
The Mathematica® Journal

Developing an
Understanding of the Steps
Involved in Solving Navier–
Stokes Equations
Desmond Adair
Martin Jaeger

This article describes how Mathematica can be used to develop
an understanding of the basic steps involved in solving Navier–
Stokes equations using a finite-volume approach for
incompressible steady-state flow. The main aim is to let students
follow from a mathematical description of a given problem
through to the method of solution in a transparent way. The well-
known “driven cavity” problem is used as the problem for testing
the coding, and the Navier–Stokes equations are solved in
vorticity-streamfunction form. Building on what the students were
familiar with from a previous course, the solution algorithm for
the vorticity-streamfunction equations chosen was a relaxation
procedure. However, this approach converges very slowly, so
another method using matrix and linear algebra concepts was
also introduced to emphasize the need for efficient and
optimized code.

■ Introduction
Mathematica is used to help with an initial understanding of the process of solving
Navier–Stokes equations. For 2D incompressible flows, it is possible to recast the Navier–
Stokes equations in an alternative form in terms of the streamfunction and the vorticity. In
many applications, the vorticity-streamfunction form of the Navier–Stokes equations pro-
vides better insight into the physical mechanisms driving the flow than the “primitive vari-
able” formulation in terms of the mean velocities u, v, and pressure p. The streamfunction
and vorticity formulation is also useful for numerical work, since it avoids some problems
resulting from the discretization of the continuity equation.

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

The streamfunction is defined as

ψA(P) = 
A

P
u · n ⅆs, (1)

where the integral has to be evaluated along a curve C from the arbitrary but fixed point A
to point P, u is the velocity vector, and n is the unit normal on the curve from A to P; see
Figure 1. We regard ψA(P) as a function of the location of point P.

▲ Figure 1. Sketch illustrating the definitions of a streamfunction.

Figure 1 shows that u · n is equal to the component of the velocity u that crosses C.
Therefore ψA(P) represents the volume flux (per unit depth in the z direction) through C.
Evaluating ψA(P) along two different paths and invoking the integral form of the incom-
pressibility constraint shows that ψA(P) is path independent; that is, its value only depends
on the locations of the points A and P. Changing the position of point A only changes
ψA(P) by a constant. It turns out that for all applications such changes are irrelevant. It is
therefore common to suppress the explicit reference to A. Hence, we regard ψA(P) as a
function of the spatial coordinates only; that is, ψA(P) = ψ(P) = ψ(x, y). Streamlines are
lines that are everywhere tangential to the velocity field, that is, u · n, where n is the unit
normal to the streamline. Hence the streamfunction ψ is constant along streamlines. Note
that stationary impermeable boundaries are also characterized by u · n = 0, where n is the
unit normal on the boundary. Therefore, ψ is also constant along such boundaries.
Invoking the integral incompressibility constraint for an infinitesimally small triangle
shows that ψ is related to the two Cartesian velocity components u and v via

u =
∂ψ

∂y
; v = -−

∂ψ

∂x
. (2)

2 Desmond Adair and Martin Jaeger

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

Flows that are specified by a streamfunction automatically satisfy the continuity equation,
since

∂u
∂x

+
∂v
∂y

=
∂

∂x
∂ψ

∂y
-−

∂

∂y
∂ψ

∂x
= 0. (3)

For 2D flows, the vorticity vector ω = ∇ × u only has one nonzero component (in the z
direction); that is, ω = ω ez, where

ω =
∂v
∂x

-−
∂u
∂y

. (4)

Using the definition of the velocities in terms of the streamfunction shows that

ω =
∂

∂x
-−
∂ψ

∂x
-−

∂

∂y
∂ψ

∂y
= -−∇2ψ, (5)

where ∇2 = ∂2 /∕ ∂x2 + ∂2 /∕ ∂y2 is the 2D Laplace operator.
The understanding of the steps involved in solving the Navier–Stokes equations using the
vorticity-streamfunction form is one of the topics used in a third-year undergraduate
course on computational fluid mechanics, solely for students majoring in mechanical engi-
neering. The use of Mathematica makes the assumption that the students are familiar with
the package, as it generally takes a good deal of exposure to Mathematica to become com-
fortable using it at the level required here [1]. The students taking the computational fluid
mechanics course are indeed very familiar with Mathematica, as the computer algebra sys-
tem is used during year one in the modules Calculus and Applications and Vector Calcu-
lus, and during year two in the module Numerical Methods for Engineering. In addition,
there are many notes, explanations, and examples on the in-house Moodle open-source
learning platform. Similar work to this can be found in Fearn [2], while background read-
ing on computational fluid dynamics and vorticity may be found in Ferziger and Perić [3]
and Chorin [4], respectively.
The aim here is to give a continuous and comprehensive process involving the mathemat-
ics of one formulation of the Navier–Stokes equations and a solution using Mathematica.
In this way, the students can actually see the development of the mathematical description
linked to a programming environment solution process so often hidden in commercial
code used for training CFD students.

Developing an Understanding of the Steps Involved in Solving Navier–Stokes Equations 3

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

■ Navier–Stokes Equations in Vorticity-Streamfunction
Form
The Navier–Stokes equations for incompressible steady-state flow in vorticity-streamfunc-
tion form are
Advection-Diffusion Equation

∂ψ

∂x
∂ω

∂y
-−
∂ψ

∂y
∂ω

∂x
=

1
ℝe

∂2ω

∂x2
+
∂2ω

∂y2
; (6)

Elliptic Equation

∂2ψ

∂x2
+
∂2ψ

∂y2
= -−ω, (7)

where ℝe is the Reynolds number. For a given problem, boundary conditions need to be
specified to solve equations (6) and (7). The problem chosen here introduces the student
to a classical computational fluid dynamics (CFD) case, namely the lid-driven cavity flow
[5]. This flow is commonly used to test, for example, a novel method of discretization of
the equations or new computer programming, as the resulting flow is well known from ex-
periments. Consider a rectangular box as shown in Figure 2, where a lid is allowed to
move in the horizontal plane from left to right. When the lid is not moving, the fluid in the
box is stationary, whereas when the lid is moving, the fluid circulates inside the box. Here
the boundary conditions needed for solution are summarized in terms of vorticity and
streamfunction. As all four walls of the cavity touch, the streamfuction must be equal for
all four walls, as indicated by the ψ = constant in Figure 2. The streamfuction is constant
at the walls, as its gradient is velocity, which is zero relative to a given wall (no-slip condi-
tion), as indicated in the outer boxes also shown in Figure 2. The vorticity boundary condi-
tions for each wall are also shown in each of these outer boxes and were derived from the
streamfunction.

▲ Figure 2. Summary of boundary conditions in terms of vorticity and streamfunction for cavity with
moving lid.

4 Desmond Adair and Martin Jaeger

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

□ Equations in Dimensionless Form

It is convenient from a numerical point of view to make equations (6) and (7) nondimen-
sional. If a and b are the height and width of the cavity, respectively, and V is a reference
velocity, then

x = x
b ; y = y

a ; ψ

= ψ

Vb ; ω = ω b
V ; γ = b

a ; ℝe = Vb
ν .

Equations (6) and (7) become

∂2ω

∂x2
+ γ2

∂2ω

∂y2
= ℝe γ

∂ψ


∂y
∂ω

∂x
-−
∂ψ


∂x
∂ω

∂y
, (8)

∂2ψ


∂x2
+ γ2

∂2ψ


∂y2
= -−ω , (9)

defined on the domain 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. The boundary equations are defined by

ψ

(x, 0) = ψ (x, 1) = ψ


(0, y) = ψ


(1, y) = 0,

ω (x, 0) = -−γ2
∂2ψ



∂y2
y=0

, ω (x, 1) = -−γ2
∂2ψ



∂y2
y=1

,

ω (0, y) = -−
∂2ψ



∂x2
x=0

, ω (1, y) = -−
∂2ψ



∂x2
x=1

.

(10)

■ Discretization and Solution Algorithm

□ Discretization of Transport Equations

Here is an iterative solution for solving the incompressible steady 2D Navier–Stokes equa-
tions. The method is based on Burggraf’s proposal [6]. So as to include the boundary
nodes of the cavity, central differencing is used to discretize equations (8) and (9). The
number of nodes in the x and y directions is set at nx and ny, respectively. The mesh is
a regular Cartesian grid with the nodes equally spaced at a distance h, as illustrated in
Figure 3.

Developing an Understanding of the Steps Involved in Solving Navier–Stokes Equations 5

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

▲ Figure 3. Typical Cartesian mesh used for the lid-driven cavity flow.

To discretize equations (8) and (9), the following general finite central-difference approxi-
mations were introduced for spatial dimensions, obtained by adding or subtracting one
Taylor series from another and invoking the intermediate value theorem. As can be seen
from equation (11), the order of accuracy for both the first and second derivatives is O(h2).

∂ f(x)
∂x

=
f(x+ h) -− f(x-− h)

2 h
+Oh2,

∂2 f(x)

∂x2
=

f(x+ h) -− 2 f(x) + f(x-− h)

h2
+Oh2.

(11)

Using the approximations from equation (11), the discretized advection-diffusion equation
(equation (8)) at the (i, j) node is

ωi+1,j -− 2 ωij +ωi-−1,j

h2
+ γ2

ωij+1 -− 2 ωij +ωij-−1

h2
=

ℝe γ
ψij+1 -−ψij-−1

2 h
ωi,+1 j -−ωi-−1,j

2 h
-−
ψi+1,j -−ψi-−1j

2 h
ωi,j+1 -−ωij-−1

2 h
.

(12)

The elliptic equation (equation (9)) at the (i, j) node is

ψi+1,j -− 2 ψij +ψi-−1,j

h2
+ γ2

ψij+1 -− 2 ψij +ψij-−1

h2
= -−ω(xi, yj). (13)

The equations are applied to the internal nodes of the Cartesian mesh; that is,
2 ≤ i ≤ nx -− 1 and 2 ≤ j ≤ ny -− 1.

6 Desmond Adair and Martin Jaeger

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

□ Solution Algorithm

The solution method uses residual functions; that is, if the values of ψij and ωij are exact
on the nodes spanned by the residual functions ℛij and ℒij, then

ℛij
k+1 = ℒij

k+1 = 0, (14)

where

ℛij
k+1 =

1
2 (1+ γ2)

ψi+1,j
k +ψi-−1,j

k+1 + γ2ψij+1
k+1 +ψij-−1

k+1  + h2 ωij
k -−ψij

k , (15)

ℒij
k+1 =

1
2 (1+ γ2)

ωi+1,j
k +ωi-−1,j

k + γ2ωij+1
k +ωij-−1

k  -−
ℝe
4

γψij+1
k -−ψij-−1

k+1  ωi+1,j
k -−

ωi-−1,j
k+1  -− ψi+1,j

k -−ψi-−1,j
k+1  ωij+1

k -−ωij-−1
k+1  -− ωij

k .

(16)

The following fixed-point iterative procedure, based on the Gauss–Seidel scheme, is then
constructed:

ψij
k+1 = ℱ kψ(k), ψ(k+1), ω(k), ω(k+1) ≡ ψij

k + p ℛij
k ,

ωij
k+1 = 𝒢kψ(k), ψ(k+1), ω(k), ω(k+1) ≡ ωij

k + p ℒij
k ,

(17)

where p is a relaxation parameter lying in the range 0 < p ≤ 1, and k+ 1 and k refer to the
respective iterations. In this article, the actual value of p depends on ℝe and can be
obtained by numerical experimentation. The use of this relaxation parameter is to improve
the stability of a computation, particularly in solving steady-state problems. It works by
limiting, when necessary, the amount that a variable changes from one iteration to the
next. The optimum choice of p is one that is small enough to ensure stable computation
but large enough to move the iterative process forward quickly.
The boundary conditions now need to be determined. For the streamfunction from equa-
tion (11),

ψi,1 = 0 for i = 1, …, nx,
ψnx,j = 0 for j = 1, …, ny,
ψi,ny = 0 for i = 1, …, nx,
ψ1,j = 0 for j = 1, …, ny.

(18)

For vorticity, the following needs to be considered for, say, the left wall of the cavity with
one node outside the computational domain:

ωij = -−
1
h2

ψ2,j -− 2 ψ1,j +ψ0,j + γ2(ψ1,j+1 -− 2 ψ1,j +ψ1,j-−1). (19)

The value of ψ0,j can be accounted for using the no-slip boundary condition on the cavity
wall; that is,

v = -−
∂ψ

∂x
= 0 at x = 0. (20)

Developing an Understanding of the Steps Involved in Solving Navier–Stokes Equations 7

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

Using central differences, this condition can be written as

-−
∂ψ

∂x 1,j
= 0⟹-−

ψ2,j -−ψ0,j

2 h
= 0⟹ψ0,j = ψ2,j, (21)

where again the order of accuracy is O(h2).
This finding, together with ψ1,j = ψ1,j+1 = ψ1,j-−1 = 0, gives

ω1,j = -−
2
h2

(ψ2,j) for j = 2, ny -− 1. (22)

Similarly, for the other walls of the cavity the boundary conditions for vorticity can be
deduced from

ω(xi, yi) = -−
ψi+1,j -− 2 ψij +ψi-−1,j

h2
+ γ2

ψij+1 -− 2 ψij +ψij-−1

h2
(23)

to give

ωi,1 = -−
2
h2

γ2(ψi,2) for i = 1, …, nx,

ωnxj = -−
2
h2

(ψnx-−1,j) for j = 2, …, ny -− 1,

ωiny = -−
2
h2

γ2 ψiny-−1 +
h
γ

i = 1, …, nx,

(24)

where nx and ny are defined in Figure 3. Note that the final boundary condition shown in
equation (24) is for the moving lid, and the extra term is due to the tangential velocity
being nonzero.

■ Use of Mathematica
This section starts with the definition of mesh size and grid spacing; for this problem the
mesh spacing is set equal in the x and y directions. The parameters Nx and Ny denote the
mesh size. Initially, ω and ψ are set to zero for all nodes except at the top wall, where vor-
ticity is not zero. The Reynolds number is set at 100, the relaxation parameter p is set to 1,
and the aspect ratio γ is set at 1. A maximum allowable residual value e is set, and nested
loops are used to execute the iterative algorithm. At every iteration step k, if the maxi-
mum value of the absolute value of ℒ[i, j] is less than e, the calculations are halted.
The iterative loops are wrapped with the function Timing to give an estimate of the time
taken to do the calculations.

8 Desmond Adair and Martin Jaeger

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

◼ Geometry, Mesh Parameters, Initial and Boundary Conditions

a = 1; b = 1; Nx = 41; Ny = 41; ℝe = 100; p = 1.0; γ = 1.;
h = a /∕ (Nx -− 1) /∕/∕ N;
Do[ω[i, j] = 0, {i, Nx}, {j, Ny -− 1}];
Do[ψ[i, j] = 0, {i, Nx}, {j, Ny}];

Doω[i, Ny] = -−2 γ2 ψ[i, Ny -− 1] +
h

γ
 h2, {i, Nx};

◼ Transport Equations

ℛ[i_, j_] :=
1

2 1 + γ2

ψ[i + 1, j] + ψ[i -− 1, j] + γ2 (ψ[i, j -− 1] + ψ[i, j + 1]) +

h2 ω[i, j] -− ψ[i, j]
ℒ[i_, j_] :=

1

2 1 + γ2

ω[i + 1, j] + ω[i -− 1, j] + γ2 (ω[i, j -− 1] + ω[i, j + 1]) -−

ℝe

4
γ ((ψ[i, j + 1] -− ψ[i, j -− 1]) (ω[i + 1, j] -− ω[i -− 1, j]) -−

(ψ[i + 1, j] -− ψ[i -− 1, j]) (ω[i, j + 1] -− ω[i, j -− 1])) -−

ω[i, j]

Developing an Understanding of the Steps Involved in Solving Navier–Stokes Equations 9

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

◼ Iterative Algorithm

With{e = 0.001},

Timing

For

k = 1,
Max[Abs[Table[ℒ[i, j], {i, 2, Nx -− 1}, {j, 2, Ny -− 1}]]] > e,
k++,

For

i = 2, i < Nx, i++,

For

j = 2, j < Ny, j++,
ψnew[i, j] = ψ[i, j] + p ℛ[i, j];
ωnew[i, j] = ω[i, j] + p ℒ[i, j];
ψ[i, j] = ψnew[i, j];
ω[i, j] = ωnew[i, j];
ω[1, j] = -−2 ψ[2, j]  h2;
ω[i, 1] = -−2 γ2 ψ[i, 2]  h2;
ω[Nx, j] = -−2 ψ[Nx -− 1, j]  h2;

ω[i, Ny] = -−2 γ2 ψ[i, Ny -− 1] +
h

γ
 h2











{56.7269, Null}

10 Desmond Adair and Martin Jaeger

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

◼ Streamfunction Results

ListContourPlot[
Transpose[
Partition[Flatten[Table[ψ[i, j], {i, Nx}, {j, Ny}]], Ny]],

Contours → {-−0.00005, -−0.008, -−0.1, -−0.08, -−0.05,
-−0.02, -−0.001},

ContourShading → False,
AspectRatio → Automatic,
ContourStyle → Orange,
DataRange → {{0, 1}, {0, 1}},
FrameLabel → {x, y},
ImageSize → 300,
PlotLabel → "Streamfunction Plot"

]

Developing an Understanding of the Steps Involved in Solving Navier–Stokes Equations 11

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

◼ Vorticity Results

ListContourPlot[
Transpose[
Partition[Flatten[Table[ω[i, j], {i, Nx}, {j, Ny}]], Ny]],

Contours → {-−5, -−3, -−1, 0, 0.25, 0.5, 0.75, 1},
ContourShading → False,
ContourStyle → Orange,
DataRange → {{0, 1}, {0, 1}},
FrameLabel → {x, y},
ImageSize → 300,
PlotLabel → "Vorticity Plot"

]

Extraction of the centerline velocities is also instructive. First of all, students are given
more experience viewing velocity profiles, and second, there are ample calculations and
measurements in the literature [7, 8, 9] for comparison with the results obtained here. The
centerline velocities u (in the x direction) and v (in the y direction) were derived from the
streamfunction values using the equations

ui,j =
∂ψ

∂y
=

ψi,j+1 -−ψi,j-−1

2 h
j = 2, …, ny, (25)

vi,j = -−
∂ψ

∂y
=

ψi,+1 j -−ψi-−1,j

2 h
i = 2, …, nx. (26)

12 Desmond Adair and Martin Jaeger

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

The velocity distributions for u and v in the following figure are drawn along the vertical
and horizontal centerlines, respectively.

Module[
{Nxm = (Nx + 1) /∕ 2, Nym = (Ny + 1) /∕ 2, i, j, u, v, xx},
For[j = 2, j < Ny -− 1, j++,
u[Nxm, j] = (ψ[Nxm, j + 1] -− ψ[Nxm, j -− 1]) /∕ (2 h)];

For[j = 2, j < Ny -− 1, j++, u[Nxm, j] = -−u[Nxm, j]];
For[i = 2, i < Nx -− 1, i++,
v[i, Nym] = -−(ψ[i + 1, Nym] -− ψ[i -− 1, Nym]) /∕ (2 h)];

For[j = 2, j < Ny -− 1, j++, xx[j] = (j -− Nym) /∕ Nym];
Show[
ListPlot[
{
Table[{-−u[Nxm, j], xx[j]}, {j, 2, Ny -− 1}],
Table[{xx[i], v[i, Nxm]}, {i, 2, Nx -− 1}]

},
ImageSize → 300,
AspectRatio → Automatic,
PlotLegends → {Row[{Style["u", Italic], " m/∕s"}],

Row[{Style["v", Italic], " m/∕s"}]},
PlotLabel → "CenterLine Velocities"

],
ListPlot[
{
{0.0, -−0.95}, {-−0.06, -−0.8}, {-−0.18, -−0.34},
{-−0.2, -−0.05}, {-−0.2, 0.0}, {-−0.16, 0.12}, {0, 0.44},
{0.25, 0.7}, {0.5, 0.8}, {0.75, 0.9}, {0.85, 0.9}

},
PlotMarkers → Graphics[{Red, Circle[]}, ImageSize → 8],
PlotLegends → {"Refs. [7, 9]"}]

]
]

Developing an Understanding of the Steps Involved in Solving Navier–Stokes Equations 13

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

-−0.5 0.5

-−1.0

-−0.5

0.5

CenterLine Velocities

u m/∕s

v m/∕s

Refs. [7, 9]

Importantly, the students were made aware that the profiles they calculated must be com-
pared, preferably with experimental measurements, to test the validity of the calculation
technique. As can be seen from the preceding figure, the calculations for the horizontal
centerline velocities compare very favorably with those reported in the literature [7, 9] for
ℝe = 100.

■ A More Efficient and Optimized Solution Method
It can be clearly seen that the relaxation procedure, though reasonably easy for students to
follow and therefore educationally productive, is indeed very slow to converge. However,
students must be aware that code should be written efficiently and optimized, making use
of all available concepts and procedures. Therefore, as part of their understanding of
solving Navier–Stokes equations in the best way, they were also introduced to the fol-
lowing Mathematica code. The preceding exercise was a small-scale problem using a
fairly primitive method of solution, and even for this simple problem, the convergence
time is prohibitive. Therefore, for large numerical computations and those with more
complex geometry, it is important to use a solution method that will run more efficiently.
This can be achieved using linear algebra and matrices and highly optimized functional-
ities built into Mathematica, namely NDSolve and LinearSolve. The following
program solves the same problem as that described in Figure 2, except the Reynolds
number is set at 400 and the computational grid is slightly more dense. The time to solve
this same problem was reduced by over an order of magnitude. It should be understood
that what the code is solving is the unsteady 2D Navier–Stokes equations. Each iteration
is a time step from impulse-starting conditions to steady state, and for the lid-driven cavity
flow, the unsteady solution converges to the steady state. The animation shown is for the
streamfunction with a Reynolds number of 400.

14 Desmond Adair and Martin Jaeger

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

◼ Optimized Coding

Module[
(*⋆ global: dx, dy, sf, grid *⋆)
{
ℝe = 400, γ = 1.,
nx = ny = N[Range[0, 50] /∕ 50],
dh, dt = 0.02,
eye, d2x, d2y,
biLeft, biRight, biBottom, biTop,
bi,
vbiLeft, vbiRight, vbiBottom, vbiTop,
LaplacianSV,
vort, sfSol, sfPlots

},
dh = nx[[2]] -− nx[[1]];
{eye, dx, d2x, dy, d2y} =
NDSolve`FiniteDifferenceDerivative[#, {nx, ny},

"DifferenceOrder" → 2]["DifferentiationMatrix"] & /∕@
{{0, 0}, {1, 0}, {2, 0}, {0, 1}, {0, 2}};

grid = Flatten[Outer[List, nx, ny], 1];
{biLeft, biRight, biBottom, biTop} =

Flatten[Position[grid, #]] & /∕@
{{0., y_}, {1., y_}, {x_, 0.}, {x_, 1.}} ;

bi = DeleteDuplicates[
Flatten[{biLeft, biRight, biBottom, biTop}]];

{vbiLeft, vbiRight, vbiBottom, vbiTop} =
Flatten[Position[grid, #]] & /∕@
{{dh, y_}, {1. -− dh, y_}, {x_, dh}, {x_, 1. -− dh}};

LaplacianSV = eye -− dt /∕ℝe (d2x + γ^2 d2y);
LaplacianSV[[bi]] = eye[[bi]];
LUMat = LinearSolve[LaplacianSV];
vort = sf = ConstantArray[0., Length[grid]];
sfSol = Last@Reap[

Do[
rhs = vort -− dt γ (dy.sf dx.vort -− dx.sf dy.vort) ;
rhs[[biLeft]] = -−2 /∕ dh^2 sf[[vbiLeft]];
rhs[[biRight]] = -−2 /∕ dh^2 sf[[vbiRight]];
rhs[[biBottom]] = -−2 /∕ dh^2 γ^2 sf[[vbiBottom]];
rhs[[biTop]] = -−2 /∕ dh^2 γ^2 (sf[[vbiTop]] + dh /∕ γ);
vort = LUMat[rhs];
rhs = dt /∕ℝe vort + sf;
rhs[[bi]] = 0.;
sf = LUMat[rhs];
If[
Mod[timeStep -− 1, 100] ⩵ 0,
Sow[Interpolation[Transpose[{grid, sf}]]]

],
{timeStep, 3000}

]

Developing an Understanding of the Steps Involved in Solving Navier–Stokes Equations 15

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

]
];

sfPlots = Rasterize@ContourPlot[
#[x, y], {x, 0, 1}, {y, 0, 1},
Contours → {-−0.00005, -−0.008, -−0.1, -−0.08,

-−0.05, -−0.02, -−0.001, 0.001, 0.0001, 0.0005,
0.00001},

ContourShading → False,
ContourStyle → Orange,
ImageSize → 250] & /∕@ First[sfSol];

ListAnimate[sfPlots, AnimationRunning → False]
]

U = Interpolation[Transpose[{grid, dy.sf}]];
V = Interpolation[Transpose[{grid, -−dx.sf}]];

Show[
ListLinePlot[
{
Table[{U[0.5, y], 2 y -− 1}, {y, 0, 1, 1 /∕ 100.}],
Table[{2 x -− 1, V[x, 0.5]}, {x, 0, 1, 1 /∕ 100.}]

},
PlotRange → {{1, -−1}, {1, -−1}},
AspectRatio → 1,
Axes → False,
Frame → True,
GridLines → Automatic,
FrameLabel → {Style["U", Italic], Style["V", Italic]},

, ,

16 Desmond Adair and Martin Jaeger

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

PlotStyle → {Red, Blue}, FrameStyle → Directive[Black, 12],
PlotLabel →
Text[
Style[Row[{Style["U", Italic], "-−", Style["V", Italic],

" Centerline Velocities"}], 12]]
],
ListPlot[
{{0.0, -−1.0}, {-−0.1, -−0.8}, {-−0.32, -−0.32},
{-−0.2, -−0.05}, {-−0.15, 0.0}, {0.0, 0.25}, {0.2, 0.5},
{0.3, 0.7}, {0.5, 0.87}, {0.75, 0.95}, {0.85, 0.97}},

PlotMarkers → Graphics[{Red, Circle[]}, ImageSize → 8],
PlotLegends → {"Refs. [7, 9]"}

]
]

Refs. [7, 9]

Having established the method of solution, the student would then experiment by varying
the grid size and seeking a solution independent of the grid, which is very important in
CFD calculations. Results would also be obtained for different aspect ratios of the
container. Again, where possible, calculations must be compared with experimental
measurements to establish validity. As can be seen, the calculated horizontal velocity
along the vertical centerline for ℝe = 400 was in good agreement with experimental
results [7, 9].

Developing an Understanding of the Steps Involved in Solving Navier–Stokes Equations 17

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

■ Summary
This article outlines a well-defined sequence of steps needed to solve the Navier–Stokes
equations cast in the vorticity-streamfunction form. The sequence is integrated with the
use of Mathematica at appropriate stages to take care of the tedious computations, and
hence to allow the students to concentrate on the overall details of the solution process. In
addition, it is now important to integrate computer technology so as to complete lectures
and theory. This has the advantages of helping with the computations, aiding presentation
for reports and analysis, and motivating students. Incorporating Mathematica also takes
away the “black-box” approach so often being used by students with full CFD commercial
codes, which give no real understanding of the numerics involved. The idea of efficient
and optimized coding was also introduced.

■ References
[1] S. Pomeranz, “Using a Computer Algebra System to Teach the Finite Element Method,” Inter-

national Journal of Engineering Education, 16(4), 2000 pp. 362–368.
www.ijee.ie/articles/Vol16-4/IJEE1162.pdf.

[2] R. L. Fearn, “Airfoil Aerodynamics Using Panel Methods,” The Mathematica Journal, 10(4),
2008 pp. 725–739.
www.mathematica-journal.com/2008/11/airfoil-aerodynamics-using-panel-methods.

[3] J. H. Ferziger and M. Perić, Computational Methods for Fluid Dynamics, 3rd ed., Berlin:
Springer, 2002.

[4] A. J. Chorin, Vorticity and Turbulence (Applied Mathematical Sciences, Vol. 103), New York:
Springer-Verlag, 1994.

[5] J. D. Bozeman and C. Dalton, “Numerical Study of Viscous Flow in a Cavity,” Journal of
Computational Physics, 12(3), 1973 pp. 348–363. doi:10.1016/0021-9991(73)90157-5.

[6] O. R. Burggraf, “Analytical and Numerical Studies of the Structure of Steady Separated
Flows,” Journal of Fluid Mechanics, 24(1), 1966 pp. 113–151.
doi:10.1017/S0022112066000545.

[7] U. Gia, K. N. Ghia, and C. T. Shin, “High-Re Solutions for Incompressible Flow Using the
Navier–Stokes Equations and a Multigrid Method,” Journal of Computational Physics, 48(3),
1982 pp. 387–411. doi:10.1016/0021-9991(82)90058-4.

[8] W. F. Spotz, “Accuracy and Performance of Numerical Wall Boundary Conditions for Steady,
2D, Incompressible Streamfunction Vorticity,” International Journal for Numerical Methods in
Fluids, 28(4), 1998 pp. 737–757.
onlinelibrary.wiley.com/doi/10.1002/%28SICI%291097-0363%2819980930%2928:4%3C737::
AID-FLD744%3E3.0.CO;2-L/abstract.

[9] D. C. Wan, Y. C. Zhou, and G. W. Wei, “Numerical Solution of Incompressible Flows by Dis-
crete Singular Convolution,” International Journal for Numerical Methods in Fluids, 38(8),
2002 pp. 789–810. doi:10.1002/fld.253.

D. Adair and M. Jaeger, “Developing an Understanding of the Steps Involved in Solving Navier–Stokes Equa-
tions,” The Mathematica Journal, 2015. dx.doi.org/doi:10.3888/tmj.17-8.

18 Desmond Adair and Martin Jaeger

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

About the Authors

Desmond Adair is a professor of mechanical engineering in the School of Engineering,
Nazarbayev University, Astana, Republic of Kazakhstan. His recent research interests in-
clude investigations of airborne pollution for both passive and reacting flows, and develop-
ing engineering mathematics by the incorporation of computer algebra systems.
Martin Jaeger is an associate professor of civil engineering and head of department in the
School of Engineering, Australian College of Kuwait, Misref, Kuwait. His recent research
interests include construction management and total quality, as well as developing strate-
gies for engineering education.
Desmond Adair
School of Engineering
Nazarbayev University
53 Kabanbay batyr Ave.
Astana, 010000, Republic of Kazakhstan
dadair@nu.edu.kz
Martin Jaeger
School of Engineering
Australian College of Kuwait
Al Aqsa Mosque Street
Misref, Kuwait City, Kuwait
m.jaeger@ack.edu.kw

Developing an Understanding of the Steps Involved in Solving Navier–Stokes Equations 19

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

