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Abstract

In this Capstone Project, we worked with a class of closure systems called convex
geometries, which are closure systems with a closure operator that satisfies the
anti-exchange property. We first looked at the result of optimization algorithm of
component quadratic systems, which are discussed in [4], and reproved it for the
case of convex geometries. We then investigated the following question: if a convex
geometry is given by a set of implications, is it possible to find its optimum basis
in polynomial time when the convex geometry does not have particular properties
(for instance, not component quadratic)?

1 Introduction

Let S be a set, and φ be a closure operator. If A,B ∈ 2S, the relation B ⊆ φ(A)
between A and B in a closure system 〈S, φ〉 can be written in the form of an implication
A → B. Thus the closure system 〈S, φ〉 can be given by the set of implications Σφ ={
A → B : A ⊆ S and B ⊆ φ(A)

}
. Many subsets of Σφ may define φ. The set Σφ is

called an implicational basis. Vice versa, given a set of implications Σ, one can generate
a closure operator φΣ : 2S → 2S with respect to it, which is defined as follows:

φΣ(Y ) = ∩
{
Z ∈ 2S : Y ⊆ Z and for every (A→ B) ∈ Σ if A ⊆ Z then B ⊆ Z

}
.

A set A is called a premise and a set B is called a conclusion of the implication A→ B.
In fact, several facets of closure operators were introduced. Some examples are: logi-
cal formulas, directed hypergraph, and Boolean functions. Implications are one of these
facets. They have many applications in the fields such as education, artificial intelli-
gence, and databases. There exist several types of bases for a closure system such as
canonical basis, D-basis, canonical direct basis, etc. If Σ =

{
Xi → Yi : 1 ≤ i ≤ k

}
is an implicational basis for a closure system 〈S, φ〉, then the size of Σ is defined as
s(Σ) = |X1| + |X2| + ... + |Xk| + |Y1| + |Y2| + ... + |Yk|. An optimum basis of a closure
system 〈S, φ〉 is a basis with the minimal size among all possible implicational bases of
〈S, φ〉. By optimizing an implicational basis Σ one will have several benefits such as saving
time for working with a closure system, carrying all information about a closure system
in a compact way. Unfortunately, it was shown in [3, 11] that, in general, an optimum
basis cannot be obtained from any basis in polynomial time.

However, there are several approaches taken to deal with this problem. First
approach is that a basis can be reduced to give another basis with less size, but that
basis will not be an optimum one. Second approach is to study and describe subclasses of
closure systems for which effective optimization of a given basis is possible. By effective
optimization we mean the optimization in polynomial time. One of the interesting classes
for studies of optimization is a class of convex geometries. Convex geometries are closure
systems whose closure operator satisfies the anti-exchange property. Algorithms for effec-
tive optimization of several subclasses of convex geometries were already obtained such
as optimization procedure for affine convex geometries [1, 7]. The question of optimiza-
tion of convex geometries in general without satisfying additional properties was raised
in [1, 7]. There is a class of closure systems called component quadratic (CQ) which are
first introduced in [4]. In [1] it was shown that there are examples of convex geometries
that are not CQ, and that there are examples of CQ closure systems which are not convex
geometries. In this paper, we worked on optimization of convex geometries of CQ type,
and we have done some programming work towards optimization of convex geometries in
general.
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The first part of this thesis is devoted to the convex geometries which are CQ.
More precisely, the proof of the effective optimization algorithm for CQ closure systems
is reconstructed for CQ convex geometries (the original proof for general CQ systems is
given in [4]). In the second part, the goal is to find an algorithm to optimize convex
geometries in general, particularly, non-CQ. For that purpose, some programming work
was done and shown with several hypotheses. However, before introducing the main work,
all necessary definitions and concepts are revised.

2 Definitions and Preliminary Statements

2.1 General concepts

Closure operator φ : 2S → 2S is called a closure operator on a set S, if:
1) Y ⊆ φ(Y ) (φ is increasing)
2) Y ⊆ Z ⇒ φ(Y ) ⊆ φ(Z) (φ is monotone)
3) φ(φ(Y )) = φ(Y ) (φ is idempotent)
The set S, called a base set, together with φ forms a closure system.

Alignment Let S be a set. Then a family F of subsets of S is called an alignment
of S, if F has the following properties:
1) S ∈ F .
2) Z, Y ∈ F ⇒ Z ∩ Y ∈ F .
The elements of an alignment are called closed sets.

Proposition 1 Given a closure operator φ and an alignment F , one can build a re-
lation between them.
(1) For any closure system 〈S, φ〉, the family F =

{
Y ⊆ S : Y = φ(Y )

}
is an alignment.

(2) If F ⊆ 2S is an alignment, then for a set Y , φ(Y ) = ∩
{
Z ∈ F : Y ⊆ Z

}
.

(3) The alignment and closure operator obtained in (1) and (2) are equivalent. More
precisely, given a closure operator φ, one can build an alignment Fφ with respect to it.
Then from this alignment one can generate a closure operator φFφ , which is equivalent to
the original closure operator φ. The same is true, if one starts with a given alignment F ,
and finally obtains FφF .

Properties of a closure operator and alignment Let 〈S, φ〉 be a closure system. φ
is said to satisfy the anti− exchange property, if for a closed set A of S (i. e. φ(A) = A)
and x, y /∈ A such that x 6= y, x ∈ φ(A ∪

{
y
}

)⇒ y /∈ φ(A ∪
{
x
}

).
There is an equivalent property of an alignment. If 〈S,F〉 is a closure system, then
the equivalent property of F to the anti-exchange property of φ is the following: for
A ∈ F , A 6= S, there exists a point x ∈ S \ A such that A ∪

{
x
}
∈ F .

Convex geometry A system 〈S, φ〉 is called a convex geometry, if φ is a closure opera-
tor, φ(∅) = ∅ and φ satisfies the anti-exchange property. Equivalently, a system 〈S,F〉 is
a convex geometry, if F is an alignment of S with the above equivalent property.

Let us give an example of a convex geometry defined by an alignment.
Example 1 Let S =

{
a, b, c, d

}
. Define a convex geometry on S through an alignment

F =
{{
a
}
,
{
b
}
,
{
c
}
,
{
d
}
,
{
a, b

}
,
{
b, c

}
,
{
c, d

}
,
{
a, b, c

}
,
{
b, c, d

}
,
{
a, b, c, d

}}
. It is easy

to check that F indeed satisfies the above mentioned property.
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Implicational basis Let 〈S, φ〉 be a closure system. An implicational basis of 〈S, φ〉, Σ,
is a set of ordered pairs (Xi, Yi) ∈ 2S × 2S with Yi 6= ∅. If A,B ∈ 2S and B ⊆ φ(A), this
relation between subsets A,B ⊆ S can be written in the form of an implication A→ B.
Thus the closure system 〈S, φ〉 can be given by an implicational basis Σφ =

{
A → B :

A ⊆ S and B ⊆ φ(A)
}

.

Vice versa, a closure operator can be defined through a given set of implications Σ,
which was given in the Introduction part. In practice, the following proposition is used
for determining if an element is in the closure of a set.
Proposition 2 z ∈ φΣ(Y ) if and only if there exists a sequence (Ai → Bi), i < k, impli-
cations in Σ such that A1 ⊆ Y,A2 ⊆ Y ∪ B1, ..., Ak ⊆ Y ∪ B1 ∪ ... ∪ Bk−1 and z ∈ Bk.
This sequence forms a path from any element of A1 to any element of Bk.

Example 2 Let us revisit the convex geometry in Example 1. The same convex ge-
ometry can be given by the set of implications Σ =

{
ad → bc, ac → b, bd → c

}
, and the

size of Σ is s(Σ) = 10.

Minimum basis A basis Σ is called minimum, if the cardinality of Σ (i.e. the number
of implications in Σ) is smallest among all possible bases defining a closure system. A
well-known minimum basis for closure systems is the canonical basis [11, 12].

Extreme points of a set A set of extreme points of a closed set A, i. e. φ(A) = A, is
the set ex(A) =

{
a ∈ A : φ(A \ a) ⊂ φ(A)

}
.

Theorem A closure system 〈S, φ〉 is a convex geometry if and only if for a closed subset
Y ⊆ S, φ(Y ) = φ(ex(Y )). [6]

Quasi-order Let v be a binary relation on a set S. Now take its transitive closure
and reflexive closure. Let that new relation be denoted as v∗. Then v∗ is a quasi-order.
Any quasi-order is represented as a partial order of equivalence classes. We will now
construct such a partial order.

Partition Let S be a given set. Define an equivalence relation ∼ on S as follows:
a ∼ b⇔ a v∗ b v∗ a.
This equivalence relation produces equivalence classes on S, and the set of these equiva-
lence classes is denoted as S/ ∼. Define a partial order ≤ on (S/ ∼,≤) as the following:
(a/ ∼) ≤ (b/ ∼) ⇔ a v∗ b. Thus, (S/ ∼,≤) is a poset.

2.2 Bases of convex geometries

For any closure system, the following is known:
1. Any optimum basis is optimization of the canonical basis, i.e., the shortening of the
premises and conclusions of the implications of the canonical basis. See, for example [2].
2. For any Y = φ(Y ) ⊂ S, the subset Σ(Y ) = {(A→ B) ∈ Σ : A,B ⊆ Y } is an exclusive
set of implications. If Σ is optimum for 〈S, φ〉, then Σ(Y ) is optimum for 〈Y, φY 〉, where
φY is the restriction of φ on Y . See the definition of an exclusive set of implications and
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Theorem 5.7 in [5].
Moreover, for any optimum Σ of a convex geometry 〈S, φ〉, the following is known:

3. For any (X → Y ) in the optimum basis, X = ex(φ(X)). Extreme points of φ(X) can
be found in polynomial time [9].
4. For any two implications X1 → Y1, X2 → Y2 ∈ Σ, φ(X1) 6= φ(X2). This is because
convex geometries are closure systems with unique critical sets [2]. Thus, applying the
observation in 2, the optimization can be done by one implication at a time, increasing
height of corresponding closure in the alignment.
5. For a binary implication (x → Y ) ∈ Σb, one needs to include in optimum Y =
ex(φ(x) \

{
x
}

) [1, 2].

3 Optimization of CQ convex geometries

For our purposes, we define a quasi-order in the following way.
Let Σ be a set of implications defining a convex geometry on S. We define b v a, if a ∈ A,
b ∈ B for A → B ∈ Σ. Then, as in the section 2.1, we build a quasi-order v and make
a partition of the set S into equivalence classes by a binary relation ∼ as defined above.
These equivalence classes on S we call components. Then we define a partial order ≤ on
the set of all components as given above.

CQ systems were introduced in [4] in the form of Horn Boolean functions. A clo-
sure system 〈S, φ〉 is said to be component quadratic (CQ), if there exists a basis Σ with
such implications B → a that B contains no more than one element from the component
a/ ∼, where a/ ∼ is defined as above.

Let us give an example of a CQ convex geometry.
Example 3 Assume a system 〈S, φ〉 is a CQ convex geometry, and Σ is the canonical basis
for this system with optimized left sides. Let S =

{
x, y, a, b, c, d

}
, where x,y are extreme

points of S. The canonical basis Σ of this system consists of the following implications:
xy → abcd
xb→ cd
ya→ b
yd→ b
ac→ d
The components derived from Σ are

{
a
}

and
{
b, c, d

}
. Since all implications in Σ that

have one element from the component
{
b, c, d

}
in the conclusion, have only one element

from this component in the premise, 〈S, φ〉 is CQ.

Let 〈S, φ〉 be a quadratic component convex geometry with a basis Σ. Suppose
that all implications in Σ are already optimized except the last one X → A, which is
non-binary, i.e. |X| > 1, and such that φ(X) = S, i.e. A = S/X. We need to optimize
X → A by X → A∗, where A∗ ⊂ A.

Let v∗ be a quasi-order defined on A with respect to Σ, and let 〈A/ ∼,≤〉 be a
naturally defined poset of components on A. Also define a property depth of a component
C ∈ A/ ∼ as 0, if the component is maximal in the poset 〈A/ ∼,≤〉, and as k if the
maximal chain in 〈A/ ∼,≤〉, with C being minimal element, has k + 1 elements. Having
only extreme points of set S on the left side of the implication X → A gives us optimized
left side, due to the result in [10]. The need to optimize each Xi → Ai at greater depths
before optimizing the implication X → A is shown in the theorem 5.7 in [5]. So, here we
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assume that all such Xi → Ai at depths greater than the depth of X → A are already
optimized.

Before discussing the procedure of optimization we need to introduce the following
definition.
Strong implication for a component Let C be a component of A\ ∼. We call an
implication (U → V ) ∈ Σ strong for a component C, if:
1. V has at least one element from C.
2. U does not have any element from C.

Procedure for optimization To optimize X → A by X → A∗, include into A∗ ele-
ments from A using the following rule:
1. One element from each maximal component.
2. One element from a non-maximal component when there is no strong implication for it.

Proposition 3 Let 〈S, φ〉 be a component quadratic convex geometry with a basis Σ.
Suppose that all implications in Σ are already optimized and we need to optimize a non-
binary implication X → A such that φ(X) = S. If X → A is optimized by X → A∗ using
the above procedure, then one obtains the basis that defines the same convex geometry.
Moreover, this basis is optimum.

Proof Before applying the rules of the proposed procedure, we need to clarify the set
on which components that need to be considered are taken. Some elements of the set A
on the right of the implication X → A could appear as a conclusion of the rest of impli-
cations (i. e. implications except X → A). Hence we do not need the last implication
X → A to obtain those elements. Moreover, if at least element of a component appears
in this way, then the whole component can be obtained without the implication X → A.
For this reason, we work only on the set A \ A1, where A1 = ∪

{
components obtained by

Σ \ (X → A)
}

.

Let Cj
k be a notation for the jth component at the depth = k, where 1 ≤ k ≤ n and

j ∈ J ⊂ N . At depth=0 since Ci
0’s are maximal in A/ ∼, according to our procedure we

include one element from each Ci
0, and denote them by ai0. The basis which is obtained

by replacing the component with one of its element is equivalent to the original basis,
which is shown in the following claim.

Claim 1 At depth = 0, if we replace X → A by X → A \
{
∪ Ci

0

}
∪

{
ai0
}

, then
Σ0 = Σ \

{
X → A

}
∪
{
X → A0

}
, where A0 = A \

{
∪ Ci

0

}
∪
{
ai0
}

, is equivalent
to Σ. Equivalently, X → A follows from Σ0.
Proof of Claim 1 Let Cs

0 be a component at depth=0, and assume that Cs
0 has at least

two elements. Then since 〈S, φ〉 is CQ and Cs
0 is a component, there is a path connecting

any two elements in Cs
0 . Suppose a0 is picked from Cs

0 , and a∗0 is any element in Cs
0 not

equal to a0. Because a0 and a∗0 are in the same component, there is a path between them
through implications in Σ, which is in the following form:
X1a0 → A1a

1
0 , X2a

1
0 → A2a

2
0 , ... , Xka

k
0 → Aka

∗
0 . Since a∗0 ∈ A∗ , implications X → A∗

and X1a0 → A1a
1
0 will give a1

0 ∈ φΣ0(X). Applying the same procedure further, we obtain
that a2

0, ..., a
∗
0 ∈ φΣ0(X). Since a∗0 was arbitrary, we get Cs

0 ⊆ φΣ0(X).

In fact, we need to add at least one element from each maximal component to obtain
the whole component through an implicational basis. This fact is stated in the following
claim.
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Claim 2 At depth = 0 addition of at least one element from a maximal component into
A∗ is necessary when optimizing X → A by X → A∗. In particular, since addition of one
element only is enough to get the component, this results in the optimum implicational
basis.
Proof of Claim 2 Since at depth = 0 all components are maximal, there is no component
such that there is an implication where this component implies maximal components.
Hence we cannot obtain elements from maximal components through any implication ex-
cept the one in which the left side is the set of extreme points of the closure system. To
have an optimum basis we add only one element from each maximal component.

By doing the same procedure for each Ci
0 at depth = 0, the closure of X, φΣ0(X), will

include every Ci
0.

Now suppose we have optimized (X → A) with (X → An−1 ∪ C) ∈ Σn−1, where
An−1 = ∪

{
aki : i ∈ Ik, k ≤ n − 1

}
and C is a component at the lowest depth = n,

such that φΣn−1(X) ⊇ C∗ for all C∗ > C in the poset (A/ ∼,≤) with depth < n. We need
to prove the proposition for the case when depth = n.
We can have two cases when depth = n:
1. There is a strong implication for a component C at depth = n. In this case, according
to the hypothesis, we do not include any element from C into A∗. Thus, Σn = Σn−1.
There is an implication X̃Ã→ an such that X̃ ⊂ X ,Ã ⊂ A, an ∈ C, and for ã ∈ Ã , we
have ã ∈ C̃ for C̃ > C. Then because C̃ ⊆ φΣn(X) , we have Ã ⊆ φΣn(X). Therefore,
an ∈ φΣn(X). Since C is a component, there is a path from an to any other element a∗n
in C through implications in Σn in the following form:
X1nA1nan → a1

n , X2nA2na
1
n → a2

n , ... , XknAkna
k
n → a∗n. Since we have CQ system,

elements in Asn are from components C ′ > C, thus, they are in φΣn(X). Because Xn1 ,
Xn2, ... , Xkn ⊂ X, φΣn(X) ⊃ an ∪ a1

n ∪ ... ∪ a∗n. Hence φΣn(X) ⊇ C.

2. There is no strong implication for a component C at depth = n: to prove this case we
first need to prove the following lemma.

Lemma If there is no strong implication for a component C ∈ A/ ∼, then in every
optimum basis for the implication X → A∗∗ one has A∗∗ ∩ C 6= ∅.
Proof of Lemma Since there is no strong implication for C, if B → D is in Σ, and
D ∩ C 6= ∅, then B ∩ C 6= as well.
Since c ∈ φΣ(X), there exists some sequence of implicationsX → A∗∗, X1A1 → A2 . . . , XkAk →
D, where c ∈ D. Here X1, . . . , Xk ⊆ X and A1 ⊆ A∗∗, A2 ⊆ A∗∗ ∪ A1, . . . , Ak ⊆
A∗∗ ∪ · · · ∪ Ak−1. (We assume that component C cannot be obtained without using
implication X → A∗∗.) Due to assumption, Ak−1 ∩ C 6= ∅. Then At ∩ C 6= ∅, for some
t < k−1, hence, At−1∩C 6= ∅, again by assumption of no strong implication. Proceeding
by this argument, we obtain that A∗∗ ∩ C 6= ∅, which is needed. End of Lemma’s Proof
Thus, we will need to include one element a0

n from component C: replace X → An−1 ∪C
by X → An−1 ∪ {a0

n} choosing any element from a0
n ∈ C. This will define new Σn. Then,

by argument similar to case 1, we will be able to obtain every element from C by using
inference from Σn.
It is estimated that the time spent on this procedure to add elements to A∗ is O(|S|2),
and the time needed to find extreme points of the set S is O = (s(Σ)) [13].
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4 Optimization of convex geometries in general

The question of optimization of convex geometries in polynomial time remains open.
In the second part of this Thesis, we worked toward this question. Several algorithms were
generated to obtain different properties that define convex geometries. To see how the
results will look like, one example is considered for all algorithms, where the base set is{
a, b, c, d, e, x, y

}
with 4 different orderings.

4.1 Alignment

First we generated a code for obtaining an alignment of a convex geometry
through compatible orderings, represented in [6].

Compatible ordering Let 〈S,F〉 be a convex geometry. A compatible ordering of
F is a total ordering of the elements of S, s1 < s2 < ... < sn, such that the set
Ci =

{
s1, s2, ..., si

}
∈ F for all i, 1 ≤ i ≤ n. The set of all compatible orderings of

F is denoted by Comp(F).

Monotone alignment Monotone alignment DE on a (finite) set S is the order align-
ment corresponding to some total order E on S: if E is s1 < s2 < ... < sn, then
DE =

{{
s1, ...sk

}
: k ≤ n

}
.

Theorem For every convex geometry 〈S,F〉 we have F = ∨E∈Comp(F)DE. [6]

Hence, constructing a system by this way guarantees that the system is a convex
geometry. Generating an alignment uses this constructional method and involves the fol-
lowing steps:
1. We need to order elements of a given system on each line. Let m be the number of
elements in a given base set S, and n the number of orderings.
2. Define n sets that represent orderings: Q1, Q2, ..., Qn such that Q1 =

{{
x1

}
,{

x1, x2

}
, ...,

{
x1, x2, ..., xm

}}
, ... , Qn =

{{
y1

}
,
{
y1, y2

}
, ...,

{
y1, y2, ..., ym

}}
, where

{
x1, x2,

..., xm
}

, ...,
{
y1, y2, ..., ym

}
are all equivalent sets and equivalent to the base set.

3. Let an initial alignment F0 = Q1. Then intersect each element of F0 with each
element of Q2, and add the result to the initial alignment. Hence new alignment is
F1 = F0 ∪

{
Q2 ∩ F0

}
. Repeat this procedure till the last ordering, Qn. Finally, denote

the resulting set as F . This is the alignment.
In the example below, there are four orderings of S and they are given in the code. Using
the algorithm, the following code was produced using the program Python:

n = 4 #number o f o rde r s
m = 6 #number o f e lements in a base s e t
o r g s e t = [ ” a ” , ”b” , ”c ” , ”d” , ”x ” , ”y ” ] ; #given base s e t
order = [

[ ” x ” , ”a ” , ”d” , ”c ” , ”b” , ”y ” ] ,
[ ” y ” , ”b” , ”a ” , ”d” , ”c ” , ”x ” ] ,
[ ” x ” , ”c ” , ”d” , ”b” , ”a ” , ”y ” ] ,
[ ” y ” , ”c ” , ”b” , ”d” , ”a ” , ”x ” ] ,

]

Q = [ ]
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f o r i in range (n ) :
Q. append ( [ ] )
s = ””
f o r j in range (m) :

s += order [ i ] [ j ]
Q[ i ] . append ( s )

F = Q[ 0 ]

f o r i in range (1 , n ) :
P = [ ]
f o r j in range ( l en (F ) ) :

f o r k in range ( l en (Q[ i ] ) ) :
s = ””
f o r l in range ( l en (Q[ i ] [ k ] ) ) :

i f Q[ i ] [ k ] [ l ] in F [ j ] :
s += Q[ i ] [ k ] [ l ]

i f l en ( s ) > 0 :
P. append ( s )

f o r j in range ( l en (F ) ) :
F [ j ] = ’ ’ . j o i n ( so r t ed (F [ j ] ) )

f o r j in range ( l en (P ) ) :
i f ”” . j o i n ( so r t ed (P[ j ] ) ) not in F :

F . append ( ” ” . j o i n ( so r t ed (P[ j ] ) ) )

p r i n t (” Alignment o f the g iven s e t : ” + s t r (F) , l en (F) )

This code produces the following alignment for the given set and its length without
counting an empty set:

Alignment o f the g iven s e t : [ ’ x ’ , ’ ax ’ , ’ adx ’ , ’ acdx ’ , ’ abcdx ’ ,
’ abcdxy ’ , ’ a ’ , ’ ad ’ , ’ acd ’ , ’b ’ , ’ ab ’ , ’ abd ’ , ’ abcd ’ , ’ y ’ , ’ by ’ ,
’ aby ’ , ’ abdy ’ , ’ abcdy ’ , ’ dx ’ , ’ cx ’ , ’ cdx ’ , ’ bcdx ’ , ’d ’ , ’ c ’ ,
’ cd ’ , ’ bd ’ , ’ bcd ’ , ’ bc ’ , ’ cy ’ , ’ bcy ’ , ’ bcdy ’ , ’ bdy ’ ] 32

4.2 Bases

We worked mostly with convex geometries that are given by their canonical basis
or D-basis. The codes for obtaining these bases are obtained from [8] using the alignment
code in the section 4.1 as the input.

The canonical basis is obtained in the following way:
1. Use the following definition to identify quasi− closed sets.
Let F be an alignment for a base set S. A set Q ∈ S is called quasi − closed if Q /∈ F
and F ∪Q is again an alignment for S. In other words, for every F ∈ F either Q ⊂ F or
Q ∩ F ∈ F . If Q is quasi-closed, then φ(Q) is called essential.
2. If F ∈ F is essential, then let Q =

{
Qi : quasi− closed and φ(Qi) = F, i ∈ [1, n]

}
.

3. We have φ(Q1) = φ(Q2) = ... = φ(Qn). Pick minimal one with respect to ⊆ for every
F that is essential. These sets are called critical, Ci.
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4. Canonical basis is Σ =
{
Ci → φ(Ci) \ Ci

}
.

de f c r i t i c a l (X, c lo sed , c l s ) :
i f i s I n (X, c l o s e d ) :

r e turn Fal se
Y = c l s [X] | X
subse t s = powerset (X) . d i f f e r e n c e ( r s e t ( [X] ) )
f o r Z in subse t s :

i f c l s [ Z ] | Z == Y and quas iClosed (Z , c l o s e d ) :
r e turn Fal se

re turn quas iClosed (X, c l o s e d )

de f quas iClosed (X, c l o s e d ) :
cnt = 1
f o r Y in c l o s e d :

i f X < Y:
cont inue

i f not i s I n (Y. i n t e r s e c t i o n (X) , c l o s e d ) :
cnt = 0
break

i f cnt == 1 :
re turn True

re turn Fal se

de f f indCBas i s (S , PS , c l o s e d ) :

i m p l i e s = createmap (S , PS , c l o s e d )
c b a s i s = [ ]
#p lace i s where p o t e n t i a l quasi−c l o s e d s e t s are taken to be checked
f o r i in i m p l i e s :

i f c r i t i c a l ( i [ 0 ] , c lo sed , d i c t ( i m p l i e s ) ) :
c b a s i s . append ( i )

r e turn c b a s i s

The other type of basis that we work with is a D-basis. The definition of D-basis is the
following:
A→ x is in D− basis, if for any a ∈ A, any B ⊆ φ(a), implication (A \ a) ∪B → x does
not hold.

de f b ina ry Imp l i c a t i on s (A, b i n a r i e s ) :
impl i ed = s e t (A)
f o r a in A:

f o r B in b i n a r i e s :
i f a in B [ 0 ] :

impl i ed = impl i ed | B[ 1 ]
r e turn impl i ed

de f f indDBas is ( cdubas i s ) :
dbas i s = s e t ( cdubas i s )

9



binary = s e t ( )
nb = s e t ( )
f o r i in cdubas i s :

i f l en ( i [0 ] )==1:
binary . add ( i )

e l s e :
nb . add ( i )

f o r X1 in nb :
f o r X2 in nb :

i f X1[1]==X2 [ 1 ] and X1 != X2 and X1 in dbas i s and X2 in dbas i s :
i f X1 [ 0 ] < b ina ry Imp l i c a t i on s (X2 [ 0 ] , b inary ) :

dbas i s . remove (X2)
re turn l i s t ( dbas i s )

The above code gives the following result for our example set:

Canonical Bas i s : [ bx−>cd , dy−>b , xy−>dbca , ca−>d , ay−>b ]
D Bas i s : [ xy−>b , bx−>d , ay−>b , xy−>a , xy−>c , xy−>d ,
dy−>b , ca−>d , bx−>c ]

4.3 Alignment from a given basis

After optimizing a given basis, we always need to check that we did not miss any
closed set in the system. The general procedure to obtain an alignment from a basis is
the following:
1. Given a base set X, for all Y ⊆ 2X , find all A→ B ∈ Σ such that A ⊆ Y .
2. A closure of Y is obtained by constructing a cycle, where the first element is Y1 =
Y ∪

{
B1 : A1 ⊆ Y,A1 → B1 ∈ Σ

}
. Then Y2 = Y1 ∪

{
B2 : A2 ⊆ Y1, A2 → B2 ∈ Σ

}
.

Continuing in the same way until we reach the n-th step when there is only one implication
An → Bn left such that either An 6⊆ Yn or Bn ⊆ Yn.
The following code was generated using the above notion to obtain an alignment from
any given basis:

de f getAlignment ( bas i s , b a s e s e t ) :
c l o s e d s e t = [ ]
power set = powerset ( b a s e s e t )
f o r Y in power set :

y = s e t (Y)
prev y = y
whi le 1 > 0 :

f o r i in b a s i s :
i f i [ 0 ] <= y :

p r i n t ( i [ 0 ] , y )
f o r x in i [ 1 ] :

y . add ( x )
i f l en ( y ) == len ( prev y ) :

break
prev y = y

i f l en ( y ) > 0 :
c l o s e d s e t . append ( r s e t ( y ) )

r e s = [ ]
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f o r x in c l o s e d s e t :
found = False
f o r y in r e s :

i f x == y :
found = True
break

i f found == False :
r e s . append ( x )

c l o s e d s e t = r e s

re turn tup l e ( c l o s e d s e t )

After obtaining the alignment, we need to check that the optimized basis gives
the same closure system as the original one. To do so, we generated the following code
that returns the value TRUE if the original alignment is equivalent to the new one after
optimization, otherwise it returns FALSE.

de f Equal ( c l1 , c l 2 ) :
c l t 1 = [ ]
c l t 2 = [ ]

f o r x in c l 1 :
s t r x = ””
f o r y in x :

s t r x += y
c l t 1 . append ( so r t ed ( s t r x ) )

f o r x in c l 2 :
s t r x = ””
f o r y in x :

s t r x += y
c l t 2 . append ( so r t ed ( s t r x ) )

c l t 1 = sor t ed ( c l t 1 )
c l t 2 = sor t ed ( c l t 2 )

i f l en ( c l t 1 ) != l en ( c l t 2 ) :
r e turn Fal se

f o r i in range ( l en ( c l t 1 ) ) :
i f c l t 1 [ i ] != c l t 2 [ i ] :

r e turn Fal se

re turn True

Taking our example set as an illustration with the original canonical basis gives
the desired result:

Closed s e t s : ( ( ’ a ’ , ’b ’ , ’ c ’ , ’d ’ , ’ x ’ , ’ y ’ ) , ( ’ b ’ , ’ c ’ ) ,
( ’ d ’ , ’ x ’ ) , ( ’ b ’ , ’ c ’ , ’d ’ , ’ x ’ ) , ( ’ y ’ , ) , ( ’ a ’ , ’b ’ , ’ y ’ ) ,
( ’ c ’ , ’ x ’ ) , ( ’ b ’ , ’ y ’ ) , ( ’ x ’ , ) , ( ’ a ’ , ’b ’ , ’d ’ , ’ y ’ ) ,
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( ’ a ’ , ’ c ’ , ’d ’ ) , ( ’ a ’ , ’d ’ , ’ x ’ ) , ( ’ d ’ , ) , ( ’ b ’ , ’ c ’ , ’d ’ ) ,
( ’ a ’ , ’b ’ , ’ c ’ , ’d ’ ) , ( ’ b ’ , ) , ( ’ a ’ , ’b ’ , ’ c ’ , ’d ’ , ’ x ’ ) ,
( ’ c ’ , ’d ’ ) , ( ’ b ’ , ’ c ’ , ’ y ’ ) , ( ’ b ’ , ’d ’ , ’ y ’ ) , ( ’ c ’ , ) ,
( ’ c ’ , ’ y ’ ) , ( ’ a ’ , ’b ’ , ’ c ’ , ’d ’ , ’ y ’ ) , ( ’ a ’ , ) , ( ’ a ’ , ’d ’ ) ,
( ’ a ’ , ’ c ’ , ’d ’ , ’ x ’ ) , ( ’ a ’ , ’b ’ , ’d ’ ) , ( ’ c ’ , ’d ’ , ’ x ’ ) ,
( ’ a ’ , ’ x ’ ) , ( ’ a ’ , ’b ’ ) , ( ’ b ’ , ’ c ’ , ’d ’ , ’ y ’ ) , ( ’ b ’ , ’d ’ ) )
32
True

4.4 Hypotheses

During the work on optimization of non-CQ convex geometries, we had several
hypotheses. Let 〈S, φ〉 be a non-CQ convex geometry with an implicational basis Σ. Sup-
pose all implications in Σ are optimized except a non-binary implication X → A such
that φ(X) = S. Our goal is to optimize X → A by X → A∗, where A∗ ⊂ A, as in the
previous chapter. Suppose as in the previous chapter, we constructed a poset of equiva-
lence classes of S that we called components with a binary relation ≤. However, to check
if each hypothesis was true, we tried to construct counter-examples and obtained them.
Here are the hypotheses and counter-examples:

1. To optimize X → A by X → A∗, one only needs to include into A∗ one element
from each maximal component from the defined poset; hence no element from other
components are added.
Counter − example :
Suppose we are given a convex geometry with the following basis: X =

{
x1, x2, x3

}
,

A =
{
a, b, c, d, e, f

}
X → abcdef
x1ac→ b
x2x3bd→ ea
x3af → bc
x1x2cd→ f
In this example,

{
d
}

is the maximal component. But if we optimize the first im-
plication by X → d, then since there is no implication having only d with elements
from X in a premise, we will not obtain elements from other components that are
not maximal. Hence the hypothesis is not true.

2. To optimize X → A by X → A∗, one needs to search for subsets of A in premises
of implications in Σ that have at least one element from X. Then one must find a
subset B of A such that if A∗ = B, then one will obtain all elements from A using
X → A∗ and other implications in Σ.

Counter − example:
Suppose we are given a convex geometry with the following basis: X =

{
x, y

}
,

A =
{
a, b, c, d, e

}
X → abcde
xde→ a
xab→ cd
ye→ c
ac→ d
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abe→ cd
xce→ ad
b→ a
In this example, the subsets of A that to be checked are

{
d, e

}
,
{
a, b

}
,
{
e
}

,
{
c, e

}
.

However, if one replaces A in X → A by any of these subsets, one will not get the
whole set A. For example, suppose X → A is optimized by X →

{
d, e

}
. Then one

obtains first element d, e. Then by applying the implication xde → a, one obtains
a. Then one cannot use any other implication. Hence one lacks elements b, c. Hence
the hypothesis is not true.

5 Conclusion

In this project a type of closure systems called convex geometries were considered.
In particular, a CQ subclass of convex geometries was considered in depth. A proof of the
optimization of CQ convex geometries was given by referring to the general optimization
algorithm of a CQ subclass of closure systems. Moreover, optimization of convex geome-
tries without additional property, in particular, non-CQ, was studied. More precisely, to
have more intuition on an optimization process we first needed to generate a number of
examples that would allow us to see some pattern in an algorithm. For that purposes,
several programs were created and one was used from a work which was done before [8].
After having all tools ready, we started to make hypotheses towards an optimization pro-
cedure, and obtained several. However, by searching and obtaining counter examples we
could see that those hypotheses were not correct in general; they worked for particular
cases only.

While working on this project, more precisely, on the problem of optimizing non-
CQ convex geometries, several interesting questions appeared that are worth investigating.
One of them is:

• How far the optimization algorithm for CQ case can be extended to non-CQ case
systems, i.e. algorithm of choosing one element from each component?

• Can we build an optimum basis given cdim(F), where cdim(F) is the minimum
number of compatible orderings needed to realize the alignment F?
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