

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/45693

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/5229091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/45693
mailto:wrap@warwick.ac.uk

Light-weight Parallel I/O Analysis at Scale

S. A. Wright, S. D. Hammond, S. J. Pennycook, and S. A. Jarvis

Performance Computing and Visualisation
Department of Computer Science

University of Warwick, UK
{saw, sdh, sjp, saj}@dcs.warwick.ac.uk

Abstract. Input/output (I/O) operations can represent a significant
proportion of the run-time when large scientific applications are run in
parallel. Although there have been advances in the form of file-format li-
braries, file system design and I/O hardware, a growing divergence exists
between the performance of parallel file systems and compute processing
rates.

In this paper we utilise RIOT, an input/output tracing toolkit be-
ing developed at the University of Warwick, to assess the performance
of three standard industry I/O benchmarks and mini-applications. We
present a case study demonstrating the tracing and analysis capabilities
of RIOT at scale, using MPI-IO, Parallel HDF-5 and MPI-IO augmented
with the Parallel Log-structured File System (PLFS) middle-ware being
developed by the Los Alamos National Laboratory.

Keywords. Input/Output, Message Passing Interface, Parallel I/O, Par-
allel Log-structured File System, Profiling

1 Introduction

The substantial growth in supercomputer machine size – over two orders of mag-
nitude in terms of processing element count since 1993 – has created machines
of extreme computational power and scale. As a result, users of these machines
have been able to create increasingly sophisticated and complex computational
simulations, advancing scientific understanding across multiple domains. Histori-
cally, industry and academia have focused on the development of scalable parallel
algorithms – the cornerstone of large parallel applications. ‘Performance’ has be-
come a measure of the number of calculation operations that can be performed
each second.

One of the consequences of this focus has been that some of the vital contrib-
utors to application run-time have been developed at a much slower rate. One
such area has been that of input/output (I/O) – typically seen as somewhat of
a black-box which creates a need to read data at the start of a run and write
state information on completion.

As well as reading and writing state information at the beginning and end of
computation, the use of checkpointing is becoming common-place – where the

system state is periodically written to persistent storage so that, in the case of
an application fault, the computation can be reloaded and resumed. The cost
of checkpointing is therefore a slowdown at specific points in the application
in order to achieve some level of resilience. As we look to the future, the size
of multi-petaflop clusters looks set to bring reliability challenges from just the
sheer number of components – checkpointing will become a vital initial tool in
addressing these problems. Understanding the cost of checkpointing and what
opportunities might exist for optimising this behaviour presents a genuine op-
portunity to improve the performance of parallel applications at significant scale.

The Message Passing Interface (MPI) has become the de facto standard
for managing the distribution of data and process synchronisation in parallel
applications. The MPI-2 [13] standard introduced MPI-IO, a library of functions
designed to standardise the output of data to the file system in parallel. The
most widely adopted MPI-IO implementation is ROMIO [21] which is used by
both OpenMPI [9] and MPICH2 [10], as well as a number of vendor-based MPI
solutions [1, 5].

In addition to the standardisation of parallel I/O through MPI, many file
format libraries exist to further abstract low-level I/O operations such as data
formatting from the application. Through the use of libraries such as HDF-5 [11],
NetCDF [17] and Parallel NetCDF [12], information can be shared between mul-
tiple applications using the standardised formatting they create. Optimisations
can also be made to a single library, creating improvements in the data through-
put of many dependant applications. Unfortunately this has, in part at least,
created a lack of responsibility on the part of the code designers to investigate
the data storage operations used in their applications. The result has been poor
I/O performance that does not utilise the full potential of expensive parallel disk
systems.

In this paper we utilise the RIOT input/output toolkit (referred to through-
out the remainder of this paper by the recursive acronym RIOT) introduced
in [26] to demonstrate the I/O behaviours of three standard benchmarks at
scale. RIOT is a collection of tools specifically designed to enable the tracing
and subsequent analysis of application input/output activity. This tool is able
to trace parallel file operations performed by the ROMIO layer and relate these
to their underlying POSIX file operations. We note that this style of low-level
parameter recording permits analysis of I/O middleware, file format libraries
and application behaviour, all of which are assessed in a case study in Section 4.

The specific contributions of this work are the following:

– We extend previous work in [26] to demonstrate RIOT working at scale
on a 261.3 TFLOP/s Intel Westmere-based machine located at the Open
Computing Facility (OCF) at the Lawrence Livermore National Laboratory
(LLNL);

– We apply our tracing tool to assessing the I/O behaviour of three stan-
dard industry benchmarks – the block-tridiagonal (BT) solver application
from NASA’s Parallel Benchmark Suite, the FLASH-IO benchmark from

the University of Chicago and the Argonne National Laboratory and IOR,
a high-performance computing (HPC) file system benchmark which is used
during procurement and file system assessment [19, 20]. The variety of con-
figurations (including the use of MPI-IO, parallel HDF-5 [11] and MPI-IO
utilising collective buffering hints) available makes the results obtained from
our analysis of interest to a wider audience;

– We utilise RIOT to produce a detailed analysis of HDF-5 write behaviour for
the FLASH-IO benchmark, demonstrating the significant overhead incurred
by data read-back during parallel writes;

– Finally, through I/O trace analysis, we provide insight into the performance
gains reported by the Parallel Log-structured File System (PLFS) [4, 16] –
a novel I/O middleware being developed by the Los Alamos National Lab-
oratory (LANL) to improve file write times. This paper builds upon [26] to
show how file partitioning reduces the time POSIX write calls spend waiting
for access to the file system.

The remainder of this paper is structured as follows: Section 2 outlines previ-
ous work in the fields of I/O profiling and parallel I/O optimisation; Section 3
describes how parallel I/O is performed with MPI and HDF-5, and how RIOT
captures the low-level POSIX operations; Section 4 contains a case study de-
scribing the use of RIOT in assessing the parallel input/output behaviours of
three industry I/O benchmarking codes; finally, Section 5 concludes the paper
and outlines opportunities for future work.

2 Related Work

The assessment of file system performance, either at procurement or during
installation and upgrade, has seen the creation of a number of benchmarking
utilities which attempt to characterise common read/write behaviour. Notable
tools in this area include the BONNIE++ benchmark, developed for bench-
marking Linux file systems, as well as the IOBench [25] and IOR [19] parallel
benchmarking applications. Whilst these tools provide a good indication of po-
tential maximum performance, they are rarely indicative of the true behaviour
of production codes due to the subtle nuances that production grade software
contains. For this reason, a number of mini-application benchmarks have been
created which extract file read/write behaviour from larger codes to ensure a
more accurate representation of performance. Examples include the Block Tridi-
agonal solver application from NASA’s Parallel Benchmark Suite [2] and the
FLASH-IO [18] benchmark from the University of Chicago – both of which are
used in this paper.

Whilst benchmarks may provide a measure of file system performance, their
use in diagnosing problem areas or identifying optimisation opportunities within
large codes is limited. For this activity profiling tools are often required which
can record read/write behaviour in parallel. One approach, which aims to ascer-
tain the performance characteristics of production-grade scientific codes, is to

intercept communications between the application and the underlying file sys-
tem. This is the approach taken by RIOT, Darshan [6], developed at the Argonne
National Laboratory, and the Integrated Performance Monitoring (IPM) suite
of tools [8], from the Lawrence Berkeley National Laboratory (LBNL).

Darshan has been designed to record file accesses over a prolonged period of
time, ensuring each interaction with the file system is captured during the course
of a mixed workload. [6] culminates in the intention to monitor I/O activity for
a substantial amount of time on a production BlueGene/P machine in order to
generate analysis which may help guide developers and administrators in tuning
the I/O back-planes used by large machines.

Similarly, IPM [22] uses an interposition layer to catch all calls between the
application and the file system. This trace data is then analysed in order to
highlight any performance deficiencies that exist in the application or middle-
ware. Based on this analysis, the authors were able to optimise two I/O intensive
applications, achieving a four-fold improvement in run-time. In contrast to both
Darshan and IPM, RIOT focuses only on the POSIX function calls that are a
direct result of using MPI-IO functions. As a result of this restriction, the per-
formance data generated relates only to the parallel I/O operations performed,
allowing users to obtain a greater understanding of the behaviour of various I/O
intensive codes, as well as assessing the inefficiencies that may exist in any given
middleware or MPI implementation.

As a result of previous investigations, a variety of methods have been intro-
duced to improve the performance of existing codes or file systems. The devel-
opment of middleware layers such as the Parallel Log-structured File System
(PLFS) [4] and Zest [14] has, to an extent, bridged the gap between proces-
sor and I/O performance. In these systems multiple parallel writes are written
sequentially to the file system with a log tracking the current data. Writing se-
quentially to the file system in this manner offers potentially large gains in write
performance, at the possible expense of later read performance [15].

In the case of Zest, data is written sequentially using the fastest path to the
file system available. There is however no read support in Zest; instead, it serves
to be a transition layer caching data that is later copied to a fully featured file
system at a later non-critical time. The result of this is high write throughput
but no ability to restart the application until the data has been transferred and
rebuilt on a read capable system.

In a similar vein to [23] and [24], in which I/O throughput is vastly improved
by transparently partitioning a data file (creating multiple, independent, I/O
streams), PLFS uses file partitioning as well as a log-structured file system to
further improve the potential I/O bandwidth. An in-depth analysis of PLFS is
presented in Section 4.5.

3 Warwick RIOT

The enclosed area in Figure 1 represents the standard flow of parallel appli-
cations. When conducting a parallel I/O operation using MPI, the application

Storage /
File System

Application

libriot

MPI

libc / POSIX Layer

Operating System

MPI-IO POSIX

I/O Event
Trace

Po
st

-P
ro

ce
ss

or I/O
Timing

Stage 1 - I/O Tracing Stage 2 - Post-Processing

Locking/
POSIX

Operation
Timing

POSIX
Calls

HDF-5

PLFS

HDF-5

gnuplot

Graphical
Representation

Fig. 1: RIOT tracing and analysis workflow

will make a call to the MPI-IO library, which will then provide inter-process
communication and issue POSIX file operations as needed. When using an I/O
middleware such as HDF-5, the application first calls the HDF-5 library func-
tions, which will in turn will call a collection of MPI functions. PLFS can be
configured to be used as a ROMIO file system driver, which will sit between the
MPI library and the POSIX library in the application stack.

Tracing of I/O behaviour in RIOT is conducted using a two stage process. In
the first stage (shown on the left in Figure 1), the tracing library is dynamically
loaded and linked immediately prior to execution by the operating systems linker.
libriot then overloads and intercepts calls to MPI-IO and POSIX file functions.
The captured events are then performed by the library, where each function is
timed and logged for later processing. The library makes use of function inter-
position to trace activity instead of requiring code modification or application
recompilation. RIOT is therefore able to operate on existing application binaries
and remain compiler or implementation language agnostic.

When the application being traced has completed, RIOT uses an operating
system-level termination hook to write traced I/O information to disk – the
delay of logging (by storing events in memory as opposed to flushing to disk)
helps to prevent any distortion of application I/O behaviour which may result
through the output of information whilst the application is being observed.

In the second stage, a post-execution analysis of the I/O trace is conducted
(shown on the right in Figure 1). At this point I/O events are processed with ag-

gregated statistics such as file operation count, total bytes written/read, number
of locks etc. being generated.

Throughout this paper we make a distinction between effective MPI-IO and
POSIX bandwidths – in these studies, “MPI-IO bandwidths” refer to the data
throughput of the MPI functions on a per MPI-rank basis, “POSIX bandwidths”
relate to the data throughput of the POSIX read/write operations as if performed
serially, called directly by the MPI middleware.

4 Case Study

We previously reported on the use of RIOT using a maximum of 256 processing
elements on the Minerva cluster located at the Centre for Scientific Computing at
the University of Warwick [26]. In this paper we utilise the Sierra supercomputer
located at LLNL. Sierra is a 261.3 TFLOP/sec machine consisting of 1,849 nodes
each comprising of dual hex-core Intel X5660 “Westmere-EP” processors running
at 2.8 GHz. The machine offers 22,188 processor-cores each with a minimum
of 2 GB of system memory per-core. Three storage paths are provided, each
utilising the Lustre parallel file system with between 755 TB and 1.3 PB of
storage available. Bandwidth to each of the file systems ranges from 10 GB/sec
up to a maximum of 30 GB/sec. All applications and code compiled for this case
study were built using the GNU 4.3.4 compiler and OpenMPI 1.4.3. Both IOR
and FLASH-IO utilise the parallel HDF-5 version 1.6.9 library.

4.1 Input/Output Benchmarks

We provide analysis for three I/O benchmarks utilising a range of configurations
using the Sierra supercomputer. First we demonstrate the bandwidth tracing
ability of RIOT, providing commentary on the divergence between MPI-IO and
POSIX effective bandwidths. This difference in bandwidth represents the signifi-
cant overhead incurred when using blocking collective write operations from the
MPI library. We then analyse one simple solution to poor write performance pro-
vided by the ROMIO file system layer. Collective buffering creates an aggregator
on each node, reducing on-node contention for the file system by sending all data
through one process. We then monitor two middleware layers to show how they
affect the write bandwidth available to the application. The benchmarks used in
this study (described below) have been selected since they all have input/output
behaviour which is either extracted directly from a larger parallel application (as
is the case with FLASH-IO and BT) or have been configured to be representative
of the read/write behaviour used by several scientific applications.

The applications used in this study are:

– IOR [19, 20]: A parameterised benchmark that performs I/O operations
through both the HDF-5 and MPI-IO interfaces. In this study it has been
configured to write 256 MB per process to a single file in 8 MB blocks. Runs
have been performed on a range of configurations, utilising between 1 and

128 compute nodes. Its write performance through both MPI-IO and HDF-5
are assessed.

– FLASH-IO: This benchmark replicates the checkpointing routines found
in FLASH [7, 18], a thermonuclear star modelling code. In this study we
use a 24 × 24 × 24 block size per process, causing each process to write
approximately 205 MB to disk through the HDF-5 library.

– BT [2, 3]: An application from the NAS Parallel Benchmark (NPB) suite
has also been used in this study, namely the Block-Tridiagonal (BT) solver
application. There are a variety of possible problem sizes but for this study
we have used the C and D problem classes, writing a data-set of 6 GB and
143 GB respectively. This application requires the use of a square number of
processes (i.e., 4, 9, 16), therefore we have executed this benchmark on 1, 4,
16, 64, 256, 1,024 and 4,096 processors. Performance statistics were collected
for BT using MPI-IO with and without collective buffering enabled, and also
using the PLFS ROMIO layer.

Five runs of each configuration were performed, and the data contained through-
out this paper is the mean from each of these runs, in an effort to reduce the
influence of other users jobs.

4.2 MPI-IO and POSIX Bandwidth Tracing

First we demonstrate the MPI-IO and POSIX bandwidth traces for the three
selected benchmarks. Figure 2 shows the significant gap between MPI bandwidth
and POSIX bandwidth for each of the three benchmarks when using MPI-IO
and parallel HDF-5. It is important to note that effective bandwidth refers to the
total amount of data written divided by the total time spent writing as if done
serially. Since the MPI-IO functions used are collective blocking operations, we
can assume they are executed in parallel, therefore the perceived bandwidth is the
effective bandwidth multiplied by the number of processor cores. As the POSIX
write operations are performed in a non-deterministic manner, we cannot make
any assumption about the perceived bandwidth; it suffices to say it is bounded
by effective bandwidth multiplied by the processor count and the MPI perceived
bandwidth.

Figure 2 also demonstrates a large performance gap between the BT mini-
application and the other two benchmarks. This is largely due to the use of
collective buffering ROMIO hints utilised by BT. The performance of HDF-5 in
both IOR and FLASH-IO is also of interest. The POSIX write performance is
much close to the MPI-IO performance in both IOR with HDF-5 and FLASH-
IO. Despite this, the overall MPI-IO performance is lower when using HDF-5.
The performance gap between HDF-5 and MPI-IO is analysed in Section 4.4.
For the remainder of this study we concentrate on both BT and FLASH-IO as
these better emulate the write behaviour found in other scientific applications.

0.01

0.1

1

10

100

12 24 48 96 192 384 768 1536

E
ffe

ct
iv

e
B

an
dw

id
th

(M
B

/s
ec

)

Processors

MPI-IO – POSIX
MPI-IO – MPI

HDF-5 – POSIX
HDF-5 – MPI

(a)

0.01

0.1

1

10

100

12 24 48 96 192 384 768 1536

E
ffe

ct
iv

e
B

an
dw

id
th

(M
B

/s
ec

)

Processors

POSIX
MPI-IO

(b)

0.01

0.1

1

10

100

1000

1 4 16 64 256 1024

E
ffe

ct
iv

e
B

an
dw

id
th

(M
B

/s
ec

)

Processors

POSIX
MPI-IO

(c)

0.01

0.1

1

10

100

1000

16 64 256 1024 4096

E
ffe

ct
iv

e
B

an
dw

id
th

(M
B

/s
ec

)

Processors

POSIX
MPI-IO

(d)

Fig. 2: Effective MPI and POSIX Bandwidths for (a) IOR (with both MPI-IO
and HDF5), (b) FLASH-IO, (c) BT class C, and (d) BT class D

4.3 Collective Buffering in ROMIO

As stated previously, BT makes use of the collective buffering ROMIO hint.
This causes MPI to assign a set of “aggregator” processes that perform the I/O
required. This is shown in Figure 3, where each process writes to the file system
in (a) and each process communicates the data to an aggregator in (b). Using
an aggregator on each node reduces the on-node contention for the file system
and allows the file server to perform node-level file locking, instead of requiring
on-node POSIX file locking, as is the case without collective buffering.

Table 1 demonstrates the bandwidth achieved by BT with and without col-
lective buffering enabled. It is interesting to note the POSIX performance on
4 processor cores with and without collective buffering is very similar. As soon
as the run is increased to 16 processes, the POSIX bandwidth is significantly
reduced as there is now more on-node competition for the file system. Further-
more, the operating system cannot buffer the writes effectively as the behaviour
of the second compute node is unknown.

Processor Cores
4 16 64 256

MPI-IO

With collective buffering 70.86 23.63 4.45 1.24
Without collective buffering 9.90 3.46 1.34 0.54

POSIX

With collective buffering 490.08 293.30 109.71 21.94
Without collective buffering 329.69 6.63 4.85 3.49

Table 1: MPI-IO and POSIX write performance (MB/sec) for BT on class C,
with and without collective buffering

Node

Node

File System

(a)

Node

Node

File System

(b)

Fig. 3: (a) Each process writes to the file system and (b) each process communi-
cates with a single aggregator process on each node

4.4 Analysis of HDF-5

In [26] we demonstrated the performance of FLASH-IO on the Minerva cluster
located at the Centre for Scientific Computing at the University of Warwick.
Minerva utilises two GPFS servers, backed by an array of 2 TB hard drives,
connected through QLogic 4X QDR Infiniband. Table 2 demonstrates a similar
analysis for FLASH-IO at increased scale on the Sierra supercomputer. Whilst we
previously reported a significant locking overhead, this becomes negligible when
using the Lustre file system. However, there remains a large read-back overhead
when using HDF-5 through MPI-IO. In the worst case POSIX reads account for
nearly half the total MPI write time. As the problem is scaled, POSIX reads
still make up 20% of the overall MPI write time.

Whilst HDF-5 allows easy application integration, due to the standardised
formatting, it creates a significant overhead for parallel writes. When data is be-
ing written periodically for checkpointing or visualisation purposes, this overhead
creates a significant slow-down in application performance. This analysis moti-
vates opportunities for HDF-5 optimisations, including reducing or eliminating
the read-back behaviour and enabling some form of node-level write aggregation
to reduce locking overheads.

Processor Cores
12 24 48 96 192 384 768 1536

MB written 2812.48 5485.68 11037.27 23180.15 43191.78 86729.59 179202.26 365608.30
MPI write calls 636 1235 2436 4836 9634 19233 38432 76832
POSIX write calls 6050 11731 23584 49764 91707 184342 382608 783068
POSIX read calls 5824 11360 22856 48000 89328 179437 370904 757060
Locks requested 12000 24000 48000 96000 192000 384000 768000 1536000

MPI write time (sec) 331.14 1471.30 4832.43 20215.00 70232.87 288633.74 1145889.19 4942746.26
POSIX write time (sec) 166.54 696.58 2737.14 14298.17 44869.00 190337.91 845969.92 3909161.40
POSIX read time (sec) 139.40 503.34 1462.00 5850.12 16782.82 66895.21 235866.21 908076.69
Lock time (sec) 5.95 14.02 28.80 57.80 172.80 385.65 1176.30 4328.96

Table 2: Detailed breakdown of MPI-IO and POSIX timings for FLASH-IO
writes

4.5 Analysis of PLFS Middleware

Whilst HDF-5 has been shown to decrease parallel write performance, the Par-
allel Log-structured File System from LANL has been demonstrated to improve
performance in a wide variety of circumstances, including for production appli-
cations from LANL and the United Kingdom’s Atomic Weapons Establishment
(AWE) [4]. PLFS is an I/O interposition layer designed primarily for checkpoint-
ing and logging operations.

PLFS works by intercepting MPI-IO calls through a ROMIO file system
driver, and translates the operations from n-processes writing to 1 file, to n-
processes writing to n-files. The middleware creates a view over the n-files, so
that the calling application can view and operate on these files as if they were all
concatenated into a single file. The use of multiple files by the PLFS layer helps
to significantly improve file write times as multiple, smaller files can be written
simultaneously. Furthermore, improved read times have also been demonstrated
when using the same number of processes to read back the file as were used in
its creation [16].

Figures 4(a) and 4(b) present the average total MPI-IO and POSIX write
time per process for the BT benchmark when running with and without the
PLFS ROMIO file system driver. Note that as previously, POSIX bandwidth
in this table refers to the bandwidth of POSIX operations called from MPI-IO
and hence are higher due to the additional processing required by MPI. It is
interesting to note that the write time when using PLFS is generally larger or
comparable with the same run not utilising PLFS when using a single node (as
is the case with 1 and 4 processes) due to the on-node contention for multiple
files.

The effective MPI-IO and POSIX bandwidths are shown in Table 3. Whilst
previously we have seen POSIX write bandwidth decrease at scale, PLFS par-
tially reverses this trend as writes can be flushed to the cache as they are not
waiting on surrounding writes. The log structured nature of PLFS also increases
the bandwidth as data can be written in a non-deterministic sequential manner,
with a log file keeping track of the data ordering. For a BT class C execution

Processor Cores
1 4 16 64 256

MPI-IO

Standard 220.64 52.58 13.89 1.97 0.45
PLFS 164.21 29.81 21.07 23.72 12.18

POSIX

Standard 235.51 294.80 169.56 40.78 7.98
PLFS 177.34 142.51 235.44 538.13 437.88

Table 3: Effective MPI-IO and POSIX bandwidth (MB/sec) for BT class C using
MPI-IO and PLFS

0

10

20

30

40

50

60

1 4 16 64 256

A
ve

ra
ge

w
rit

e
tim

e
pe

rp
ro

ce
ss

or

Processors

Without PLFS
With PLFS

(a)

0

10

20

30

40

50

60

1 4 16 64 256

A
ve

ra
ge

w
rit

e
tim

e
pe

rp
ro

ce
ss

or

Processors

Without PLFS
With PLFS

(b)

Fig. 4: (a) MPI-IO write time per processor and (b) POSIX write time per pro-
cessor

on 256 processors, PLFS increases the bandwidth from 115.2 MB/sec perceived
bandwidth up to 3,118.08 MB/sec, representing a 27-fold increase in write per-
formance.

Figure 5 demonstrates that during the execution of BT on 256 processors,
concurrent POSIX write calls wait much less time for access to the file system.
As each process is writing to its own unique file, each process has access to
its own unique file stream, reducing file system contention. This results in each
POSIX write call completing much more quickly as the data can be flushed to
the cache. For non-PLFS writes we see a stepping effect where all POSIX writes
are queued and complete in a non-deterministic order. Conversely, PLFS writes
do not exhibit this stepping behaviour as the writes are not waiting on other
processes to complete.

The average time per POSIX write call is shown in Table 4. As the number of
processes writing increases, data written in each write decreases. However when
using standard MPI-IO, the time to write the data increases due to contention.
When using the PLFS ROMIO file system driver, the write time decreases due
to the transparent partitioning of the data files.

Processor Cores
1 4 16 64 256

Number of POSIX writes 13040 440 480 480 880

Standard MPI-IO

Total time in POSIX write (s) 27.617 22.264 38.459 159.348 816.373
Time per write (s) 0.002 0.051 0.080 0.332 0.928

MPI-IO with PLFS

Total time in POSIX write (s) 35.669 44.383 27.554 12.055 14.815
Time per write (s) 0.003 0.101 0.057 0.025 0.017

Table 4: Total time in POSIX writes and average time per POSIX write for BT
class C

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20

C
on

cu
rr

en
tP

O
S

IX
W

rit
es

Execution Time (Seconds)

MPI I/O
PLFS

Fig. 5: Concurrent POSIX write calls for BT through MPI-IO and PLFS

5 Conclusions

Parallel I/O operations continue to represent a significant bottleneck in large-
scale parallel scientific applications. This is, in part, because of the slower rate
of development that parallel storage has witnessed when compared to that of
micro-processors. However, other causes relate to limited optimisation at code
level as well as the use of complex file formatting libraries. The situation is that
contemporary applications can often exhibit poor I/O performance because code
developers lack an understanding of how their code utilises I/O resources and
how best to optimise for this.

In this paper we utilise the RIOT toolkit to intercept, record and analyse
information relating to file reads, writes and locking operations within three
standard industry I/O benchmarks and mini-applications. We presented a case
study demonstrating RIOT’s ability to:

– Calculate effective MPI-IO write bandwidths as well as produce bandwidths
for POSIX file system calls originating from MPI-IO at increased scale. The
comparison of these two figures demonstrates the slow-down in per-process
write speed which results from the use of MPI. Typically these overheads
arise because of file system contention, collective negotiation between MPI
ranks for lock ownership and the calculation of offsets at which reads or
writes take place;

– Provide detailed write behaviour analysis through the interception of read,
write and locking operations included aggregated read/write time and the
time spent obtaining or releasing per-file locks. Our results demonstrate the
significant overhead incurred when performing HDF-5-based writes in the
FLASH-IO benchmark. The nature of this analysis allows light-weight, non-
intrusive detection of potential bottlenecks in I/O activity providing a first
point at which application designers can begin optimisation;

– Compare low-level file system behaviour. In the last section of our case study
we were able to investigate the low-level improvement which results in the
use of PLFS middleware when executing the BT benchmark. PLFS is de-
signed specifically to reduce file system and parallel overheads through the
interposition of MPI file operations to re-target n-to-1 operations to n-to-n
operations. Tracing of these runs using RIOT was able to demonstrate im-
provement in MPI-IO bandwidth due to the improvement in parallel POSIX
bandwidth.

5.1 Future Work

This work builds upon preliminary work in [26] to show RIOT operating at scale
on the 261.3 TFLOP/s Sierra supercomputer. Future studies are planned, ap-
plying this method of I/O tracing to larger, full-science applications. We expect
these to exhibit increased complexity in their read/write behaviour resulting in
increased contention and stress on the parallel file system. Further work with
our industrial sponsors is also expected to use RIOT in the on-going assessment
of parallel file system software and I/O-related middleware including the use of
Lustre, GPFS, PLFS and alternatives.

Furthermore, future work is expected to include in-depth analysis of various
I/O configurations, such as that utilised by BlueGene systems. It is expected that
the performance characteristics seen on these systems will introduce additional
complexities in measuring and visualising the I/O behaviour.

Acknowledgements

This work is supported in part by The Royal Society through their Industry
Fellowship Scheme (IF090020/AM). Access to the LLNL Open Computing Fa-
cility is made possible through collaboration with the UK Atomic Weapons Es-
tablishment under grants CDK0660 (The Production of Predictive Models for

Future Computing Requirements) and CDK0724 (AWE Technical Outreach Pro-
gramme). We are grateful to Scott Futral, Todd Gamblin, Jan Nunes and the
Livermore Computing Team for access to, and help in using, the Sierra machine
located at LLNL. We are also indebted to John Bent and Meghan Wingate at
the Los Alamos National Laboratory for their expert PLFS advice and support.

References

1. Almási, G., et al.: Implementing MPI on the BlueGene/L Supercomputer. In: Pro-
ceedings of the 10th International European Conference on Parallel and Distributed
Computing (Euro-Par’04). pp. 833–845 (2004)

2. Bailey, D.H., et al.: The NAS Parallel Benchmarks. International Journal of High
Performance Computing Applications 5(3), 63–73 (1991)

3. Bailey, D.H., et al.: The NAS Parallel Benchmarks. Tech. Rep. RNR-94-007, NASA
Ames Research Center (March 1994)

4. Bent, J., et al.: PLFS: A Checkpoint Filesystem for Parallel Applications. In: Pro-
ceedings of the ACM/IEEE International Conference on Supercomputing Confer-
ence (SC’09) (November 2009)

5. Bull: BullX Cluster Suite Application Developer’s Guide (April 2010)
6. Carns, P., et al.: 24/7 Characterization of Petascale I/O Workloads. In: Proceed-

ings of the IEEE International Conference on Cluster Computing and Workshops
(CLUSTER’09). pp. 1–10 (September 2009)

7. Fryxell, B., et al.: FLASH: An Adaptive Mesh Hydrodynamics Code for Model-
ing Astrophysical Thermonuclear Flashes. The Astrophysical Journal Supplement
Series 131(1), 273 (2000)

8. Fuerlinger, K., Wright, N., Skinner, D.: Effective Performance Measurement at
Petascale Using IPM. In: Proceedings of the IEEE 16th International Conference
on Parallel and Distributed Systems (ICPADS’10). pp. 373–380 (December 2010)

9. Gabriel, E., et al.: Open MPI: Goals, Concept, and Design of a Next Generation
MPI Implementation. In: Proceedings of the 11th European PVM/MPI Users’
Group Meeting. pp. 97–104 (September 2004)

10. Gropp, W.: MPICH2: A New Start for MPI Implementations. In: Kranzlmller, D.,
Volkert, J., Kacsuk, P., Dongarra, J. (eds.) Recent Advances in Parallel Virtual
Machine and Message Passing Interface, Lecture Notes in Computer Science, vol.
2474, pp. 37–42. Springer Berlin / Heidelberg (2002)

11. Koziol, Q., Matzke, R.: HDF5 – A New Generation of HDF: Reference Manual
and User Guide. Tech. rep., National Center for Supercomputing Applications,
Champaign, Illinois, USA (1998)

12. Li, J., et al.: Parallel netCDF: A High-Performance Scientific I/O Interface. In: Pro-
ceedings of the ACM/IEEE International Conference on Supercomputing (SC’03)
(November 2003)

13. Message Passing Interface Forum: MPI2: A Message Passing Interface Standard.
High Performance Computing Applications 12(1–2), 1–299 (1998)

14. Nowoczynski, P., Stone, N., Yanovich, J., Sommerfield, J.: Zest Checkpoint Storage
System for Large Supercomputers. In: Proceedings of the 3rd Annual Workshop
on Petascale Data Storage (PDSW’08). pp. 1–5 (November 2008)

15. Polte, M., et al.: Fast Log-based Concurrent Writing of Checkpoints. In: Proceed-
ings of the 3rd Annual Workshop on Petascale Data Storage (PDSW’08). pp. 1–4
(November 2008)

16. Polte, M., et al.: ... And Eat It Too: High Read Performance in Write-Optimized
HPC I/O Middleware File Formats. In: Proceedings of the 4th Annual Workshop
on Petascale Data Storage (PDSW’09). pp. 21–25 (November 2009)

17. Rew, R.K., Davis, G.P.: NetCDF: An Interface for Scientific Data Access. IEEE
Computer Graphics and Applications 10(4), 76–82 (1990)

18. Rosner, R., et al.: Flash Code: Studying Astrophysical Thermonuclear Flashes.
Computing in Science & Engineering 2(2), 33–41 (2000)

19. Shan, H., Antypas, K., Shalf, J.: Characterizing and Predicting the I/O Perfor-
mance of HPC Applications using a Parameterized Synthetic Benchmark. In: Pro-
ceedings of the ACM/IEEE International Conference on Supercomputing (SC’08)
(November 2008)

20. Shan, H., Shalf, J.: Using IOR to Analyze the I/O Performance for HPC Platforms.
In: Cray User Group Conference (CUG’07). Seattle, WA, USA (May 2007)

21. Thakur, R., Lusk, E., Gropp, W.: ROMIO: A High-Performance, Portable MPI-
IO Implementation. Tech. Rep. ANL/MCS-TM-234, Mathematics and Computer
Science Division, Argonne National Laboratory (1997)

22. Uselton, A., et al.: Parallel I/O Performance: From Events to Ensembles. In: Pro-
ceedings of the IEEE International Symposium on Parallel Distributed Processing
(IPDPS’10). pp. 1–11 (April 2010)

23. Wang, Y., , Wang, Y., Kaeli, D.: Source Level Transformations to Improve I/O
Data Partitioning. In: Proceedings of the 1st International Workshop on Storage
Network Architecture and Parallel I/Os (SNAPI’03) (September–October 2003)

24. Wang, Y., Kaeli, D.: Profile-guided I/O Partitioning. In: Proceedings of the 17th
Annual International Conference on Supercomputing (ICS’03). pp. 252–260 (June
2003)

25. Wolman, B., Olson, T.: IOBENCH: A System Independent IO Benchmark. ACM
SIGARCH Computer Architecture News 17(5), 55–70 (1989)

26. Wright, S.A., Pennycook, S.J., Hammond, S.D., Jarvis, S.A.: RIOT – A Parallel
Input/Output Tracer. In: Proceedings of the 27th Annual UK Performance Engi-
neering Workshop (UKPEW’11). pp. 25 – 39 (July 2011)

