiments with initial perturbations of 0.02%

and 0.002% (Table ??). ISO has the shortest
τ (35 ± 0.5 My) whereas the PL displays the
longest τ (236± 36 My).

The LV case introduces an additional degree
of complexity in estimating τ as there are two
Lyapunov times involved, namely 57±4 My and
118 ± 4 My (Fig. ??). The shorter dominates
at infinitesimal errors, and the longer dominates
at larger errors. This phenomenon is typical for
a chaotic system involving two time scales: the
shorter τ is associated with small-scale dynam-
ics and saturates quickly, then the longer τ , as-
sociated with the large-scale flow, takes over
[?]. In the LV cases, small-scale and strongly
time-dependent instabilities in the upper mantle
(Fig. ??) enforce quick error growth. Such struc-
tures do not develop in the more sluggish lower
mantle. The shorter τ is close to that of the ISO
case as expected, and the longer τ corresponds
to the large-scale component, somewhat similar
to the PL case, which is large-scale as well.

When plate-like behavior and layered viscos-
ity are combined, the error grows with the same
type of evolution as in the PL cases. In con-
trast to the LV cases, there are no small-scale
instabilities in the upper mantle and only one
Lyapunov time is required: τ = 119 ± 6 My,
which is even shorter than that of PL. The fact
that this Lyapunov time is almost the same as
the longer τ of LV is probably coincidental, since
the structure and time-dependence of these two
flows are extremely different. When continents
are added to the PL model, τ is 136 ± 13 My.
The Lyapunov times for PLLV and PLC are both
shorter than that of PL probably because they
both have a significantly higher toroidal compo-
nent of the surface velocity field than PL (38%
and 41% versus 23%, respectively), which en-
hances chaoticity.

5. Limit of predictability for the Earth’s
Mantle

In addition to the Lyapunov time, computing
the limit of predictability requires knowledge of
the initial error E(0) and of the tolerance er-
ror ∆ for the prediction (Eq.(??)). ∆ is taken
here to be the saturation of the error observed
in our twin experiments. It weakly depends on
rheology, slightly decreases with Ra and remains
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close to 10%.

The most Earth-like model would integrate
pseudo-plasticity, layered viscosity, continents
and heating from the core, as well as additional
compexities of mantle convection (e.g. grain-
size rheology, compressibility, phase changes,
chemical heterogeneity). But this is a first at-
tempt to estimate the predictability limit of con-
vection in the Earth’s mantle and computing
such model remains beyond the scope of this
study. We therefore try to estimate a Lyapunov
time for the Earth’s mantle using the calcula-
tions presented here.

We have shown that the PLC and PLLV mod-
els have similar Lyapunov times, both display-
ing long wavelength flow and a high toroidal
component of their respective surface velocity
fields. We assume here that introducing con-
tinents in the PLLV model would not produce
a longer Lyapunov time. We also do not ex-
pect a moderate amount of basal heating added
to the PLC or PLLV models to alter the Lya-
punov time. Indeed, the study of chaotic mixing
shows that convection heated from the base dis-
plays Lagrangian Lyapunov exponents similar to
those with internal heating only, as long as the
fully chaotic regime is reached [?]. Hence, we
assume here that our best and most optimistic
Lyapunov time for Earth’s mantle convection is
that of PLC: 136± 13 My.

Given this value, a precision of 10−16 on the
initial temperature field would be necessary to
predict 4 Gy of Earth’s evolution, which makes
this exercise impossible. We focus here on
predictions published in the last 15 years that
span over 30-75 My for backward advection
[???], 75-100 My for data assimilation [???],
and 250-450 My for forward convection calcula-
tions [???]. To remain below the tolerance error
throughout the whole integration time, the er-
ror on the initial conditions has to be <8% for
30 My, <5% for 100 My and <0.4% for 450 My.

The best guesses for initial conditions used
for forecasts and hindcasts, up to this day,
are 3D temperature fields derived from tomo-
graphic models. The errors on such tempera-
ture fields come both from uncertainties in the
tomographic models and from the conversion of
seismic velocities into temperature. ? compared
3 tomographic models for P-waves and 7 models

for S-waves, showing correlations of 0.5 to 0.9
between different models depending on depth.
Local differences between models of S-velocity
anomalies are consistently over 0.5%, which can
be considered here as a strict minimum. For a
known mineralogical model, such deviation cor-
responds to an uncertainty of 100 K on the local
temperature above 400 km, and 250 K in the
shallow lower mantle [?]. Additional uncertain-
ties have to be taken into account when convert-
ing the seismic velocities into temperature: com-
position is not well-known and phase diagrams
are not determined with absolute precision [??].
Such considerations suggest that the errors in
a starting temperature field derived from tomo-
graphic models is already as large as the tol-
erance error of the convection model. How-
ever, tomographic models also agree on coherent
structures at the larger scales, consistent with
sinking slabs [?] for instance. Hence, we pro-
pose that the average local uncertainty on the
temperature could be lower and around 5%. A
careful analysis of the uncertainties is required
to reach a more accurate estimate.

Using E(0)=5% leads to a limit of predictabil-
ity tpred= 95 My. As a consequence, error
growth operates on the timescale shorter than
that of Pangea dispersal. Proposing a scenario
for a future supercontinent therefore seems out
of reach yet. We also show here that backward
reconstruction of a thermal field is limited not
only by thermal diffusion [???]. It is evenly lim-
ited by backward advection of initial uncertain-
ties that grow exponentially to reach the satura-
tion error within a timescale comparable to that
of these calculations. However, with this study
we cannot predict how different wavelengths are
affected.

For models with imposed surface velocities
[??, among others], it is possible that driving the
flow could help to impede the divergence from
the solution relevant to the Earth, despite the
significant time-dependence and toroidal com-
ponent of imposed surface velocities. De facto,
some of these models were successful for predic-
tions of seismic velocity variations [?], deep man-
tle chemical heterogeneities [?] and dynamic
topography [?]. Despite these important suc-
cesses, uncertainties in the surface velocities for
deep time reconstructions introduce new sources
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of error in the system, which will ultimately grow
as well. Data assimilation strategies that use a
tomographic thermal field as input for defining
present day structure [??] should also be lim-
ited in time by the growth of uncertainties in a
chaotically convecting mantle.

6. Conclusions

Predictions of the past or future convective
structure of the Earth’s mantle are intrinsically
limited in time because of the chaotic nature
of mantle convection. We have used the twin
experiment method to evaluate the Lyapunov
time, which corresponds to the characteristic
time of exponential growth of the error. This
time is proportional to the inverse of the veloc-
ity when the convective regime is fully chaotic.
It depends on the rheology and is maximum with
plate-like behavior, because of the existence of
long-living stable structures. The presence of
a high toroidal component in the surface ve-
locity field reduces the Lyapunov time. Our
most optimistic estimate for the Earth’s man-
tle is 136±13 My, but our models would require
improvements to obtain a more accurate value
(basal heating and compressibility, among other
features).

The limit of predictability of the Earth’s man-
tle increases with the Lyapunov time, but de-
creases with uncertainties in initial conditions.
For most models used for convection reconstruc-
tions, the best guesses for initial conditions in
forward or backward integration are derived from
tomographic models. The uncertainties in these
initial conditions are difficult to estimate, espe-
cially as a function of wavelength. A rough es-
timate would suggest a limit of predictability of
95 My. Hence, because of the chaotic nature
of the flow, the error growth is almost as limit-
ing as thermal diffusion for backward advection.
Our results suggest that uncertainties in initial
conditions could produce unrealistic structures
in convection reconstructions over times com-
parable to Pangea dispersal. We propose that
future convection reconstructions are published
together with a computation of their limit of
predictability (i.e. error analysis). This type of
information will be extremely useful to estimate
their level of confidence.
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Figure 1: Snapshots of the interior temperature field (left side), viscosity and surface velocity (right side), and
spherical harmonic maps of the initial state of convection calculations for five different rheologies. White arrows
represent surface velocities. Each panel of spherical harmonic map is normalized to the maximum amplitude. The
values increase exponentially from dark blue to dark red and there are 20 contour intervals. (a) Isoviscous mantle,
Ra=107. (b) Mantle with a viscosity increase by a factor of 40 between 800 and 1000 km depth, Ra=107. (c) Mantle
with temperature-dependent viscosity and pseudo-plastic yielding, Ra=106. (d) Same as (c) with a viscosity increase
by a factor of 30 between 800 and 1000 km depth, Ra=106. (e) Same as (c) with continents. All calculations are
internally heated only.
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Figure 2: Error growth for three twin experiments started from the same reference temperature field, for two different
rheologies: isoviscous ISO4,5,6 (left) and pseudo-plastic yielding PL6,7,8 (right). E(0), the initial error on the
temperature of the twin experiment was alternatively set to 0.2% (bold line), 0.02%(dashed line) and 0.002%(dotted
line). The error on the dimensionless temperature is plotted versus time. Note that the time scales on the x-axis is
different. The resulting Lyapunov times τ are obtained fitting the slope of the phase of exponential growth.
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Figure 3: Error growth for twin experiments varying only in the Rayleigh number. Each panel displays the results for
a given viscosity law: isoviscous (ISO1,2,3,6) with Ra ranging from 3 × 105 to 107 (left) and pseudo-plastic yielding
(PL2,5,8) with Ra ranging from 105 to 106 (right). E(0) = 0.2% for all experiments.
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Figure 4: Error growth for different rheologies: isoviscous ISO6 (blue), layered viscosity with an increase by a factor
of 40 between 800 and 1000 km depth LV2 (green), pseudo-plastic yielding only PL8 (red), pseudo-plastic yielding
combined to a viscosity increase by a factor of 30 between 800 and 1000 km depth PLLV3 (purple), and pseudo-plastic
yielding with continents PLC3 (orange). E(0) is 0.2% for all experiments. The Rayleigh number is chosen so as to
ensure fully chaotic behavior: Ra = 107 for ISO and LV, Ra = 106 for PL, PLLV and PLC.
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Table 1: Convection parameters and Lyapunov times of the twin experiments computed for this study.

Name Rheological Model Ra H E(0) (%) τ (My)

(ISO1) Isoviscous 3× 105 13.42 0.2 77.8
(ISO2) Isoviscous 106 20.05 0.2 55.3
(ISO3) Isoviscous 5× 106 34.28 0.2 39.5
(ISO4) Isoviscous 107 44.17 0.002 34.8
(ISO5) Isoviscous 107 44.17 0.02 35.6
(ISO6) Isoviscous 107 44.17 0.2 35.0

(LV1) Layered Viscosity 107 44.17 0.2 59.8 / 116
(LV2) Layered Viscosity 107 44.17 0.2 54.8 / 121

(PL1) Plate-Like Behavior 105 9.52 0.02 466
(PL2) Plate-Like Behavior 105 9.52 0.2 395
(PL3) Plate-Like Behavior 3× 105 13.42 0.002 200
(PL4) Plate-Like Behavior 3× 105 13.42 0.02 190
(PL5) Plate-Like Behavior 3× 105 13.42 0.2 239
(PL6) Plate-Like Behavior 106 20.05 0.002 265
(PL7) Plate-Like Behavior 106 20.05 0.02 247
(PL8) Plate-Like Behavior 106 20.05 0.2 196

(PLLV1) Plate-Like Behavior & Layered Viscosity 106 20.05 0.002 124
(PLLV2) Plate-Like Behavior & Layered Viscosity 106 20.05 0.02 113
(PLLV3) Plate-Like Behavior & Layered Viscosity 106 20.05 0.2 119

(PLC1) Plate-Like Behavior & Continents 106 20.05 0.002 131
(PLC2) Plate-Like Behavior & Continents 106 20.05 0.02 149
(PLC3) Plate-Like Behavior & Continents 106 20.05 0.2 128
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