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Sentence alignment is the final step in building parallel corpora, which arguably has the greatest impact 

on the quality of a resulting corpus and the accuracy of machine translation systems that use it for training. 

However, the quality of sentence alignment itself depends on a number of factors. In this paper we 

investigate the impact of several data processing techniques on the quality of sentence alignment. We 

develop and use a number of automatic evaluation metrics, and provide empirical evidence that application of 

all of the considered data processing techniques yields bitexts with the lowest ratio of noise and the highest 

ratio of parallel sentences. 
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1. Introduction 

Sentence alignment (SA) is the problem of identification of parallel sentences (pairs of sentences that 

constitute translations from a source to a target language) in a given pair of source and target documents, where 

the target document is assumed to be a translation of the source (mutual translation assumption is also 

common). More formally, given a source document Ds and a target document Dt represented as lists of 

sentences S and T respectively, SA is the task of building a list of pairs P, where each pair p contains 0 or more 

(ideally one) source sentence(s) aligned to 0 or more (ideally 1) target sentence(s). Approaches that consider 

sentence length correlations [1, 2], bilingual lexicon-based solutions [3], and combinations of the two [4] have 

been proposed in the past to solve this problem in a sufficiently accurate and efficient manner. In this paper we 

do not offer a new solution to the problem, nor do we try to improve the existing approaches. Our goal is to 

investigate what could be done to the input data (not to the methods) to improve the quality of SA. 

We begin by asking a few questions, which are inspired directly by the definition of the problem and by 

ways of solving it. First, a formal definition of SA problem assumes that documents to be aligned are already 

split into sentences. However, in practice it is almost never the case, and one has to perform splitting before SA. 

Assuming that one uses for that a statistical approach that requires training, e.g. punkt splitter [5], a question 

regarding the choice of training data arises: does it suffice to train the splitter on any data, or would it be 

beneficial to train on a sample drawn from a target domain? Second, assuming one uses a lexicon based 

approach to SA, should one bother trying to reduce typos and data sparsity of the input, and what lexicon to use 

automatically induced or handcrafted? Lastly, after sentences have been aligned can we still increase the 

portion of parallel pairs?  In an attempt to answer these questions, we propose to employ the following five 

data processing techniques: (i) domain adapted sentence splitting; (ii) error correction; (iii) lemmatization (to 

reduce sparsity); (iv) use of handcrafted bilingual lexicons; (v) junk removal. 

The objective of this work is to assess the impact of the proposed data processing techniques on SA accuracy 

and find the combination of thereof which maximizes the quality of parallel corpora produced by SA. 

 

2. Data Collection 

For our experiments we have crawled three websites, akorda.kz, strategy2050.kz, astana.gov.kz, 

using our own Python scripts to download only specific branches of these sites - mainly news and 
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announcements. The choice of these specific websites is motivated by the fact that all of them provide built-in 

document alignment, i.e. each news article or announcement in Russian contains a link to a corresponding 

translation into Kazakh (sometimes translation direction may be opposite). Rare exceptions to this behavior 

include cases where translation link is absent or broken. Such pairs are not included into the data set. The 

obtained pairs of HTML documents are parsed in a site-specific manner with the help of Python 

BeautifulSoup library to produce raw Russian and Kazakh texts aligned on the document level. 

 

2. Baseline Sentence Alignment and Data Processing Techniques 

Let us describe the basic sentence alignment (BSA) procedure that does not assume any of the data 

processing techniques (DPTs) that we propose. At the sentence splitting stage BSA uses NLTK punkt tool [5] 

trained on approximately 200-250 Mb of plain texts from Russian and Kazakh Wikipedias. Next we tokenize 

the documents with a Perl-script from an SMT-toolkit Moses [6]. Sentence alignment is performed on tokenized 

and lowercased texts using hunalign [4]. After sentences are aligned we restore their original, non-tokenized 

and non-lowercased, format. In what follows we describe the implementation of the DPTs that we propose. 

Domain adapted sentence splitting. To see whether we can gain any improvements at sentence splitting 

step, we train punkt on 350-370 Mb of text from the news domain rather than on random Wikipedia texts and 

supply it with a list of abbreviations in Russian and in Kazakh. 

Error correction. In this work we consider a light-weight error correction procedure, which involves 

normalization of scripts (alphabets) used in a given text. Electronic texts written in Cyrillic (Russian and 

Kazakh alike), especially those which were digitized in 1990s, sometimes suffer from mixed scripts, i.e. when 

Latin letters are used instead of Cyrillic ones and vice versa: e.g. in a Kazakh word “есірткі” it is possible to 

replace the letters ‘е’ (u+0435), ‘с’ (u+0441), ‘і’ (u+0456), ‘р’ (u+0440) with their Latin homoglyphs, ‘e’ 

(u+0065), ‘c’ (u+0063), ‘i’ (u+0069) and ‘p’ (u+0070), which allows a total of 2
5
=32 spelling variations. To 

reduce data sparseness that may result from this, we developed a tool which tries to resolve unambiguous cases. 

Lemmatization. Another possible way to improve sentence alignment is a prior lemmatization of texts. 

Theoretically this should decrease data sparseness and be helpful when combined together with automatic 

construction of a bi-dictionary. Also, one can try to align sentences when both texts and handcrafted dictionary 

are lemmatized. For Russian-side lemmatization we use an open source tool Mystem [7], and for Kazakh – 

morphological disambiguation tool developed by Makhambetov et al. [8]. 

Adding bilingual dictionaries for sentence alignment. In the baseline approach no bilingual dictionaries 

are provided to hunalign, and very often such dictionaries are not available, especially for low-resourced 

languages. In such cases one can construct and exploit rough bi-dictionaries in three steps: (1) apply the baseline 

sentence alignment; (2) use hunalign again to align already aligned texts with the -autodict option - the 

byproduct of this step is a bi-dictionary; (3) finally, apply hunalign to the original non-aligned texts with the 

obtained bi-dictionary. We experiment with both options, using as a handcrafted dictionary a compilation of 

resources obtained from Bitextor [9], Apertium-kaz [10], and www.mtdi.kz. 

Junk removal. Finally, we believe that removing the following sentence pairs should benefit the final 

corpora (hereinafter such pairs are called “junk”): 

 at least one of the sides (Kazakh or Russian) is empty; 
 at least one of the sides does not contain any letters (Latin and Cyrillic); 

 both sides are identical after tokenization and lowercasing. 

 

3. Evaluation Metrics 

The most reliable way to evaluate the quality of SA is to perform human evaluation by checking the output 

of an automatic SA method, and calculating its accuracy, i.e. percentage of correct alignments in the total 

number of aligned pairs. To evaluate the baseline SA in this fashion, we ran the baseline on our data set and on 

the data crawled from an additional page-aligned website (adilet.zan.kz). We then randomly sampled 800 

sentence pairs (including null alignments produced by hunalign) and asked three annotators to label each pair 



as parallel or not. The inconsistencies were resolved by the fourth annotator. In Table 1 we present the results of 

this procedure (averages are calculated excluding the results for adilet.zan.kz for comparison purposes). 

 

Table 1. Accuracy of the baseline SA, per website and per annotator 

Web-site Annotator 1 Annotator 2 Annotator 3 Annotator 4 

adilet.zan.kz 0.9375 0.9425 0.8825 0.9075 

akorda.kz 

astana.gov.kz 

strategy2050.kz 

0.9525 

0.7925 

0.7700  

0.9450 

0.7950 

0.7525 

0.8675 

0.7325 

0.6575 

0.9050 

0.7400 

0.6900 

Average 0.8383 0.8308 0.7525 0.7783 

 

As we can see, on a sample of our data set (the latter three websites) the baseline SA method achieves the 

average accuracy of ~78%. As we will show later application of the DPTs can increase the accuracy. But to 

show that, we need to develop a more efficient way of computing SA, because to test all configurations of the 

DPTs would require us to perform expensive human evaluation procedure up to 10 times. 

 

Table 2. Features used in a learning-based SA accuracy estimator 

# DC Feature --------- # DC Feature 

1,2 S,T length in characters  19,20 S,T count of personal initials 

3 ST MMR(F1,F2) 21 ST COS(F19*,F20*) 

4,5 S,T length in tokens 22,23 S,T ratio of alphanumerics 

6 ST MMR(F4,F5) 24 ST MMR(F22,F23) 

7,8 S,T count of symbols 25,26 S,T count of words in quotes 

9 ST COS(F7*,F8*) 27 ST MMR(F25,F26) 

10,11 S,T count of numerals 28,29 S,T count of words in parenthesis 

12 ST COS(F10*,F11*) 30 ST MMR(F25,F26) 

13,14 S,T count of digits 31 ST num. of tokens in identical pairs 

15 ST COS(F13*,F14*) 
32 ST 

min-max ratio between unique tokens 

in source and target sentences 16,17 S,T count of latin alphanumerics 

18 ST COS(F16*,F17*) 33-35 ST Hunalign score: absolute, relative, min-max scaled. 

 

To compute the accuracy estimate of SA more efficiently we cast the SA problem as a classification task, 

where given a pair of source and target sentences, a supervised learning algorithm estimates the probability of 

the pair being parallel. We design a set of 35 features listed in Table 2, where each feature has a domain of 

calculation (DC), and can be calculated for the (S)ource or the (T)arget sentence, or for both (ST). MMR refers 

to min-max ratio, e.g. MMR(F1,F2) means that the minimum of features 1 and 2 is divided by the maximum of 

the two. Similarly, COS refers to cosine similarity calculated for the count-vectors of a given pair of features. 

We extract these features from the annotated sample that was used for human evaluation and perform a five-

fold cross-validation using a range of classifiers implemented in Python scikit-learn library. Gradient 

Boosting classifier achieved the highest F-measure of 0.94 (per-fold average) and the lowest variance of 0.08. 

Therefore, we use this classifier as a rough estimator of SA accuracy as follows. Given the alignment pairs 

produced by SA, the estimator classifies each pair as parallel or not. The ratio of pairs classified as parallel to 

the total number of pairs provides the accuracy estimate. 

 

4. Experiments and Results 

We compare different configurations of DPTs. To refer to a specific technique we use the following 

abbreviations: adapted splitting - AS, error correction - EC, automatically obtained dictionary - AD, handcrafted 

dictionary - HD, lemmatized handcrafted dictionary - LHD, lemmatization - L, junk removal - JR. 



We measure the quality of produced bitexts in the total number of parallel pairs (P) and the automatic 

accuracy estimation (P/T). As it can be seen from Table 3, combined application of all DPTs (AS+EC+ 

L+LHD+JR) achieves the highest accuracy per-site and on average improves ~6% over the baseline. It also 

produces about 5.5K more parallel sentences (total) than the baseline, and only 40 pairs less than the same 

configuration shy of JR. However, notice how drastically junk removal increases the accuracy of SA, more than 

5%. Hence, we indeed can increase the portion of parallel sentences after SA has been performed, through the 

removal of the pairs which are very unlikely to be parallel. We also notice that text lemmatization applied 

without the use of a handcrafted dictionary (AS+EC+L) produces far less parallel sentences than the baseline 

and is only 0.28% more accurate. Perhaps more surprisingly adding an automatically obtained dictionary to this 

configurations (AS+EC+L+AD) makes matters even worse. 

 

Table 3. Qualities of bitexts produced using various processing techniques 

Method 
  akorda.kz__ astana.gov.kz strategy2050.kz total average 

P P/T P P/T P P/T P P/T 

Baseline 70,956 0.9116 63,731 0.7215 201,678 0.6650 336,365 0.7660 
 

AS+EC 70,860 0.9171 63,777 0.7310 202,354 0.6740 336,991 0.7740 

AS+EC+AD 71,002 0.9193 63,298 0.7266 200,319 0.6681 334,619 0.7713 

AS+EC+HD 71,062 0.9199 64,210 0.7365 204,716 0.6818 339,988 0.7794 

AS+EC+LHD 71,089 0.9203 64,159 0.7356 204,857 0.6822 340,105 0.7794 

AS+EC+L 70,605 0.9138 63,260 0.7246 199,675 0.6661 333,540 0.7682 

AS+EC+L+AD 70,862 0.9178 62,929 0.7213 198,500 0.6638 332,291 0.7676 

AS+EC+L+HD 71,114 0.9204 64,119 0.7345 206,225 0.6880 341,458 0.7810 

AS+EC+L+LHD 71,129 0.9208 64,029 0.7333 206,797 0.6899 341,955 0.7813 

AS+EC+L+LHD+JR 71,115 0.9488 64,014 0.7823 206,786 0.7667 341,915 0.8326 

 

To measure the level of noise (the lower the better) in the produced bitexts, we calculate proportion of short 

pairs
1
 among parallel pairs (S/P), and proportion of junk pairs among all pairs (J/T). From Table 3 we notice 

that a complete set of DPTs achieves the second lowest S/P ratio after the AS+EC+L+AD configuration, which 

also achieves the second lowest J/T ratio. Thus, using auto-induced dictionary on lemmatized text produces least 

amount of parallel sentences and the lowest ratio of thereof, but resulting bitexts actually come out less noisy 

than in other DPT configurations. We will study this strange behavior in the future. 

 

Table 4. Noise level in bitexts produced using various processing techniques 

Method 
akorda.kz astana.gov.kz strategy2050.kz average 

S/P J/T S/P J/T S/P J/T S/P J/T 

Baseline 0.0190 0.0294 0.0098 0.0610 0.0202 0.0982 0.0163 0.0629 
 

AS+EC 0.0172 0.0291 0.0084 0.0586 0.0195 0.0969 0.0150 0.0615 

AS+EC+AD 0.0169 0.0294 0.0078 0.0588 0.0193 0.0974 0.0147 0.0619 

AS+EC+HD 0.0172 0.0292 0.0084 0.0589 0.0193 0.0980 0.0150 0.0620 

AS+EC+LHD 0.0171 0.0294 0.0084 0.0591 0.0193 0.0981 0.0149 0.0622 

AS+EC+L 0.0171 0.0296 0.0084 0.0613 0.0198 0.0979 0.0151 0.0630 

AS+EC+L+AD 0.0167 0.0297 0.0072 0.0620 0.0191 0.0950 0.0143 0.0622 

AS+EC+L+HD 0.0170 0.0295 0.0084 0.0627 0.0192 0.0997 0.0149 0.0640 

AS+EC+L+LHD 0.0170 0.0294 0.0085 0.0629 0.0192 0.1002 0.0149 0.0642 

AS+EC+L+LHD+JR 0.0168 0.0000 0.0082 0.0000 0.0192 0.0000 0.0147 0.0000 

                                                 
1
 Short pairs are defined as those where both sides, Kazak and Russian, contain three or less words. Usually such text 

chunks are dates, titles, enumerations, etc., and they do not qualify as full sentences. 



 

5. Conclusion 

In this work we have shown that various techniques of data processing can increase the accuracy of sentence 

alignment and reduce the level of noise in the resulting bitexts. We provided empirical evidence that combined 

application of five simple data processing techniques before and after sentence alignment results in production of parallel 

corpora with the lowest ratio of noise and the highest ratio of parallel sentences. 
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Выравнивание параллельных текстов по предложениям является заключительным этапом 

построения параллельного корпуса и возможно оказывает наибольшее влияние качество конечного 

продукта и на точность систем машинного перевода, использующих этот корпус для обучения. 

Качество же выравнивания по предложениям, в свою очередь, также зависит от ряда факторов. В 

данной статье мы исследуем влияние некоторых способов обработки данных на качество 

выравнивания по предложениям. Мы разрабатываем и используем несколько автоматических метрик 

оценки качества, и приводим эмпирические доказательства того, что совокупное использование всех 

рассмотренных способов обработки данных приводит к получению параллельных корпусов с 

наименьшей долей шума и наибольшей долей параллельных предложений. 

Ключевые слова: выравнивание по предложениям, разбивка по предложениям, лемматизация, 

параллельный корпус, казахский язык 
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