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Abstract

TU games with two-level communication structure, in which a two-level communication structure
relates fundamentally to the given coalition structure and consists of a communication graph on the
collection of the a priori unions in the coalition structure, as well as a collection of communication
graphs within each union, are considered. For such games we introduce two families of two-step
values inspired by the two-step procedures staying behind the Owen value (Owen, 1977) and the
two-step Shapley value (Kamijo, 2009) for games with coalition structures. Our approach is based on
the unified treatment of several component efficient values for games with communication structure
and it generates two-stage solution concepts that apply component efficient values for games with
communication structure on both distribution levels. Comparable axiomatic characterizations are
provided.

Keywords: TU game with two-level communication structure, Owen value, two-step Shapley value,
component efficiency, deletion link property

JEL Classification Number: C71
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1 Introduction

In classical cooperative game theory it is assumed that any coalition of players may form. However,
in many practical situations a collection of feasible coalitions is restricted by some social, economical,
hierarchical, communicational, or technical structure. The study of transferable utility (TU) games
with limited cooperation introduced by means of coalition structures, or in other terms a priori unions,
was initiated in the 1970’s first by Aumann and Drèze [1] and then Owen [13]. In these papers a
coalition structure is given by a partition of the set of players. Another model of a game with limited
cooperation presented by means of undirected communication graphs was introduced in Myerson [12].
Various studies in both directions were done during the last four decades, but mostly either within one
model or another. Vázquez-Brage, Garćıa-Jurado and Carreras [16] is the first study that combines
both models by considering a TU game endowed with, independent of each other, both a coalition
structure and a communication graph on the set of players. For this class of games they propose a
solution by applying the Owen value for games with coalition structure to the Myerson restricted game
of the game with communication graph.
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Another model of a TU game endowed with both a coalition structure and a communication graph,
the so-called game with two-level communication structure, is considered in Khmelnitskaya [9]. In
contrast to Vázquez-Brage et al. [16], in this model a two-level communication structure relates fun-
damentally to the given coalition structure and consists of a communication graph on the collection of
the a priori unions in the coalition structure, as well as a collection of communication graphs within
each union. It is assumed that communication is only possible either among the entire a priori unions
or among single players within any a priori union. No communication and therefore no cooperation is
allowed between proper subcoalitions, in particular single players, of distinct elements of the coalition
structure.1 This approach allows to model different network situations, in particular, telecommunication
problems, distribution of goods among different cities (countries) along highway networks connecting
the cities and local road networks within the cities, or sharing an international river with multiple
users but without international firms, i.e., when no cooperation is possible among single users located
at different levels along the river, and so on. Communication structures under scrutiny are given by
combinations of graphs of different types both undirected–arbitrary graphs and cycle-free graphs, and
directed–line-graphs with linearly ordered players, rooted forests and sink forests. The proposed solu-
tion concepts reflect a two-stage distribution procedure when, first, a priori unions collect their shares
through the upper level bargaining based only on the cumulative interests of all members of every
involved entire a priori union, and second, the players collect their individual payoffs through the lower
level bargaining over the distribution of the unions’ shares within the unions. Following Myerson [12] it
is assumed that cooperation is possible only between connected participants and different combinations
of known component efficient values, such as the Myerson value, the position value, the average tree
solution, etc., are applied on both communication levels. However, as discussed in [9], the two-stage
distribution procedure based on the application of component efficient values on both levels suffers
from severe restrictions in cases when some a priori unions are internally not connected, because each
union always has to distribute its total share among the members. Another solution concept for TU
games with two-level communication structure introduced by means of undirected graphs, the so-called
Owen-type value for games with two-level communication structure, is considered in van den Brink,
Khmelnitskaya, and van der Laan [4] under a weaker assumption concerning the communication on the
level of a priori unions, when in the upper level bargaining between a priori unions for one union it
is allowed to be presented by its proper subcoalition. This solution can be seen as an adaptation of
the two-step procedure determining the Owen value [13] for games with coalition structure which takes
into account the limited cooperation represented by two-level communication structure replacing twice
the Shapley value by the Myerson value.

In this paper we assume that two-level communication structures are given by combinations of
graphs of different types, both undirected and directed, and we introduce two families of two-step
values for games with two-level communication structure adapting the two-step procedures staying
behind two values for games with coalition structure, the Owen value introduced in Owen (1977) and
the two-step Shapley value introduced in Kamijo (2009). Our approach is based on the unified treatment
of several component efficient values for games with communication structure and it generates two-stage
solution concepts that apply component efficient values for games with communication structure on both
distribution levels. In fact the newly introduced family of the Owen-type values is the generalization
of the Owen-type value for games with two-level communication structures of van den Brink et al. [4],
when on both communication levels not only the Myerson value, but different component efficient values
for games with communication structure can be applied. The incorporation of different solutions for
games with communication structure aims not only to enrich the solution concepts for games with two-
level communication structure, but it also opens a broad diversity of applications impossible otherwise,

1A similar model, but at other and quite special assumptions concerning the ability of players to cooperate under given
communication constraints is also studied in Kongo [10].
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because there exists no universal solution concept for games with communication structure that is
applicable to the full variety of possible undirected and directed graph structures. Moreover, it allows
to choose, depending on types of graph structures under scrutiny, the most preferable, in particular,
the most computationally efficient combination of values among others suitable. We provide axiomatic
characterizations of the two-step values of the considered two families that have some axioms in common,
which in turn allows to compare the peculiarities of both families.

The rest of the paper is organized as follows. Basic definitions and notation are introduced in
Section 2. Section 3 provides the uniform approach to several known component efficient values for
games with communication structure, which allows also to consider within a unified framework different
deletion link properties with respect to the values for games with two-level communication structure.
In Sections 4 we introduce the family of the Owen-type values axiomatically and present an explicit
formula representation, while in Section 5 we do the same for the family of the Kamijo-type values.
Section 6 concludes.

2 Preliminaries

2.1 TU games and values

A cooperative game with transferable utility, or TU game, is a pair 〈N, v〉, where N ⊂ IN is a finite set
of n players and v : 2N → IR is a characteristic function with v(∅) = 0, assigning to every coalition
S ⊆ N of s players its worth v(S). The set of TU games with fixed player set N is denoted by GN .
For simplicity of notation and if no ambiguity appears we write v when we refer to a TU game 〈N, v〉.
A subgame of a TU game v ∈ GN with a player set T ⊆ N is the TU game v|T ∈ GT defined by
v|T (S) = v(S) for every S ⊆ T . A payoff vector is a vector x ∈ IRN with xi the payoff to player
i ∈ N . A single-valued solution, called a value, is a mapping ξ : GN → IRN that assigns for every
finite set N ⊂ IN and every TU game v ∈ GN a payoff vector ξ(v) ∈ IRN . A value ξ is efficient if∑

i∈N ξi(v) = v(N) for every v ∈ GN and N ⊂ IN. The best-known efficient value is the Shapley value
[14] given by

Shi(v) =
∑

S⊆N\{i}

s!(n− s− 1)!

n!
(v(S ∪ {i})− v(S)), for all i ∈ N.

In the sequel we denote the cardinality of a given set A by |A|, along with lower case letters like
n = |N |, m = |M |, nk = |Nk|, s = |S|, c = |C|, c′ = |C ′|, and so on, and we use the standard notation
x(S)=

∑
i∈S xi for any x∈ IRN and S ⊆ N .

2.2 Games with coalition structure

A coalition structure, or in other terms a system of a priori unions, on N ⊂ IN is given by a partition
P = {N1, ..., Nm} of N , i.e., N1 ∪ ...∪Nm = N and Nk ∩Nl = ∅ for k 6= l. Let PN denote the set of all
coalition structures on N , and let GPN = GN ×PN . A pair 〈v,P〉 ∈ GPN constitutes a game with coalition
structure, or simply P -game, on N . Remark that 〈v, {N}〉 represents the same situation as v itself. A
P -value is a mapping ξ : GPN → IRN that assigns for every N ⊂ IN and every P -game 〈v,P〉 ∈ GPN a
payoff vector ξ(v,P) ∈ IRN . A P -value ξ is efficient (E) if

∑
i∈N ξi(v,P) = v(N) for every v ∈ GPN

and N ⊂ IN. In what follows denote by M = {1, . . . ,m} the index set of all a priori unions in P; for
every P -game 〈v,P〉 ∈ GPN and every k ∈M let vk denote the subgame v|Nk

; for every i∈N let k(i) be
defined by the relation i∈Nk(i); and for every x∈ IRN let xP=

(
x(Nk)

)
k∈M ∈ IRM stand for the vector

of total payoffs to a priori unions.
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One of the best-known values for games with coalition structure is the Owen value [13] that can be
seen as a two-step procedure in which the Shapley value applies twice. Namely, the Owen value assigns
to player i ∈ N his Shapley value in the game v̄k(i), i.e.,

Owi(v,P) = Shi(v̄k(i)), for all i ∈ N,

while for every a priori union Nk, k ∈M , the game v̄k ∈ GNk
on the player set Nk is given by

v̄k(S) = Shk(v̂S), S ⊆ Nk,

where for every S ⊆ Nk the game v̂S ∈ GM on the player set M of a priori unions is defined by

v̂S(Q) =





v(∪h∈QNh), k /∈ Q,

v(∪h∈Q\{k}Nh ∪ S), k ∈ Q,
for all Q ⊆M.

It is well-known that the Owen value is efficient and satisfies the quotient game property which means
that for every a priori union the total payoff to the players within that union is determined by applying
the Shapley value to the so-called quotient game being the game vP ∈ GM in which the unions act as
individual players,

vP(Q) = v(∪k∈QNk), for all Q ⊆M.

Notice that for every k ∈M the game v̂Nk
is equal to the quotient game vP .

Another value for games with coalition structure that also can be seen as a two-step procedure in
which the Shapley value applies twice is the so-called two-step Shapley value ψ introduced in Kamijo
[7]. The two-step Shapley value first allocates to player i ∈ N his Shapley value in the subgame on the
a priori union Nk(i) he belongs to and then distributes what remains of the Shapley value of its union

in the quotient game equally among the union’s members, i.e., for any P -game 〈v,P〉 ∈ GPN ,

Kai(v,P) = Shi(vk(i)) +
Shk(i)(vP)− v(Nk(i))

nk(i)
. (1)

The Kamijo’s two-step Shapley value is efficient and meets the quotient game property.

2.3 Games with communication structure

A communication structure on N is specified by a graph Γ, undirected or directed, on N . A graph
on N consists of N as the set of nodes and for an undirected graph a collection of unordered pairs
Γ ⊆ {{i, j} | i, j ∈ N, i 6= j} as the set of links between two nodes in N , and for a directed graph, or a
digraph, a collection of ordered pairs Γ ⊆ {(i, j) | i, j ∈ N, i 6= j} as the set of directed links from one
node to another node in N . When it is necessary to specify the set of nodes N in a graph Γ, we write
ΓN instead of Γ. Let GN denote the set of all communication structures, undirected or directed, on N ,
and let GΓN = GN ×GN . A pair 〈v,Γ〉 ∈ GΓN constitutes a game with graph (communication) structure,
or simply a graph game, or a Γ -game, on N . A Γ -value is a mapping ξ : GΓN → IRN that assigns for
every N ⊂ IN and every Γ -game 〈v,Γ〉 ∈ GΓN a payoff vector ξ(v,Γ) ∈ IRN .

In a graph Γ a sequence of different nodes (i1, . . . , ir), r ≥ 2, is a path in Γ from node i1 to node ir
if for h=1, . . . , r−1 it holds that {ih, ih+1}∈Γ when Γ is undirected and {(ih, ih+1), (ih+1, ih)} ∩ Γ 6= ∅
when Γ is directed. In a digraph Γ a path (i1, . . . , ir) is a directed path from node i1 to node ir if
(ih, ih+1) ∈ Γ for all h=1, . . . , r−1. In a digraph Γ, j 6= i is a successor of i and i is a predecessor of j
if there exists a directed path from i to j. Given a digraph Γ on N and i ∈ N , the sets of predecessors
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and successors of i in Γ we denote correspondingly by PΓ(i) and SΓ(i); moreover, P̄Γ(i) = PΓ(i) ∪ {i}
and S̄Γ(i) = SΓ(i) ∪ {i}.

Given a graph Γ on N , two nodes i and j in N are connected if either there exists a path from node
i to node j, or i and j coincide. Graph Γ on N is connected if any two nodes in N are connected. For
a graph Γ on N and a coalition S ⊆ N , the subgraph of Γ on S is the graph Γ|S = {{i, j}∈Γ | i, j∈S}
on S when Γ is undirected and the digraph Γ|S = {(i, j)∈Γ | i, j∈S} on S when Γ is directed. Given
a graph Γ on N , a coalition S ⊆ N is connected if the subgraph Γ|S is connected. For a graph Γ on
N and coalition S ⊆ N , CΓ(S) is the set of all connected subcoalitions of S, S/Γ is the set of maximal
connected subcoalitions of S, called the components of S, and (S/Γ)i is the component of S containing
player i ∈ S. Notice that S/Γ is a partition of S. For any 〈v,Γ〉 ∈ GΓN , a payoff vector x ∈ IRN is
component efficient if x(C) = v(C), for every C ∈ N/Γ.

Following Myerson [12], we assume that for Γ -games cooperation is possible only among connected
players and concentrate on component efficient Γ -values. A Γ -value ξ is component efficient (CE) if
for any 〈v,Γ〉 ∈ GΓ

N , for all C ∈N/Γ,
∑

i∈C ξi(v,Γ) = v(C). Below for a Γ -game 〈v,Γ〉 ∈ GΓN we also
consider the introduced in Myerson [12] restricted game vΓ∈GN defined as

vΓ(S) =
∑

C∈S/Γ
v(C), for all S ⊆ N. (2)

Hereinafter along with communication structures given by arbitrary undirected graphs we consider
also those given by cycle-free undirected graphs and by directed graphs – line-graphs with linearly
ordered players, rooted and sink forests. In an undirected graph Γ a path (i1, . . . , ir), r ≥ 3, is a cycle
in Γ if {ir, i1}∈Γ. An undirected graph is cycle-free if it contains no cycles. A directed graph Γ is a
rooted tree if there is one node in N , called a root, having no predecessors in Γ and there is a unique
directed path in Γ from this node to any other node in N . A directed graph Γ is a sink tree if the
directed graph composed by the same set of links as Γ but with the opposite orientation is a rooted
tree; in this case the root of a tree changes its meaning to the absorbing sink. A directed graph is a
rooted/sink forest if it is composed by a number of disjoint rooted/sink trees. A line-graph is a directed
graph that contains links only between subsequent nodes. Without loss of generality we may assume
that in a line-graph nodes are ordered according to the natural order from 1 to n, i.e., line-graph
Γ ⊆ {(i, i+ 1) | i = 1, . . . , n− 1}.

For ease of notation given graph Γ and link {i, j} ∈ Γ if Γ is undirected, or (i, j) ∈ Γ if Γ is directed,
the subgraph Γ\{{i, j}}, correspondingly Γ\{(i, j)}, is denoted by Γ|−ij .

2.4 Games with two-level communication structure

We now consider situations in which the players are partitioned into a coalition structure P and are
linked to each other by communication graphs. First, there is a communication graph ΓM on the set
of a priori unions determined by the partition P. Second, for each a priori union Nk, k ∈ M , there is
a communication graph ΓNk

between the players in Nk. In what follows for simplicity of notation and
when it causes no ambiguity we denote graphs ΓNk

within a priori unions Nk, k ∈ M , by Γk. Given
a player set N ⊂ IN and a coalition structure P ∈ PN , a two-level graph (communication) structure
on N is a tuple ΓP = 〈ΓM , {Γk}k∈M 〉. For every N ⊂ IN and P ∈ PN by GPN we denote the set of all

two-level graph structures on N with fixed P. Let GP
N =

⋃

P∈PN

GPN be the set of all two-level graph

structures on N , and let GPΓ
N = GN × GP

N . A pair 〈v,ΓP〉 ∈ GPΓ
N constitutes a game with two-level

graph (communication) structure, or simply a two-level graph game or a PΓ -game, on N . A PΓ -value
is a mapping ξ : GPΓ

N → IRN that assigns for every N ⊂ IN and every PΓ -game 〈v,ΓP〉 ∈ GPΓ
N a payoff

vector ξ(v,ΓP) ∈ IRN .
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Given a PΓ -game 〈v,ΓP〉 ∈ GPΓ
N , one can consider the quotient Γ -game 〈vP ,ΓM 〉 ∈ GΓM and the

Γ -games within a priori unions 〈vk,Γk〉 ∈ GΓNk
with vk = v|Nk

, k ∈ M , that model the bargaining
between a priori unions for their total shares and the bargaining within each a priori union for the
distribution of its total worth among the members taking also into account limited cooperation at both
communication levels introduced by the communication graphs ΓM and Γk, k ∈ M . Moreover, given
a Γ -value φ, for any 〈v,ΓP〉 ∈ GPΓ

N with a graph structure ΓM on the level of a priori unions suitable
for application of φ to the corresponding quotient Γ -game 〈vP ,ΓM 〉, along with a subgame vk within a

priori union Nk, k ∈M , one can also consider a φk-game vφk defined as

vφk (S) =

{
φk(vP ,ΓM ), S = Nk,
v(S), S 6= Nk,

for all S ⊆ Nk,

where φk(vP ,ΓM) is the payoff to Nk given by φ in 〈vP ,ΓM〉. Then a Γ -game 〈vφk ,Γk〉 ∈ GΓNk
models

the bargaining within union Nk for the distribution of its total share among the members taking into
account restrictions on cooperation in Nk given by Γk, when the share is obtained by the application
of Γ -value φ at the upper level bargaining between a priori unions.

3 Deletion link properties for two-level graph games

As it is discussed in Khmenitskaya [9], a number of known component efficient Γ -values for games
with undirected or directed communication structure such as the Myerson value µ (cf. Myerson [12])
and the position value π (cf. Meessen [11], Borm, Owen, and Tijs [3], and Slikker [15]) for arbitrary
undirected graph games, the average tree solution AT (cf. Herings, van der Laan, and Talman [6]) and
the compensation solution CS (cf. Béal, Rémila, and Solal [2]) for undirected cycle-free graph games,
or for directed graph games the upper equivalent solution UE, the lower equivalent solution LE and
the equal loss solution EL for line-graph games (cf. van den Brink, van der Laan, and Vasil’ev [5]),
the tree value t for rooted forest and the sink value s for sink forest digraph games (cf. Khmelnitskaya
[8]), can be approached within the unified framework. Indeed, each one of these Γ -values is defined
for Γ -games with suitable graph structure and is characterized by two axioms, CE and one or another
deletion link (DL) property (axiom), reflecting the relevant reaction of a Γ -value on the deletion of
a link in the communication graph. The corresponding DL properties are fairness (F), balanced link
contributions (BLC), component fairness (CF), relative fairness (RF), upper equivalence (UE), lower
equivalence (LE), equal loss property (EL), successor equivalence (SE), and predecessor equivalence
(PE), and the characterization results are as follows:

CE + F for all undirected Γ -games ⇐⇒ µ(v,Γ),

CE + BLC for all undirected Γ -games ⇐⇒ π(v,Γ),

CE + CF for undirected cycle-free Γ -games ⇐⇒ AT (v,Γ),

CE + RF for undirected cycle-free Γ -games ⇐⇒ CS(v,Γ),

CE + UE for line-graph Γ -games ⇐⇒ UE(v,Γ),

CE + LE for line-graph Γ -games ⇐⇒ LE(v,Γ),

CE + EL for line-graph Γ -games ⇐⇒ EL(v,Γ),

CE + SE for rooted forest Γ -games ⇐⇒ t(v,Γ),

CE + PE for sink forest Γ -games ⇐⇒ s(v,Γ).

This observation allows to identify each of the listed above Γ -values with the corresponding DL axiom.
Given a DL axiom, let GDLN ⊆ GΓN denote a set of all 〈v,Γ〉 ∈ GΓN with Γ suitable for DL application.
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Then
CE + DL on GDLN ⇐⇒ DL(v,Γ).

Whence it simply follows that F (v,Γ) = µ(v,Γ) and BLC(v,Γ) = π(v,Γ) for all undirected Γ -
games, CF (v,Γ) = AT (v,Γ) and RF (v,Γ) = CS(v,Γ) for all undirected cycle-free Γ -games, UE(v,Γ),
LE(v,Γ), and EL(v,Γ) are UE, LE, and EL solutions correspondingly for all line-graph Γ -games,
SE(v,Γ) = t(v,Γ) for all rooted forest Γ -games, and PE(v,Γ) = s(v,Γ) for all sink forest Γ -games.
Remark that all just discussed values are additive.

Next notice that every discussed DL axiom can be equivalently defined by an equality

ΨDL(ξ(v,Γ),Γ′) = 0, (3)

where ΨDL is an operator which for a value ξ defined on GDLN and applied to a game 〈v,Γ〉 ∈ GDLN assigns
a real number representing one or another evaluation of players’ payoff reaction on the deletion of links
in Γ from a chosen set of links Γ′. For the mentioned above DL axioms Γ′ = Γ and the corresponding
operators are:

Fairness (F): For any player set N ⊂ IN, for every Γ -game 〈v,Γ〉 ∈ GΓN , for every link {i, j} ∈ Γ,
it holds that

ΨF (ξ(v,Γ),Γ′)=
∑

i,j∈N |{i,j}∈Γ′

∣∣∣
(
ξi(v,Γ)− ξi(v,Γ|−ij)

)
−
(
ξj(v,Γ)− ξj(v,Γ|−ij)

)∣∣∣, (4)

Balanced link contributions (BLC): For any player set N ⊂ IN, for every Γ -game 〈v,Γ〉 ∈ GΓN
and i, j ∈ N , it holds that

ΨBLC(ξ(v,Γ),Γ′)=
∑

i,j∈N

∣∣∣
∑

h∈N |{i,h}∈Γ′

(
ξj(v,Γ)− ξj(v,Γ|−ih)

)
−

∑

h∈N |{j,h}∈Γ′

(
ξi(v,Γ)− ξi(v,Γ|−jh)

)∣∣∣, (5)

Component fairness (CF): For any player set N ⊂ IN, for every cycle-free Γ -game 〈v,Γ〉 ∈ GΓN ,
for every link {i, j} ∈ Γ, it holds that

ΨCF (ξ(v,Γ),Γ′) =
∑

i,j∈N |{i,j}∈Γ′

∣∣∣ 1

|(N/Γ|−ij)i|
∑

h∈(N/Γ|−ij)i

(
ξh(v,Γ)− ξh(v,Γ|−ij)

)
−

1

|(N/Γ|−ij)j |
∑

h∈(N/Γ|−ij)j

(
ξh(v,Γ)− ξh(v,Γ|−ij)

)∣∣∣, (6)

Relative fairness (RF): For any player set N ⊂ IN, for every cycle-free Γ -game 〈v,Γ〉 ∈ GΓN , for
every link {i, j} ∈ Γ, it holds that

ΨRF (ξ(v,Γ),Γ′) =
∑

i,j∈N |{i,j}∈Γ′

∣∣∣∣
(
ξi(v,Γ)− 1

|(N/Γ|−ij)i|
∑

h∈(N/Γ|−ij)i

ξh(v,Γ|−ij)
)
−

(
ξj(v,Γ)− 1

|(N/Γ|−ij)j |
∑

h∈(N/Γ|−ij)j

ξh(v,Γ|−ij)
)∣∣∣∣, (7)
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Upper equivalence (UE): For any player set N ⊂ IN, for every line-graph Γ -game 〈v,Γ〉 ∈ GΓN ,
for any i = 1, . . . , n− 1, for all j = 1, . . . , i, it holds that

ΨUE(ξ(v,Γ),Γ′) =
n−1∑

i=1

i∑

j=1

∣∣ξj(v,Γ)− ξj(v,Γ|−i,i+1)
∣∣. (8)

Lower equivalence (LE): For any player set N ⊂ IN, for every line-graph Γ -game 〈v,Γ〉 ∈ GΓN ,
for any i = 1, . . . , n− 1, for all j = i+ 1, . . . , n, it holds that

ΨLE(ξ(v,Γ),Γ′) =
n−1∑

i=1

n∑

j=i+1

∣∣ξj(v,Γ)− ξj(v,Γ|−i,i+1)
∣∣. (9)

Equal loss property (EL): For any player set N ⊂ IN, for every line-graph Γ -game 〈v,Γ〉 ∈ GΓN ,
for all i = 1, . . . , n− 1, it holds that

ΨEL(ξ(v,Γ),Γ′) =
n−1∑

i=1

∣∣
i∑

j=1

(
ξj(v,Γ)− ξj(v,Γ|−i,i+1)

)
−

n∑

j=i=1

(
ξj(v,Γ)− ξj(v,Γ|−i,i+1)

)∣∣. (10)

Successor equivalence (SE): For any player set N ⊂ IN, for every rooted forest Γ -game 〈v,Γ〉 ∈ GΓN ,
for every link {i, j} ∈ Γ, for all k ∈ S̄Γ(j), it holds that

ΨSE(ξ(v,Γ),Γ′) =
∑

i,j∈N |{i,j}∈Γ′

∑

h∈S̄Γ(j)

∣∣ξh(v,Γ)− ξh(v,Γ|−ij)
∣∣. (11)

Predecessor equivalence (PE): For any player set N ⊂ IN, for every sink forest Γ -game 〈v,Γ〉 ∈
GΓN , for every link {i, j} ∈ Γ, for all k ∈ P̄Γ(j), it holds that

ΨPE(ξ(v,Γ),Γ′) =
∑

i,j∈N |{i,j}∈Γ′

∑

h∈P̄Γ(j)

∣∣ξh(v,Γ)− ξh(v,Γ|−ij)
∣∣. (12)

The definition of deletion link axioms for Γ -values in terms of equality (3) allows to consider the
corresponding deletion link axioms within a unified framework also for PΓ -values with respect to
both communication levels, at the upper level with respect to the quotient Γ -game determining the
total payoffs to a priori unions and at the lower level with respect to Γ -games within a priori unions
determining the distribution of total payoffs within each a priori union. Let ξ be a PΓ -value. By
definition ξ is a mapping ξ : GPΓ

N → IRN that assigns a payoff vector to any PΓ -game on the player
set N ⊂ IN. For every N ⊂ IN a mapping ξ= {ξi}i∈N generates on the domain of PΓ -games on N a
mapping ξP : GPΓ

N → IRM , ξP = {ξPk }k∈M , with ξPk =
∑

i∈Nk
ξi, k∈M , that assigns to every PΓ -game

on N a vector of total payoffs to all a priori unions, and m mappings ξk : GPΓ
N → IRNk , ξk ={ξi}i∈Nk

,
k ∈M , assigning payoffs to players within a priori unions. For a given (m + 1)-tuple of deletion link

axioms 〈DLP, {DLk}k∈M 〉 for Γ -values, let GDL
P ,{DLk}k∈M

N ⊆ GPΓ
N be the set of PΓ -games composed

of PΓ -games 〈v,ΓP〉 with graph structures ΓP = 〈ΓM , {Γk}k∈M 〉 such that 〈vP ,ΓM 〉 ∈ GDL
P

M and

〈vDLPk ,Γk〉 ∈ GDL
k

Nk
, k ∈ M . Then, given a (m + 1)-tuple of deletion link axioms 〈DLP, {DLk}k∈M 〉 for

Γ -values, we define axioms of Quotient DL property and Union DL property for PΓ -values defined on

GDL
P ,{DLk}k∈M

N as follows:
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Quotient DL property (QDL) For any player set N ⊂ IN and PΓ -game 〈v,ΓP〉 ∈ GPΓ
N , ΓP =

〈ΓM , {Γh}h∈M 〉, it holds

ΨDLP (ξP(v,ΓP),ΓM ) = 0, (13)

where for ΨDLP given by one of the operators (4)–(12), for every link {k, l} ∈ ΓM if ΓM is undirected,
or (k, l) ∈ ΓM if ΓM is directed, ΓP |−kl=〈ΓM |−kl, {Γh}h∈M 〉.

Union DL property (UDL) For any player set N ⊂ IN, PΓ -game 〈v,ΓP〉 ∈ GPΓ
N , ΓP =

〈ΓM , {Γh}h∈M 〉, and k ∈M , it holds

ΨDLk
(ξk(v,ΓP),Γk) = 0, (14)

where for ΨDLk
given by one of the operators (4)–(12), for every link {i, j} ∈ Γk if Γk is undirected, or

(i, j) ∈ Γk if Γk is directed, ΓP |−ij = ΓP |k−ij = 〈ΓM , {Γ̂h}h∈M 〉 with Γ̂h = Γh for h 6= k and Γ̂k = Γk|−ij .

For example, if we consider the Myerson fairness (F) as a DL axiom, QDL and UDLk can be denoted
QF and UFk correspondingly. In fact in this case QF coincides with quotient fairness (QF) and m-tuple
of axioms (UF1, ...,UFm) coincides with union fairness (UF) employed in van den Brink et al. [4].

QLD and UDL axioms for PΓ -values provide the uniform approach to various deletion link prop-
erties on both bargaining levels. This allows to introduce within the unified framework two families of
PΓ -values based on the adaptation of the two-step distribution procedures of Owen and Kamijo respec-
tively for games with coalition structure to the case when the cooperation between and within a priori
unions is restricted by communication graphs and when different combinations of known component effi-
cient solution concepts on both communication levels could be applied. Moreover, this allows to include
into consideration not only combinations of undirected communication graphs but also combinations
including some types of digraphs.

4 Owen-type values for two-level graph games

The Owen-type value for PΓ -games introduced in van den Brink et al. [4] is based on the application
of the Myerson value on both communication levels. It is characterized by two fairness axioms just
discussed above at the end of the previous section, quotient fairness and union fairness, and two other
axioms of quotient component efficiency and of fair distribution of the surplus within unions. Quotient
component efficiency requires that each component on the upper level between a priori unions distributes
fully its total worth among the players of the a priori unions forming this component.

Quotient component efficiency (QCE) For any player set N ⊂ IN, for every 〈v,ΓP〉 ∈ GPΓ
N ,

ΓP = 〈ΓM , {Γk}k∈M 〉, it holds

∑

k∈K

∑

i∈Nk

ξi(v,ΓP) = vP(K), for all K ∈M/ΓM . (15)

Fair distribution of the surplus within unions determines distribution of the shares obtained by a
priori unions at the upper level bargaining between a priori unions among their members for internally
disconnected a priori unions. When a priori unions are negotiating for their shares in the total payoff,
their cooperation possibilities are restricted by the communication graph on the level of a priori unions.
Also when some a priori union is represented by its proper subset, the cooperation possibilities of this
representative subset with the other (full) a priori unions are restricted by the communication graph
on the level of a priori unions. Similarly, when players within a subcoalition within some a priori union
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are negotiating for their share in the union’s payoff, their cooperation possibilities are restricted by
the communication graph within the a priori union. In all these cases, following Myerson, we assume
that only connected participants are able to cooperate when the connectedness is determined by the
corresponding underlying communication graph. But the players within each a priori union always have
to distribute the total payoff that has been assigned to the a priori union in the game between a priori
unions irrespectively of the existing communication links within the union. So, deviating from Myerson,
we consider every a priori union as an institution that allows their members to cooperate beyond the
bilateral communication links within the a priori union, but this concerns only the a priori union as
a whole. In case every a priori union is internally connected, the payoff allocation is determined by
traditional efficiency and deletion link axioms. Consider a particular component within any a priori
union that is not internally connected. Suppose we know the total payoff of that component when the a
priori union is replaced by just the players in this component (and thus this reduced union is internally
connected). Doing this for every connected component of this a priori union we can compare how the
(positive or negative) excess is shared among the different components. Fair distribution of the surplus
within unions requires this excess to be shared proportional to the size of the component.

Fair distribution of the surplus within unions (FDSU) For any player set N ⊂ IN, for every
〈v,ΓP〉 ∈ GPΓ

N , ΓP = 〈ΓM , {Γk}k∈M 〉, k ∈M , and any two components C,C ′ ∈ Nk/Γk, it holds

1

c

∑

i∈C

(
ξi(v,ΓP)− ξi(vkC ,ΓPk

C
)
)

=
1

c′
∑

i∈C′

(
ξi(v,ΓP)− ξi(vkC′ ,ΓPk

C′
)
)
, (16)

where for k ∈M and component C ∈ Nk/Γk, v
k
C denotes the subgame v|(N\Nk)∪C of v with respect to

the coalition (N \ Nk) ∪ C, PkC denotes the partition on (N \ Nk) ∪ C consisting of union C and all

unions Nh in P, h 6= k, and ΓPk
C

= 〈ΓM , {Γ̃h}h∈M 〉 with Γ̃k = Γk|C and Γ̃h = Γh for all h ∈ M \ {k},
denotes the two-level communication structure that is obtained from 〈ΓM , {Γh}h∈M 〉 by replacing the
communication graph Γk by its restriction on C ⊆ Nk.

It is easy to check that considering one component C ∈ Nk/Γk, the expression

1

c

∑

i∈C

(
ξi(v,ΓP)−ξi(vkC ,ΓPk

C
)
)

=
1

nk

∑

i∈Nk

(
ξi(v,ΓP)−ξi(vk(Nk/Γk)i

,ΓPk
(Nk/Γk)i

)

)
(17)

provides an alternative representation of the fair distribution of the surplus within unions axiom. Notice
that this axiom only states a requirement for the distribution of the total payoff within a priori union
Nk when Nk consists of multiple components with respect to the internal communication graph Γk,
otherwise the requirement reduces to an identity.

The next theorem extends the Owen-type value for PΓ -games studied in van den Brink et al. [4]
by allowing the application of different combinations of known component efficient solution concepts
for Γ -games on both communication levels.

Theorem 1 For any (m+ 1)-tuple of deletion link axioms 〈DLP, {DLk}k∈M 〉 such that the set of DLk,

k ∈M , axioms is restricted to F, CF, and RF, there is the unique PΓ -value defined on GDL
P,{DLk}k∈M

N

that meets axioms QCE, FDSU, QDL, and UDL, and for every PΓ -game 〈v,ΓP〉 ∈ GDL
P,{DLk}k∈M

N it
is given by

ξi(v,ΓP) = DL
k(i)
i (ṽk(i),Γk(i)) +

DLPk(i)(vP ,ΓM )− ∑
C∈Nk(i)/Γk(i)

ṽk(i)(C)

nk(i)
, i ∈ N, (18)
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where for all k ∈M , ṽk ∈ GNk
is defined as

ṽk(S) = DLPk (v̂S ,ΓM ), for all S ⊆ Nk,

and for every S ⊆ Nk, v̂S ∈ GM is given by

v̂S(Q) =

{
v(∪h∈Q Nh), k /∈ Q,

v(∪h∈Q\{k} Nh ∪ S), k ∈ Q,
for all Q ⊆M.

Notice that in case when the (m + 1)-tuple of deletion link axioms 〈DLP, {DLk}k∈M 〉 is given by
〈FP, {Fk}k∈M 〉, i.e., the Myerson fairness F is applied on both upper and lower levels, the statement of
Theorem 1 coincides with the statement of both Theorem 1 and Theorem 2 and the PΓ -value ξ given
by (18) coincides the Owen-type PΓ -value of van den Brink et al. [4]. Because of that from now on we
refer to the PΓ -value (18) as to the Owen-type 〈DLP, {DLk}k∈M 〉-value, which we denote further by

Ow〈DL
P,{DLk}k∈M 〉.

Observe also that the Owen-type 〈DLP, {DLk}k∈M 〉-value admits the similar two-step construction
procedure as the Owen value for games with coalition structure. The difference is that instead of
two applications of the Shapley value used in the case of the classical Owen value, in the Owen-
type 〈DLP, {DLk}k∈M 〉-value different known component efficient Γ -values can be applied on both
communication levels.

Proof. The proof strategy is similar to that applied in van den Brink et al. [4].

I. [Existence]. We show that under the hypothesis of the theorem the PΓ -value ξ = Ow〈DL
P,{DLk}k∈M 〉

defined on GDL
P ,{DLk}k∈M

N by (18) meets the axioms QCE, QDL, FDSU, and UDL. Consider an arbi-

trary PΓ -game 〈v,ΓP〉 ∈ GDL
P,{DLk}k∈M

N .

QCE. By the definition (18) of ξ and component efficiency of each DLk-value for all k ∈ M it holds
that ∑

i∈Nk

ξi(v,ΓP) = DLPk (vP ,ΓM ). (19)

Thus, for any K ∈M/ΓM we have

∑

k∈K

∑

i∈Nk

ξi(v,ΓP) =
∑

k∈K
DLPk (vP ,ΓM ) = vP(K),

where the second equality follows from component efficiency of DLP -value.

QDL. From (19) we obtain that ξP(v,ΓP) = DLP(vP ,ΓM ). Whence it follows that

ΨDLP (ξP(v,ΓP),ΓM ) = ΨDLP (DLP(vP ,ΓM )),ΓM ) = 0,

where the last equality holds true since the DLP -value for Γ -games meets DLP .

UDL. We need to show that if the set of DLk, k ∈M , axioms is restricted to F, CF, and RF, then for
all k ∈M , ΨDLk

(ξk(v,ΓP),Γk) = 0.
Let for some k ∈M , DLk = F. Then since by definition for any link {i, j} ∈ Γk, ΓP |−ij = ΓP |k−ij =

〈ΓM , {Γ̂h}h∈M 〉 with Γ̂h = Γh for h 6= k, and Γ̂k = Γk|−ij , we obtain that

ΨDLk
(ξk(v,ΓP),Γk) = ΨF (ξk(v,ΓP),Γk)

(4)
=

∑

i,j∈Nk|{i,j}∈Γk

∣∣
(
ξki (v,ΓP)− ξki (v,ΓP |−ij)

)
−
(
ξkj (v,ΓP)− ξkj (v,ΓP |−ij)

)∣∣ (18)
=
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∑

i,j∈Nk|{i,j}∈Γk

∣∣
(
Fi(ṽk,Γk) +

DLPk (vP ,ΓM )− ∑
C∈Nk/Γk

ṽk(C)

nk
−

Fi(ṽk,Γk|−ij)−
DLPk (vP ,ΓM )− ∑

C∈Nk/Γk|−ij

ṽk(C)

nk

)
−

(
Fj(ṽk,Γk) +

DLPk (vP ,ΓM )− ∑
C∈Nk/Γk

ṽk(C)

nk
−

Fj(ṽk,Γk|−ij)−
DLPk (vP ,ΓM )− ∑

C∈Nk/Γk|−ij

ṽk(C)

nk

)∣∣ =

∑

i,j∈Nk|{i,j}∈Γk

∣∣
(
Fi(ṽk,Γk)− Fi(ṽk,Γk|−ij)

)
−
(
Fj(ṽk,Γk)− Fj(ṽk,Γk|−ij)

)∣∣ (4)
=

ΨF (F (ṽk,Γk),Γk) = 0,

where the last equality holds true since the F -value for Γ -games (the Myerson value) meets fairness F.

Using the similar arguments as above we prove that ΨDLk
(ξk(v,ΓP),Γk) = 0 also for k ∈ M for

which DLk coincides with CF, and RF.

FDSU. From (18) we obtain that for every C ∈ Nk/Γk it holds that

∑

i∈C
ξi(v,ΓP)

(18)
=
∑

i∈C
DLki (ṽk,Γk) +

c

nk


DLPk (vP ,ΓM )−

∑

H∈Nk/Γk

ṽk(H)


 =

= ṽk(C) +
c

nk


DLPk (vP ,ΓM )−

∑

H∈Nk/Γk

ṽk(H)


,

where the second equality is due to component efficiency of DLk-value for Γ -games. Further,

∑

i∈C
ξi(v

k
C ,ΓPk

C
)

(18)
=
∑

i∈C
DLki ((̃v

k
C)k,Γk|C) +

c

nk


DLPk ((vkC)Pk

C
,ΓM )−

∑

H∈C/Γk|C
(̃vkC)k(H)


=

= (̃vkC)k(C) +
c

nk

(
DLPk ((vkC)Pk

C
,ΓM )− (̃vkC)k(C)

)
= ṽk(S),

where the second equality is due to component efficiency of DLk-value for Γ -games and C being the

only component in Γk|C , and the third equality follows from equality (̃vkC)k(C) = ṽk(C) which holds

true because v̂C = (̂vkC)C , and equalities DLPk ((vkC)Pk
C
,ΓM ) = DLPk (v̂C ,ΓM )

def
= ṽk(C) first of which

holds true because (vkC)Pk
C

= (̂vkC)C = v̂C . Thus,

1

c

∑

i∈C

(
ξi(v,ΓP)− ξi(vkC ,ΓPk

C
)
)

=
1

nk


DLPk (vP ,ΓM )−

∑

H∈Nk/Γk

ṽk(H)


 ,

where the right side of the latter equality is independent of C.
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II. [Uniqueness]. Assume that a (m+ 1)-tuple of deletion link axioms 〈DLP, {DLk}k∈M 〉 such that
the set of axioms DLk, k ∈ M , is restricted to F, CF, and RF, is given. We show that there exists

at most one PΓ -value on GDL
P,{DLk}k∈M

N that satisfies axioms QCE, FDSU, QDL, and UDL. Let φ be

such PΓ -value on GDL
P,{DLk}k∈M

N . Given an arbitrary PΓ -game 〈v,ΓP〉 ∈ GDL
P,{DLk}k∈M

N we show that
the individual payoffs φi(v,ΓP), i ∈ N , are uniquely determined.

Step 1. We determine the union payoffs φPk (v,ΓP), k ∈M , by induction on the number of links in
ΓM in a similar way as uniqueness of the Myerson value for Γ -games is shown in Myerson [12].

Initialization: If |ΓM | = 0 then for all k ∈ M the set of neighboring unions {h ∈ M | {h, k} ∈
Γ} = ∅, and therefore by QCE and definition of the quotient game vP , φPk (v,ΓP) = vP({k}) = v(Nk).

Induction hypothesis: Assume that the values φPk (v,Γ′P), k ∈ M , have been determined for all
two-level graph structures Γ′P = 〈Γ′, {Γh}h∈M 〉 with Γ′ such that |Γ′| < |ΓM |.

Induction step: Let Q ∈ M/ΓM be a component in graph ΓM on M . If Q ⊆ M is a singleton,
let Q = {k}, then from QCE it follows that φPk (v,ΓP) = v(Nk). If q ≥ 2, then there exists a spanning

tree Γ̃ ⊆ ΓM |Q on Q with the number of links |Γ̃| = q − 1. By QDL it holds that

ΨDLP (φP(v,ΓP),ΓM ) = 0. (20)

The above equality in fact provides for any k, l ∈ M in case when DLP is given by BLC and for
every other possible choice of DLP for each link {k, l} ∈ ΓM if ΓM is undirected, or (k, l) ∈ ΓM if ΓM
is directed, some equality relating values of φPh (v,ΓP), h ∈ M , with values of distinct φPh (v,ΓP |−kl),
h ∈M . Since |ΓM |−kl| = |ΓM |−1, from the induction hypothesis it follows that for all links {k, l} ∈ ΓM
((k, l) ∈ ΓM ) the payoffs φPh (v,ΓP |−kl), h ∈M , are already determined. Thus with respect to q−1 links

{k, l} ∈ Γ̃, (20) yields q − 1 linearly independent linear equations in the q unknown payoffs φPk (v,ΓP),
k ∈ Q. Moreover, by QCE it holds that

∑

k∈Q
φPk (v,ΓP) = vP(Q).

All these q equations are linearly independent. Whence it follows that for every Q ∈ M/Γ, all payoffs
φPk (v,ΓP), k ∈ Q, are uniquely determined. Note that in the proof of the induction step, every possible

spanning tree Γ̃ yields the same solution for the values φPk (v,ΓP), k ∈ Q, because otherwise a solution
does not exist, which contradicts the already proved ”existence” part of the proof of the theorem.

Step 2. Similarly as in Step 1, for every k ∈ M , for every subset C ⊆ Nk we determine the union
payoffs φPk (vkC ,ΓPk

C
) in the game (vC ,ΓPk

C
), where vkC denotes the subgame v|(N\Nk)∪C of v with respect

to the coalition (N \Nk)∪C, and ΓPk
C

denotes the two-level communication structure 〈ΓM , {Γh}h∈M 〉,
where ΓM is the communication graph on the partition (P \ {Nk}) ∪ {C} (where the ‘position’ of Nk

is taken over by C) and with the communication graph Γk replaced by its restriction on C ⊆ Nk. Note
that now, for k ∈M , the union payoff φPk (vkC ,ΓPk

C
) is the total payoff to the players in C ⊆ Nk in the

game (vkC ,ΓPk
C

).

Step 3. We determine now the individual payoffs in every a priori union Nk, k ∈ M . For this
first we show that for each component C ∈ Nk/Γk the total payoff to the players in C is uniquely
determined. The payoff φPk (v,ΓP) to the a priori union Nk has been determined already in Step 1, so

∑

i∈Nk

φi(v,ΓP) = φPk (v,ΓP). (21)

If Nk is the unique component in Nk/Γk, then FDSU does not state any requirement. When Nk/Γk
consists of multiple components, then for every component C ∈ Nk/Γk, from the alternative form (17)
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of FDSU it follows that

∑
i∈C

φi(v,ΓP)− φPk (vkC ,ΓPk
C

)

c
=

φPk (v,ΓP)− ∑
K∈Nk/Γk

φPk (vkK ,ΓPk
K

)

nk
. (22)

Notice that every payoff φPk in this equation has been determined in either Step 1, or Step 2, and
therefore,

∑
i∈C

φi(v,ΓP) is uniquely determined.

The rest of the proof we proceed by induction similar as in Step 1. Take some k ∈ M . Let Γ′P
denote the two-level graph structure 〈ΓM , {Γ′h}h∈M 〉 with Γ′h = Γh if h 6= k and Γ′k = Γ′ for some graph
Γ′ on Nk.

Initialization: If |Γk| = 0 then {i} ∈ Nk/Γk for all i ∈ Nk. FDSU in the alternative form (17)
implies that

φi(v,ΓP)−φPk (vk{i},ΓPk
{i}

) =

φPi (v,ΓP)− ∑
j∈Nk

φPk (vk{j},ΓPk
{j}

)

nk
, for all i ∈ Nk. (23)

From Steps 1 and 2 above we know φPk (v,ΓP) and φPk (vk{j},ΓPk
{j}

), for all j ∈ Nk. So, equation (23)

determines φi(v,ΓP) for all i ∈ Nk.
Induction hypothesis: Assume that the values φi(v,Γ

′
P) have been determined for every Γ′ with

|Γ′| < |Γk|.
Induction step: Take a component C ∈ Nk/Γk. If c = 1, then C is a singleton and the payoff

φi(v,ΓP) of the only player i ∈ C is uniquely determined by (22). If c ≥ 2, then there exists a spanning
tree Γ̃ ⊆ Γk|C on C with the number of links |Γ̃| = c− 1. By UDL it holds that

ΨDLk
(φk(v,ΓP),Γk) = 0. (24)

The above equality in fact provides for any link {i, j} ∈ Γk some equality relating values of φh(v,ΓP),
h ∈ Nk, with values of distinct φh(v,ΓP |k−ij). Since |Γk|−ij | = |Γk| − 1, by the induction hypothesis it

follows that for all links {i, j} ∈ Γk the payoffs φh(v,ΓP |k−ij), h ∈ Nk, are already determined. Thus

with respect to c − 1 links {i, j} ∈ Γ̃, (24) yields c − 1 linearly independent linear equations in the c
unknown payoffs φi(v,ΓP), i ∈ C. These c−1 equations together with (22) if C 6= Nk, or together with
(21) when C = Nk, yield c linearly independent equations in the c unknown payoffs φi(v,ΓP), i ∈ C.
Hence, for every C ∈ Nk/Γk, all payoffs φi(v,ΓP), i ∈ C, are uniquely determined. Note that similar
as in Step 1, every possible spanning tree Γ̃ yields the same solution for the values φi(v,ΓP), i ∈ C,
because otherwise a solution does not exist, which contradicts the already proved ”existence” part of
the proof of the theorem.

Remark 1 The PΓ -value ξ = Ow〈DL
P,{DLk}k∈M 〉 determined by (18) violates UDL property if in the

(m + 1)-tuple of deletion link axioms 〈DLP, {DLk}k∈M 〉 among the axioms DLk, k ∈ M there are
axioms BLC, UE, LE, EL, SE, and PE. The reason is that the second summand in the numerator of
the second term in the right-hand side of (18) is sensitive to the deletion of different links in graph Γk,

and therefore, for these cases the equality ΨDLk
(ξk(v,ΓP),Γk) = ΨDLk

(DLk(ṽk,Γk),Γk) = 0 in general
does not hold.

The logical independence of axioms in case 〈DLP, {DLk}k∈M 〉 = 〈FP, {Fk}k∈M 〉 is shown in van den
Brink et al. [4] by a number of examples. We skip the proof of logical independence of axioms for the
general case since it can be easily obtained by modification of the same examples.
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5 Kamijo-type values for two-level graph games

In this section we consider another family of PΓ -values based on the adaptation of the Kamijo’s two-
step distribution procedure for P -games. We introduce these values axiomatically by means of six
axioms. The first three axioms are QCE, QDL, and UDL which are also used in the characterization
of the Owen-type 〈DLP, {DLk}k∈M 〉-values discussed in the previous section. The three additional
axioms are as follows.

The first axiom is a straightforward adaptation of the standard covariance under strategic equiva-
lence to the case of PΓ -games. Two games v, w ∈ GN are strategically equivalent if there are a ∈ IR++

and b ∈ IRn such that
w(S) = av(S) + b(S), for all S ⊆ N.

Covariance under strategic equivalence (COV) For any player set N ⊂ IN and PΓ -game
〈v,ΓP〉 ∈ GPΓ

N , ΓP = 〈ΓM , {Γk}k∈M 〉, for any a ∈ IR++ and b ∈ IRn it holds that

ξ(av + b,ΓP) = aξ(v,ΓP) + b,

where the game (av + b) ∈ GN is defined by (av + b)(S) = av(S) + b(S) for all S ⊆ N .

The next axiom requires equal payoffs to all members of every a priori union Nk, k ∈M , for which
all subcoalitions S ⊆ Nk with nonzero worth vk(S) 6= 0 are disconnected. In this case every connected
coalition possesses zero worth, i.e., communication between the members of every connected coalition is
useless, and so, the asymmetries among the players created by game vk and by their locations in graph
Γk on Nk vanish. Therefore, it makes sense to treat all players of Nk symmetrically. Remark that the
condition that v(S) 6= 0 implies S to be disconnected is equivalent to vΓk

k ≡ 0, i.e., the axiom requires

that all players in Nk obtain the same payoffs if the Myerson restricted game vΓk
k is a null game. The

latter observation determines the name of the axiom.

Union null restricted game property (UNRGP) For any player set N ⊂ IN and PΓ -game
〈v,ΓP〉 ∈ GPΓ

N , ΓP = 〈ΓM , {Γk}k∈M 〉, if for some k ∈M , for all S ⊆ Nk, vk(S) 6= 0 implies S /∈ CΓk(Nk),
then it holds that for all i, j ∈ Nk, i 6= j,

ξi(v,ΓP) = ξj(v,ΓP).

The last axiom determines the distribution of the total shares obtained by internally disconnected
a priori unions at the upper level bargaining between a priori unions among the components of these
unions. Imagine that each a priori union Nk, k ∈M , is a public institution (e.g. university, hospital, or
firm) of which every component C ∈ Nk/Γk is an independent unit (e.g. the faculties within a university,
medical departments within a hospital, or production plants within a firm). First public institutions
Nk, k ∈ M compete among themselves for their annual budgets from the government. Once obtained
the budget, institution Nk has to decide how much to give to each of its independent units. At this stage
the independent units of an institution compete against each other for the best possible shares from the
institution’s budget. Similarly as in the competition among the public institutions, the total payoff to
a unit depends on the total productivity of each of the units, but not on the productivity of the smaller
collaborating teams within the units. Our last axiom requires the total payoff to a component of any a
priori union to be independent of the so-called internal coalitions, each of which is a proper subcoalition
of some component of one of the given a priori unions, or more precisely, a coalition ∅ 6= S ⊆ N is
internal if there is k ∈ M such that S ⊂ C for some C ∈ Nk/Γk. From now on, given a player set
N ⊂ IN, a partition P = {N1, ..., Nm} of N , and a set of communication graphs {Γk}k∈M on a priori
unions Nk, k ∈ M , the set of all internal coalitions we denote by Int(N,P, {Γk}k∈M ). It is worth to
remark that, of course, the worths of internal coalitions play a crucial role in the redistribution of the
total payoff obtained by a component among its members, but the axiom does not concern this.
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Union component payoff independence of internal coalitions (UCPIIC) For any player set
N ⊂ IN and two PΓ -games 〈v,ΓP〉, 〈w,ΓP〉 ∈ GPΓ

N with the same ΓP = 〈ΓM , {Γk}k∈M 〉 and such that
w(S) = v(S) for all S ⊆ N , S /∈ Int(N,P, {Γk}k∈M ), it holds that for every k ∈M , for all C ∈ Nk/Γk,

∑

i∈C
ξi(v,ΓP) =

∑

i∈C
ξi(w,ΓP).

The next theorem introduces axiomatically another family of PΓ -values.

Theorem 2 For any (m+ 1)-tuple of deletion link axioms 〈DLP, {DLk}k∈M 〉 such that the set of DLk,

k ∈M , axioms is restricted to F, CF, and RF, there is the unique PΓ -value defined on GDL
P,{DLk}k∈M

N

that meets axioms QCE, QDL, UDL, COV, UNRGP, and UCPIIC, and for every PΓ -game 〈v,ΓP〉 ∈
GDL

P,{DLk}k∈M
N it is given by

ξi(v,ΓP) = DL
k(i)
i (vk(i),Γk(i)) +

DLPk(i)(vP ,ΓM )− vΓk(i)

k(i) (Nk(i))

nk(i)
, for all i ∈ N. (25)

Remark 2 It is not difficult to trace a relation between the PΓ -value ξ given by (25) and the two

step Shapley value (1). Indeed, for a PΓ -game 〈v,ΓP〉 ∈ GF
P,{Fk}k∈M

N , ξ(v,ΓP) = Ka(vΓP ,P), where
vΓP ∈ GN is determined as

vΓP (S) =





vΓM
P (Q), Q ⊆M : S = ∪q∈QNq,

vΓk
k (S), S ⊆ Nk, k ∈M,

0, otherwise,

for all S ⊆ N,

i.e., when S is the union of number of a priori unions its worth is defined according to the Myerson
restricted quotient game, when S is a subset of some a priori union its worth is defined according to
the Myerson restricted game within the union, otherwise the worth of S is zero.

Because of the mentioned similarity, from now on we refer to the PΓ -value (25) as to the Kamijo-type

〈DLP, {DLk}k∈M 〉-value, denoted further by Ka〈DL
P,{DLk}k∈M 〉.

Proof. I. [Existence]. We show that under the hypothesis of the theorem the PΓ -value ξ =

Ka〈DL
P,{DLk}k∈M 〉 defined on GDL

P ,{DLk}k∈M
N by (25) meets the axioms QCE, QDL, UDL, COV, UNRGP

and UCPIICL. Consider an arbitrary PΓ -game 〈v,ΓP〉 ∈ GDL
P,{DLk}k∈M

N .

QCE, QDL, UDL. The proof of these axioms for the Kamijo-type 〈DLP, {DLk}k∈M 〉-value is similar
to the proof of same axioms for the Owen-type 〈DLP, {DLk}k∈M 〉-value in Theorem 1, and so we skip
it.

COV. Pick any a ∈ IR++ and b ∈ IRn. Then, for all i ∈ N ,

ξi(av+b,ΓP)
(25),(2)

= DL
k(i)
i ((av+b)k(i),Γk(i))+

DLPk(i)((av + b)P ,ΓM )− ∑
C∈Nk(i)/Γk(i)

(av + b)(C)

nk(i)
=

aDL
k(i)
i (vk(i),Γk(i)) + bi +

aDLPk(i)(vP ,ΓM )+b(Nk(i))−
∑

C∈Nk(i)/Γk(i)

(av(C)+b(C))

nk(i)
= aξi(v,ΓP) + b,
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where the second equality is true because each of the considered DLk-values, k ∈M , and DLP -values
meets COV on its domain, and (av+b)P(Q)=avP(Q)+b(∪k∈QNk) for all Q ⊆M ; and the third equality
is due to the equality

∑
C∈Nk(i)/Γk(i)

b(C)=b(Nk(i)) =b nk(i), since Nk(i)/Γk(i) forms a partition of Nk(i).

UNRGP. Assume that for the chosen PΓ -game 〈v,ΓP〉 there exists k ∈ M such that for all S ⊆ Nk,
vk(S) 6= 0 implies S /∈ CΓk(Nk). Every of the considered DLk-values, the Myerson value, the average
tree solution and the compensation solution, are determined only by worths of connected coalitions,
and therefore, DLki (vk,Γk) = 0 for all i ∈ Nk. Moreover, as it was already mentioned ealier, the above

assumption is equivalent to vΓk
k ≡ 0, which implies that v(C) = 0 for every C ∈ Nk/Γk. Hence, from

(25) it follows that for all i ∈ Nk,

ξi(v,ΓP) =
DLPk (vP ,ΓM )

nk
,

where the right side is independent of i, from which it follows that PΓ -value ξ meets UNRGP.

UCPIIC. Take any k ∈ M and C ∈ Nk/Γk. The component efficiency of each of the considered
DLk-values implies DLk(vk,Γk)(C) = v(C). Then from (25) it follows that

∑

i∈C
ξ(v,ΓP) = v(C) +

c

nk

(
DLPk (vP ,ΓM )− vΓk(Nk)

)
,

where the right side is independent of worths of internal coalitions, i.e. PΓ -value ξ meets UCPIIC.

II. [Uniqueness]. Assume that a (m+1)-tuple of deletion link axioms 〈DLP, {DLk}k∈M 〉 such that the
set of axioms DLk, k ∈M , is restricted to F, CF, and RF, is given. We show that there exists at most

one PΓ -value on GDL
P,{DLk}k∈M

N that satisfies axioms QCE, QDL, UDL, COV, UNRGP, and UCPIIC.

Let φ be such PΓ -value on GDL
P,{DLk}k∈M

N . Take an arbitrary PΓ -game 〈v,ΓP〉 ∈ GDL
P,{DLk}k∈M

N . We
show that the individual payoffs φi(v,ΓP), i ∈ N , are uniquely determined, for which it is enough to
show that the individual payoffs in each a priori union Nk, k ∈M , are uniquely determined. Fix some
k ∈M . The rest of the proof is by induction on the number of links in Γk.

Initialization: Assume that |Γk| = 0. Let v0 be the 0-normalization of the TU game v, i.e.,
v0(S) = v(S)− ∑

i∈S
v({i}) for all S ⊆ N , and let (v0)k = v0|Nk

. As it is shown in Step 1 of the proof of

the ”uniqueness” part of Theorem 1, QCE and DLP together yield that the union payoffs φPk (w,ΓP),

k ∈ M , are uniquely determined for any PΓ -game 〈w,ΓP〉 ∈ GDL
P,{DLk}k∈M

N . In particular, the ‘union
payoffs’ φPk (v0,ΓP), k ∈ M , are uniquely determined. By definition (v0)k({i}) = 0 for every i ∈ Nk,

and therefore, (v0)Γk
k ≡ 0 since |Γk| = 0. Then, from UNRGP it follows that

φi(v0,ΓP) =
φPk (v0,ΓP)

nk
, for all i ∈ Nk.

Whence by COV we obtain

φi(v,ΓP) = v({i}) +
φPk (v0,ΓP)

nk
, for all i ∈ Nk,

i.e., for every i ∈ Nk, φi(v,ΓP) is uniquely determined.
Induction hypothesis: Let Γ′P denote the two-level graph structure 〈ΓM , {Γ′h}h∈M 〉 with Γ′h = Γh

if h 6= k and Γ′k = Γ′ for some graph Γ′ on Nk. Assume that the values φi(v,Γ
′
P) have been determined

for every Γ′ with |Γ′| < |Γk|.
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Induction step: For every S ∈ Int(N,P, {Γk}k∈M ) let CS ∈ Nk/Γk be the unique component
such that S ⊂ CS . Consider a game w ∈ GN defined as

w(S) =





v(S), S /∈ Int(N,P, {Γk}k∈M ),

s v(CS)

cS
, S ∈ Int(N,P, {Γk}k∈M ),

for all S ⊆ N. (26)

For the 0-normalization w0 of w, (w0)k = (wk)0. The subgame wk is an additive game and, therefore,
(wk)0 ≡ 0. Then, due to UNRGP, similar as in the Initialization step, it follows that

φi(w0,ΓP) =
φPk (w0,ΓP)

nk
, for all i ∈ Nk.

Whence by COV we obtain

φi(w,ΓP) = w({i}) +
φPk (w0,ΓP)

nk
, for all i ∈ Nk.

Consider a component C ∈ Nk/Γk. Fron the above equality it follows that

∑

i∈C
φi(w,ΓP) =

∑

i∈C
w({i}) +

c

nk
φPk (w0,ΓP)

(26)
= v(C) +

c

nk
φPk (w0,ΓP).

By the definition (26) of w, w(S) = v(S) for all S ⊆ N , S /∈ Int(N,P, {Γk}k∈M ). Whence by UCPIIC
it follows that

∑

i∈C
φi(v,ΓP) = v(C) +

c

nk
DLPk (w0,P ,ΓM ), for all C ∈ Nk/Γk. (27)

Next, if c = 1, then C is a singleton and the payoff φi(v,ΓP) of the only player i ∈ C is uniquely
determined by (27). If c ≥ 2, then there exists a spanning tree Γ̃ ⊆ Γk|C on C with the number of links
|Γ̃| = c− 1. By UDL it holds that

ΨDLk
(φk(v,ΓP),Γk) = 0. (28)

The above equality in fact provides for any link {i, j} ∈ Γk some equality relating values of φh(v,ΓP),
h ∈ Nk, with values of distinct φh(v,ΓP |k−ij). Since |Γk|−ij | = |Γk| − 1, by the induction hypothesis it

follows that for all links {i, j} ∈ Γk the payoffs φh(v,ΓP |k−ij), h ∈ Nk, are already determined. Thus

with respect to c − 1 links {i, j} ∈ Γ̃, (28) yields c − 1 linearly independent linear equations in the c
unknown payoffs φi(v,ΓP), i ∈ C. These c− 1 equations together with (27) form a system of c linearly
independent equations in the c unknown payoffs φi(v,ΓP), i ∈ C. Hence, for every C ∈ Nk/Γk, all
payoffs φi(v,ΓP), i ∈ C, are uniquely determined. Note that every possible spanning tree Γ̃ yields
the same solution for the values φi(v,ΓP), i ∈ C, because otherwise a solution does not exist, which
contradicts the already proved ”existence” part of the proof of the theorem.

Logical independence
Given a (m+1)-tuple of deletion link axioms 〈DLP , {DLk}k∈M 〉, such that the set of DLk, k ∈M , axioms
is restricted to F, CF, and RF, the logical independence of the axioms in Theorem 2 is demonstrated
by the following examples of PΓ -values:
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• The PΓ -value ξ(1) assigning in every 〈v,ΓP〉 ∈ G
DLP ,{DLk}k∈M
N to every player i ∈ N a payoff

ξ
(1)
i (v,ΓP) =

DLPk(i)(vP ,ΓM )

nk(i)

satisfies all axioms except COV.

• The PΓ -value ξ(2) assigning in every 〈v,ΓP〉 ∈ G
DLP ,{DLk}k∈M
N to every player i ∈ N a payoff

ξ
(2)
i (v,ΓP) = v({i}) +

DLPk(i)(vP ,ΓM )−∑j∈Nk(i)
v({j})

nk(i)

satisfies every axiom except UCPIIC.

• The PΓ -value ξ(3) assigning in every 〈v,ΓP〉 ∈ G
DLP ,{DLk}k∈M
N to every player i ∈ N a payoff

ξ
(3)
i (v,ΓP) = DL

k(i)
i (vk(i),Γk(i)) +

Shk(i)(v(M/ΓM )k(i)
)− vΓk(i)(Nk)

nk(i)

satisfies every axiom except QDL.

• The PΓ -value ξ(4) assigning in every 〈v,ΓP〉 ∈ G
DLP ,{DLk}k∈M
N to every player i ∈ N a payoff

ξ
(4)
i (v,ΓP) = EL

k(i)
i (vk(i),Γk(i)) +

DLPk(i)(vP ,ΓM )− vΓk(i)(Nk)

nk(i)

satisfies every axiom except UDL.

• The PΓ -value ξ(5) assigning in every 〈v,ΓP〉 ∈ G
DLP ,{DLk}k∈M
N to every player i ∈ N a payoff

ξ
(5)
i (v,ΓP) = DL

k(i)
i (vk(i),Γk(i)) +

v(N)− vΓk(i)(Nk)

nk(i)

satisfies every axiom except QCE.

• The PΓ -value ξ(6) assigning in every 〈v,ΓP〉 ∈ G
DLP ,{DLk}k∈M
N to every player i ∈ N a payoff

ξ
(6)
i (v,ΓP) = Shi(v(Nk(i)/Γk(i))i) +

DLPk(i)(vP ,ΓM )− vΓk(i)(Nk)

nk(i)

satisfies every axiom except UNRGP.

To compare the two families of solution concepts introduced by Theorems 1 and 2 observe that all
the PΓ -values meet QSE, QDL, UDL, and COV. However, while the Owen-type 〈DLP, {DLk}k∈M 〉-
values satisfy FDSU, but violate UNRGP and UCPIIC, the Kamijo-type 〈DLP, {DLk}k∈M 〉-values vice
versa satisfy UNRGP and UCPIIC, but violate FDSU. The summary of the properties is given in the
Table 1, where the axioms need for our axiomatizations are marked by ∗.
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solution QCE QDL UDL COV FDSU UNRGP UCPIIC

Owen-type 〈DLP, {DLk}k∈M 〉-value +∗ +∗ +∗ + +∗ - -

Kamijo-type 〈DLP, {DLk}k∈M 〉-value +∗ +∗ +∗ +∗ - +∗ +∗

Table 1.

6 Conclusion

The paper introduces a unified approach to different two-step solution concepts for games with two-
level communication structure when different component efficient values for games with communication
structures can be applied at the both communication levels. The PΓ -values introduced by Theorems 1
and 2 allow to combine any of the component efficient values for games with communication structure
discussed in Section 3 at the upper level of the allocation procedure, but at the lower level the list
of applicable component efficient values is restricted to the Myerson value, the average tree solution
and the compensation solution. Nevertheless, the associated general definitions given by (18) and
(25) are not restricted to only these values, but can be formulated for the other values for games
with communication structure as well. Moreover, the ”uniqueness” parts of both theorems are already
independent of the choice of the values for games with communication structures at the both levels of
allocation procedure. So, a natural extension of this work could be to find parallel results to Theorems
1 and 2, or even more general results, which may allow to incorporate also the other component efficient
solutions for games with communication structure.
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