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Abstract
This paper presents the results of developing a statistical model for morpho-

logical disambiguation of Kazakh text. Starting with basic assumptions we tried
to cope with the complex morphology of Kazakh language by breaking up lexical
forms across their derivational boundaries into inflectional groups and modeling
their behavior with statistical methods. We also provide maximum likelihood es-
timates for the parameters and an effective way to perform disambiguation with
the Viterbi algorithm.
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Chapter 1

Introduction
In this paper, we present a statistical model for morphological disambiguation

of Kazakh text. Morphological disambiguation is the task of selecting the sequence
of morphological parses corresponding to a sequence of words, from the set of
possible parses for those words. Morphological disambiguation is an important
step for a number of natural language processing (NLP) tasks and this importance
becomes more crucial for agglutinative languages such as Kazakh, Turkish, Finnish,
Hungarian, etc.

Kazakh language (as well as any morphologically rich language) presents an
interesting problem for statistical natural language processing since the number
of possible morphological parses is very large due to the productive derivational
morphology [1, 15]. Morphological disambiguation of inflectional and agglutinative
languages was inspired by part-of-speech (POS) tagging techniques. It involves
determining not only the major or minor parts-of-speech, but also all relevant
lexical and morphological features of forms. Previous approaches to morphological
disambiguation of Turkish text had employed constraint-based methods (Oflazer
and Kuruöz [18]; Oflazer and Tür [19, 20]), statistical methods (Hakkani-Tür et al.
[11], or both (Yuret and Türe [22], Kutlu and Cicekli[13]). Based on the approach
by Hakkani-Tür et al., this work describes statistical morphological disambiguation
model for Kazakh language.

In Chapter 2, relevant properties of Kazakh language are presented. In Chapter
3, first the statistical model for morphological disambiguation is described, and
then maximum likelihood estimates (MLE) for the parameters of this model are
provided. Some discussion of drawbacks of MLE is given. We finally show how to
perform disambiguation effectively with the Viterbi algorithm.
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Chapter 2

Kazakh Language
Kazakh (natively қазақ тілі, қазақша) is a Turkic language belonging to the

Kypchak (or Qıpçaq) branch, closely related to Nogay (or Noğay) and Qaraqalpaq.
It is spoken by around 13 million people in Kazakhstan, China, Mongolia, and
adjacent areas [14].

Kazakh is an agglutinative language, which means that words are formed by
joining suffixes to the stem. A Kazakh word can thus correspond to English phrases
of various length as shown below:

дос friend
достар friends
достарым my friends
достарымыз our friends
достарымызда at our friends
достарымыздамыз we are at our friends

The effect of rich morphology can be observed in parallel Kazakh-English texts.
Table below provides the vocabulary sizes, type-token ratios (TTR) and out-of-
vocabulary (OOV) rates of Kazakh and English sides of a parallel corpus used in
[2].

English Kazakh
Vocabulary size 18,170 35,984
Type-token ratio 3.8% 9.8%
OOV rate 1.9% 5.0%

It is easy to see that rich morphology leads to sparse data problems for statistical
natural language processing of Kazakh, be it tasks in machine translation, text
categorization, sentiment analysis, etc. A common approach (see [10, 4, 17, 3])
applied for morphologically rich languages is to convert surface forms into lexical
forms (i.e. analyze words), and then perform some morphological segmentation
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for the lexical forms (i.e. split analyzes). The segmentation schemes are usu-
ally motivated by linguistics and the domain of intended use. For example, for a
Kazakh-English word alignment task we could be in favor of the following segmen-
tation of the above mentioned word достарымыздамыз1

достар ымыз да мыз
дос⟨n⟩⟨pl⟩ ⟨px1pl⟩ ⟨loc⟩ +e⟨cop⟩ ⟨p1⟩⟨pl⟩
friends our at are we

since each segment of the Kazakh word would then correspond to a single word in
English. The problem is that often for a word in Kazakh we have more than one
way to analyze it, as in the example below:

‘in 2009 , we started the construction works .’
2009 жылы біз құрылысты бастадық .

жылы⟨adj⟩ ‘warm’
жылы⟨adj⟩⟨advl⟩ ‘warmly’

→ жыл⟨n⟩⟨px3sp⟩⟨nom⟩‘year’
жылы⟨adj⟩⟨subst⟩⟨nom⟩‘warmth’

Selecting the correct analysis from among all possible analyses is called morpho-
logical disambiguation. Due to productive derivational morphology this task itself
suffers from data sparseness. To alleviate the data sparseness problem we break
down the full analyses into smaller units – inflectional groups. An inflectional
group is a tag sequence split by a derivation boundary. For example, in the sen-
tence that follows, the word айналасындағыларға ‘to the ones in his vicinity’ is
split into root r and two inflectional groups, g1 and g2, the first containing the
tags before the derivation boundary -ғы and the second containing the derivation
boundary and subsequent tags.

Жәңгір хан мен оның айналасындағыларға . . .

(айнала)·(сын·да)·(ғы·лар·ға)
(айнала︸ ︷︷ ︸

r

)·(n·px3sp·loc︸ ︷︷ ︸
g1

)·(subst·pl·dat︸ ︷︷ ︸
g2

)

We will heavily exploit the following observation of dependency relationships which
was made by Hakkani-Tür et al. [11, p. 387] for Turkish, but is valid for Kazakh as
well: When a word is considered to be a sequence of inflectional groups, syntactic
relation links only emanate from the last inflectional group of a (dependent) word,
and land on one of the inflectional groups of the (head) word on the right.

1hereinafter we use the Apertium tagset [7] for analyzed forms
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Chapter 3

Statistical morphological
disambiguation

Following [5], we will use the notation in Table 3.1. We use subscripts to refer

wi the word (token) at position i in the corpus
ti the tag of wi

wi,i+m the words occurring at positions i through i+m
ti,i+m the tags ti · · · ti+m for wi · · ·wi+m

ri the root of wi

gi,k the k-th inflectional group of wi

n length of a text chunk
(be it a sentence, a paragraph or a whole text)

w the words w1,n of a text chunk
t the tags t1,n for w1,n

Table 3.1: ’Notation’

to words and tags in particular positions of the sentences and corpora we tag. We
use superscripts to refer to word types in the lexicon of words and to refer to tag
types in the tag set.

The basic mathematical object with which we deal here is the joint probability
distribution Pr(W = w,T = t), where the random variables W and T are a se-
quence or words and a sequence of tags. We also consider various marginal and con-
ditional probability distributions that can be constructed from Pr(W = w,T = t),
especially the distribution Pr(T = t). We generally follow the common convention
of using uppercase letters to denote random variables and the corresponding low-
ercase letters to denote specific values that the random variables may take. When
there is no possibility for confusion, we write Pr(w, t), and use similar shorthands
throughout.

In this compact notation, morphological disambiguation is the problem of se-
lecting the sequence of morphological parses (including the root), t = t1t2 · · · tn,

6



corresponding to a sequence of words w = w1w2 · · ·wn, from the set of possible
parses for these words:

argmax
t

Pr(t|w). (3.1)

Using Bayes’ rule and taking into account that w is constant for all possible values
t, we can rewrite (3.1) as:

argmax
t

Pr(t)× Pr(w|t)
Pr(w)

= argmax
t

Pr(t)× Pr(w|t) (3.2)

In Kazakh, given a morphological analysis1 including the root, there is only one
surface form that can correspond to it, that is, there is no morphological generation
ambiguity. Therefore,

Pr(w|t) = 1,

and the morphological disambiguation problem (3.2) is simplified to finding the
most probable sequence of parses:

argmax
t

Pr(t) (3.3)

Keep in mind that the search space in equations (3.1)–(3.3) is not equal to the set
of all hypothetically possible sequences t. Instead it is limited to only the set of
parse sequences that can correspond to w. Such limited set is obtained as a full
or constrained output of a morphological analysis tool.

3.1 Derivation
Using the chain rule, the probability in (3.3) can always be rewritten as:

Pr(t) =
n∏

i=1

Pr(ti|t1,i−1). (3.4)

It is important to realize that equation (3.4) is not an approximation. We are
simply asserting in this equation that when we generate a sequence of parses, we
can firstly choose the first analysis. Then we can choose the second parse given
our knowledge of the first parse. Then we can select the third analysis given our
knowledge of the first two parses, and so on. As we step through the sequence, at
each point we make our next choice given our complete knowledge of the all our
previous choices. The conditional probabilities on the right-hand side of equation
(3.4) cannot all be taken as independent parameters because there are too many
of them. In the bigram model, we assume that

Pr(ti|t1,i−1) ≈ Pr(ti|ti−1).

1We use the terms morphological analysis or parse interchangeably, to refer to individual distinct morphological
parses of a token.
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That is, we assume that the current analysis is only dependent on the previous
one. With this assumption we get the following:

Pr(t) ≈
n∏

i=1

Pr(ti|ti−1). (3.5)

However, the probabilities on the right-hand side of this equation still cannot be
taken as parameters, since the number of possible analyzes is very large in morpho-
logically rich languages. Following the discussion from Section 2 we split morpho-
logical parses across their derivational boundaries, i.e. we consider morphological
analysis as a sequence of root (ri) and inflectional groups (gi,k), and therefore, each
parse ti can be represented as (ri, gi,1, . . . , gi,ni

). Then the probabilities Pr(ti|ti−1)
can be rewritten as:

Pr(ti|ti−1)

= Pr((ri, gi,1, . . . , gi,ni
)|(ri−1, gi−1,1, . . . , gi−1,ni−1

))

= {chain rule} = Pr(ri|(ri−1, gi−1,1, . . . , gi−1,ni−1
))

× Pr(gi,1|(ri−1, gi−1,1, . . . , gi−1,ni−1
), ri)× . . .×

× Pr(gi,ni
|(ri−1, gi−1,1, . . . , gi−1,ni−1

), ri, gi,1, . . . , gi,ni−1) (3.6)

In order to simplify this representation we throw in the following independence
assumptions

Pr(ri|(ri−1, gi−1,1, . . . , gi−1,ni−1
)) ≈ Pr(ri|ri−1), (3.7)

Pr(gi,k|(ri−1, gi−1,1, . . . , gi−1,ni−1
), ri, gi,1, . . . , gi,k−1) ≈ Pr(gi,k|gi−1,ni−1

), (3.8)
i.e. we assume that the root in the current parse depends only on the root of the
previous parse, and each inflectional group in the current parse depends only on
the last inflectional group of the previous parse (this last assumption is motivated
by the remark at the end of Section 2). Now, from (3.6), (3.7), and (3.8) we get:

Pr(ti|ti−1) ≈ Pr(ri|ri−1)

ni∏
k=1

Pr(gi,k|gi−1,ni−1
)︸ ︷︷ ︸

Prb(ti|ti−1)

, (3.9)

where we define r0 ='.' and g0,n0
='<sent>'. Now putting together (3.5) and

(3.9) we have:

Pr(t) ≈
n∏

i=1

Pr(ti|ti−1) ≈
n∏

i=1

[
Pr(ri|ri−1)

ni∏
k=1

Pr(gi,k|gi−1,ni−1
)

]
︸ ︷︷ ︸

Prb(t)

. (3.10)

Pr(rl|rm) and Pr(gl|gm) are parameters (root and IG probabilities) which can be
estimated using manually disambiguated texts.
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3.2 Parameters estimation
Theorem 1. Maximum likelihood estimates for the parameters of the bigram model
Prb(t) are given by:

PrMLE(rl|rm) =
C(rm, rl)

C(rm)
, PrMLE(gl|gm) =

C(gm, gl)

C(gm)
, (3.11)

where C(rm) is the number of occurrences of rm, C(rm, rl) is the number of occur-
rences of rm followed by rl, C(gm) is the number of occurrences of gm, C(gm, gl) is
the number of parses with gm as the last IG followed by a parse containing gl.
Proof. Assume we are observing a sequence of n tokens w1, w2, . . ., wn, and each
token was manually disambiguated, i.e. we posses a sequence of corresponding
parses t1, t2, . . ., tn. Then the likelihood for our data is given by the equation
(3.10), and in order to find maximum likelihood estimates for the parameters
Pr(rl|rm) and Pr(gl|gm) we need to solve the following optimization problem:

n∏
i=1

[
Pr(ri|ri−1)

ni∏
k=1

Pr(gi,k|gi−1,ni−1
)

]
−→ max (3.12)∑

l

Pr(rl|rm) = 1,
∑
l

Pr(gl|gm) = 1. (3.13)

Using Lagrange multipliers λm and βm, seek an unconstrained extremum of the
auxiliary function:

h(Pr(rl|rm),Pr(gl|gm), λ, β) =

ln
[

n∏
i=1

(
Pr(ri|ri−1)

ni∏
k=1

Pr(gi,k|gi−1,ni−1
)

)]
−
∑
m

λm

(∑
l

Pr(rl|rm)− 1

)

−
∑
m

βm

(∑
l

Pr(gl|gm)− 1

)
,

which is equivalent to:

h(Pr(rl|rm),Pr(gl|gm), λ, β) =

ln
[

n∏
i=1

ni∏
k=1

Pr(ri|ri−1Pr(gi,k|gi−1,ni−1
)

]
−
∑
m

λm

(∑
l

Pr(rl|rm)− 1

)

−
∑
m

βm

(∑
l

Pr(gl|gm)− 1

)
.
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The partial derivative of h with respect to Pr(rl|rm) is

∂h

∂(Pr(rl|rm)) =
1

Pr(rl|rm)

n∑
i=1

δ(ri, r
l)δ(ri−1, r

m)− λm = 0,

where δ is the Kronecker delta function, equal to 1 when both of its arguments are
same and equal to 0 otherwise. So,

Pr(rl|rm) =
∑n

i=1 δ(ri, r
l)δ(ri−1, r

m)

λm
=
C(rm, rl)

λm
, (3.14)

where C(rm, rl) is the number of occurrences of rm followed by rl.

The partial derivative of h with respect to λm is

∂h

∂λm
= −

(∑
l

Pr(rl|rm)− 1

)
= 0,

and this is equivalent to ∑
l

Pr(rl|rm) = 1 (3.15)

Substitute (3.14) into (3.15) and obtain:∑
l

C(rm, rl)

λm
= 1

Since λm does not depend on l,
∑

l C(r
m, rl) = λm. Also we have∑

l

C(rm, rl) = C(rm),

where C(rm) is the number of occurrences of rm.

Thus, λm = C(rm), and therefore we get: PrMLE(rl|rm) = C(rm,rl)
C(rm) , as desired.

Observe that:

ln
[

n∏
i=1

ni∏
k=1

Pr(gi,k|gi−1,ni−1
)

]
=

n∑
i=1

ln
[

ni∏
k=1

Pr(gi,k|gi−1,ni−1
)

]

=
n∑

i=1

ni∑
k=1

ln
[
Pr(gi,k|gi−1,ni−1

)
]
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The partial derivative of h with respect to Pr(gl|gm) is

∂h

∂(Pr(gl|gm)) =
1

Pr(gl|gm)

n∑
i=1

ni∑
k=1

δ(gi,k, g
l)δ(gi−1,ni−1

, gm)− βm = 0.

So,
Pr(gl|gm) =

∑n
i=1

∑ni

k=1 δ(gi,k, g
l)δ(gi−1,ni−1

, gm)

βm
=
C(gm, gl)

βm
, (3.16)

where C(gm, gl) is the number of parses with gm as the last IG followed by a parse
containing gl.

The partial derivative of h with respect to βm is

∂h

βm
= −

(∑
l

Pr(gl|gm)− 1

)
= 0,

which is equivalent to ∑
l

Pr(gl|gm) = 1 (3.17)

Substitute (3.16) into (3.17) and obtain:∑
l

C(gm, gl)

βm
= 1

Since βm does not depend on l,
∑

l C(g
m, gl) = βm. Also, we have:∑

l

C(gm, gl) = C(gm),

where C(gm) is the number of occurrences of gm.

Thus, βm = C(rm), and therefore we get: PrMLE(gl|gm) = C(gm,gl)
C(gm) , as desired.

However, the maximum likelihood estimates suffer from the following problem:
What if a bigram has not been seen in training, but then shows up in the test
data? Using the formulas (3.11) we would assign unseen bigrams a probability of
0. Such approach is not very useful in practice. If we want to compare different
possible parses for a sentence, and all of them contain unseen bigrams, then each
of these parses receives a model estimate of 0, and we have nothing interesting
to say about their relative quality. Since we do not want to give any sequence
of words zero probability, we need to assign some probability to unseen bigrams.
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Methods for adjusting the empirical counts that we observe in the training corpus
to the expected counts of n-grams in previously unseen text involve smoothing,
interpolation and back-off: they have been discussed by Good [9], Gale and Samp-
son [8], Written and Bell [21], Knesser and Ney [12], Chen and Goodman [6]. The
latter paper presents an extensive empirical comparison of several of widely-used
smoothing techniques and introduces a variation of Kneser–Ney smoothing that
consistently outperforms all other algorithms evaluated. We believe it should be
used for estimating the parameters of the bigram model (3.10).

3.3 Tagging with the Viterbi algorithm
Once parameters are estimated we could evaluate the bigram model (3.10) for

all possible parses t1,n of a sentence of length n, but that would make tagging
exponential in the length of the input that is to be tagged. An efficient tagging
algorithm is the Viterbi algorithm (Algorithm 1). It has three steps: initialization

Algorithm 1 Algorithm for tagging
Require: a sentence w1,n of length n
Ensure: a sequence of analyzes t1,n

1: δ0(('.', <sent>)) = 1.0
2: δ0(t) = 0.0 for t ̸= ('.', <sent>)
3: for i = 1 to n step 1 do
4: for all candidate parses tj do
5: δi(t

j) = max
tk

[δi−1(t
k)× Prb(tj|tk)]

6: ψi(t
j) = argmax

tk
[δi−1(t

k)× Prb(tj|tk)]
7: end for
8: end for
9: Xn = argmax

tj
δn(t

j)

10: for j = n− 1 to 1 step −1 do
11: Xj = ψj+1(Xj+1)
12: end for

(lines 1–2), induction (lines 3–8), termination and path readout (lines 9–12). We
compute two functions δi(tj), which gives us the probability of parse tj for word wi,
and ψi+1(t

j), which gives us the most likely parse at word wi given that we have
the parse tj at word wi+1. A more detailed discussion of the Viterbi algorithm for
tagging is provided in [16].
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Chapter 4

Conclusion
We reproduced the previous methods of statistical morphological disambigua-

tion [11] for the case of Kazakh language in terms of the Apertium tagset. The
data sparseness problem can be reduced by breaking up the morphological analysis
across derivational boundaries. The maximum likelihood estimates suffer when we
compare possible parses for a sentence that may contain unseen bigrams with zero
probability. In order to fix this problem we suggest using Kneser-Ney smooth-
ing technique to estimate the parameters of the bigram model. In order to put
our approach into a software it is possible to use one of the open-source language
modeling tools (e.g. SRILM1, KenLM2, IRSTLM3) for learning root and IG bi-
gram probabilities, and then implement the provided Viterbi algorithm in any
programming language.
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