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Abstract—Nowadays, it is an important trend in the system
domain to use the software-based virtualization technology to
build the execution environments (e.g., Clouds) and serve high
performance computing (HPC) applications. However, with the
extra virtualization layer, the application performance may be
negatively affected. Studies revealed that the communication
performance of the MPI library, which is widely used by the
HPC applications, would suffer a high penalty when a physical
host machine becomes overcommitted by virtual processors
(VCPU). Unfortunately, the problem has not received enough
attention and has not been solved yet in literature. In this paper,
we investigate the reasons behind the performance penalty, and
propose a solution to improve the communication performance
of running MPI applications in the overcommitted virtualized
systems. The experimental results show that by our proposal,
most HPC applications can gain performance improvement to
different extents among the overcommitted systems, depending
on their communication patterns and the overcommitting level.

Keywords-virtualization; cloud; MPI; performance;

I. INTRODUCTION

It is an important trend nowadays to use virtualization
technologies to build execution environments (e.g., Clouds
[1]) and serve scientific applications [2, 3]. Among these
virtualization technologies, the Xen hypervisor [4], which
allow users to execute hundreds of virtual machines on a
single physical machine with low extra overhead, is widely
adopted for such purposes, e.g., in Amazon EC2 [5] and
GoGrid [6].

With the introduction of this extra virtualization layer,
the communication performance of the MPI library, which
is widely used by the HPC applications, would suffer a
high penalty [7, 8] when the virtualized platform by Xen
is overcommitted, i.e., the number of executable VCPUs
is more than the number of available PCPUs in the sys-
tem. This overcomitting situation is very likely to happen
in Cloud Computing environments, because Cloud service
providers tend to consolidate several virtual machines to
limited physical server nodes in order to fully exploit the
computing resources. For example, the work in [9] analyzed
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17 real-world datacentres and the customer data show that
the average VCPUs-to-core ratio is 4:1. The work in [10]
investigated the impact of virtualization on Amazon EC2.
The work revealed that there were several virtual machines
(called instances) running on one physical server, and conse-
quently, one instance only receives a share of the processor
(e.g., a small instance typically receives only a 40% to 50%
share of the processor). The performance problem caused
by overcommitting was also clearly exhibited in [3]. In [3],
the NAS EP benchmark [11] was run on Amazon EC2 with
the requested number of cores increasing from 4 to 32. For
each requested number of cores (VCPUs), the results show
that the execution performance greatly fluctuates among the
different runs of the same configuration, especially when the
benchmark was run by a large number of requested cores.

In this paper, we investigate the MPI communication
performance problem in overcommitted virtualized systems,
and reveal that the underlying reasons behind the perfor-
mance hit is the busy-polling mechanism employed by the
MPI libraries. Further, we propose a solution to improve
the MPI communication performance in the overcommit-
ted systems, and implemented the proposed solution into
MPICH2-1.2.1, which is one of the most popular MPI
libraries. Extensive experiments have been conducted for
the implementation. The results show that in the worst-
case overcommitted scenarios with two VCPUs, our solution
can improve the MPI communication performance by up to
about 700 times in the Credit scheduler and about 4 times in
the SEDF scheduler. And in the real-world overcommitted
virtualized systems, the execution performance of most HPC
applications can be improved to different extents, depending
on their communication patterns and the overcommitting
level.

The work presented in this paper can give the Cloud
service providers the insight into the performance problem of
running the parallel programs with MPI libraries, and foster
further studies on other potential approaches to avoiding
such performance loss.



The rest of the paper is organized as follows: Section
IT gives a brief survey on the related works. Section III
conducts the benchmarking experiments to demonstrate the
performance penalty occurring in the overcommitting sit-
uation, as well as the impacts of such penalty on the
performance of benchmark programs. Section IV thoroughly
analyzes the performance problem and reveals its underlying
causes. Our solution to address the problem is presented
in Section V. The proposed solution is then evaluated in
Section VI. Section VII concludes the paper.

II. RELATED WORK

The research work related to our study can be categorized
into three aspects:

A) Performance studies of HPC workloads on Xen and
HPC-in-the-Cloud

Since the Xen virtualization technology was introduced,
many performance studies [2, 3] were conducted to investi-
gate the feasibility of using virtualized platforms to run HPC
workloads. Among these studies, only a few of them [3, 7]
noticed the high performance penalty on MPI communica-
tion in overcommitted virtualized systems. However, some
of these research studies erroneously attribute the reason of
this performance problem to the scheduler of the hypervisor.

In recent years, we have seen an increasing adoption of
cloud computing in a wide range of scientific applications,
such as high-energy and nuclear physics, bioinformatics,
astronomy and climate research [2]. However, in a typical
Cloud environment, the users have no control over the
underlying physical resources, and overcommitting may
occur unwittingly, which results in unexpected performance
penalty.

B) Improving MPI communication performance on
Xen

The research work in this aspect concentrates on im-
proving the performance of the underlying networks (e.g.,
InfiniBand, 10Gbps Ethernet and the TCP/IP stack) in vir-
tualized environments. The techniques proposed by these
studies include VMM-bypassing [12], using XenLoop [13]
alike techniques to replace the loopback network with the
shared memory [14], and using a dedicated CPU core to
handle all communications [15]. However, none of these
studies addressed the overcommitted scenarios.

C) Research on the Xen scheduler

During the short development history of the Xen hy-
pervisor, at least three scheduling algorithms [16] have
been introduced, including Borrowed Virtual Time (BVT),
Simple Early Deadline First (SEDF) and Credit. As the BVT
scheduling algorithm is no longer supported by the latest
Xen releases, only the SEDF and the Credit schedulers are
investigated in this paper.

Simple Earliest Deadline First (SEDF) is a real-time
scheduling algorithm. In the SEDF scheduler, each domain
Dom; specifies its CPU requirements with a tuple (s;, p;,

x;), where the slice s; and the period p; together represent
the CPU share that Dom; requests: Dom; will receive at
least s; units of time in each period of length p;. The boolean
flag z; indicates whether Dom; is eligible to receive extra
CPU time. SEDF distributes this slack time in a fair manner
after all runnable domains receive their CPU shares.

The Credit scheduler is currently the default scheduler in
Xen. The scheduler allocates the CPU resources to VCPU
according to the weight of the domain that the VCPU
belongs to. It uses credits to track VCPU’s execution time.
Each VCPU has its own credits. If one VCPU has credits
greater than 0, it gets UNDER priority. When it is scheduled
to run, its credit is deducted by 100 every time it receives
a scheduler interrupt that occurs periodically once every
10ms (called a tick). If one VCPU’s credit is less than
0, its priority is set to OVER. All VCPUs waiting in the
run-queue have their credits topped up once every 30ms,
according to their weights. The higher weight a domain has,
the more credits are topped up for its VCPUs every time.
An important feature of the Credit scheduler is that it can
automatically load-balance the virtual CPUs across PCPUs
on a host with multiple processors. The scheduler on each
PCPU can “steal” VCPUs residing in the run-queue of its
neighboring PCPUs once there are no VCPUs in its local
run-queue. The biggest shortcoming of the Credit scheduler
is its poor support for I/O events. The improvement works,
such as the introductions of the BOOST priority [17] and
BCredit [18], which essentially works by changing the dom0
VCPUs’ credits so that domO remains in UNDER state and
keeps its BOOST priority, have been made to alleviate the
problem.

III. PERFORMANCE PENALTY

We use a two-core COTS (Commercial off-the-shelf) PC
server as our testbed to investigate the performance prob-
lem of MPI communication in overcommitted virtualized
systems. It has an Intel Core 2 Duo E6550 processor.
The processor has two cores, running at 2.33GHz with
128KBytes L1 cache and shared 4MBytes L2 cache. It is
configured with 2GBytes DDR2 memory and 160GB SATA
hard disk drive. For virtualization, we use Xen of version
3.4.2. The guest domains (including domO and domUs) are
installed Redhat Enterprise Linux x86_64 with version 5.1.
The Xen-Linux of kernel version 2.6.18.8 is used to boot all
guest systems including dom0. DomO is the only privileged
domain, which contains all drivers of the physical devices,
and is configured with 512 MBytes memory. The domUs
used in the experiments are Para-virtualized (PV) guests
configured with 256 MBytes memory, 4 GBytes virtual
hard disk drive, and a virtual network interface card to
communicate with the outside world (via the bridge network
of dom0). All the experiments in this paper adopt default
scheduling parameters for the guest domains: On the Credit
scheduler, all domains will have the same weight number of



256, the cap value 0; On the SEDF scheduler, the scheduling
parameter for dom0 is (15ms, 20ms, 1) and that of the
domUs is (Oms, 100ms, 1).

As for the MPI library, we chose MPICH2-1.2.1 [19].
We also noticed that other MPI libraries, such as MPICH-
1.2.7p1 [20] and OpenMPI-1.4 [21] have similar commu-
nication performance problem on overcomitted virtualized
systems.

A. Communication Performance

The benchmark we used to collect MPI communication
performance data is Beff [22]. We only show the com-
munication performance of the Send/Receive tests in this
subsection, since the performance data from other tests (e.g.,
all-to-all, non-blocking, and etc.) follows the similar pattern.

We boot the testbed with a 2.6.28-rc2 Linux kernel that
does not have SMP support to form a uni-processor (UP) en-
vironment, and obtain the MPI communication performance
(we call it native_up) between two benchmark processes
of Beff, and use the native_up data as the reference for
communication performance.

Since some schedulers of Xen, such as the Credit sched-
uler, employs the aggressive VCPU migration policy and
spreads VCPUs across PCPUs to achieve load-balancing, the
VCPUs may switch PCPUs during execution. Therefore, it
is difficult to determine whether and in which periods the
VCPUs are overcommitted on the fly. In order to facilitate
further discussions and effectively evaluate the communi-
cation and execution performance of the applications, we
manually pinned the VCPUs on one PCPU, which should
be the worst-case overcomitted situation. As by using MPI
primitives, the processes running in the virtualized system
may communicate via two possible channels: the network
system of domO (i.e., the inter-VM case) and shared memory
(i.e., the intra-VM case), we defined the four worst overcom-
mitted cases as follows:

o inter_vm_credit_pin: The hypervisor uses the Credit
scheduler and is booted with two processing cores. Two
domUs are created, each of which has only one VCPU,
and all of their VCPUs are pinned to the same physical
core. The MPI communication performance between
these two domUs is then measured.

o inter_vm_sedf pin: The same as inter_vm_credit_pin,
except that the Xen hypervisor uses the SEDF sched-
uler.

o intra_vm_credit_pin: The hypervisor uses the Credit
scheduler and is booted with two processing cores.
One domU with two VCPUs is created, and both of
its VCPUs are pinned to the same physical core. The
MPI communication performance inside the domU is
measured.

o intra_vm_sedf_pin: The same as intra_vm_credit_pin,
except that the Xen hypervisor uses the SEDF sched-
uler.
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Figure 1: MPI communication performance in the worst-case
overcommitted scenarios

The performance data is illustrated in Fig. 1 (The in-
ter_vm_credit_pin curve and intra_vm_credit_pin curve
overlap with each other as the data in these two cases are
close).

From Fig. 1, it can be observed that compared with the
native_up case, the MPI communication performance of the
defined overcomitted cases is much worse. In all such four
overcommitted cases, the communication performance in
the SEDF scheduler is always better than that obtained in
the Credit scheduler. This is because the SEDF scheduler
defines smaller time slices than the Credit scheduler, and the
frequent scheduling reduces the performance loss caused by
the busy-polling mechanism employed by the MPI commu-
nication library, which will be discussed in detail later.

B. Performance of Selected Benchmark Programs

To further investigate the performance problem in over-
committed systems, we employ three benchmark programs
from the NPB suite of version 3.3 [11], i.e., is.A.2 (in-
teger sorting, which relies on all-to-all communication to
exchange intermediate results), lu.A.2 (solving five coupled
parabolic/elliptic partial differential equations, which needs
to communicate to exchange data during computation) and
ep.A.2 (random number generator, which is “embarrass-
ingly” parallel computing in that no communication is
required for generating the random numbers). The reason
we choose these three benchmarks is that they exhibit three
typical characteristics of HPC applications: communication
intensive with little computation, i.e., [S; CPU intensive with
little communication, i.e., EP; and that lies in the middle,
i.e., LU. The execution times of these benchmark programs
(MPI version) are presented in Table I (each figure in the
table as well as in other tables in this paper is the average
over four independent runs).

It can be observed from Table I that with the Credit
scheduler, compared with the execution time in the native_up
case, in the inter_vm_credit_pin case, the execution time of
is.A.2 and lu.A.2 is about 30 times and 4 times longer, re-
spectively. And compared with the native_up data also, in the



Table I: The execution times of selected benchmark pro-
grams in the worst-case overcommitted scenarios (in Sec-
onds)

18.A.2 lu.A2 ep.A.2

native_up 3.39 193.84 31.26
inter_vm_credit_pin 106.2 1039.28 36.51
inter_vm_sedf_pin 4.61 228.65 37.86
intra_vm_credit_pin | 45.08 275.56 36.31
intra_vm_sedf_pin 3.97 195.92 37.74

intra_vm_credit_pin case, the execution time of is.A.2 and
lu.A.2 is about 12 times and 0.5 times longer, respectively.

The performance penalty is less serious in the SEDF
scheduler: Compared with the native_up data, in in-
ter_vm_sedf_pin case, the execution time of is.A.2 only
increases by 35%, and that of lu.A.2 increases by about 18%.
In intra_vm_sedf _pin case, the execution time of is.A.2 is
increased by 17% while that of 1u.A.2 is close to the native
performance. This is because the SEDF scheduler schedules
the VCPUs with smaller time slices and this greatly reduces
the chances of wasting the CPU cycles caused by the busy-
polling mechanism employed by the MPI library.

It can also be observed that the performance of ep.A.2
seems not to be significantly affected. This is because
the processes of ep.A.2 do not need to communicate with
each other during the computing phase. However, it can be
observed that the execution time of ep.A.2 in the SEDF
scheduler is slightly higher than that in the Credit scheduler.
This is because with smaller time slices, the VCPUs will be
scheduled more frequently in the SEDF scheduler, which
results in the higher overhead in the hypervisor.

C. Discussions

We created the worst VCPU overcommitting cases by
deliberately pinning the VCPUs to the same physical proces-
sor. Although in reality people seldom deliberately confine
multiple VCPUs to running on the same PCPU, performance
penalty similar to that in these four overcommitted cases
may still occur in real overcommitted virtualized systems.
There are at least two main reasons:

First, in the current Xen architecture, the scheduling
decisions are made locally: Each PCPU of a multi-processor
system maintains its VCPU run-queue and schedules them
to run without any coordination with other PCPUs in the
system. Therefore, in real overcommitted systems, it is highly
likely that two VCPUs that host the processes communicat-
ing with each other via MPI primitives are not scheduled
to run in parallel. When the VCPU that hosts the message
receiving process is running in one PCPU but the VCPU
that hosts the message sending process is scheduled out in
another PCPU, the busy-polling receiving may still occur
(the difference is just that the two VCPUs now reside in the
run-queues of different PCPUs).
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Figure 2: A comparison of XenOprofile data

Second, in the load-balancing strategy of the Credit
scheduler, which is the current default scheduler in Xen,
VCPUs are allowed to be migrated among all available
PCPUs of the system. This strategy may cause the VCPUs
communicating with each other to run on the same PCPU,
which forms exactly the same overcommitting scenario as
those described in Subsection III-A and III-B. And this situ-
ation is more likely to happen in the overcomitted virtualized
systems, since there are more runnable VCPUS.

IV. CAUSES OF THE PERFORMANCE PENALTY

We use XenOprofile [23] to collect statistical perfor-
mance data when running is.A.2 in the configurations of
inter_vm_credit_pin and intra_vm_credit_pin. For compar-
ison, we also collect the performance data when running
is.A.2 in the configuration of inter_vm_credit_free, in which
the VCPUs of two domUs are not pinned to the same
PCPU (i.e., to simulate the non-overcommitted case). Fig. 2
illustrates the performance data'.

From Fig. 2, it can be observed that compared with the
non-overcommitted case, the number of CPU cycles spent
on domU kernels, MPI library and the user-level libraries of
domU increases dramatically in the overcommitted cases,
while the application (i.e., is.A.2) itself always consumes
almost the same amount of CPU cycles.

From the XenOprofile performance data, we found that
in the inter_vm_credit_pin case, the MPI functions in the
library (i.e., MPICH2-1.2.1) that consumes most CPU cy-
cles are MPID_nem_tcp_connpoll, MPIDI_CH3I_Progress
as well as MPID_nem_network_poll. While in the in-
tra_vm_credit_pin experiments, the function that consumes
most CPU cycles is Imt_shm_recv_progress. A close look
into the source code of the library reveals that these functions
belong to the message receiving mechanism of MPI: For
block receiving operations (e.g., MPI_Recv and MPI_Wait),
the library will continuously poll the socket file descriptor
(FD) set (the inter-VM case) or the shared memory (the
intra-VM case) until a message is received. During this
process, non-blocking operations on the socket FD set or

Iwe only attribute randlc, rank, full_verify and create_seq to is.A.2



the shared memory are performed. Therefore the polling
mechanism will not bring the VCPU that hosts the message-
receiving process into the block status, which makes the
VCPU keep running until the end of the time-slice.

In order to prevent this busy-waiting message receiving
(we call it “busy-polling”) mechanism from lasting so long
as to consume large quantities of processing resources, MPI
library uses a threshold based yielding mechanism: When
the library polls up to the pre-defined times (e.g., 1000
times for MPICH2-1.2.1), the message receiving process
should give up its possession of the processor by issuing
a yielding syscall (i.e., sched_yield in Linux) in the guest
operating system. However, in virtualized environment, for
the overcommitted case of inter_vm_credit_pin, there is only
one process running inside each of the domUs. The process
that polls the socket FD set to receive messages will be
scheduled to run again immediately after its yielding syscall,
and therefore continue to consume more CPU cycles in
vain. In the meanwhile, the VCPU hosting the message
sender is not running, but waiting to be scheduled in the
run-queue of the same physical processor. This explains
the high performance penalty experienced when running
is.A.2 in the overcommitted case of inter_vm_credit_pin,
since is.A.2 heavily relies on all-to-all communications (i.e.,
MPI_Alltoall and MPI_Alltoallv) to exchange intermediate
results between the processes residing in different domUs,
which results in frequent busy-polling. Consequently, the
frequent polling and yielding within the guest systems will
inevitably cause high CPU consumptions of the guest OS
kernel as well as the user-level libraries.

However, the previous analysis cannot explain the perfor-
mance penalty experienced in the intra_vm_credit_pin case,
since two communicating processes of is.A.2 co-exist in the
same domU with two VCPUs. Normally, if one process gives
up its possession of the processor due to block receiving
and polling up to the pre-defined times, another process
should be scheduled to run, and this should not have such
high performance loss. In order to explain the performance
problem in this case, we propose a hypothesis: For the
processes communicating with each other using blocking
MPI message receiving primitives, each of the processes
will be eventually scheduled to execute on each of the
VCPUs of the SMP domU. After that, when one of the
processes that is blocked in message receiving tries to give
up the processor possession by yielding, the scheduler of
the guest OS will find that the other process is still running
on another processor (i.e., VCPU from the hypervisor’s
point of view), and therefore the yielding process will be
scheduled in the same processor to run immediately again,
which continues to consume more CPU cycles in vain until
the end of the VCPU time slice. To verify this hypothesis,
we employ a simple ping-pong benchmark, which invokes
two processes exchanging a message buffer of 1000 bytes
by using MPI_Send and MPI_Recv, to run in the domU of
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the intra_vm_credit_pin case. The message round trip time
(RTT) is recorded and illustrated in Fig. 3.

From Fig. 3, it can be observed that for the first 813 times
(the 814th time is the breaking point) of communications, the
RTT is rather small (below 0.05ms), while after the breaking
point, the RTT jumps to 60ms for most of the time and never
comes down.

The performance data can be explained as follows. When
the benchmark program is invoked, the two communicating
processes (denoted as process A and B) are scheduled
concurrently on one virtual processor (since it is in the
overcommitted scenario and only one VCPU is scheduled
to execute at a time). This results in the low RTT before
the breaking point, as the yielding operation causes actual
process scheduling. However, after the VCPU hosting these
two processes uses up its 30ms time slice defined by the
Credit scheduler, the VCPU is going to be scheduled out. At
this moment, there is a high possibility that one of the pro-
cesses (assume it is process A) is still running on the VCPU.
After that, the hypervisor schedules the other VCPU of the
domU to run, which will in turn put the other communicating
process (process B) in execution. Nevertheless, the yielding
of process B will not cause the actual process scheduling
in the guest system again, since process A is considered
“running” on the scheduled-out VCPU. This situation will
last until the termination of the block receiving operations.

Another noticeable observation that can be observed from
Fig. 3 is that after the breaking point, the RTT stabilizes at
around 60ms (90ms in some occasions), which is twice of
the length of the time slice defined by the Credit scheduler.
This further verifies our deduction that the busy-polling
mechanism adopted by MPI will result in meaningless CPU
consumptions until the VCPU time slice is used up in the
intra-VM cases.

From the above discussions, we found that in overcom-
mitted virtualized systems, the MPI performance penalty
is caused by the busy-polling mechanism employed by
the MPI libraries. However, from another perspective, the



performance penalty is also due to the lack of commu-
nication between the scheduler of the hypervisor and the
scheduler of the guest operating system. On one hand, since
these two schedulers work independently in the current Xen
architecture, the scheduler of the guest OS may have the
misperception that a processor is still running even after its
container (i.e., the VCPU) has actually been scheduled out
by the hypervisor. On the other hand, the scheduler of the
hyervisor does not really understand whether the workload
inside a VCPU is meaningful.

V. OUR SOLUTION

From the discussion in Section IV, we can deduce that
the key to improve the communication performance in
the overcommitted virtualized systems is to avoid wasting
processing resources on unnecessary message polling. There
are at least three possible ways to achieve this goal: 1)
replacing the busy-polling mechanism with block-polling, 2)
improving the scheduling algorithm of the hypervisor, and
3) exposing the scheduling information of the guest OS to
the hypervisor or vice versa.

For the first possible solution, the non-blocking polling
operations on the socket FD set or shared memory can be
substituted with the blocking operations. For example, for
the inter-VM cases, blocking operations should be performed
on the FD set, instead of the original non-blocking ones used
in the current MPI library implementation. It seems that this
method can avoid wasting CPU resources unnecessarily on
message polling. However, this solution will inevitably cause
frequent and expensive VCPU context switching, and will
therefore damage the performance. Moreover, it is hard, if
not impossible, to implement blocking polling operations on
the shared memory.

It is also possible to improve the communication perfor-
mance from the perspective of the hypervisor’s scheduling
algorithm. However, the smaller time slices also mean more
frequent scheduling, which consequently results in heavier
scheduling overhead in the hypervisor and negatively af-
fects the performance of applications that do not perform
much communications, such as EP from NPB. It is also a
promising solution to schedule the VCPUs by groups on
multiprocessor hosts (i.e., Gang-scheduling [24]) according
to which VCPUs communicate with each other. Although
the group scheduling approach has the potential to become
a general solution to mitigate the performance penalties in
overcommitting VCPU scenarios, adopting such a technique
will result in the complexity in the system design, and
require addressing many difficult issues, such as how to
collect the communication pattern among the VCPUs, how
to ensure other non-HPC workloads are not negatively
affected, and so forth. We plan to investigate this approach
in our future work.

In this paper, we take the third approach to improve MPI
communication performance in the overcommitted virtual-

pollcount = 0;
do{
polling for message;
if( pollcount > Threshold_Times){
pollcount = 0;
T1 = now();
yield in guest OS;
T2 = now();
if( (T2-T1) < Sched_Gap )
notify the hypervisor to reschedule.

}

++pollcount;
Hill a message is received;

Figure 4: The pseudo-code for revised busy-polling

ized systems, i.e., exposing scheduling information of the
guest OS to the hypervisor. We employ a straightforward
solution: When the process that is blocked at receiving mes-
sages is ready to give up its processor possession (because
the polling times reach the threshold in the guest OS), it
will notify the hypervisor to reschedule if it is appropriate.
The pseudo-code of the revised busy-polling mechanism is
demonstrated in Fig. 4%.

Before notifying the hypervisor to conduct rescheduling
operations, a gap value is recorded from the time when the
process is yielded to the time when the process is scheduled
to execute again within the guest OS. The gap value is
then compared with a threshold value (i.e., Sched_Gap) we
defined. Only when the value is smaller than Sched_Gap,
the process will invoke hypercall in the guest OS to notify
the hypervisor for rescheduling. This is because we have to
consider the case where multiple processes execute on one
processor concurrently. In this case, it is not appropriate
to reschedule the VCPU as a whole, since the concurrent
scheduling may suggest some communicating tasks are in
progress. While in the overcommitted cases, the process
blocked in message receiving is likely to be the sole running
process on the processor as we have analyzed in the previous
section. This means the measured time gap will be rather
small (below 2 us for most of the time), and will trigger the
reschedule operation in the hypervisor. We set Sched_Gap
to be 100 us empirically after conducting some supporting
experiments.

We apply this revision to both network polling and the
shared memory polling mechanisms in the MPI library (i.e.,
MPICH2-1.2.1 examined in this paper), and have submitted
the code patch to the maintainers of the MPICH2 project’.

After a MPI program using our code patch is invoked,
during initializing phase (i.e., when MPI_Init is being
called), it will first detect if it is running inside a PV
guest system created by Xen or not. The detection is
performed by trying to open the PRIVATE_CMD interface
(i.e., /proc/xen/privemd, which is typically provided by the

2Threshold_Times = 1000 for MPICH2-1.2.1
3The code patch can also be downloaded from
http://grid.hust.edu.cn/zyshao/code/xen-mpich2-1.2.1.patch



Linux PV guests). Only when running inside a PV guest
system (i.e., PRIVATE_CMD interface is available), will the
MPI program adopt the revised busy-polling mechanism as
shown in Fig. 4. In this way, the same code can run on both
virtualized guests and native environments. The hypercall
that notifies the hypervisor of rescheduling is also issued
via this PRIVATE_CMD interface.

VI. PERFORMANCE EVALUATION

We conducted extensive experiments to evaluate the per-
formance of our solution. The experiments were carried out
not only on the predefined worst-case overcommitted sce-
narios we used to benchmark and analyze the performance
penalty in Section III and IV, but also on a 4-core PC server
to simulate overcommitted virtualized systems in real-world.

A. Experiments on the Worst Overcommitting Cases

1) Communication Performance: The performance of
MPI communications in the worst-case overcommitted sce-
narios with our revised MPI library is shown in Fig. 5.

In Fig. 5, the performance data labeled with the “rev_
prefix correspond to the data with the revised MPICH2-
1.2.1. From Fig. 5, it can be observed that compared with the
original data, the communication performance by employing
our solution is improved greatly: For the Credit scheduler,
the communication performance is improved by up to about
300 times in the inter-VM case, and by up to 700 times
in the intra-VM case, while for the SEDF scheduler, the
performance is increased by up to about 3 times in the inter-
VM case and by up to about 4 times in the intra-VM case.

Moreover, in the intra-VM cases, the communication per-
formance obtained by the revised MPI library is very close
to the performance in the native UP environment. This is
because in the intra-VM cases, most of the communications
are conducted via the shared memory, which is very similar
as the inter-process communication in the native case. In the
inter-VM cases, the communication data exchanged between
domUs needs to be relayed by the loopback network of
dom0. This results in worse performance than that in the
intra-VM cases although it is still much higher than that
with the original MPI library.

2) Performance of Selected Benchmark Programs: Table
IT presents the execution times of the benchmark programs
(i.e., is.A.2, lu.A.2 and ep.A.2) from the NPB suite that is
linked with the revised MPICH2-1.2.1.

From Table II, it can be observed that after applying our
solution, the execution time of is.A.2 and lu.A.2 is very
close to that of running inside the native UP environment
in the inter_vm_credit_pin case. Compared with Table I,
the performance penalty caused by poor communication is
eliminated. There is almost no change in the execution time
of ep.A.2, since the benchmark program does not invoke
MPI communications during the computing phase, which
also shows that our solution does not have negative impact
on the application execution with little communications.

i)

Table II: The execution times of selected benchmark pro-
grams after improvement in the worst-case overcommitted
scenarios (in Seconds)

s A2 | IuA2 | ep.A2
native_up 3.39 193.84 | 31.26
rev_inter_vm_credit_pin 3.22 188.08 36.1

rev_inter_vm_sedf_pin 3.84 203.7 37.51
rev_intra_vm_credit_pin 5.12 199.16 36.38
rev_intra_vm_sedf_pin 3.04 192.16 37.54

Table III: The execution times of selected benchmarks with
different overcommitting levels in the Credit scheduler (in
Seconds)

number of domU(s) 1 2 3 4
is.A.4 original 0.85 11.01 16.62 22.48
revised 0.85 11.13 6.79 7.46
lu.A4 original 72.763 | 214.35 | 332.21 | 466.04
revised 72.64 198.04 | 272.69 | 353.45
ep.A4 original 13.33 26.66 43.24 56.19
revised 13.33 26.49 39.74 52.92

B. Experiments on the Real Overcommitted Systems

In order to exhibit the performance penalty on benchmark
programs and verify the effectiveness of our solution in
the real use cases, we conduct experiments on a 4-core
overcommitted host. The host has two way Intel Xeon 5110
processor (Woodcrest), each of which has two 1.6GHz pro-
cessing cores with 4MBytes shared L2 cache. It is configured
with 2GB DDR2 memory, 160GB SATA hard disk drive, and
one NetXtreme II BCM5708 Gigabit Ethernet interface. On
this platform, each domU is configured with four VCPUs.
The overcommitting level of the system is controlled by the
number of domUs running on the platform. As the number
of the domUs increases (hence, the number of VCPUs), the
overcommitting level also increases. Unlike the experiments
in subsection VI-A, the VCPUs are not deliberately pinned
to run on a certain core. In the experiments, identical bench-
mark programs from NPB (i.e. is.A.4, lu.A.4 and ep.A.4) are
invoked simultaneously in these domUs, and their execution
times are recorded. Table III and IV demonstrate the average
execution time of these benchmark programs in the Credit
scheduler and in the SEDF scheduler, respectively.

From Table III, it can be observed that when the over-
committing level is low (in case of the one domU and two
domUs), the execution time of the benchmark programs with
the revised MPI library is very close to that with the original
MPI library. This is because given a small number of candi-
date VCPUs (two for each PCPU on average), the possibility
that the VCPUs with meaningful workload are scheduled
to run is still small. Another interesting observation is that
when there are two domUs, the performance of is.A.4 is
even slightly worse than the original one. This is because
is.A.4 has intensive communications, which may cause more
frequent VCPU context switching when using the revised
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Figure 5: The improved performance of MPI communications in the worst-case overcommitted scenarios

Table IV: The execution times of selected benchmarks with
different overcommitting levels in the SEDF scheduler (in
Seconds)

number of domU(s) 1 2 3 4
is.A4 original 0.85 1.64 7.84 10.09
revised 0.84 1.62 2.49 3.36
lu.A4 original 7279 | 156.10 | 295.24 | 367.74
revised 72.88 | 153.51 | 251.33 | 359.27
ep.A4 original 13.60 | 27.25 40.44 54.20
revised 13.44 26.97 40.26 53.91

MPI library.

However, when the overcommitting level becomes higher
(in the cases of three and four domUs), the execution times
of the benchmark programs with the revised MPI libraries
are significantly shorter than those with the original MPI
libraries. This is because with more VCPUs running, the
possibility that the VCPUs in the same domU are not sched-
uled to run in parallel is significantly higher, which generates
the similar performance penalty as that experienced in the
intra_vm_credit_pin case. Meanwhile, with the increase of
candidate VCPUs, the possibilty of scheduling VCPUs with
actual workload to run by our scheme is much higher.

From Table IV, it can be observed that in most cases
(except for is.A.4), the performance improvement in the
SEDF scheduler is smaller than that in the Credit scheduler.
This is because the SEDF schedules the VCPUs with smaller
time slices than the Credit scheduler, which results in less
performance penalty due to the busy-polling mechanism em-
ployed by the MPI library. The reason why our solution can
still achieve significant improvement for is.A.4 in the SEDF
scheduler is because is.A.4 has very high communication-
to-computation ratio, which counteracts the gains achieved
by the shorter time slices in SEDF.

Another observation from both Table III and Table IV is
that for the benchmark programs with original MPI library
that need communication during computation (e.g., is.A.4
and lu.A.4), the proportion of the increase in their execution

time is much higher than that of the increase in the num-
ber of competing domUs. This explicitly exhibits the high
performance penalty on MPI communication placed on the
applications due to overcommitment. Our solution provided
in this paper can alleviate this performance degradation. For
example, in the SEDF scheduler, the execution time of is.A.4
increases proportionally with the increment on the number
of competing domUs.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we focus on investigating the performance
problem of MPI communication in the overcommitted virtu-
alized systems. By benchmarking the worst-case overcomit-
ted scenarios and thorough analysis, we revealed the reason
behind such performance penalty is the “busy-polling” mes-
sage receiving mechanism employed by the MPI libraries.
Such penalty significantly degrades the execution perfor-
mance of the MPI applications that contain communications
and run in the overcomitted virtualized computer systems.
We proposed our solution in this paper to mitigate the
penalty and implemented our solution into a popular MPI
library. We have carried out experiments to verify the
effectiveness of the solution in the real-world overcommitted
virtualized systems. The results show that compared with the
original MPI library, the library that patches our solution
can improve the performance of applications to different
extents, depending on their communication patterns and the
overcommitting level.

We believe that the solution proposed in this paper can
be further enhanced. Our future work has been planned
to further tune the proposed solution. Also we plan to
investigate the feasibility of deploying the gang-scheduling
technique into the hypervisor, which we believe might be a
better solution to eradicate the performance penalty in the
overcommitted virtualized systems.
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