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Scaling of Information in Turbulence

Carlos Granero-Belinchón, Stephane G. Roux, Nicolas B. Garnier

Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS UMR 5672, Laboratoire de Physique, F-69342 Lyon, France

PACS 89.70.Cf – Entropy in information theory
PACS 47.27.Jv – High-Reynolds-number turbulence
PACS 89.75.Da – Scaling phenomena in complex systems

Abstract – We propose a new perspective on Turbulence using Information Theory. We compute
the entropy rate of a turbulent velocity signal and we particularly focus on its dependence on
the scale. We first report how the entropy rate is able to describe the distribution of information
amongst scales, and how one can use it to isolate the injection, inertial and dissipative ranges, in
perfect agreement with the Batchelor model and with a fractional Brownian motion (fBM) model.
We provide analytical derivations of the entropy rate scalings in these two models. In a second
stage, we design a conditioning procedure in order to finely probe the asymmetries in the statistics
that are responsible for the energy cascade. Our approach is very generic and can be applied to
any multiscale complex system.

Introduction. –

Turbulence. Despite many progresses in understand-
ing Turbulence during the last century, a lot of questions
remain unanswered. In 1921, Richardson depicted Tur-
bulence as a hierarchy of whirls of different sizes, with an
energy cascade from larger eddies down to smaller ones [1].

This description inspired Kolmogorov theory of fully de-
veloped turbulence [2–4]. The experimental observation of
Intermittency (see, e.g., [5]) led to corrections to the K41
theory [6] and to a description of the multifractal nature
of Turbulence signals [7, 8].

We propose in this article an Information Theory per-
spective on Turbulence: we first describe the distribution
of information (in the Shannon’s sense) over scales in a
turbulent velocity signal and then show and explain its
close connexion with the energy scaling. In order to ex-
plore the existence of an energy cascade in Turbulence via
Information Theory, we define a conditioning procedure
of the signal with respect to the sign of its increments,
and show that this allows for a very fine exploration of
the asymmetry of the distribution and hence the inference
of the existence of a finite skewness. The methods pre-
sented here are of general interest in the study of complex
dynamical signals.

Information Theory. Since Shannon’s pioneering
work [9], Information Theory (IT) has been developed to
analyse the complexity or disorganization of signals. Al-
though strongly connected with correlations, entropy and

other quantities subsequently defined in IT do not rely
on two points correlations only, but on joint probabili-
ties. These quantities are then in theory able to handle
not only higher order moments of any Probability Density
Function (PDF), but also all possible non-linear relation-
ships between signals. In the present article, we mainly
deal with entropy rate, and mutual informations, although
many other more elaborated extensions can be considered.

Previous studies and difficulties. Up to now, very few
research has been devoted to applying IT in the analysis
of Turbulent signals [10–13]. This has probably two main
origins. Firstly, all quantities in IT usually require a large
number of samples or data points to behave properly, with
small enough bias and variance. Secondly, correlations —
within a single signal or between signals — impact the
estimation of the probability density functions. Usually,
one is not interested in these effects of correlations and
uses the Theiler prescription [14] to discard them.

In this paper, we analyse a Turbulent velocity signal
using Information Theory. Our ”key” tool is the entropy
rate, and we focus on its dependence on the scale. Doing
so, we do not care about the Theiler correction; on the
contrary, we want to explore all domains where correla-
tions are important and which contain useful information.
In a first stage, we report how the entropy rate is able to
describe the distribution of information amongst scales.
In a second stage, we design a conditioning procedure to
extract asymmetries in the statistics that are responsible
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for an energy cascade.

Information measurements. –

Definitions. Shannon entropy of a signal X that takes
its values in the vector space S is a functional of the PDF
p(x) of the signal X on S [9]:

H(X) = −
∫
S

p(x) log p(x)dx

We focus here on real, unidimensional signals, so S is the
set of real numbers. One important property of entropy is
that it does not depend on the first moment of the PDF.
Therefore, in the remainder of this article, we are working
with centered signals.

In order to study the dynamics of the signal, we use
a delay-embedding procedure [15] to construct the m di-

mensional signal X
(m,τ)
l from the signal X by defining for

each time t = t0 + l the vector:

x
(m)
t = (x(t), x(t− τ), x(t− 2τ), ..., x(t− (m− 1)τ))

where m is the embedding dimension and τ is a time delay
that we adjust. Here and in the following we omit the
index l if l = 0, and (m, τ) if m = 1.

The entropy rate measures the additional information
that is brought by the (m+1)-th dimension when the (m)
previous ones are known:

h(m)
τ (X) ≡ H(Xτ |X(m,τ))

= H(X(m+1,τ))−H(X(m,τ)) (1)

= H(X)− I(Xτ , X
(m,τ)) (2)

The last equation involves the mutual information
(MI) [16] which is defined between two embedded signals
X(m) and Y (p) as

I(X(m,τ), Y (p,τ)) =

H(X(m,τ)) +H(Y (p,τ))−H(X(m,τ), Y (p,τ)).

In eq.(2), the MI is computed between two specific sig-

nals Xτ = X
(1,τ)
τ and X(m,τ) built from the signal X such

that the concatenation of the two signals is nothing but the

(m+1)-embedded signal X: (X
(1,τ)
τ , X(m,τ)) = X

(m+1,τ)
τ .

The entropy rate measures the ”new” information in

x(t+τ) that is not in x
(m)
t . In this perspective, an increase

of m-points correlations, so an increase of the information
contained in one point about its neighbors, can be seen as
an increase of organization and therefore a decrease of the
entropy rate. From eq.(1), we see that the entropy rate can
be negative if the information contained in the embedded
signal X(m,τ) is larger than the information contained in
the embedded signal X(m+1,τ); this situation is expected
when correlations are very strong. From eq.(2) and noting
that the Mutual Information is always positive, the sign of
the entropy rate depends on the magnitude of the entropy

H(X(m,τ)). If the signal X has a continuous support, the
entropy — which depends on the standard deviation of
the signal — can be negative.

The entropy rate h
(m)
τ depends on the time scale τ used

in the embedding process. Contrary to most of the litera-
ture on Information Theory, we are interested here in the
dependence of the entropy rate in τ , and we are varying τ
from its smallest value — the sampling period dt — up to
some large time scale. This is motivated by the connex-
ion that we discuss below between the embedding process,
and the ”traditional” definition of increments, both using
the time scale τ .

The entropy rate h
(m)
τ is related not only to 2-point

correlation functions, but also to higher order statistics,
in particular if m > 2. We report below how to estimate
the entropy rate for an experimental turbulent signal, and
describe its dependance on the time scale.

Estimating the entropy rate. A natural estimation of
the entropy rate is obtained by computing the entropy
of two successively embedded version of the signal X, for
embedding dimension m and m + 1, and then substract-
ing them according to eq.(1). This has unfortunately sev-
eral drawbacks. When the embedding dimension m is in-
creased, the bias of the measure increases as well; this is
known as the curse of dimensionality. One has therefore
to make a trade-off between on one hand a larger value
of m for a theoretically better estimation of the entropy
rate, and on the other hand a smaller value of m to avoid
bias. Moreover — and whatever the choice of m is — the
expected bias for H(X(m,τ)) and H(X(m+1,τ)) is a priori
different and results in a larger bias for the entropy rate
than for any of the two entropies considered separately.

Fortunately, one can exploit the expression (2) of h
(m)
τ

based on Mutual Information, for which Kraskov et al. [17]
provided a k-nearest neighbors estimator which has sev-
eral good properties. Amongst them is not only a small
Mean squared error even for moderate signal sizes N , but
also some build-in cancellation of the bias difference from
the two arguments X(m,τ) and Y (p,τ). It then suffices to
subtract the entropy H for m = 1, which is relatively
easy to estimate. Several algorithms exist, and we use the
k-nearest neighbors estimate from Kozachenko and Leo-
nenko [18].

Turbulence signal analysis. – The data we are
analysing is a temporal measurement (sampled at fre-
quency fs=25 kHz) of velocity in a grid turbulence exper-
iment in the ONERA wind tunnel in Modane [19]. The
Taylor-scale based Reynolds number is about Re = 2700
and the turbulence rate is about 8%; the Kolmogorov
k−5/3 law for the energy spectrum holds on an inertial
range of approximately three time decades (Figure 1(a)).
In the remainder of this article, we implicitly use the Tay-
lor hypothesis [8] and consider our temporal data as rep-
resenting spatial fluctuations of the longitudinal velocity.
The integral scales, inertial range and dissipative range
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that we describe below in terms of time scales or ranges are
to be understood as corresponding to spatial time scales
or ranges. The proportionality factor is the mean velocity
〈v〉 of the signal (〈v〉 = 20.5 m/s here).

The probability density function of the data is almost
Gaussian although there is some visible asymmetry (the
skewness is about 0.175± 0.001).

Entropy rate. In the following, the time-lag is writ-
ten τdt where τ is a non-dimensional integer, and dt = 1

fs
.

Thanks to the Taylor hypothesis τdx can be interpreted as
a spatial scale, with dx = 〈v〉dt. We estimate the entropy

rate h
(m)
τ (X) using eq.(2) with vectors Xτ and X(m,τ) of

sizes (1×N) and (m×N) where N = 217 is kept constant
for all τ . The entropy rate is computed, and then aver-
aged, over 195 independent samples. Our results are pre-
sented in Fig.1 as a function of log(fs/τ). Three regions
are observed: above 36ms are the integral scales, below
∼ 0.18ms is the dissipative range, and in-between them
is the inertial range. At larger (integral) scales, the auto-
correlation function vanishes and the entropy rate is equal
to the entropy H of the signal (m = 1) which depends
only on one-point statistics. We can interpret this first re-
sult as indicating that the integral scales, where energy is
injected and Turbulence is generated, are the most disor-
ganized. In the inertial range, the entropy rate decreases
almost linearly with a slope close to -1/3, represented by a
straight line in Fig. 1. As the time — or space — scale is
decreased, the velocity field appears more and more orga-
nized in the sense that the amount of ”new” information
brought to one point by another point at a distance τ
decreases with τ . In the dissipative range, the entropy
rate decreases faster and faster, as the dissipation become
stronger and stronger. We interpret this as a consequence
of the velocity field being more and more regular, as the
scale decreases.

The entropy rate enlightens differently than the Power
Spectrum the separation between the different domains,
as can be seen in Fig. 1. The integral and Kolmogorov
scales shown in this figure have been obtained using the
Batchelor model for fully developed turbulence, as detailed
below.

Robustness. We checked that our estimation of the
entropy rate does not depend on the number of neighbors
used in the k-nn search algorithm (k = 5 and 10) nor on
the sample size N (N = 216, 217 and 219). We measured
that for a fixed set (k,N) the standard deviation of the
entropy rate is much smaller than the standard deviations
of H(X) and I(Xτ , X

(m,τ)) considered separately. The
standard deviation of the estimation is of the order of 0.03
for small τ and increase to 0.08 for large τ .

Effect of the embedding. We varied the embedding
dimension m and observed a dependance of the entropy
rate in the dissipative range only, for scales τdt smaller
than 0.18ms. Going deeper and deeper in this range, the
signal is more and more continuous so the knowledge of an
increasing number m of points in the past (separated by

h
(m

)
τ

(X
)

log(fs/τ)
τdt = 36ms τdt = 0.2ms

m=1
m=2
m=3
correlation

lo
g
(E

)
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Fig. 1: Top: Power Spectral Density of the experimental sig-
nal. The straight line corresponds to the K41 scaling. Bottom:
entropy rate h

(m)
τ , as a function of the scale (f = fs/τ) for

different embedding dimensions m ∈ {1, 2, 3}. The blue curve
corresponds to eq.(3) using the autocorrelation function. The
thin straight line is a line of slope -1/3, the thick straight line
has a slope -1.

the scale τ) decreases significantly the ”new” information
brought by a (m+1)th point in the future (Figure 1). But
for m > 2, there is no measurable evolution anymore, even
in the dissipative range.

Entropy rate and autocorrelation. If the statistics of
the signal are Gaussian, the entropy rate can be expressed
as

h(1)τ (X) = H(X) +
1

2
log(1− c(τ)2) (3)

where c(τ) stands for the normalized autocorrelation func-
tion (c(τ = 0) = 1) and H(X) = 1

2 log(2πeσ2) with σ
denoting the standard deviation of X, is independent of
τ . Eq.(3) takes into account the two-point correlations
only but it gives surprisingly good results when applied
to Turbulence data. Note that from formula (3) it is ob-
vious that strong correlations can lead to a negative en-
tropy rate. The entropy rate obtained using the auto-
correlation function c(τ) and eq.(3) is presented as a blue
line in Fig.1(b). It is almost identical to the estimate for
m = 1. This result is not surprising because the Turbu-
lence signal has almost Gaussian statistics, which implies
that higher order correlations are small and difficult to
observe. In this case, eq.(3) — relating the entropy rate
and the auto-correlation function c(τ)2 — holds, and the
signal is described equivalently whether using the auto-
correlation function, the second order structure function,
or the entropy rate with m = 1 which depends explicitly
on two-point statistics. For m > 1, the entropy rate de-
pends a priori on the (m+ 1)-point correlation structure,
but these higher order correlations are barely observable in
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the Turbulence signal, which is confirmed by our analysis
in the integral and inertial ranges. Only in the dissipa-
tive range a difference with the autocorrelation estimate
appears. This behavior at the smallest scales may not be
due to Turbulence itself; rather it may originate from the
experimental processing of the signal.

We can use eq.(3) to explore the inertial range and its
boundaries by using the Batchelor model for fully devel-
oped turbulence [20] which provides a model of S2, the
second-order structure function:

S2(τ) =
(τdx/L)2/3(

1 + (ηk/τdx)
2
)2/3 . (4)

L is the integral scale and ηk the dissipation scale, and
dx = 〈v〉dt from the Taylor hypothesis. Eq.(4) imposes on
the second-order structure function to have a slope 2/3 in
the inertial range and 2 in the dissipative range. Noting
that S2(τ) = 1− c(τ) and using eq.(3), one derives for the
entropy rate h(1)(τ) two linear behaviors in log(1/τ): one
with a slope −1/3 in the inertial region and another one
with a slope of −1 in the dissipative range, both in perfect
agreement with our measurements. Fitting S2, the struc-
ture function, or fitting the entropy rate give the same
estimates of the scales L and ηk; these are represented as
vertical dashed lines in Fig. 1.

Fractional Brownian Motion. Fractional Brownian
motion (hereafter fBm) is a continuous-time random pro-
cess proposed by Mandelbrot and Van Ness [21] in 1968,
which quickly became a major tool in various fields where
concepts of self-similarity and long-range dependence are
relevant. In order to reproduce the K41 scaling of turbu-
lence, we consider here a fBm B with an Hurst exponent
H = 1/3 [2, 21]. Although this signal is non stationary,
its increments are Gaussian and stationary; moreover, it
has the same correlation structures as a turbulent velocity
signal in the inertial range: its Power Spectral Density has
a power law with exponent −5/3. Using dt = 1 for this
synthetic signal, the non-stationary covariance structure
E{B(t)B(t+ τ)} = σ2

0c(t, τ) is given by

σ2
0c(t, τ) =

σ2
0

2

[
t2H + (t+ τ)2H − |t− (t+ τ)|2H

]
The pre-factor σ0 is a normalization constant. The fBm
having Gaussian statistics, we can write its entropy as

H
(m)
FBM ≡ H(B(m,τ)) =

1

2
log((2πe)m|Σ|) (5)

where Σ is the m×m covariance matrix with coefficients
Σi,j = c(ti, tj). σ

2
0 is a scaling factor independent of time.

The fBm is non stationary, but if we consider a signal
of finite temporal extension T , we obtain analytically for
m = 1 :

h(1)τ (B) ≈ H log (τ) +
1

2
log
(
2πeσ2

0

)
(6)

v
(t
)

v(t− τdt) log(p)

p
p+

p−

−15 −10 −5−4 −2 0 2 4

−4

−2
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2

4

Fig. 2: Left: bi-variate PDF of (v(t), v(t − τdt)), the velocity
field. Right: p(X) (in red), p+(X) (blue) and p−(X) (black).

up to corrections in τ/T , which are negligible if T is large
enough compared to the range of τ used. The entropy rate
of the fBm is therefore linear in log(τ), with a constant
slope H, independent of the temporal extension. We have

computed the entropy rate h
(1)
τ of a synthesized fBM with

H = 1/3 and containing the same number N of points as
our experimental data. Results are shown in Fig.3, the
measured slope is 0.32± 0.01, in agreement with the the-

oretical value H = 1/3. We have also computed h
(m)
τ for

2 ≤ m ≤ 4 and observed a small deviation from the linear
behavior for large τ , while the slope slightly increases to
reach 0.34 ± 0.01 for m = 4. We attribute this to finite
size effects, especially in the corrections to eq.(6).

The fBm has no characteristic scales (no integral nei-
ther Kolmogorov scale), so the slope of its entropy rate
is unperturbed by the integral and dissipative domains.
Therefore, analysing the behaviour of such a process with
Hurst exponent H = 1/3 allowed us to explain the scaling
behaviour of the entropy rate of our turbulence data in
the inertial range.

Conditioned Entropy rate. – In the previous sec-
tion we showed that the entropy rate of a Turbulence ve-
locity signal is well described using only the autocorrela-
tion function, because the signal statistics are very close
to Gaussian. Nevertheless, the statistics of the increments
of a Turbulent velocity signal δτ (t) ≡ v(t) − v(t − τdt)
can be far from Gaussian, especially for smaller scales τ .
In particular, the PDF of increments is skewed. A non-
vanishing skewness of the increments or a non-vanishing
order-3 structure function, S3(r) ≡ E{(v(t)−v(t−τdt))3}
results in an energy cascade [2–4]. The entropy rate, as
defined in the former section, cannot probe the energy cas-
cade because it is not sensitive enough to the asymmetry
of the two-points PDF (represented in Fig. 2).

Conditioned probabilities. To probe more accurately
the symmetry of the two points PDF of a generic signal
X, we propose the following procedure. We define the sig-
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nal X+, resp. X−, as the subset of points x(t) from X
such that δτ (t) > 0, resp. δτ (t) < 0. We then define the
conditioned PDF p+, resp. p−, of the signal X+, resp.
X−; Although signals X+ and X− are one-dimensional
and take their values in the same vector space S as X
does, they contain some information provided by the in-
crements, namely the sign of the local increment δτ (t) as-
sociated with x(t). It is important to note here that if
the statistics of the increments δτ (t) of the signal X are
skewed, then the joint PDF of (x(t), x(t−τdt)) is not sym-
metrical with respect to the origin. The reciprocal may
not hold. For the Turbulent velocity field, the conditioned
PDFs are reported in Fig. 2 for τ = 400.

Conditioned entropy rate. We then define the condi-

tioned entropy rate h
+,(m)
τ , resp. h

−,(m)
τ , of the signal X as

the entropy rate h
(m)
τ of the conditioned signal X+, resp.

X−. In practice, we compute the same quantity as before,
defined by eq.(2), but using only a subset of all data points;
this subset is obtained by retaining points x(t) with a given
sign of δτ (t). The test is performed at the single date t,
whatever the embedding dimension m is, so not looking
at the (sign of) increments δτ (t− kτ), 1 ≤ k ≤ m− 1.

The entropy rate considers an embedded signal of di-
mension m + 1, so even for the smallest m = 1, the
entropy rate probes 2-points correlations, between x(t)
and x(t− τdt). In that case, the additional condition-
ing on the sign of the increment allows the conditioned
entropy rate to probe the asymmetry of the joint PDF
p(x(t), x(t− τdt)), which is related to the skewness of the
increments.

If the joint PDF is symmetrical with respect to the ori-
gin, it is easy to check that p+(x) = p−(−x) and therefore

h+,(m)
τ (X) = h−,(m)

τ (X).

On the contrary, if the statistics of the increments are
skewed, then the joint pdf does not have the central sym-

metry and we may have h
+,(m)
τ (X) 6= h

−,(m)
τ (X).

In the case of a fBm, the joint PDF p(Bt, Bt−τ ) has the
central symmetry for all scales τ . In the case of a Tur-
bulence velocity signal, the joint PDF is not symmetrical
for small scales τ because of the skewness of the incre-
ments. Measurements of conditioned entropy rates are
reported in Fig.3 for m = 1. For the fBm, the conditioned
entropy rates are indistinguishable and follow the same

linear behavior as the entropy rate h
(m=1)
τ . For the tur-

bulent velocity signal, the two conditioned entropy rate
give significant different results, with an almost constant
difference around 0.1 ± 0.01 (compared to the standard

deviation of h
(1)
τ (X±) which is around 0.03± 0.01) .

To check the robustness of our results, we perform two
different tests using the Turbulence signal. First, be-
cause of the skewness of the increments, especially for the
smaller scales τ , the fraction of points of X in subsets X+

and X− can be quite different (about 48% and 52% re-
spectively). As this may cause a difference in conditioned

Turbulence
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Fig. 3: Top: conditioned entropy rates h
+,(1)
τ (red) and h

−,(1)
τ

(blue) as function of scale for Turbulence data (left) and fBm
with H = 1/3 (right) for embedding m = 1. The entropy rate

h
(1)
τ (black) is reported for comparison. Bottom: difference

(h
+,(1)
τ −h+,(1)

τ ) (black) and standard deviation of h
+,(1)
τ (blue)

and h
−,(1)
τ (red).

entropy rates, we recomputed h
−,(1)
τ when imposing that

X− has the same number of points as X+. To do so,
we simply discarded the extra points from X− (randomly
chosen). This procedure does not change the correlations
of X−, nor the statistics and hence the pdf. Again, we find

the same significant difference between h
+,(1)
τ and h

−,(1)
τ .

Second, we replaced the conditioning on the sign of the
increments by a random sub-sampling of X, in order to
obtain a subsampled signal Xrand. In that case we obtain

h
(1)
τ (Xrand) = h

(1)
τ (X), as expected, although the number

of points in X and Xrand differ by a factor 2.

Discussion. – The entropy rate depends on the scale
τ used in the embedding process. It measures the dynam-
ics — understood here as the dependence on either tempo-
ral or spatial scales — of information in the signal at scale
τ . Using a particular value of τ for our estimates amounts
to probe the signal at the scale τ or equivalently to use a
signal down-sampled at the scale τ . Because of the almost
Gaussian nature of the statistics, we argued that the en-
tropy rate is a function of the auto-correlation function —
or equivalently of S2 —- and it is therefore not surprising
to observe three distinct regions in the ”spectrum of in-
formation”. Interestingly, the entropy rate discriminates
the different regions — and hence the different behaviors
of the flow —- differently than the Power Spectrum does.
This is because the entropy rate is a non-linear function of
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the auto-correlation. The representation of the integral,
inertial, and dissipative ranges given by the entropy rate
for embedding m = 1 contains the same physics as the
one given by the second order structure function. Both
of them operate in direct space and so they avoid the
Fourier transform that induces humps in the transition
regions [22].

We now comment on the values taken by the entropy

rate. In the integral domain, h
(m)
τ is equal to the entropy

H(X) of the signal, which is independent of the scale τ
and represents only the standard deviation σ of the signal:

lim
τ→∞

h(m)
τ = H(X) ' 1

2
log(2πeσ2)

This is very generic and can also be understood as the
absence of correlations in this domain, so that the MI term
in eq.(2) vanishes. Over the inertial range, the entropy
rate decreases when decreasing the scale, indicating that
the signal is more and more regular, or equivalently that
a new point in the signal brings less and less information.
The scaling of the inertial range (with a slope of −1/3) is
exactly the one of a fBM or of the Batchelor model. In
the dissipative range, the decrease is faster: with a slope
of −1 for m = 1, in accordance with Batchelor’s model,
and with a larger negative slope if m > 1.

Although the entropy rate depends a priori on the com-
plete PDF of the signal, and therefore on higher order
statistics, when m = 1 we haven’t been able to measure
any significant deviation from Gaussianity: formula (3)
holds at all scales. Increasing the embedding dimension
m leads interestingly to a similar conclusion: whether one
uses 2-point (m = 1) or n-point statistics (m = n−1), the
”Information Spectrum” is unchanged, in both the iner-
tial and integral domains. Deviations are observed for the
smallest scales only. There is no reason for this to hold
for an arbitrary signal from a complex system, and we are
currently investigating increments in more details, as well
as other systems, to probe if this feature is characteristic
of Turbulence.

The conditioning procedure introduced to probe the
skewness of increments — and hence the existence of
an energy cascade — should be distinguished from the
conventional ”conditional entropy”. Our conditioned en-
tropy rate is not the conditional entropy rate, which is a
Kullbach-Leiber divergence, but simply the entropy rate
of a pre-conditioned signal. It allows us to probe very
fine details of the statistics, and especially the asymmetry
of the bivariate pdf which is related to the skewness of
the increments. We showed that the existence of an en-
ergy cascade can be proven using only Information Theory
(and, of course, Kolmogorov 4/5 law).

The conditioning process may seem very crude, as
we only test for the sign of the increments. We have
tried to use the value of the increments as a condition,
which amounts to compute the conditional entropy rate

H(Xτ |X(m,τ), δτ ). Unfortunately this quantity is not sen-
sitive to the skewness of the increments: all possible values
of the increments are averaged over, which cancels the ef-
fect of the asymmetry of the bivariate PDF.

Conclusion. – We measured the information content
of a turbulent signal by computing the entropy rate as
a function of the scale at which the signal is considered.
We found that the distribution/scaling of information is
reminiscent of the energy scaling, and we related it to the
second order structure function. The entropy rate is able
to separate properly the different domains as the second
order structure function does. We argued that the en-
tropy rate is more sensitive to correlations than the Power
Spectrum, in particular because it can take into account
higher order correlations, especially for large embeddings.
For this reason, Information Theory perspective may give
some new insight on Turbulence.

We reported that the entropy rate of the longitudinal
velocity is unable to probe either the weak skewness of the
Turbulence signal or the larger skewness of its increments.
We then designed a conditioning procedure of the data,
based on the sign of the increments. Applying the entropy
rate to this conditioned data, we were able to illustrate an
effect of the skewness of the velocity increments.

The procedures described here are of general interest for
the study of complex systems, especially those having mul-
tiscale dynamics, as can be found in, e.g., Economy, Ecol-
ogy, Neuroscience, and of course Fluid dynamics. Given
the plethora of laws governing such different systems, the
model-free and nonlinear nature of Information Theory
makes it a very interesting approach. In the particular
case of Turbulence, we showed not only that the entropy
rate allows one to measure in all generality the informa-
tion distribution amongst scales, in perfect agreement with
known models, but also that a well-chosen conditioning of
the data allows one to prove the existence of the energy
cascade. Using Information Theory only, we recovered all
classical characteristics of second order moment of Turbu-
lence, as well as the existence of an energy cascade via the
third order moment.
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