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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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a b s t r a c t

We present an experimental study of the statistical properties of millimeter-size spheres floating on the
surface of a turbulent flow. The flow is generated in a layer of liquid metal by an electromagnetic forcing.
By using twomagnet arrays,we are able to create one highly fluctuating flowand another,more stationary
flow. In both cases, we follow the motion of hundreds of particles floating at the deformed interface of
the liquid metal. We evidence the clustering of floaters by a statistical study of the local concentration of
particles. Some dynamical properties of clusters are exposed. We perform spatial correlations between
particle concentration and hydrodynamical quantities linked with inertial effects; with vortical motion,
and with horizontal divergence (corresponding to compressibility in the surface). From comparing these
correlations, we propose the so-called surface compressibility as the main clustering mechanism in our
system. Hence, although floaters are not passive scalar and move on a deformed surface, the scenario is
similar to the one reported for passive scalar on an almost flat free surface of a turbulent flow.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

The motion of tracers in turbulent flows has attracted a lot
of attention because of its impact in pollutant dispersion in the
atmosphere and in the oceans. For instance, floating garbage
concentrate in large litters in the middle of the ocean [1–4]. It also
plays a role in the oceanic ecosystem (plankton mixing); in cloud
dynamics and rain formation; or in ocean–atmosphere mixing.

At a fundamental level, it has been conjectured that a passive
scalar advected by a turbulent flow has a highly intermittent
dynamics, even if the flow itself is not intermittent [5]. The
dynamics of finite size particles with inertia is even more intricate
because it involves memory effects and a particular time scale, the
Stokes time [6–9], which is controlled by the particle size and by
themismatch between the densities of the particle and the fluid. As
a consequence, inertial particles do not sample the fluid uniformly,
thus the phenomenon of preferential concentration emerges (see,
for instance, [10–12]).
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Because of buoyancy, particles of intermediate density stay on
an interface between a heavy fluid (e.g. water) and a light fluid
(e.g. air): so, particles behave as floaters. Hence they experience a
compressibility effect [13,14] induced by the motion of the heavy
fluid, with sources of upwelling fluid, and sinks of downwelling
fluid: floaters are attracted to fluid sinks, and they are expelled
from fluid sources. Clustering has been observed for fictive, point-
like, fully passive particles floating on an almost-flat free surface.
This has been explained by the compressible nature of the flow
of particles. In order to isolate the compressible effect, these
works combine experimental measurements of the surface flow
and digital tracking of point-like fictive particles [15–17]. To some
extent, the presentwork expands these studies (i) to stronger flows
inducing surface deformation and (ii) to more realistic finite size
floaters subject to inertia and capillarity.

Floaters are also transported by surface waves. Stokes drift is
responsible in the case of traveling waves [18–20]. For standing
waves, on the other hand, gentle transport of finite size floaters
is observed in small scale experiments, where floaters eventually
agglomerate [21]. It is argued that inertia and surface tension play
a fundamental role [21], and the covering fraction of the surface is
also relevant to trigger more complex collective scenarios [22,23].
Periodic motion in bounded domains can also induce mass
transport as a consequence of viscous boundary layers. In acoustics,
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this phenomenon is well-known as acoustic streaming [24], and it
appeared to be relevant also for parametrically excited (Faraday)
waves [25,26].

The dynamics of particles floating on turbulent flows is thus
subjected to several physical constrains, some of them leading
to clustering. The aim of our study, rather than isolate these
mechanisms, is to compare their contributions to clustering, in
turbulent flows with a free surface mimicking those in natural
contexts (like rivers or oceans). To do so, we pursue three main
objectives: (a) to create and describe the flow; (b) to study the
dynamics of real nonwetting particles floating on its surface, in
particular their ability to form clusters; and (c) to compare the
contributions to clustering of the different physical processes
involved in our setup.

To generate the flow, we use amagnetohydrodynamical (MHD)
forcing [27,28]. Although it is challenging to perform measure-
ments, this type of forcing has the advantage of producing a tur-
bulent flow with important surface deformation, as it occurs in
natural flows. Strong velocity fluctuations and surface deformation
come from using a thin layer of liquid metal, of strong electrical
currents and of a strong inhomogeneous magnetic field. It could
be noticed that such MHD flows are also relevant for industrial ap-
plications [29]. A second advantage of ourMHD setup is the ease in
changing the geometry of the imposed magnetic field, i.e. control-
ling the dynamical properties of the flow. While a highly fluctuat-
ing flow is created by a regular array of magnets, a random array of
magnets generates a much less fluctuating flow. In Section 2, the
details of the experiment and the characteristics of the flow are
described, for both magnet arrays.

In Section 3,we focus on the dynamics and clustering of floaters.
Some mixing properties of floaters are exposed. It appears that
above a threshold in the forcing, bothmagnet arrays exhibit similar
mixing properties. Then, clusters are clearly identified by studying
the statistical properties of the area of Delaunay triangles linking
nearest neighbors. We observe stronger correlations in velocity for
particles belonging to a cluster.

In Section 4, we evaluate the correlation between the particle
concentration and some properties of the flow. The correlations
measure the contributions to clustering in our setup. We show
that the most probable clustering mechanism comes from the
horizontal divergence, linked to a compressible effect for particles
at the surface. Effects of curvature and capillarity are also
discussed. Finally, in Section 5 we give the concluding remarks.

2. Creation and characteristics of a free-surface turbulent flow

This section concerns the turbulent flow under study. First we
present our setup and themeasurement techniques. Then, we give
several orders of magnitude – set by dimensional arguments – that
complement the measurements. Finally we present experimental
results that reveal the main features of the flow.

2.1. Setup and methods

An electric current, of density J, and amagnetic field,B, generate
a Lorentz force FL inside a conducting body, with FL = J × B. This
force has been used to stir conducting fluids first by Bondarenko
et al. [27] in order to induce two-dimensional (2D) turbulence
with a well-defined forcing wavelength. To do so, they used a
uniform current and magnetic strips with alternating polarity.
Later, Sommeria [28] applied a strong uniform magnetic field and
space-dependent distribution of current to generate an almost 2D
flow and to study the transition between large-scale structures.
Since then, the technique has become a common tool to study
2D turbulence [30,31], instabilities [32–34], chaotic mixing in 2D
flows [35] and wave–vortex interaction [36,37]. We adopted a
similar forcing. However, we used a layer of liquid metal which
allowed us to reach high density currents (up to 1.5 × 105 A/m2)
with no need of high power nor cooling (the applied voltage is
less than 1 V). The use of a horizontal current and vertical dipolar
magnets to force the fluid layer, generates horizontal shear, which
in turn generates strong vertical vorticity. This strong forcing
distorts the interface and induces a vertical velocity component.

A diagram of the experiment is shown in Fig. 1. It is performed
in a plastic (isolating) rectangular container, with amaximalwork-
ing area of 40 × 50 cm2. This container is filled with a layer of
Gallinstan up to a depth of H = 1 cm. Gallinstan is a liquid al-
loy at room temperature, made of gallium, indium and tin.1It has
a density ρ = 6440 kg/m3. A current up to 600 A is delivered
with a Sorensen DHP Series Power supply, by two brass electrodes
placed along the container walls. Beneath the container, we can
choose between two types of inhomogeneous magnetic fields B,
which are produced by two different arrays of strong permanent
Neodymium–Iron magnets of 20 mm diameter, as shown in Fig. 1.
One array is madewith regular lines of alternating polarity and the
second onewithmagnets placed randomly.2 Both have amean dis-
tance betweenmagnets of roughly l = 40mm. At the bottomof the
container, themagnetic field just above each permanent magnet is
around 1200 G. The oxidation of the Gallinstan–air interface cre-
ates a thin solid film. To prevent it, the Gallinstan surface is covered
by a layer of chlorite acid solution (at concentrations lower than a
percent). The acid layer is thick enough (about 10 cm) to make the
Gallinstan–acid interface insensitive to the boundary condition at
the top of the acid layer. The interfacial tension (or simply the sur-
face tension) was measured3 to be γ = 0.5 N/m.

Theparticlesweuse along this study are spherical, non-wetting,
of diameter d = 1 mm and of density ρp ∼ 0.3 ρ. Therefore,
they are constrained to stay on the interface, floating on the liquid
metal. In order to limit the particle–particle interaction and the
particle feedback on the properties of the interface, we put only
around N = 200 particles (corresponding to a filling fraction of
order of 8 × 10−4).

We obtain first the floaters positions. To do so, we use the
configuration 1 shown in Fig. 1: a camera of 2000 × 1700 pixels2
resolution allows us to detect the 200 particles in the whole
container (d = 4 pixels) at a frame rate of 50 Hz. In each image,
we obtain the coordinates of the particle centers, despite the
difficulties induced by the reflective nature of the liquid metal
surface. From the particles coordinates, we are able both to study
the dynamics of particles (see Section 3), and to get estimates of the
velocity field at the interface [23]. We access the latter estimates
by using standard particle tracking velocimetry (PTV) algorithms.
The spatial resolution of PTV makes this technique suitable for our
flow. In particular, other procedures as particle image velocimetry
induce spatial average that smooths intense events. The PTV
avoids this problem. We compute trajectories using a multi-frame
predictive tracking algorithm [38,39], which is better suited for
fast motion as particle velocity is used to predict the subsequent
position (see [39] for comparisonwith othermethods). Fig. 2 shows

1 From the safety datasheet acc, Guideline 93/112/EC of GermathermMedical AG,
the Gallinstan ismade of 68.5% of Gallium, 21.5% of indium, 10% of Tin. Its kinematic
viscosity is ν = 3.73 × 10−7 m2/s, its electrical conductivity σ = 3.46 × 106 S/m.
2 The random distribution of magnets was obtained by choosing randomly the

coordinates (x, y) of each magnet, together with their polarity. However, a balance
in polarity is respected.
3 The interfacial tension was determined in a complementary experiment: in

a smaller container we excited Faraday waves. By measuring simultaneously the
wave frequency and wavenumber, the value of the interfacial tension was obtained
after fitting the dispersion relation.
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Fig. 1. (Color online) The experimental device. Top: diagram of the experiment and measurement configurations. A 1 cm layer of Gallinstan (GaIn Ti) is placed between
two electrodes (E), over a magnet array (M.A.) in a container of 50× 40 cm2 . In configuration 1, the camera (C) records the position of particles floating on the Gallinstan. In
configuration 2, the beam of the Laser diode (La) is transformed into a laser sheet by the cylindrical lens (Le) and projected on the surface of a mirror (M1). The diffused line,
made by the laser sheet on the Gallinstan surface, is tracked with 2 opposite angles by a single Camera (C) by the two mirrors (M2) and the prisms (P). Bottom: Sketches of
the random and regular magnet arrays used in the experiment. Black and white indicate the polarity of the magnets.
representative examples of tracked particles for both the random
and regular array of magnets. Supplementary movies (Movie 1)
and (Movie 2) complement this picture (see Appendix A). Our PTV
technique has an inherent restriction: it gives the velocity of the
floaters at the surface instead of the one of the fluid. In other
words, finite size floaters act as a filter for very fast or very small
velocity fluctuations [8,9]. Nevertheless, the obtained velocity
does provide general properties of the flow, and consequently,
the technique is commonly used in experimental fluid dynamics
[13,15,16,21–23,35].

We measure the surface elevation along a line using a classical
triangulation technique (see Fig. 1, configuration 2), i.e. tracking
the displacement of diffused light spots. This is difficult since the
liquid metal interface is poorly diffusive and highly reflective.
Indeed, we have to use a very sensitive camera to follow the
diffused light, and we had to deal with direct reflective spots
suddenly saturating the camera sensor. To recover the information
lost due to these spots, we record the line displacement under
two opposite angles. Hence, the bright spot in one angle is not
seen in the other. Then the whole line displacement can be
reconstructed [37].

2.2. Dimensionless parameters

The dimensionless Navier–Stokes Equation, driven by an elec-
tromagnetic Lorentz forcing, exhibits a natural velocity scale Uo =√
JBl/ρ, which balances the advection term and the Lorentz force.

Here we use the forcing length l as the characteristic length of the
flow. Thus one gets the Reynolds number Re =

√
JB/ρ · l3/2/ν. In

our devicewe can expectUo ∼ 30 cm/s and Re = 3×104. Such es-
timates give a Kolmogorov length, η = ν3/4/ϵ1/4

∼ 3 × 10−2 mm
with ϵ ∼ U3

o /l the energy flux by unit of mass. Note that an-
other choice for the characteristic length, e.g. the container size,
would give an unrealistic velocity and Reynolds number. In a thin
fluid layer, friction on the bottom plate induces velocity damp-
ing. This friction term acts at all scales and induces interaction
between structures of different sizes [40]. In a liquid metal sub-
ject to an electromagnetic forcing, the friction is concentrated at a
thin magnetic boundary layer where induction phenomena focus
the electric currents and the velocity gradients [28]. The depth of
this layer eH = H/Ha, is characterized by the Hartmann number
Ha =

√
σ/ρνBH ≤ 45. Hence eH can be as small as 0.2 mm. One

can evaluate this friction strength by the Reynolds number built on
Hartmann layer ReH = Re/Ha · H/l =

√
Jl/σνB ∼ 200. Although

the system is highly nonlinear, dynamical features are far from be-
ing those of isotropic turbulence or those of 2D turbulence. This is
expected since the hypotheses of these two frameworks (isotropy
and bidimensionality) are broken in our system. In particular, we
observe important deformation of the surface, despite the main
component of the vorticity is vertical.

Gravity and capillarity govern the deformation of the surface
depending on the length scale. Gravity dominates at scales larger
than the capillary length lc =

√
γ /ρg . At smaller scales capillarity

prevails. In our experiment, lc corresponds to 3 mm. Two other
dimensionless numbers are relevant in free surface flows. One is
the Froude number, which is the ratio of the flow velocity over the
characteristic velocity of gravity waves, Fr = Uo/

√
gl ∼ 0.2. As

it is not too far from unity, gravity waves generation cannot be
completely discarded. The second number is the Weber number
We = ρU2

o L/γ (L is a characteristic length). It compares the kinetic
energy of the flow and the surface tension energy. At the scale of
the forcing L = l > lc surface tension is negligible (We ∼ 50). At
the floater scale L = d < lc , surface tension cannot be neglected
anymore (We ∼ 1). Thus our millimeter-size floaters are sensitive
to capillarity.
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Fig. 2. General features of the flows. (a) shows the evolution of RMS velocities of the floaters normalized by Uo , versus the driving intensity I . Blue dots correspond to the
randommagnet array and red squares to the regular magnet array. (b) shows the ratio of the kinetic energy contained in a time-averaged Eulerian flow, divided by the total
kinetic energy as a function of I . Two spatial resolutions of the Eulerian field are given for eachmagnets array: the randommagnets array with a resolution of [50×50] (blue
asterisks) and [100× 100] (blue dots) and the regular magnet array at a resolution of [50× 50] (red diamonds) and [100× 100] (red squares). Error bars are estimated from
the fluctuations in time and redundant measurements. Figures (c) and (d) show examples of tracked particles for the random and regular arrays of magnets, respectively.
In both panels, dots trace the positions of all the particles recorded during 5 s at intervals of 0.1 s, for a forcing current of I = 250 A. See the motion of particles in the
supplementarymovies, for the random (Movie 1) and regular (Movie 2) array of magnets (see Appendix A). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
2.3. General features of the observed turbulent flows

As we already noticed, floaters velocity gives an estimate of
the actual flow velocity at the surface, which is useful to infer
some general properties of the flow. We can first evaluate the root

mean square (rms) of particle velocity


⟨V 2
P ⟩. This rms velocity

normalized by Uo is shown in Fig. 2(a). The value of


⟨V 2
P ⟩ evolves

between 0.5Uo and 0.3Uo. It is expected that the actual value is
smaller than Uo since the estimate is built on the maximum value
of the magnetic field. Moreover we measure here the velocity of
the floaters that can be smaller than the one of the sustaining fluid.
Above a current of 200 A, the ratio decays for both magnet arrays.
This may illustrate the fact that, when the forcing is increased,
a larger part of the injected power goes to the vertical velocity
component, which is excluded from our measurement. Below
200 A, the ratio saturates to a constant value for the random
arraywhereas for the regular one, the ratio decreases continuously.
This can be interpreted as a stronger bidimensionalization of the
random array at low driving.

To analyze the spatial statistical features of the flow, we
arbitrarily define a grid: we divide the container in Np = Nw × Nw

cells, with Nw typically equal to 50 or 100 (of 0.8 × 0.8 cm2 or
0.4×0.4 cm2, respectively). This averaging procedure, used in [23],
compensates out the inhomogeneity of particles repartition: as the
measurement is long enough, all cells are visited by a significant
number of particles. Hence, the averaged velocity uij reflects the
time averaged velocity field of the surface, u(x, y), and it can be
used to measure the energy sustained by the mean-flow over
the grid. In Fig. 2(b) we compare the energy ⟨u2

⟩ of this time-
averaged Eulerian velocity field, to the total kinetic energy of the
particles. This gives the ratio of the energy contained in the mean-
flow. Almost 80% of the energy is contained in the mean-flow of
the random array, compared to less than 40% in the case of the
regular array. Hence the former is significantly less fluctuating than
the latter. We will conveniently take advantage of this difference
between the fluctuation properties of both arrays.

The difference between both magnet arrays is also observable
on the surface elevation induced by the forcing. We study
the spatial variance of the elevation h(x, y, t) along a line
perpendicular to the imposed current: ⟨1h2

⟩(t) = ⟨(h − ⟨h⟩)2⟩,
where ⟨·⟩ stands here for an average along a line. After time
averaging, h seems to follow a power law as a function of the
imposed current: ⟨1h2⟩ ∝ Iζ , for both magnet arrays. However,
the exponent ζ is different in both cases. It is around 1.6 for the
regular array and around 2.2 for the random one. Moreover, the
stationary part of the elevation, ⟨1h2⟩, induces around 50% of the
total surface elevation with the random magnet array, whereas it
is less than 20% for the regular array. Thus, the results obtained
studying the elevation h are consistent with the picture obtained
from the averaged velocity field.
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3. Dynamical properties of the floaters

We now focus on the dynamics of our finite-size floaters. De-
spite it is mainly governed by the one of the underlying flow, it
may also be influenced by inertia, buoyancy and capillarity. We
consider first the diffusion and mixing properties. Then, we study
the instantaneous spatial distribution of particles. To do so, we fo-
cus on the statistical properties of the Delaunay triangles linking
the nearest neighbors. The distribution of triangles obtained ex-
perimentally is compared with the one obtained from a homoge-
neous distribution of points. We are able to quantify the level of
clustering and to determine a criterion defining clusters from the
discrepancy of both distributions. Finally, the properties of the par-
ticles velocity inside a cluster are explored.

3.1. Particles diffusion and mixing

The usual way to quantify the diffusion properties of particles
is to study the statistical properties of the displacement, R(t) =

(X(t) − X(0))2 + (Y (t) − Y (0))2, for all single particles that we
are able to follow during a time t . It can be compared with the
well-known Brownian motion. Within this framework one has
⟨R(τ )2⟩ = Dτ . The diffusion coefficient D is given by the Einstein
formula: D = 2⟨V 2

p ⟩d2/(18ν), where ν is the fluid viscosity and
d is the particle diameter. Unfortunately in our experiment, the
range of scales between the forcing and the container size is too
small to prevent finite size effects. We observe mainly a ballistic
transport until a time τ ∼ 10 · l/


⟨V 2

p ⟩. It corresponds mostly
to the mean time necessary to reach the border after a ballistic
flight. All the displacement ⟨R(τ )2⟩ collapse in a single curve in the
ballistic regime ifweuse l/


⟨V 2

p ⟩ as characteristic timeunit. Above

τ ·


⟨V 2

p ⟩/l ∼ 10 the displacement curve bends, probably due
to finite size effect. The statistical properties of the single-particle
displacement are insensitive from the magnet array under study,
despite the difference in their fluctuations.

In order to get a quantitative measurement of the mixing
properties of both magnets arrays, we pixelate the container (of
total volume V ) in Np squares of volume vi, as before. Then we
compute the relative concentration in each cell ρi. It is estimated
by counting the number of particles ni that can be found in each
cell i during the experimental run. We normalized it by the mean
concentration. Thus, ρi = (ni/vi) · (V/N). Then we use a usual
tool to quantify mixing: the variance of the relative concentration
σ(ρi)

2
= ⟨ρ2

i − ⟨ρi⟩
2
⟩. The smaller is the σ(ρi)

2, the better the
mixing. Other tools to quantify mixing include the relative Rényi
entropies [41]:

Sq =
1

1 − α
log


Np
i=1

ρα
i


, (1)

which range from0 to 1. It reaches the limit Sα = 1 for the perfectly
homogeneous mixing. α = 1 corresponds to the usual Shannon
entropy, α = 2 is related to the correlation entropy, and higher
values of α, stress higher fluctuations [41].

We compute σ(ρi) and Sα for both magnet arrays (up to α = 5
for the Rényi entropy). Results are shown in Fig. 3. The upper panel
shows the difference of the concentration variance between the
random array and the regular array,1σ(ρi)

2
= σrg(ρi)

2
−σrd(ρi)

2,
at various driving current intensities. The bottom panel shows
the differences of the Rényi entropies between both arrays at five
successive values of α. These quantities are estimated during the
60 s of statistically stationary regimes of the experiment. Below
200 A, there is a discrepancy. It shows that the regular array
performs a better mixing. This discrepancy is more important
Fig. 3. (Color online) Mixing properties as a function of I , the applied driving
current. Top: Difference between the particles concentration variance of the regular
magnets array and the random magnets array, as a function of I . Bottom: The
difference between the Rényi entropies 1Sα of the regular magnet array and the
random magnet array, as a function of I . α = 1, ∗; α = 2, ◦; α = 3, �; α = 4, �;
q = 5, △.

for higher values of α. This result underlines that the difference
increases when higher fluctuations of the concentration emerge.
However above 200 A, both magnet arrays have the same mixing
properties, despite that the flow produced by the regular array
fluctuatesmore. It should be recalled that a transition around 200A
has been already observed in the kinetic energy of the particles
driven by the randommagnet array.

Therefore, we can conclude that the mixing properties of both
flows are equivalent above 200 A, despite their different temporal
fluctuations.

3.2. Clustering characterization

We are now going to focus on the instantaneous spatial distri-
bution of the floaters. To do so, we use the Delaunay triangles link-
ing three nearest neighbors. We borrow this tool from the study
of granular packing [42,43], and frommore recent studies on clus-
tering of inertial particles in fully developed 3D turbulence [11]. In
order to quantify floaters concentration at the surface, we compute
the area of the Delaunay triangles. Such triangulations are shown
in Fig. 4, for a uniform distribution of 254 points (a) and for the
same number of particles tracked on a snapshot of our experiment
(b). In solid state physics and granular matter, these tessellations
are used to study amorphous states. In the case of a random set
of points, the tessellation gives a gamma-distribution P(A) for the
elementary triangles area A [43], with:

P(A) =
ba

Γ (a)
Aa−1 exp(−bA), (2)

a = ⟨A⟩
2/σ(A)2 and b = ⟨A⟩/σ(A)2. For uncorrelated points

uniformly distributed, one expects an exponential distribution
with a = 1 and b = 1/⟨A⟩ [44]. This is indeed the case shown
in Fig. 4(a), excepting small deviations due to constraints imposed
by the container boundaries. This uniform distributionwill be used
as a reference hereafter. All excess of smaller areas from this refer-
ence, can be considered as a trace of clusters of correlated particles.
More precisely, an exponent a < 1 will be the signature of this ex-
cess of smaller areas. Indeed the probability density function (PDF)
of A diverges at vanishing values. Hence the most probable value
of A is 0. The exponential cut-off at large values of A is given by
the parameter b.
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Fig. 4. Position of particles and their corresponding Delaunay tessellation. (a) is for 254 uniformly distributed particles. (b) is for a similar number of particles obtained from
a single experimental snapshot, with the random array at I = 300 A. In this last case, color marked points correspond to particles found in different clusters, where triangles
areas are smaller than a threshold Ac = 0.14 (see text). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Fig. 5. Probability density function (PDF) of the normalized Delaunay triangles
area. Blue asterisks represent the one obtained experimentally, and red dots the one
constructed from the uniform distribution of points. Dashed lines correspond to the
Gammadistribution of the same average and standard deviation. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

We study the areas obtained for each snapshot of the experi-
ment. As the number of followed particles and Delaunay triangles
can change slightly from time to time, we normalized the area of
each triangle, Ai by the mean area of triangles at each instanta-
neous tessellation: Ai = Ai · Lx · Ly/Nt where Nt is the number of
triangles of the instantaneous tessellation. Hence ⟨A⟩ = 1. Fig. 5
shows the PDF of these normalized areas obtained from 3000 suc-
cessive snapshots of an experiment performed with the random
array and with a driving intensity of I = 300 A (blue asterisks). It
also shows the PDF of 3000 realizations of independent successive
synthetic tessellations for sets of nearly 200 points uniformly dis-
tributed.4 For both magnet arrays and all applied currents, the dis-
tribution of triangle areas follows a Gamma distribution (without
any fitting parameters once the mean and the standard deviation
are given). Note that, even if in the case of the synthetic uniform

4 For each snapshot of the experiment, we computed an independent set of nud
uniformly distributed points. If the number of particles found in the snapshot varies,
nud varies as well.
Fig. 6. (Color online) Exponent a. The values of a are obtained by adjusting the
PDF of the Delaunay triangles area with a Gamma distribution. It is done for both
magnet arrays, as a function of I . Error bars are estimated from the accuracy of the
adjustment.

distribution one gets a and b close to one (within 20% of error due
to container boundary), in the case of the experimental PDF one
gets a = 0.311. This value, smaller than one, is responsible of the
cusp observed near 0. The smaller a, the stronger is the cusp; i.e. the
larger is the excess of smaller areas. Thus, a is indeed a signature
of clustering.

Fig. 6 shows the value of a as a function of the driving current
I for both magnet arrays. In both cases, except for the smallest
intensity, one gets a decay with 0.24 < a < 0.5. There is therefore
always a strong clustering. In the case of the regular array, the
decay is almost linear, and a goes from 0.5 to 0.35. For the random
array we can observe different behaviors below and above 200 A,
once again. Below 200 A, the decay of a, going from 0.5 to 0.35 in
150 A, is faster than for the regular array. Above 200 A, the decay
rate becomes of the same order for both magnet arrays.

The areas of the tessellation follow a Gamma distribution (2)
both for the experimental points and for the synthetic set of uni-
formly distributed points. This allows to find a simple criterion to
define particles inside a cluster. We consider that a particle is in
a cluster if it belongs to a triangle with an area A smaller than a
critical value Ac . Ac is chosen such that Pe(A ≤ Ac) ≥ Pr(A ≤ Ac),
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Fig. 7. Statistics of the clusters dynamics. (a) PDF of the fluctuations around the mean velocity of a cluster for the y-component of the velocity of particles belonging to
the cluster (red) compared to the unconditional fluctuations (blue). (b) Angle distribution of the direction of the particles displacement around the direction of the cluster,
for particles belonging to a cluster (red). It is compared to the unconditioned distribution of directions (blue) and to the uniform distribution of angles (dashed line). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
where the indices r and e refer to the synthetic reference distri-
bution and experimental distribution respectively. Using (2) and
neglecting the exponential decay at large A one gets the following
critical value:

Ac =


barr · Γ (ae)
baee · Γ (ar)

 1
ae−ar

(3)

(with ar and br close but not exactly equal to 1). This criterion has
been used to define the cluster shown in Fig. 4, in which Ac = 0.14.

We now have the tools to study cluster properties. Indeed, after
knowing which particles belong to a cluster, we can compare the
velocity fluctuations inside clusters (A < Ac) with the whole-
sample fluctuations (for any A). Fig. 7(a) exhibits the PDF of
the fluctuations of one component of the velocity of particles
belonging to clusters δvy = vy − Vcy around the mean velocity,
Vc, of the cluster. These fluctuations are compared with those of
the whole sample. The PDF for particles within the clusters is
narrower and its shape, with exponential tails, differs from the
nearly Gaussian whole-sample PDF. The flatness, ⟨(δvy −⟨δvy⟩)

4
⟩/

σ(δvy)
4 of the fluctuations around the cluster velocity is equal to

5.1 whereas the flatness of the whole sample is 3.2, close to the
value expected for Gaussian variables. This shows that the floaters
belonging to the same cluster have correlated velocities. The same
result can be obtained from the other velocity component. One
can also look for correlations in the direction of displacement.
We define θc as the angle between the velocity of a floater
belonging to a cluster and the velocity of the cluster itself. θc can
be comparedwith the angle distribution of particles velocity in the
whole sample. The distribution of θc for clusters is narrower than
angle distribution of the whole sample (which is almost uniformly
distributed), as shown in Fig. 7(b). Both results mean that, as
expected,motions inside the clusters aremuchmore coherent that
the unconditioned global ones. This strengthens our definition of
clusters.

Finallywe check that this coherence is conservedwhen the forc-
ing is increased. The ratio of the conditioned over the uncondi-
tioned rms velocities is about 0.55 in the regular array whereas it
was slightly smaller for the random one (about 0.45). It means that
the cluster is slightly more coherent in the second case although
the difference is not significant. In both cases the ratio does not
evolve more than 10% when the current is increased. The rms fluc-
tuations of the angles θc are of the same order for both magnet ar-
rays and the standard deviation is about 40%–50% smaller than the
unconditioned case.
4. Comparing contributions to clustering

Now we explore the origin of clustering. To do so, we corre-
late the floater concentration with the properties of the flow. As
shown before, above 200 A, both magnet arrays have similar mix-
ing and clustering properties (see Figs 3-bottom and 6). However,
the random array is much less fluctuating, and the time averaged
quantities are more representative of the flow properties. We use
hereafter only the random array to take advantage of this prop-
erty. It allows us to correlate in space various quantities averaged
in time, for which we have a good spatial resolution. We get the
time averaged Eulerian velocity field by the procedure described
in Section 2.3. In each cell, we compute the 2D velocity component
ui and vi and their derivatives, together with the floaters concen-
tration ρi, where the index i stands for the ith cell.

First we check a clustering mechanism similar to the one
responsible of the clustering of completely passive tracers at
almost-flat surfaces in turbulent flows [15–17]. Here, as the fluid is
incompressible, one canwrite the condition∇ ·u = 0 in terms of a
horizontal divergence∇⊥ ·u⊥ = ∂xu+∂yv = −∂zw. In a completely
two-dimensional fluid the horizontal divergence vanish, whereas
it is non-zero in most practical situations [15–17]. The horizontal
divergence quantifies the presence of sources or sinks of fluid (as
they produce variations in the vertical velocity w, even near the
free surface where w becomes small). As floaters are constrained
to stay at the surface, they cumulate or disperse depending on
∇⊥ · u⊥, experiencing a compressibility effect. We evaluate the
horizontal divergence −∂zw(x, y)|z=h(t) at the surface of the flow.
We compute

qi = ∂zwi(xi, yi)|zi=h(t)

= −∂xui(xi, yi)|zi=h(t) − ∂yvi(xi, yi)|zi=h(t).

Then, we estimate the local correlator ri, between qi and the nor-
malized time-averaged concentration ρi, previously introduced:

ri =
1qi · 1ρi

σ(qi) · σ(ρi)
, (4)

where1X means X −⟨X⟩. For a driving current of 400 A, the global
correlator ⟨ri⟩, averaged over all the cells, is equal to 0.35. The local
correlator (4) is larger than one on 19.8% of the pixelated area. This
underlines spatial coherency between ri and ρi. Although they are
not identical, qi and ρi present similar patterns. The correlations
are not large, but they are still significant, considering the noise
introduced by the coarse-grained gradient and the decoherence
induced by time averaging.
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Wenow compare the previous correlationswith those between
ρi and other hydrodynamic quantities. For instance, the clustering
of inertial particles in 3D turbulence is governed by the divergence
of the inertial particle velocities, given at first order by ∇ · Vi ∼

−τsβi [7,45], with

βi = ∇ · (ui · ∇ui) (5)

and τs = d2(|ρp −ρ|)/(18νρ), the Stokes time, which takes values
near 0.1 s in our conditions.

The spatial distribution of βi allows to define another local
correlator

si =
1βi · 1ρi

σ(βi) · σ(ρi)
. (6)

The global correlator ⟨si⟩ is about 0.07 and the local correlator
overcomes unity only on 9% of the surface. Hence, no common
pattern emerges from the comparison between these quantities.
Thus, in our setup it is questionable to link the clustering with the
inertial effects described, for instance, in [10,11].

Particles concentration can also be correlated to the vertical
component of the vorticity, which is the strongest component of
the vorticity with our forcing. In 3D flows, it was shown that light
particles (air bubbles for instance) migrate to zones of intense
vorticity, as the pressure is lower there [46,47]. Despite the free
surface differs from the flow in the bulk, one may expect a similar
scenario for floating particles.

From our measurements, the vertical vorticity Ωi, can be
evaluated on the Np cells. The global correlator with the particle
concentration ⟨1Ωi · 1ρi⟩/(σ (ρi) · σ(Ωi)) gives 0.30, which is
comparable, but smaller than ⟨ri⟩ = 0.35, the global correlation
with the horizontal divergence. High correlation between Ωi and
ρi implies that particles concentrate at regions of high vorticity,
in opposition with the scenario proposed in [46,47]. However, the
global correlator, ⟨ti⟩ = ⟨1Ωi · 1qi⟩/(σ (qi) · σ(Ωi)) between
the vorticity and the horizontal divergence is 0.83, which is large.
This strong correlation (much larger than the one between Ωi and
ρi) may be explained by secondary flows that are induced in a
shallow fluid layer around vertical vortices [48]: upwelling flows
merge at the vortex core whereas downwelling flows dive at the
vortex edge. Therefore, we propose that the apparent correlation
between vertical vorticity and the particles concentration is only
the result of the correlation betweenΩi and qi. In a complementary
experiment, where secondary flows are absent, light nonwetting
floaters move toward the axis of rotation. This experiment, where
particles float at the parabolic surface of a fluid in solid-body
rotation, will be the subject of a future work.

To summarize, the hierarchy of correlations we have computed
suggests that clustering in our experiment is driven by horizontal
divergence. To further discuss these effects, one can introduce a
dimensionless factor [14,15]

C =
⟨(∂xu + ∂yv)2⟩

⟨(∂xu)2⟩ + ⟨(∂yu)2⟩ + ⟨(∂xv)2⟩ + ⟨(∂yv)2⟩

that quantifies the degree of compressibility. It is zero for
incompressible 2D flows and it takes values close to 0.5 near
the surface, for free surface flows [14,15]. We compute C for the
random array of magnets, used to study correlations. It gives a
value close to 1/6 for every forcing current I in our experiment,
although the values are slightly larger when I is less than 200 A.
The value 1/6 is low compared with those obtained previously
near the surface [15,49]. It is not still clear for us if the coarse-
graining process used to get spatially resolved fields reduces the
C coefficient. Another explanation comes from the fact that we are
only measuring a projection of the three dimensional deformation
of the free surface (i.e. neglecting the vertical velocity). We
can sustain this idea by interpreting the 1/6 as the C of the
2D projection of a 3D (homogeneous and isotropic turbulent)
flow [14]. Our measurement giving C < 0.5 does not allow us to
see any of the extreme events suggested in [49].

Apart from the aforementioned physical mechanisms, our par-
ticles are sensitive to the surface tension because they are smaller
than the capillarity length lc . Capillarity makes attractive parti-
cles of similar wetting [50]. The attractive capillarity force be-
tween particles decays exponentially with the distance [51], and
thus, it is significant on a characteristic length of order lc . This in-
teraction length is an order of magnitude smaller than the mean
free path between floaters in our experiment. Hence, due to the
low filling fraction of particles, we expect that capillarity will
be initially inefficient to agglomerate floaters. However, once the
clusters are formed, the attraction could play a stabilizing role
and could affect the cluster cohesion. Capillarity force also makes
particles sensitive to the local curvature [21]. However, our exper-
iments with particles floating on the parabolic surface of a rotat-
ing fluid (where capillarity seems to play a crucial role), show that
the motion is much slower than the one observed in the present
experiment. A systematic study of the size and wetting proper-
ties of floating objects is a very important one [8,9,21–23,50,51],
although it is out of the scope of this work5.

A last issue is how spatial inhomogeneity of the floaters
reflects the intermittent properties of the underlying flow. The
high intermittency of the passive scalar stretched and folded by
the velocity gradient is revealed by the anomalous scaling of the
structure function of the concentration field [5]. It has been related
to the ramp and cliff inhomogeneous structure of the passive scalar
concentration [52].We do not reach enough resolution to compute
the structure function of the concentration field of floaters in our
experiment. However, it has been shown that some properties of
turbulent flow, or others complex stretched flows, are enclosed in
the time evolution of the shape of triangles in 2D (or tetrads in
3D) delimited by Lagrangian points passively advected by the flow
[44,53,54]. Therefore a forthcoming work will be devoted to the
study of the time evolution of such distorted triangles, delimited by
floaters, in order to underline discrepancies with the passive scalar
case [44,54]. Moreover, with the tool introduced to define particles
belonging to a cluster, we should be able to study the triangle
distortion evolution in relation to the particles ability to enter or
escape from the clusters and thus to relate spatial inhomogeneity
and intermittent properties.

5. Conclusions

In the first part of this article, we presented an experimental
setup allowing us to generate strongly fluctuating free surface
flows of liquid metal, thanks to an electromagnetic forcing. We
apply to the fluid an electrical current I going from 25 A to
600 A. We used two kinds of magnet arrays, one regular and
another random, to drive the flow. The twomagnet arrays produce
a different level of flow stationarity. Indeed, the ratio between
the energy contained in temporal fluctuations and in the time
averaged mean flow, is much larger with the regular array.
This result is revealed both by velocity-field estimates and by
the surface deformation. The random array, which produces a
larger mean flow, exhibits several clues of a transition around
200 A: changes appear in the kinetic energy of particles, in the
characteristic correlation time and in mixing properties. However,
besides fluctuation properties of flows, bothmagnet arrays behave
similarly above this value.

5 Although all the results presented here correspond to particles with a diameter
of 1 mm, we also used larger particles (3 mm) to verify the reproducibility of the
velocity measurements.
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After presenting the flows, we focused on the dynamics of
floaters.We show, in particular, that they do notmix uniformly but
tend to form clusters, independent of the magnet array. This was
identified by the study of the distribution of the Delaunay triangles
areas. The statistics of the area of the triangle linking neighbor
particles, follow Gamma distributions. These distributions are
singular near zero, illustrating the tendency to form clusters,
where the areas are very small. By comparing the triangles-area
singularity with a uniform reference, a criterion defining clustered
particles is obtained. Particles belonging to the same cluster have
a coherent displacement.

To identify the main clustering mechanism, we study the
correlations between surface concentration of the floaters and
hydrodynamical quantities. One is linked with inertial effects;
other with vortical motion; and other with horizontal divergence,
that corresponds to compressibility in the surface. Knowing that
both magnet arrays have similar mixing and clustering behaviors,
this analysis is performed with the random array. By doing
so, we benefit from stationarity, allowing us to consider time
averaged quantities. Correlations suggest that the main clustering
mechanism comes from the horizontal divergence in the surface,
which induces a compressible effect in the floaters: they are
expelled from the upwelling secondary flow at the vortex core and
stretched at the vortex edge.
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