HAL

archives-ouvertes

On the Impact of Advance Reservations for
Energy-Aware Provisioning of Bare-Metal Cloud
Resources

Marcos Dias de Assuncao, Laurent Lefevre, Francois Rossigneux

» To cite this version:

Marcos Dias de Assuncao, Laurent Leféevre, Francois Rossigneux. On the Impact of Advance
Reservations for Energy-Aware Provisioning of Bare-Metal Cloud Resources. CNSM 2016, Oct
2016, Montreal, Canada. 12th International Conference on Network and Service Management
(CNSM 2016), 2016, <http://www.cnsm-conf.org/2016>. <hal-01382662>

HAL Id: hal-01382662
https://hal.inria.fr /hal-01382662
Submitted on 17 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche frangais ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01382662

On the Impact of Advance Reservations for
Energy-Aware Provisioning of Bare-Metal
Cloud Resources

Marcos Dias de Assungdo, Laurent Leféevre, Frangois Rossigneux
Inria Avalon, LIP Laboratory, ENS de Lyon, France
{marcos.dias.de.assuncao, laurent.lefevre}@ens-lyon.fr

Abstract—This work investigates factors that can impact the
elasticity of bare-metal resources. We analyse data from a real
bare-metal deployment system to build a deployment time model,
which is used to evaluate how provisioning time impacts the
reservation of bare-metal resources. Climate/Blazar, a reservation
framework designed for OpenStack, is discussed. Simulation
results show that reservations can help reduce the time to deliver
a provisioned cluster to its customer while achieving energy
savings similar to those of strategies that switch-off idle resources.

I. INTRODUCTION

The workload consolidation that clouds provide by virtu-
alising resources and enabling customers to share the under-
lying physical infrastructure brings benefits such as energy
efficiency and better system utilisation. Customers can request
resources on demand and pay for their use on a per-hour basis.
Such elasticity allows for adjusting the allocated capacity
dynamically to meet fluctuating demands.

Though this model suits several use cases, certain appli-
cations are not fully portable to this scenario as they are
resource intensive and sensitive to performance variations. The
means used by cloud providers to offer customers with high
and predictable performance mostly consist in deploying bare-
metal resources or grouping Virtual Machines (VMs) where
high network throughput and low latency can be guaranteed.
This model contrasts with traditional cloud use cases as it
is costly and provides little flexibility in terms of workload
consolidation and resource elasticity.

Over the past, High Performance Computing (HPC) users
for instance have been tolerant to resource availability as they
generally share large clusters to which exclusive access is
made by submitting a job that may wait in queue for a period
often longer than the job execution itself. Users of bare-metal
services also commonly accept provisioning delays that can
vary from hours to several days. Although we do not think
clouds should adopt a similar queuing model, we believe
that a compromise between wait time and on-demand access
could be exploited for bare-metal resources in the cloud via
resource reservations. Reservations provide means for reliable
allocation and allow customers to plan the execution of their
applications, which is key to many use cases that require bare-
metal and specialised resources.

In this work, we analyse historical data on the provision

of bare-metal resources from a real system to model the time
required by bare-metal deployment. Using this model, results
from discrete-event simulations demonstrate (i) the energy-
saving potential of strategies that switch unused resources off
and (ii) how reservations can help reduce the time to deliver
a provisioned cluster to its customer.

II. THE RESERVATION SYSTEM

Climate, conceived during the FSN XLCloud project' and
renamed Blazar when incorporated into OpenStack?, enables
reserving and deploying bare-metal resources whilst con-
sidering their energy efficiency. Its architecture (Figure 1)
comprises the following components:

Resource allocation request Nova
3 + reservation_id ;
—O G API
Climate Query hosts Scheduler
Reservation Framework available Filters
request
—q@-l Reservation AR I< ,I Reservation filter |
Hosts of —*
I Inventony, I— a reservation
'I Scheduler I Weighters
Demands '-1- KWRanking
benchmark ST Performarnce | || ey
executions Execution per watt info (TP C7) LT
\@~.| API [
I Worker I /@%ergy P/ Ceilometer

consumption Power consumption
info o metrics

| KWAPI |

|_| New c p t

Existing component

Fig. 1: Architecture of the proposed reservation framework.

¢ Reservation API: used by client applications and users to
reserve resources and query the status of reservations.

e Climate Inventory: a service that stores information about
physical nodes used for reservations.

e Climate Scheduler: responsible for scheduling reservation
requests on available nodes.

e Energy-Consumption Monitoring Framework: monitors
the energy consumption of physical resources and inter-
faces with OpenStack telemetry infrastructure.

The Climate Scheduler manages reservations and extends
Nova’s filtering scheduler with a set of resource filters and

Thttp://xIcloud.org
Zhttps://wiki.openstack.org

ranking (or weighting) criteria. Nova filter accepts a schedul-
ing hint, here used to provide a reservation ID. When a
Climate-created ID is provided, the filter uses the reservation
API with an admin Keystone token to retrieve the list of hosts
associated with the reservation.

Two Nova weighters were created. The first weighter, ig-
nored by reservation requests, ranks machines by their free
time until the next reservation. If handling a request for a
non-reserved instance, the weighter tries to place the instance
on a host that is available for the longest period. This helps
minimise the chance of having to migrate the instance later
to vacate its host for a reservation. The second weighter,
called KiloWatt Ranking (KWRanking), ranks machines by
their power efficiency (i.e. FLOPS/Watt) and relies on: a
software infrastructure [1] to monitor the power consumed by
resources of a data centre and to interface with Ceilometer;
and a benchmark executed on the machines to determine their
performance per Watt.

III. MODELLING BARE-METAL DEPLOYMENT

To model the time required for bare-metal deployment,
we use traces from Grid’5000, an experimental platform
comprising several sites in France and Luxembourg [2]. The
traces were generated by Kadeploy3 [3], a disk imaging and
cloning tool that takes a file containing the operating system
to deploy (i.e. an environment) and copies it to target nodes.
An environment deployment consists of three phases:

1) Minimal environment setup, where nodes reboot into an
OS with tools for partitioning disks.

2) Environment installation, when the environment is
broadcast and copied to all nodes, and post-copy op-
erations are performed.

3) Reboot of nodes using the deployed environment.

We gathered several years of Kadeploy3 traces from five
clusters on three Grid’5000 sites (Table I) and evaluated the
time to execute the three phases described above. All deploy-
ments from Jan. 2010 through Dec. 2013 were considered. The
first step towards building a model consisted in creating time
histograms and visually examining probability distributions
that were likely to fit the data. Scott’s method was used to
determine the size of histogram bins [4]. After considering a
number of distributions, we found that log-normal, gamma
and generalised gamma were most likely to fit the data.
Figure 2 depicts the results of fitting these distributions to
the deployment time information of each cluster. In general,
deployment presents an average completion time with eventual
failures overcome by executing extra routines and performing
additional server reboots.

The goodness of fit of the distributions has also been
submitted to the Kolmogorov—Smirnov test (KS test), whose
D-statistic quantifies the distance between the distribution
function of empirical values and the cumulative distribution
function of the reference distribution. As shown in Table II,
log-normal provides slightly better fit to most clusters, and is
therefore used to model deployment time.

TABLE I: Grid’5000 clusters whose deployment logs were
considered.

Cluster #

Name Nodes Node Characteristics

parapluie 40 2 12-core CPUs AMD 1.7GHz, 48GB RAM, 232GB DISK

parapide 25 2 4-core CPUs Intel 2.93GHz, 24GB RAM, 465GB DISK

2 4-core CPUs Intel 2.5GHz, 32GB RAM, 298GB DISK

paradent 64

stremi 44 2 12-core CPUs AMD 1.7GHz, 48GB RAM, 232GB DISK

sagittaire 79 2 CPUs AMD 2.4GHz, 1GB RAM, 68GB DISK

o Deployment on parapluie 0.014 Deployment on parapide

— lognorm
gamma
gengamma 0.010

— lognorm
gamma
gengamma

0.005 0.012

0.004

0.008
0.003
0.006

0.002
0.004

0.001 0.002

|
||" '
.miiﬂﬁw B,

100 200 300 400 31() 600 700
Deployment Time (seconds)

0.000 hos
0 1000 1500 0

Deployment Time (seconds)

Deployment on paradent Deployment on stremi

0.005

— lognorm
-+ gamma
gengamma

— lognorm
© gamma
gengamma

0.004 0.005

0.004

0.003
0.003
0.002
0.002

0.001 0.001

0.000 0.
0

500 1000 1500 0
Deployment Time (seconds)

1 o S
100 200 300 400 500 600 700 800

Deployment Time (seconds)

0.007 Deployment on sagittaire

— lognorm
gamma
gengamma

0.006

0.005

0.004

0.003

0.002

0.001

0.000 AL ofinr i, -
0 200 400 600 800 1000 1200

Deployment Time (seconds)
Fig. 2: Deployment time histograms and distribution fitting.

TABLE II: Kolmogorov-Smirnov test for goodness of fit.

Cluster Name D-Statistics

Log-normal Gamma Gen. Gamma
parapluie 0.051 0.066 0.059
parapide 0.111 0.095 0.091
paradent 0.041 0.046 0.043
stremi 0.051 0.036 0.039
sagittaire 0.067 0.076 0.070

IV. RESERVATION STRATEGIES

Power-Off Idle Resources: this strategy checks resources
periodically, and if a resource remains idle during a given
time (i.e. idleness interval), it is powered off.

Reservation-Based Power-Off: similar to powering-off idle
resources, but when assessing a resource idleness it also
determines whether the resource is likely to remain unused
over a time horizon. The strategy also boots resources in
advance to serve previously scheduled reservations. The av-

erage deployment time and a small safety margin are used to
determine how long in advance resources must be deployed.
The length of the idleness interval and time horizon over which
the server must remain unused to become a candidate for
switch off are 5 and 30 minutes respectively.
Reservation With Minimum Capacity Estimation: in addi-
tion to delaying when resources are made available to users,
frequent server initialisation and shut down can be detrimental
to energy efficiency [S]. This strategy seeks to avoid frequent
reinitialisation by using a technique proposed in our previous
work to configure a minimum resource pool, with a capacity
below which decisions to switch resources off are ignored [6].
Resource utilisation is used to determine when the minimum
capacity is adjusted. Utilisation at time ¢, denoted by v, is
the ratio between the number of resource hours effectively
used to handle requests and the number of hours resources
were powered on. The provider sets parameters H and L,
0 < L < H < 1, indicating utilisation lower (L) and
upper (H) thresholds according to which additional capacity is
required or powered-on resources are not needed, respectively.
The minimum pool capacity should be modified before utili-
sation reaches undesired levels, which requires a prediction on
future resource utilisation. The estimation is based on the mea-
surements performed over the past ¢ measurement intervals.
Namely, after measuring v; at time ¢, weighted exponential
smoothing is used to predict the utilisation for step ¢ + 1. If
the past v < 7 measurements (i.e., Vy_y, Ug—yt1, ..., V) and
the forecast utilisation are below (above) the lower (upper)
threshold L (H), the minimum capacity must be adjusted. In
this work, L = 0.4, H = 0.9, ¢ = 5 and v = 10.

V. PERFORMANCE EVALUATION

A discrete-event simulator is used to model and simulate
resource allocation and request scheduling®. We adapted the
Google workload logs [7] to model cloud users’ resource
demands*. The trace contains a log of job submissions, their
schedule and execution, where each job comprises one or
multiple tasks that are executed on containers deployed on
one or multiple machines. The original resource demands (e.g.
memory, CPU, disk) are normalised by the configuration of
the largest machine. To determine the number of physical
machines m; that a job j requires, we obtain the maximum
set of simultaneous tasks in execution T over the duration
of job j and compute m; = min{a,c* oy t/macy™™},
where mac]*®™ is the normalised capacity of the machine
that executed task ¢; c is a constant representing the available
host’s memory capacity allocated to containers — here set to
0.85; and a is a constant that specifies the maximum number of
machines per request, set to 50 to prevent creating workloads
that are extremely bursty.

Certain jobs are very short and probably part of submission
bursts for which we consider a user would make a single reser-
vation. Hence jobs are grouped using a technique proposed

3 Available at: https:/github.com/assuncaomarcos/servsim
4The original trace provides data over a month-long period in May 2011
from a 12k-machine set used by the Exploratory Testing Architecture.

for bag-of-tasks applications [8]. The continued submission
grouping scheme is applied with A = 180 seconds. From the
original trace that contains jobs submitted by a total of 933
services, we crafted five different workloads, each comprising
job submissions from 250 randomly selected services; these
traces, depicted in Figure 3, are taken as the cloud workloads.
As the original trace does not contain reservations, we create
reservation workloads by randomly selecting requests that
require reservations, where the reservation ratio varies as
described later. Original job start time is used as the reservation
start time and how long in advance the reservation is made is
uniformly drawn from an interval of O to 24h.

Google 1 Google 2
a ?
nE) 150 GE’ 150
£ £
S S
8 8
E 100 E 100
5 5
5, z,
€ 50 £ 0]
E S
P4 z
‘o 5 1 1728 ‘o 5 K 1723
Time (Days) Time (Days)
Google 3 Google 4
8 8
£ 150] £ 150]
S S
8 8
2 100 = 100)
IS3 IS}
[} I}
‘gl 50 ‘g’ 50
z z
‘o 5 K 1728 ‘ 5 K 1723
Time (Days) Time (Days)
Google 5
o«
3
£ 150
S
[
2 100
o
I}
€ %
E
z
‘o 5 1 1723

Time (Days)
Fig. 3: Overview of Google cloud workloads.

Infrastructure capacity and resource requests are expressed
in number of machines. The maximum number of machines
available at a site is computed by simulating the request
scheduling of its corresponding cloud workload under a large
number of machines, so that each request is treated immedi-
ately as it arrives and no request is rejected. The maximum
number of machines used during this evaluation is taken as
the site capacity. Based on the deployment information from
Kadeploy, we model the time in seconds to boot powered-off
machines using a log-normal distribution whose scale is 6 and
shape is 0.4. We take 25 minutes as the time a machine must
remain idle to be a candidate for switch off and 30 minutes
as the future horizon to check whether it is committed to
reservations. The evaluation of candidates for switch off is
performed every 5 minutes. Moreover, the following schemes
for resource provisioning are considered:

o Cloud Always On: baseline scenario that uses the cloud
workloads and maintains all servers constantly on. It is
also used to determine the resource capacity to handle
requests in an on-demand, cloud-like manner.

e Cloud Switch Off: does not consider reservations, em-
ploys the cloud workloads and the policy that switches
servers off if they remain idle for a given interval.

o Reservation Switch Off: uses the reservation traces and

the reservation policy that switches off servers that remain
idle for an interval and that are not committed to requests
over a time horizon. It also boots servers in advance to
fulfil previously scheduled reservations.

o Reservation Minimum Pool: similar to reservation with
switch off, but keps a minimum resource pool.

A. Performance Metrics

Energy Saving Potential: shows how much of the server
idleness time is used for switch-off. The total server idleness
st under the Cloud Always On scenario is the maximum time
during which servers could potentially be switched off, and
it is hence considered the upper bound on potential energy
savings. The st of a site is: st = j;to“”‘ Stotal — Sused dt where
to is the start of the evaluation, ¢;,5; is when the last request is
submitted, s;.¢4; 1S the total number of servers available at any
time, and S,seq 1S the number of machines in use at time t.
The potential for energy saving is the percentage of si during
which servers are switched off.

Request Aggregate Delay: the time users have to wait
to have their requests serviced. The aggregate delay ad of
requests whose Quality of Service (QoS) has been impacted
(Rdelay) is giVen by ad = ZTGRdelay (rdep_sta'rt""'rdep_end) -
Tstart_time WHere Tgep siare 1S when the deployment of the
servers required by request r started, rgep enq 1S when the
last server became ready to use, and Tgtqrt time 1S When
the request was supposed to start; that is, when the user
expected the servers to be available. The distributions of
deployment time obtained while inspecting Kadeploy traces
give a conservative estimate to evaluate ad. Certain public
cloud providers publicise provisioning times of bare-metal
resources much higher than those found in Grid’5000.

B. Evaluation Results

Figures 4 and 5 show the potential energy savings and re-
quest aggregate delay where 40% of requests of each workload
are randomly selected to require reservations. As Cloud Switch
Off switches servers off almost immediately once they become
idle, it is able to achieve higher energy saving potential.
This simple policy, however, does not consider the cost of
powering off/on resources and hence presents the largest
request aggregate delay. Reservation Switch Off exploits less
idle time, but leads to smaller QoS degradation.

‘! Cloud Switch Off Reserv. Switch Off =3 Reserv. Min. Pool

Energy Saving Potential (%)

Google 1 Google 2 Google 3 Google 4 Google 5

Fig. 4: Energy saving potential for the various scenarios.

As shown in Figure 4, reservation with a minimum resource
pool presents smaller energy savings compared to the simple
reservation strategy, but it reduces the request aggregate delay.

s

A Cloud Switch Off Reserv. Switch Off =31 Reserv. Min. Pool

=

Request Aggregate Delay (h)
= on o on o o

Google 1 Google 2 Google 3 Google 4 Google 5

Fig. 5: Request aggregate delay in resource/hour.

Sm
e Delay (h)

Request Zggr;gat

Fig. 6: Request delay in resource/hour for Google workloads.

Although reservation reduces the aggregate request delay as
shown in Figure 5, this reduction results in smaller energy
saving potential. Further investigation of this issue revealed
that the exponential smoothing applied to forecast required
server capacity leads to a minimum number of resources being
kept on during longer periods than under other strategies. Al-
though at first one may assume that other strategies can always
better exploit the bursty behaviour of the Google workloads,
it is important to note that we use conservative bare-metal
deployment times. We believe that when considering the times
reported by the industry — where servers take several hours
to be provisioned or recycled — the smoother behaviour of
reservation with minimum pool is preferable.

To evaluate the impact of reservations on the request ag-
gregate delay, we varied the reservation ratio from 0.1 to
0.9 (i.e. from 10% to 90% of requests require reservations).
Figure 6 shows that in general the aggregate delay is inversely
proportional to the reservation ratio. We highlight that the
impact of reservations on the aggregate request delay would
be higher if jobs from the original trace had not been grouped
to build what we believe is a more realistic scenario of bare-
metal deployment.

VI. CONCLUSION

We analysed historical information on bare-metal deploy-
ment and evaluated strategies for switching servers off in
a cloud data centre. Results show that under the evaluated
scenarios, reservations reduce the time to deliver resources
to users when compared to allocation strategies that naively
switch off idle servers.

ACKNOWLEDGEMENTS

This research was partially supported by the FSN XLCloud
and the CHIST-ERA STAR projects. Some experiments were
carried out using Grid’5000 (see https://www.grid5000.1r).

REFERENCES

[1] F. Rossigneux et al., “A generic and extensible framework for monitoring
energy consumption of OpenStack clouds,” in SustainCom 2014, Dec.
2014.

[2] R. Bolze et al., “Grid’5000: a large scale and highly reconfigurable
experimental Grid testbed,” Int. J. of High Perf. Comp. Applications,
vol. 20, no. 4, pp. 481-494, Nov. 2006.

—

[3] E. Jeanvoine et al., “Kadeploy3: Efficient and Scalable Operating System

Provisioning,” USENIX ;login:, vol. 38, no. 1, pp. 38-44, Feb. 2013.

D. W. Scott, “On optimal and data-based histograms,” Biometrika, vol. 66,
no. 3, pp. 605-610, 1979.

A.-C. Orgerie et al., “Save watts in your Grid: Green strategies for energy-
aware framework in large scale distributed systems,” in ICPADS’08,
Melbourne, Australia, Dec. 2008, pp. 171-178.

M. D. Assuncao et al., “Impact of user patience on auto-scaling resource
capacity for cloud services,” Future Generation Computer Systems,
vol. 55, pp. 41-50, 2016.

C. Reiss et al., “Google cluster-usage traces: Format + schema,” Google
Inc., Mountain View, USA, Tech. Report, Nov. 2011.

A. Tosup et al., “The characteristics and performance of groups of
jobs in grids,” in Euro-Par 2007 Parallel Processing, ser. LNCS, A.-M.
Kermarrec et al., Eds. Springer, 2007, vol. 4641, pp. 382-393.

