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Abstract
Convex geometries are closure systems satisfying anti-exchange axiom with
combinatorial properties. Every convex geometry is represented by a convex
geometry of points in n-dimensional space with a special closure operator.
Some convex geometries are represented by circles on a plane. This paper
proves that not all convex geometries are represented by circles on a plane
by providing a counterexample. We introduce Weak n-Carousel rule and
prove that it holds for configurations of circles on a plane.

1. Introduction

Convex geometries were studied from different perspectives and un-
der different names since 1930. In particular, the theory of convex
geometries was brought to attention by Edelman and Jamison’s sur-
vey paper in 1985 ([7]). Convex geometries are interesting combinato-
rial objects which generalize a notion of convexity on Euclidean plane.
There are many structures which share their properties. Some of them
include convex objects in Euclidean space, convex sets in posets, sub-
semilattices in a semilattice, path-closed subgraphs of a graph ([7]). It
is crucial to understand the driving example well and find structural
connections between the general example and other convex geometries.
The concept of convex geometries was generated by a geometrical ex-
ample: a set of points on a plane with a special closure operator. This
convex geometry is called affine convex geometry. It was proved in [8]
that every convex geometry is a sub-geometry of some affine convex ge-
ometry in Rn. This result answers a representation problem of convex
geometries and proves an existence of some dimension of a space for a
representation. Representation problem of convex geometries ([3]):

Problem 1.1. To find a universal class C of finite convex geometries
s.t. every convex geometry is a sub-geometry of some geometry in C

We are interested in finding the smallest dimension of a space for
a representation. Adaricheva in [1] proved that there is a property,
namely n-Carousel rule, which restricts convex geometries not satis-
fying it from being embedded in a space of a particular dimension.
Carousel rule was introduced in [4]. Using the result from [1], we know
that for a particular dimension of a space, there are convex geometries
that could not be represented by points in this space. Czedli in [5]
modifies a construction and uses circles on a plane for a representation.
It was shown in [5] that every convex geometry of convex dimension
cdim=2 could be represented by circles on a plane. Convex dimension
is a parameter associated with a convex geometry, a minimal number
of chains needed to realize an alignment for a convex geometry (see [7]
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for more details about convex dimension). There is a natural question
following from this result concerning whether every convex geometry
could be represented by circles on a plane ([6]). This paper disproves
this conjecture by providing an example of convex geometry which is
not represented by circles.

We are introducing Weak n-Carousel rule (2.9) which is a weakening
of existing n-Carousel rule. We prove that a geometry of circles on
a plane satisfies 2-Weak Carousel rule. We borrow example from [1]
which fails not only 2-Carousel rule but Weak 2-Carousel rule as well.
Therefore, it is not represented by circles.

To prove that a geometry of circles satisfies 2-Weak Carousel rule,
we start with proving Weak Carousel property for triangles, which is a
slight simplification of Weak 2-Carousel rule. We consider two circles
inside a triangle and model their location by their projections on sides
of a triangle. Thus, we transform a problem from considering positions
of circles to looking at configurations of segments. We find that there
are 216 possible configurations of segments which we reduce to 38 cases
up to isomorphism. We dismiss some of these cases by proving that a
location of circles with these projections is not realizable. For this, we
prove a number of lemmas. We show that all other cases are possible
for realization and in all these cases the property holds.

Section 2 contains main concepts and definitions. Section 3 describes
existing representations of convex geometries. Example of affine con-
vex geometry that fails Weak 2-Carousel rule is described in Section 4.
Weak Carousel property for triangles is proved in Section 5. The proof
of Weak Carousel property for triangles requires a number of geometri-
cal results which are stated and proved in Section 6. Weak 2-Carousel
rule for circles is proved in Section 7.

2. Main concepts and definitions

Definition 2.1. Given any set X, a closure operator on X is a mapping
ϕ : 2X → 2X with the following properties:
1) Y ⊆ ϕ(Y ) for every Y ⊆ X;
2) If Y ⊆ Z, then ϕ(Y ) ⊆ ϕ(Z) for Y, Z ⊆ X;
3) ϕ(ϕ(Y )) = ϕ(Y ) for Y ⊆ X.

Definition 2.2. Pair (X,ϕ) is called a convex geometry if ϕ is a closure
operator on X with additional properties:
1) ϕ(∅) = ∅;
2) if Y = ϕ(Y ) and x, z /∈ Y , then z ∈ ϕ(Y ∪ x) implies that x /∈
ϕ(Y ∪ z) (Anti-exchange property).
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We could alternatively associate convex geometries with an alignment-
a special family of subsets of a base set.

Definition 2.3. Given any (finite) set X, an alignment on X is a
family F of subsets of X which satisfies two properties:
1) X ∈ F ;
2) If Y, Z ∈ F , then Y ∩ Z ∈ F

The following relationships between a closure operator and an align-
ment could be easily checked ([7]):

Proposition 2.4. If ϕ is a closure operator on a set X, then F = {Y :
ϕ(Y ) = Y, Y ⊆ X} is an alignment on X.

Proposition 2.5. Let F be an alignment on a set X. Define ϕ(Y ) =
∩{Z ∈ F , Y ⊆ Z} for every Y ⊆ X. Then, ϕ is a closure operator on
X.

Convex geometries could be defined equivalently through an align-
ment:

Definition 2.6. Pair (X,F) is called a convex geometry if F is an
alignment on X with additional properties:
1) ∅ ∈ F ;
2) if Y ∈ F and Y 6= X, then ∃a ∈ X \ Y s.t. Y ∪ {a} ∈ F

Definition 2.7. Convex geometry G1 = (X,F1) is a sub-geometry of
G2 = (Y,F2) if there is a one-to-one map f : F1 → F2 s.t.
1) f(A ∧B) = f(A) ∧ f(B), A,B ⊆ X;
2) f(A ∨B) = f(A) ∨ f(B), A,B ⊆ X.

Definition 2.8. A convex geometry (A,ϕ) satisfies n-Carousel rule if
x, y ∈ ϕ(S), S ⊆ A, implies x ∈ ϕ{y, a1...an} for some a1, ...an ∈ S.

Definition 2.9. A convex geometry (A,ϕ) satisfies Weak n-Carousel
rule if x, y ∈ ϕ(S), S ⊆ A, implies either x ∈ ϕ{y, a1...an} or y ∈
ϕ{x, a1...an} for some a1, ...an ∈ S.

Definition 2.10. Consider F = (X, chc), where X is a set of circles in
R2 and chc is defined as follows: chc(Y ) = {z ∈ X : z̃ ⊆ CH(∪ỹ), y ∈
Y } for Y ⊆ X, where CH is a usual convex hull operator and ỹ is a
set of points in y (z̃ is a set of points in z, respectively). We call F a
geometry of circles on a plane.

Weak n-Carousel rule defined in 2.9, now could be reformulated for
a convex geometry of circles on a plane.
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Definition 2.11. Consider F = (A, chc) a convex geometry of cir-
cles on a plane with A = {a, b, c, x, y}. Then F satisfies Weak 2-
Carousel rule if x, y ⊆ chc ({a, b, c}) implies either x ∈ chc(y, i, j) or
y ∈ chc(x, i, j), where i, j ∈ S

To prove Weak 2-Carousel rule for circles, we simplify the rule and
consider two circles and three points. We slightly modify the rule to
have a geometrical formulation.

Definition 2.12. A configuration of two circles x and y and a set S
of distinct points A,B,C is said to satisfy Weak Carousel Property for
Triangles if x, y is in a triangle 4ABC implies either
x is in a convex hull of y and any two points from S, or
y is in a convex hull of x and any two points from S.

3. Known representations of convex geometries

We say that a convex geometry is represented by another convex
geometry when it is a sub-geometry of the second one, i.e. there exists
a one-to-one mapping from alignment of the first geometry to alignment
of the second geometry preserving operations of meet (∧) and join (∨)
(See Definition 2.7).

There are two types of representation. First, there is so called Weak
Representation. If we want to represent a convex geometry by a par-
ticular class of convex geometries, we want to find a mapping from
that convex geometry into some representative of the given class that
is one-to-one and preserves closure operator (i.e. satisfies the condi-
tion in ??). Second, there is Strong Representation. In this type of
representation, a mapping must additionally be onto mapping.

The first universal class for a weak representation of convex geome-
tries was presented in [3] by Adaricheva et al in 2003. The model for
a representation was a class of infinite convex geometries defined on a
Boolean structure of all subsets of some set X. Convex geometries from
a universal class were of the form (2X , ϕ), where ϕ corresponds to an
alignment comprising all algebraic subsets of 2X . It was proved that
every finite convex geometry could be represented by an infinite con-
vex geometry in the form of a lattice of algebraic subsets of algebraic
lattices. It is a nontrivial construction which appears in many fun-
damental concepts. However, structures from the representation class
must be infinite. Although the result provides a representation for all
convex geometries, the representation could not be done only for finite
X. Therefore, the question of finding representation by a class of finite
convex geometries was raised. Problem 1.1 asks whether it is possible
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to find a universal class of finite convex geometries for a representation
of convex geometries.

In 2005 Kashiwabara et al. proved that every finite convex geometry
could be represented as a sub-geometry of a finite convex geometry
([8]). Universal class for this weak representation was in the form of
affine convex geometries.

Definition 3.1. Affine convex geometry is a convex geometry
C0(Rn, X) = (X, ch), where X is a set of points in Rn and ch is defined
as follows: for Y ⊆ X, ch(Y ) = CH(Y ) ∩ X, where CH is a usual
convex hull operator.

Every finite convex geometry could be embedded in some affine con-
vex geometry in C0(Rn, X). Nevertheless, this representation may re-
quire a high dimension of a space. Therefore, it is worth investigating
the smallest possible dimension for a representation.

Adaricheva in [2] showed that some special convex geometries have
this type of representation but with a lower dimension of a space. Refer
to [2] for details.

Apart from finding the smallest dimension of a space for a weak rep-
resentation, a question of strong representation is also of a great interest
in representations of convex geometries. A question of which convex
geometries could have a strong representation by affine convex geome-
tries in Rn was raised by Edelman and Jamison in 1985 (See Problem
1 in [7]). The authors in [7] noted that such characterization prob-
lem is considerably difficult. There is a partial result by Adaricheva
and Wild in 2010 for a strong representation of convex geometries by
affine convex geometries in R2 ([4]). Edelman and Jamison provide a
representation of convex geometries by compatible orderings (See [7]
for details). There is a recent result by Richter and Rogers in 2015
that provides a nice geometrical visualization of the representation by
orderings ([9]). It was proved that every convex geometry could be
represented by a special location of polygons on a plane ([9]). It was
shown in [9] that every finite convex geometry with a convex dimension
cdim = k (a minimal number of chains needed to realize an alignment
for a convex geometry) could be represented as k-gons on a plane. A
geometry of k-gons with a special location and a closure operator was
proved to be a convex geometry (See [9] for more details). Although this
representation is a nice illustration of a strong representation, polygons
may be non-convex, while we are interested in preserving the nature of
convexity.

Czedli in 2014 generalizes a construction and instead of geometry of
points defines a geometry of circles (2.10) and considers this geometry
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for a representation ([5]). It was proved in [5], that geometry of circles
on a plane is a convex geometry. By working with a geometry of circles,
Czedli relaxes the construction of a geometry on a set of points because
geometry of circles is not atomistic.

Definition 3.2. A convex geometry G = (X,ϕ) is called atomistic if
ϕ({x}) = {x} for every x ∈ X

Affine convex geometries are atomistic since for any affine convex
geometry G = (X, ch), any x ∈ X is just a point in Rn and ch({x}) =
{x}. Geometry of circles on a plane is not in general atomistic. For a
convex geometry of circles G = (X, chc), it is possible that chc({x}) =
{x, y} for x, y ∈ X that describes a case when a circle y is inside a
circle x.

If we consider affine convex geometries as a class for a representation
of convex geometries, then we could strongly represent only atomistic
convex geometries. But since convex geometries are not in general
atomistic, we do not have a strong representation by affine convex
geometries for all convex geometries. Therefore, a construction of a
convex geometry by circles on a plane in [5] could be investigated for
a possibility of strong representation.

The main result of [5] shows that every convex geometry of convex
dimension cdim = 2 could be strongly represented by a geometry of
circles on a plane. With a relaxed construction, now there is a natural
question whether any convex geometry has a strong representation by
a geometry of circles on a plane.

In this paper, we disprove this conjecture by showing an example
of convex geometry that is not represented by a convex geometry of
circles on a plane. We show that all convex geometries of circles on a
plane must satisfy Weak 2-Carousel Rule. We demonstrate an example
of convex geometry that fails Weak 2-Carousel Rule. Therefore, this
convex geometry could not be represented by a geometry of circles on
a plane.

We prove that a strong representation of convex geometries by ge-
ometries of circles on a plane is not possible in general. Therefore, it is
necessary to consider higher dimensions of a space. This leads to the
following problem which was formulated by Adaricheva in [6]:

Problem 3.3. Is every finite convex geometry could be represented by
a convex geometry of balls in Rn
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4. Example of convex geometry that is not
representable by circles

We borrow examples of convex geometries in this section from [1].
Consider an example of affine convex geometry G′ = (X,F ′), where

X = {a0, a1, a2, x, y} is a set of points on a plane as shown in Figure
1. Then, F ′ = P(X)\{a0a1a2, a0a2x, a0a1y, a0a1a2x, a0a1a2y}.

Figure 1

Consider G = (X,F), where F = P(X)\{a0a1a2, a0a1a2x, a0a1a2y},
which we get by adding {a0a2x} and {a0a1y} to the alignment F ′ of
affine convex geometry G′.

It could be directly checked that F for G satisfies the properties of
alignments from Definition 2.3. Initial alignment F ′ satisfies the re-
quired properties since G′ is affine convex geometry. We add {a0a2x}
and {a0a1y} to F ′. All subsets of added sets are in F and their inter-
section is also in F . So, G is indeed a convex geometry ([1]).

From [1], G = (X,F) does not satisfy 2-Carousel rule. It was shown
in [1] that convex geometries failing n-Carousel rule could not be weakly
represented by affine convex geometries in Rn. So, G could not be
weakly represented by affine convex geometries in R2. Now, we show
that G does not also satisfy Weak 2-Carousel rule.

Let ϕ : X → X be a corresponding closure operator to the alignment
F of G.

Then, x ∈ ϕ(a0a1a2) since ϕ(a0a1a2) = X.
ϕ(aiajx) = {aiajx}, for i, j = 0, 1, 2
ϕ(aiajy) = {aiajy}, for i, j = 0, 1, 2

Hence, G does not satisfy Weak 2-Carousel rule since x and y are
in a closure of {a0, a1, a2} but x is not in a closure of any two from
{a0, a1, a2} and y. Moreover, y is not in a closure of any two from
{a0, a1, a2} and x.

We prove in Section 7 that a geometry of circles satisfies Weak 2-
Carousel rule (Theorem 7.1). Since G does not satisfy Weak 2-Carousel
rule, G could not be represented by circles on a plane.
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5. Weak Carousel Property for Triangles

Theorem 5.1. Every configuration of two circles and a set of three
distinct points in R2 satisfies Weak Carousel Property for Triangles.

Proof. Consider two circles x and y in a triangle 4ABC. Circles x
and y are projected on segments on sides of 4ABC. In the example
in Figure 1, we are using notation, say, xBC

B and xBC
C , for edges of a

projection of a circle x on BC which are closest to B and C respectively.

Figure 2

There are six possible configurations of projections of x and y on
each side of a triangle. We assign a number i, that takes integer values
from 1 to 6, to each configuration of segments on one side of 4ABC.
We illustrate configurations corresponding to values of i in Figure 18
in Appendix A. We assume that x1 and y1 in Figure 18 are first in
orders x1x2 and in y1y2 respectively in a clockwise walk around4ABC,
assuming that ABC is in a clockwise order.
We denote a configuration of projections of two circles inside a 4ABC
by Cjkl, where j, k, l are integer numbers that take values of i and
denote a configuration of segments on sides AB,BC,AC respectively.
Say, example from Figure 2 is C546.

Six possible configurations for each side produce 216 possible con-
figurations of projections of x and y for 4ABC. We reduce 216 con-
figurations to 38 classes up to isomorphism. Say, C241 and C124 are
isomorphic cases since they represent the same triangle with sides ro-
tated clockwise. For every class Sn,where n is an number that takes
integer values from 1 to 38, we associate configurations Cjkl out of 216
configurations that are isomorphic. Refer to Appendix B) for a full list
of grouping 216 configurations in 38 classes.
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Definition 5.2. We say a projection is later (earlier) than another, if
in a clockwise walk around 4ABC (assuming that ABC is a clockwise
order of vertexes) it is second (first) in order on a side of 4ABC.

In the example in Figure 1, xBC
B is later than yBC

B and xAC
C is earlier

than yAC
A . It is clear that, say, for x to be in a convex hull of y and

B, C, xAC
A must be earlier than yAC

A and xAB
A must be later than yAB

A .
On the other hand, x is not in a convex hull of A, B and y, since both
xBC
C and xAC

C are earlier than yBC
C and yAC

C respectively.
In the proofs below, we will not distinguish whhether these projec-

tions are disjoint or overlapping.
1) Consider a class S2 when in a clockwise walk around 4ABC,

projections of circles x and y are in the same order, say, projections of
y are ”strictly later” than projections of x (for example, yAC

A is later
than xAC

A , and yAC
C is later than xAC

C on AC). Figure 4 illustrates a
configuration C222 as an example from a class S2. Take tangent lines
to x, connecting the first edge point of each x-projection, which we
meet when we walk around 4ABC clockwise, with the opposite vertex
of 4ABC (See Figure 3). Then circle x is inscribed into 4A′B′C ′
formed by these three lines. It follows from assumption that y is inside
4A′B′C ′. Moreover, y should have points in each of three disjoint
areas of 4A′B′C ′, whose union is 4ABC\x. Then due to Lemma 6.4,
the case is dismissed as impossible for realization.

Figure 3
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Figure 4

Configurations from classes S9, S25, S38 are dismissed using similar
argument.

2) Consider a class S13 when a segment of a projection of y is inside
a segment of a projection of x on one side of 4ABC but a projec-
tion of x is inside a projection of y on another side of 4ABC. Say,
yBC
B yBC

C is inside xBC
B xBC

C and xAC
A xAC

C is inside yAC
A yAC

C . Figure 6 illus-
trates a configuration C234 as an example from class S13. Take tangent
lines to x, connecting A with xBC

B and xBC
C (See Figure 5). It fol-

lows from assumption that y is inside 4AxBC
B xBC

C . Moreover, y should
have points in each of two disjoint areas of 4AxBC

B xBC
C , whose union

is 4AxBC
B xBC

C \x. Then due to Lemma 6.5, the case is dismissed as
impossible for realization.

Figure 5
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Figure 6

Configurations from classes S5, S12, S28, S31, S32 are dismissed using
similar argument.

3) Consider a class S15. Figure 8 illustrates a configuration C135

as an example from class S15. Take tangent lines to x, connecting A
with xBC

B and xBC
C (See Figure 7). It follows from assumption that y

should have points in 4xAC
C BC and 4AxAB

A C. Moreover, y is inside
4AxBC

B xBC
C . So, y should have points in each of two disjoint areas of

4AxBC
B xBC

C , whose union is 4AxBC
B xBC

C \x. Then due to Lemma 6.5,
the case is dismissed as impossible for realization.

Figure 7
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Figure 8

Configurations from classes S17, S21, S22, S34, S35 are dismissed using
similar argument.

4) Consider a class S10. Figure 10 illustrates a configuration C225 as
an example from class S10. Take tangent lines to x, connecting B with
xAC
A and xAC

A , A with xBC
C , C with xAB

B (See Figure 9). Let AxBC
C and

CxAB
B intersect in a point O. It follows from assumption that y should

be in4COxBC
B . Moreover, y should have a point in4xAC

A BxAC
C . Then,

since O is not in 4xAC
A BxAC

C , due to Lemma 6.6 the case is dismissed
as impossible for realization.

Figure 9
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Figure 10

Configurations from a class S6 is dismissed using similar argument.
All other configurations satisfy Weak Carousel property. We il-

lustrate realizations of non-dismissed configurations by representative
from each of classes S1, S3, S7, S11, S16, S19, S23, S27, S29, S33, S37 in Ap-
pendix C. Configurations from classes S7 and S8 are symmetric , so we
could consider {S7, S8} as one symmetric class. Similarly, {S3, S4},
{S11, S14}, {S16, S18}, {S19, S20}, {S23, S24, S26}, {S29, S30}, {S33, S36} are
symmetric classes.

Thus, cases that are not dismissed are all realizable and Weak Carousel
property for Triangles holds in all of them.

�

6. Lemmas

Definition 6.1. Let a projection point associated with a circle inside
a triangle be an endpoint of a perpendicular from a center of the circle
to a side of the triangle.

Consider arbitrary triangle 4ABC on a plane. Let g(rg, Og) be a
circle inscribed in 4ABC with a center Og and a radius rg. Let G1,
G2 and G3 be projection points of x on AB, AC and BC respectively.

Lemma 6.2. If M1 is a point on AG1, then the largest circle associated
with M1 and that is completely inside 4ABC is the circle inscribed in
the angle ∠BAC with a projection point M1.
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Figure 11

Proof. Let M ′ ∈ AC s.t. M1M
′ ⊥ AB. Centers of circles associated

with a projection point M1 are on M1M
′. Let m(rm, Om) be a circle

with a projection point M1 inscribed in ∠BAC.
Suppose there exists a circle n(rn, On) with a projection point M1

that is completely inside 4ABC and rn > rm. Then On is in OmM
′.

Let N2 be a projection point of n on AC.
Let ∠BAC = 2α. Then ∠BAOm = ∠CAOm = α. Let ∠OmAOn =

β. Then AOn = M1On/sin(α + β) = OnN2/sin(α − β). M1On =
OnN2 = rn ⇒ sin(α + β) = sin(α − β) ⇒ β = 0. Hence, Om = On.
But rn > rm implies that n is not completely inside 4ABC which
contradicts our assumption about n. Therefore, there exists no such
circle n.

Thus, m is the largest circle that is completely inside 4ABC asso-
ciated with the projection point M1. �

Lemma 6.3. Consider arbitrary triangle 4ABC on the plane. Let Dr
be the disc defined by inscribed circle with center O, whose touch point
G1 ∈ AB and touch point G2 ∈ AC. Consider point E ∈ 4ABC that
belongs to quadrilateral AG1OG2, but lays outside disk Dr. Let Dr∗ be
any disk with center F such that Dr∗ ⊆ 4ABC and E ∈ Dr∗. Then
projection of F to AB belongs to AG1 and projection to AC belongs to
AG2.
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Figure 12

Proof. Suppose that radius of Dr is r. Then the radius of any disk
Dr∗ ⊆ 4ABC, distinct from Dr, is r1 < r. We want to show that, for
any point F outside quadrilateral AG1OG2, the distance |FE| is either
greater than r, or greater than r1, which is the distance from F to one
of the sides of triangle, hence, the disk with center at F containing
point E will not be inside 4ABC. Thus, the only possible position for
F will be inside quadrilateral AG1OG2, hence, the projections of F are
as required.

Draw line (A1B1) parallel to (AB) and line (A2C2) parallel to (AC)
through pointO. If point F ∈ 4ABC is outside quadrilateralAG1OG2,
then it is either in OG1BB1, in OG2CC2, or in triangle 4OB1C2.

For any point F ∈ OB1C2 and any point E taken in smaller angle
G1OG2, in particular, in quadrilateral AG1OG2, ∠EOF > π/2. Hence,
by cosine theorem, |FE| > |OE| > r.

For two other possibilities of location of F , the argument is similar,
so we consider only one. Let F ∈ OG1BB1. Take point F ′ ∈ OG1,
whose distance to line (AB) is the same as for F : in other words, line
(FF ′) is parallel to (AB), and |F ′G1| ≤ r. Then ∠EF ′F > π/2, hence,
|FE| > |F ′E|. Connect a with O and take E ′ ∈ EO, which belongs to
circle of disk Dr. Then ∠EE ′F ′ > π/2, hence, |F ′E| > |F ′E ′|.

So, it remains to show that |F ′E ′| ≥ |F ′G1| = r1, the latter being
the radius of the largest circle centered at F ′, which is inside 4ABC.
This would imply that any circle centered at F with radius > r1 will
not be inside triangle, while |FE| > r1.

Cases F ′ = O and F ′ = G1 are obvious, so we assume F ′ ∈ OG1 and
0 < r1 < r.
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Denote α = ∠F ′OE ′ and use cosine theorem:
|F ′E ′|2 = |OE ′|2 + |OF ′|2− 2|OE ′||OF ′| cosα = r2 + (r− r1)2− 2r(r−
r1) cosα

= 2r(r − r1)(1− cosα) + r21.
Define f(r1) = |F ′E ′|2−r21, we need to show that f(r1) ≥ 0. Indeed,

f(r1) = 2r(r − r1)(1− cosα) ≥ 0, and we are done.
�

Lemma 6.4. Consider w = 4ABC\g = wA∪wB∪wC, the complement
of g in 4ABC, which is disjoint union of three areas (See Figure 13).
Then any circle y that contains a point in each of areas wA, wB, wC, is
not completely inside 4ABC.

Figure 13

Proof. By 6.3, a position of projection points of circles that contain a
point in wA is restricted to AG1 and AG2. Similarly, in wB toBG1, BG3

and in wC to CG2, CG3. Suppose there exists a circle y that contains
points in each of areas wA, wB, wC and completely inside4ABC. Then
y has projection points to AB in AG1, BG1, to BC in BG3, CG3 abd
to AC in BC, AG2, CG2. Then, y has projection points G1, G2 and
G3. Then, y is centered in Og and have points in wA, wB, wC that are
disjoint from g. But x is the largest circle that could be inside 4ABC.
Therefore there exists no such circle y. �

Lemma 6.5. Suppose p(rp, Op) is a circle inscribed in ∠BAC of a
triangle 4ABC. Consider w = 4ABC\p = w1 ∪ w2, the complement
of p in 4ABC, which is disjoint union of two areas (See Figure 14).
Then any circle y that contains a point in each of areas w1 and w2 is
not completely inside 4ABC.
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Figure 14

Figure 15

Proof. Let P1 and P2 be projection points of p to AB and AC respec-
tively. Draw tangent lines CC1 and BB1 to p and let P3 and P4 be
projection points of p to BB1 and CC1 respectively. Let M be a point
of intersection of CC1 and BB1.

Suppose there exist a circle y that contains some points E1 and E2

from w1 and w2 respectively.
Case 1. E2 is in w2 ∩4ACC1.

Consider 4ACC1: y contains E1 from w1, then due to 6.3, projection
points of y to AB and AC are restricted to AP1 and AP2. If E2 is in
C1P1P4\p, then projection points of y to AB and CC1 are restricted
to C1P1 and C1P4. If E2 is in CP2P4\p, then projection points of y
to AC and CC1 are restricted to CP 2 and CP 4. Then, from a similar
argument made in 6.4, there exists no such circle y.

The argument is similar when E2 is in w2 ∩4ABB1.
Case 2. E2 is in 4BMC.

Consider g(rg, Og) that is inscribed in 4ABC. Then E2 is either in
4BMC ∩ g or in area 4BMC\g.
If E2 is in area 4BMC disjoint from g, then Then, from a similar
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argument made in 6.4, there exists no such circle y.
If E2 is in 4BMC ∩ g, then y intersect p in more than two points. It
contradicts to two circles intersecting in at most two points.

Therefore, there exists no such y.
�

Lemma 6.6. Suppose s is a circle inscribed in ∠A1AA2 < π. Circle
s divides ∠A1AA2 in two disjoint areas w1 and w2 (See Figure 16).
Then tangent lines to any point of s bordering w1 and to any point of s
bordering w2 intersect in a point outside the interior area of ∠A1AA2.

Figure 16

Proof. Let S1 and S2 be touch points of s with AA1 and AA2 respec-
tively. Let P1 be a point on s that coincides with S1 at first. Let CC1

be tangent line to s at P1. If we move P1 on part of s bordering w1,
then CC1 moves from a position of AA2 anticlockwise until it becomes
AA1.

Let P2 be a point on s that coincides with S2 at first. Let BB1 be
tangent line to s at P2. If we move P2 on part of s bordering w2, then
BB1 moves from a position of AA1 clockwise until it becomes AA2.

Let points of intersections of CC1 and BB1, BB1 and AA1, BB1 and
AA2, CC1 and AA1, CC1 and AA2 be O,M1,M2, N1 and N2 respec-
tively. Then position of point O moves on the line BB1 toward M2

until CC1 becomes AA2. Similarly O moves on the line CC1 toward
N2 until BB1 becomes AA2.

Then, O could not be inside interior area of ∠A1AA2.
�
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7. Weak 2-Carousel rule for a geometry of circles on a
plane

Theorem 7.1. Every convex geometry of circles in R2 satisfies Weak
2-Carousel rule.

Figure 17

Proof. Consider circles x, y that are in a convex hull of circles a, b, c.
be circles (See Figure 17). x, y ∈ CH{a, b, c}

Draw tangent lines to a, b, c and denote point of intersection by A,B
and C (17). Let wA, wB, wC denote disjoint areas as shown on the
picture.
CH{a, b, c} = CH{A,B,C}\{wA∪wB∪wC}, so x, y ∈ CH{A,B,C}
We could use Theorem 5.1, for x, y, and a set of points S = {A,B,C}.

By Theorem 5.1, either x is in a convex hull of two points from S and
y, or y is in a convex hull of two points from S and x.

Say, y ∈ CH{x,B,C}. But y ∈ CH{x,B,C} ⇒ y ∈ CH{x, b, c}.
Therefore, either x is in a convex hull of two circles from {a, b, c}

and y, or y is in a convex hull of two circles from {a, b, c} and x.
�

8. Concluding Remarks

We demonstrated an example of convex geometry of cdim = 6 that
fails Weak 2-Carousel property and therefore could not be represented
by circles on a plane. This convex geometry fails 2-Carousel property,
so it is not also weakly represented by affine convex geometries on a
plane ([1]). Hence, we ask the following problem:

Problem 8.1. Is a convex geometry of cdim = 3, 4 or 5 strongly rep-
resented by a geometry of circles on a plane?
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Since, we proved existence of geometries that are not strongly repre-
sentable by circles in R2, we would like to consider higher dimensions
of a space. Therefore, we ask the following question:

Problem 8.2. Is every finite convex geometry could be strongly repre-
sented by balls in Rn

It is of interest to find some relationship, if such exists, between a
convex dimension of a convex geometry and a dimension of a space for
a representation.

Problem 8.3. In which dimension of a space, a convex geometry with
cdim = k, k ∈ N has a representation?
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10. Appendices

Appendix A

Figure 18

Appendix B

S1 = {C121, C122, C112, C221, C211, C212}
S2 = {C111, C222}

S3 = {C123, C142, C214, C231, C312, C421}
S4 = {C124, C132, C213, C241, C321, C412}
S5 = {C113, C131, C224, C242, C311, C422}
S6 = {C114, C141, C223, C232, C322, C411}

S7 = {C125, C162, C216, C251, C512, C621}
S8 = {C126, C152, C215, C261, C521, C612}
S9 = {C115, C151, C226, C262, C511, C622}
S10 = {C116, C161, C225, C252, C522, C611}

S11 = {C133, C244, C313, C331, C424, C442}
S12 = {C134, C243, C324, C341, C413, C432}
S13 = {C143, C234, C314, C342, C423, C431}
S14 = {C144, C233, C323, C332, C414, C441}

S15 = {C135, C246, C351, C462, C513, C624}
S16 = {C136, C245, C361, C452, C524, C613}
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S17 = {C145, C236, C362, C451, C514, C623}
S18 = {C146, C235, C352, C461, C523, C614}

S19 = {C163, C254, C316, C425, C542, C631}
S20 = {C164, C253, C325, C416, C532, C664}
S21 = {C153, C264, C315, C426, C531, C642}
S22 = {C154, C263, C326, C415, C541, C632}

S23 = {C165, C256, C516, C562, C625, C651}
S24 = {C166, C255, C525, C552, C616, C661}
S25 = {C155, C266, C551, C515, C626, C662}
S26 = {C156, C265, C526, C561, C615, C652}

S27 = {C333, C444}
S28 = {C334, C343, C344, C433, C434, C443}

S29 = {C335, C353, C446, C464, C533, C644}
S30 = {C336, C363, C445, C454, C544, C633}
S31 = {C345, C364, C436, C453, C534, C643}
S32 = {C346, C354, C435, C463, C543, C634}

S33 = {C365, C456, C536, C564, C645, C653}
S34 = {C366, C455, C545, C554, C63, C636}
S35 = {C355, C466, C535, C553, C646, C664}
S36 = {C356, C365, C546, C563, C635, C654}

S37 = {C556, C565, C566, C655, C656, C665}
S38 = {C555, C666}
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Appendix C

Figure 19. S1

Figure 20. S3

Figure 21. S7
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Figure 22. S11

Figure 23. S16

Figure 24. S19
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Figure 25. S23

Figure 26. S27

Figure 27. S29
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Figure 28. S33

Figure 29. S37
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