
The Mathematica® Journal

Developing an 
Understanding of the Steps 
Involved in Solving Navier–
Stokes Equations
Desmond Adair
Martin Jaeger

This article describes how Mathematica can be used to develop 
an understanding of the basic steps involved in solving Navier–
Stokes equations using a finite-volume approach for 
incompressible steady-state flow. The main aim is to let students 
follow from a mathematical description of a given problem 
through to the method of solution in a transparent way. The well-
known “driven cavity” problem is used as the problem for testing 
the coding, and the Navier–Stokes equations are solved in 
vorticity-streamfunction form. Building on what the students were 
familiar with from a previous course, the solution algorithm for 
the vorticity-streamfunction equations chosen was a relaxation 
procedure. However, this approach converges very slowly, so 
another method using matrix and linear algebra concepts was 
also introduced to emphasize the need for efficient and 
optimized code. 

■ Introduction
Mathematica  is  used  to  help  with  an  initial  understanding  of  the  process  of  solving
Navier–Stokes equations. For 2D incompressible flows, it is possible to recast the Navier–
Stokes equations in an alternative form in terms of the streamfunction and the vorticity. In
many applications, the vorticity-streamfunction form of the Navier–Stokes equations pro-
vides better insight into the physical mechanisms driving the flow than the “primitive vari-
able” formulation in terms of the mean velocities u, v, and pressure p. The streamfunction
and vorticity formulation is also useful for numerical work, since it avoids some problems
resulting from the discretization of the continuity equation. 
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The streamfunction is defined as

ψA(P) = 
A

P
u · n ⅆs, (1)

where the integral has to be evaluated along a curve C from the arbitrary but fixed point A
to point P, u is the velocity vector, and n is the unit normal on the curve from A to P; see
Figure 1. We regard ψA(P) as a function of the location of point P.

▲ Figure 1. Sketch illustrating the definitions of a streamfunction.

Figure  1  shows  that  u · n  is  equal  to  the  component  of  the  velocity  u  that  crosses  C.
Therefore ψA(P)  represents the volume flux (per unit depth in the z  direction) through C.
Evaluating ψA(P)  along two different paths and invoking the integral  form of the incom-
pressibility constraint shows that ψA(P) is path independent; that is, its value only depends
on  the  locations  of  the  points  A  and  P.  Changing  the  position  of  point  A  only  changes
ψA(P) by a constant. It turns out that for all applications such changes are irrelevant. It is
therefore  common  to  suppress  the  explicit  reference  to  A.  Hence,  we  regard  ψA(P)  as  a
function  of  the  spatial  coordinates  only;  that  is,  ψA(P) = ψ(P) = ψ(x, y).  Streamlines  are
lines that are everywhere tangential to the velocity field, that is, u · n, where n is the unit
normal to the streamline. Hence the streamfunction ψ is constant along streamlines. Note
that stationary impermeable boundaries are also characterized by u · n = 0, where n is the
unit  normal  on  the  boundary.  Therefore,  ψ  is  also  constant  along  such  boundaries.
Invoking  the  integral  incompressibility  constraint  for  an  infinitesimally  small  triangle
shows that ψ is related to the two Cartesian velocity components u and v via

u =
∂ψ

∂y
; v = -−

∂ψ

∂x
. (2)
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Flows that are specified by a streamfunction automatically satisfy the continuity equation,
since

∂u
∂x

+
∂v
∂y

=
∂

∂x
∂ψ

∂y
-−

∂

∂y
∂ψ

∂x
= 0. (3)

For  2D flows,  the  vorticity  vector  ω = ∇ × u  only  has  one  nonzero  component  (in  the  z
direction); that is, ω = ω ez, where

ω =
∂v
∂x

-−
∂u
∂y

. (4)

Using the definition of the velocities in terms of the streamfunction shows that

ω =
∂

∂x
-−
∂ψ

∂x
-−

∂

∂y
∂ψ

∂y
= -−∇2ψ, (5)

where ∇2 = ∂2 /∕ ∂x2 + ∂2 /∕ ∂y2 is the 2D Laplace operator.
The understanding of the steps involved in solving the Navier–Stokes equations using the
vorticity-streamfunction  form  is  one  of  the  topics  used  in  a  third-year  undergraduate
course on computational fluid mechanics, solely for students majoring in mechanical engi-
neering. The use of Mathematica makes the assumption that the students are familiar with
the package, as it generally takes a good deal of exposure to Mathematica to become com-
fortable using it at the level required here [1]. The students taking the computational fluid
mechanics course are indeed very familiar with Mathematica, as the computer algebra sys-
tem is used during year one in the modules Calculus and Applications and Vector Calcu-
lus,  and during year two in the module Numerical  Methods for Engineering.  In addition,
there  are  many  notes,  explanations,  and  examples  on  the  in-house  Moodle  open-source
learning platform. Similar work to this can be found in Fearn [2], while background read-
ing on computational fluid dynamics and vorticity may be found in Ferziger and Perić [3]
and Chorin [4], respectively.
The aim here is to give a continuous and comprehensive process involving the mathemat-
ics of one formulation of the Navier–Stokes equations and a solution using Mathematica.
In this way, the students can actually see the development of the mathematical description
linked  to  a  programming  environment  solution  process  so  often  hidden  in  commercial
code used for training CFD students. 
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■ Navier–Stokes Equations in Vorticity-Streamfunction 
Form
The Navier–Stokes equations for incompressible steady-state flow in vorticity-streamfunc-
tion form are
Advection-Diffusion Equation

∂ψ

∂x
∂ω

∂y
-−
∂ψ

∂y
∂ω

∂x
=

1
ℝe

∂2ω

∂x2
+
∂2ω

∂y2
; (6)

Elliptic Equation

∂2ψ

∂x2
+
∂2ψ

∂y2
= -−ω, (7)

where ℝe is the Reynolds number.  For a given problem, boundary conditions need to be
specified to solve equations (6)  and (7).  The problem chosen here introduces the student
to a classical computational fluid dynamics (CFD) case, namely the lid-driven cavity flow
[5]. This flow is commonly used to test, for example, a novel method of discretization of
the equations or new computer programming, as the resulting flow is well known from ex-
periments.  Consider  a  rectangular  box  as  shown  in  Figure  2,  where  a  lid  is  allowed  to
move in the horizontal plane from left to right. When the lid is not moving, the fluid in the
box is stationary, whereas when the lid is moving, the fluid circulates inside the box. Here
the  boundary  conditions  needed  for  solution  are  summarized  in  terms  of  vorticity  and
streamfunction. As all four walls of the cavity touch, the streamfuction must be equal for
all four walls, as indicated by the ψ = constant in Figure 2. The streamfuction is constant
at the walls, as its gradient is velocity, which is zero relative to a given wall (no-slip condi-
tion), as indicated in the outer boxes also shown in Figure 2. The vorticity boundary condi-
tions for each wall are also shown in each of these outer boxes and were derived from the
streamfunction.

▲ Figure 2. Summary of boundary conditions in terms of vorticity and streamfunction for cavity with 
moving lid.
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□ Equations in Dimensionless Form

It is convenient from a numerical point of view to make equations (6) and (7) nondimen-
sional. If a and b are the height and width of the cavity, respectively, and V  is a reference
velocity, then

x = x
b ; y = y

a ; ψ

= ψ

Vb ; ω = ω b
V ; γ = b

a ; ℝe = Vb
ν .

Equations (6) and (7) become

∂2ω

∂x2
+ γ2

∂2ω

∂y2
= ℝe γ

∂ψ


∂y
∂ω

∂x
-−
∂ψ


∂x
∂ω

∂y
, (8)

∂2ψ


∂x2
+ γ2

∂2ψ


∂y2
= -−ω , (9)

defined on the domain 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. The boundary equations are defined by

ψ

(x, 0) = ψ (x, 1) = ψ


(0, y) = ψ


(1, y) = 0,

ω (x, 0) = -−γ2
∂2ψ



∂y2
y=0

, ω (x, 1) = -−γ2
∂2ψ



∂y2
y=1

,

ω (0, y) = -−
∂2ψ



∂x2
x=0

, ω (1, y) = -−
∂2ψ



∂x2
x=1

.

(10)

■ Discretization and Solution Algorithm

□ Discretization of Transport Equations

Here is an iterative solution for solving the incompressible steady 2D Navier–Stokes equa-
tions.  The  method  is  based  on  Burggraf’s  proposal  [6].  So  as  to  include  the  boundary
nodes  of  the  cavity,  central  differencing  is  used  to  discretize  equations  (8)  and  (9).  The
number  of  nodes  in  the  x  and  y  directions  is  set  at  nx  and  ny,  respectively.  The  mesh  is
a  regular  Cartesian  grid  with  the  nodes  equally  spaced  at  a  distance  h,  as  illustrated  in
Figure 3.
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▲ Figure 3. Typical Cartesian mesh used for the lid-driven cavity flow.

To discretize equations (8) and (9), the following general finite central-difference approxi-
mations  were  introduced  for  spatial  dimensions,  obtained  by  adding  or  subtracting  one
Taylor series from another and invoking the intermediate value theorem. As can be seen
from equation (11), the order of accuracy for both the first and second derivatives is O(h2).

∂ f(x)
∂x

=
f(x+ h) -− f(x-− h)

2 h
+Oh2,

∂2 f(x)

∂x2
=

f(x+ h) -− 2 f(x) + f(x-− h)

h2
+Oh2.

(11)

Using the approximations from equation (11), the discretized advection-diffusion equation
(equation (8)) at the (i, j) node is

ωi+1,j -− 2 ωij +ωi-−1,j

h2
+ γ2

ωij+1 -− 2 ωij +ωij-−1

h2
=

ℝe γ
ψij+1 -−ψij-−1

2 h
ωi,+1 j -−ωi-−1,j

2 h
-−
ψi+1,j -−ψi-−1j

2 h
ωi,j+1 -−ωij-−1

2 h
.

(12)

The elliptic equation (equation (9)) at the (i, j) node is

ψi+1,j -− 2 ψij +ψi-−1,j

h2
+ γ2

ψij+1 -− 2 ψij +ψij-−1

h2
= -−ω(xi, yj). (13)

The  equations  are  applied  to  the  internal  nodes  of  the  Cartesian  mesh;  that  is,
2 ≤ i ≤ nx -− 1 and 2 ≤ j ≤ ny -− 1. 
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□ Solution Algorithm

The solution method uses residual functions; that is, if the values of ψij  and ωij  are exact
on the nodes spanned by the residual functions ℛij and ℒij, then

ℛij
k+1 = ℒij

k+1 = 0, (14)

where

ℛij
k+1 =

1
2 (1+ γ2)

ψi+1,j
k +ψi-−1,j

k+1 + γ2ψij+1
k+1 +ψij-−1

k+1  + h2 ωij
k -−ψij

k , (15)

ℒij
k+1 =

1
2 (1+ γ2)

ωi+1,j
k +ωi-−1,j

k + γ2ωij+1
k +ωij-−1

k  -−
ℝe
4

γψij+1
k -−ψij-−1

k+1  ωi+1,j
k -−

ωi-−1,j
k+1  -− ψi+1,j

k -−ψi-−1,j
k+1  ωij+1

k -−ωij-−1
k+1  -− ωij

k .

(16)

The following fixed-point iterative procedure, based on the Gauss–Seidel scheme, is then
constructed:

ψij
k+1 = ℱ kψ(k), ψ(k+1), ω(k), ω(k+1) ≡ ψij

k + p ℛij
k ,

ωij
k+1 = 𝒢kψ(k), ψ(k+1), ω(k), ω(k+1) ≡ ωij

k + p ℒij
k ,

(17)

where p is a relaxation parameter lying in the range 0 < p ≤ 1, and k+ 1 and k refer to the
respective  iterations.  In  this  article,  the  actual  value  of  p  depends  on  ℝe  and  can  be
obtained by numerical experimentation. The use of this relaxation parameter is to improve
the  stability  of  a  computation,  particularly  in  solving  steady-state  problems.  It  works  by
limiting,  when  necessary,  the  amount  that  a  variable  changes  from  one  iteration  to  the
next.  The optimum choice  of  p  is  one that  is  small  enough to  ensure  stable  computation
but large enough to move the iterative process forward quickly.
The boundary conditions now need to be determined.  For the streamfunction from equa-
tion (11),

ψi,1 = 0 for i = 1, …, nx,
ψnx,j = 0 for j = 1, …, ny,
ψi,ny = 0 for i = 1, …, nx,
ψ1,j = 0 for j = 1, …, ny.

(18)

For vorticity, the following needs to be considered for, say, the left wall of the cavity with
one node outside the computational domain:

ωij = -−
1
h2

ψ2,j -− 2 ψ1,j +ψ0,j + γ2(ψ1,j+1 -− 2 ψ1,j +ψ1,j-−1). (19)

The value of ψ0,j  can be accounted for using the no-slip boundary condition on the cavity
wall; that is,

v = -−
∂ψ

∂x
= 0 at x = 0. (20)
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Using central differences, this condition can be written as

-−
∂ψ

∂x 1,j
= 0⟹-−

ψ2,j -−ψ0,j

2 h
= 0⟹ψ0,j = ψ2,j, (21)

where again the order of accuracy is O(h2).
This finding, together with ψ1,j = ψ1,j+1 = ψ1,j-−1 = 0, gives

ω1,j = -−
2
h2

(ψ2,j) for j = 2, ny -− 1. (22)

Similarly,  for  the  other  walls  of  the  cavity  the  boundary  conditions  for  vorticity  can  be
deduced from

ω(xi, yi) = -−
ψi+1,j -− 2 ψij +ψi-−1,j

h2
+ γ2

ψij+1 -− 2 ψij +ψij-−1

h2
(23)

to give

ωi,1 = -−
2
h2

γ2(ψi,2) for i = 1, …, nx,

ωnxj = -−
2
h2

(ψnx-−1,j) for j = 2, …, ny -− 1,

ωiny = -−
2
h2

γ2 ψiny-−1 +
h
γ

i = 1, …, nx,

(24)

where nx  and ny  are defined in Figure 3. Note that the final boundary condition shown in
equation  (24)  is  for  the  moving  lid,  and  the  extra  term  is  due  to  the  tangential  velocity
being nonzero.

■ Use of Mathematica 
This section starts with the definition of mesh size and grid spacing; for this problem the
mesh spacing is set equal in the x and y directions. The parameters Nx and Ny denote the
mesh size. Initially, ω and ψ are set to zero for all nodes except at the top wall, where vor-
ticity is not zero. The Reynolds number is set at 100, the relaxation parameter p is set to 1,
and the aspect ratio γ is set at 1. A maximum allowable residual value e is set, and nested
loops  are  used  to  execute  the  iterative  algorithm.  At  every  iteration  step  k,  if  the  maxi-
mum value of  the absolute  value of  ℒ[i, j]  is  less  than e,  the calculations are  halted.
The iterative loops are wrapped with the function Timing to give an estimate of the time
taken to do the calculations.
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◼ Geometry, Mesh Parameters, Initial and Boundary Conditions

a = 1; b = 1; Nx = 41; Ny = 41; ℝe = 100; p = 1.0; γ = 1.;
h = a /∕ (Nx -− 1) /∕/∕ N;
Do[ω[i, j] = 0, {i, Nx}, {j, Ny -− 1}];
Do[ψ[i, j] = 0, {i, Nx}, {j, Ny}];

Doω[i, Ny] = -−2 γ2 ψ[i, Ny -− 1] +
h

γ
 h2, {i, Nx};

◼ Transport Equations

ℛ[i_, j_] :=
1

2 1 + γ2

ψ[i + 1, j] + ψ[i -− 1, j] + γ2 (ψ[i, j -− 1] + ψ[i, j + 1]) +

h2 ω[i, j] -− ψ[i, j]
ℒ[i_, j_] :=

1

2 1 + γ2

ω[i + 1, j] + ω[i -− 1, j] + γ2 (ω[i, j -− 1] + ω[i, j + 1]) -−

ℝe

4
γ ((ψ[i, j + 1] -− ψ[i, j -− 1]) (ω[i + 1, j] -− ω[i -− 1, j]) -−

(ψ[i + 1, j] -− ψ[i -− 1, j]) (ω[i, j + 1] -− ω[i, j -− 1])) -−

ω[i, j]
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◼ Iterative Algorithm

With{e = 0.001},

Timing

For

k = 1,
Max[Abs[Table[ℒ[i, j], {i, 2, Nx -− 1}, {j, 2, Ny -− 1}]]] > e,
k++,

For

i = 2, i < Nx, i++,

For

j = 2, j < Ny, j++,
ψnew[i, j] = ψ[i, j] + p ℛ[i, j];
ωnew[i, j] = ω[i, j] + p ℒ[i, j];
ψ[i, j] = ψnew[i, j];
ω[i, j] = ωnew[i, j];
ω[1, j] = -−2 ψ[2, j]  h2;
ω[i, 1] = -−2 γ2 ψ[i, 2]  h2;
ω[Nx, j] = -−2 ψ[Nx -− 1, j]  h2;

ω[i, Ny] = -−2 γ2 ψ[i, Ny -− 1] +
h

γ
 h2











{56.7269, Null}
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◼ Streamfunction Results

ListContourPlot[
Transpose[
Partition[Flatten[Table[ψ[i, j], {i, Nx}, {j, Ny}]], Ny]],

Contours → {-−0.00005, -−0.008, -−0.1, -−0.08, -−0.05,
-−0.02, -−0.001},

ContourShading → False,
AspectRatio → Automatic,
ContourStyle → Orange,
DataRange → {{0, 1}, {0, 1}},
FrameLabel → {x, y},
ImageSize → 300,
PlotLabel → "Streamfunction Plot"

]
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◼ Vorticity Results

ListContourPlot[
Transpose[
Partition[Flatten[Table[ω[i, j], {i, Nx}, {j, Ny}]], Ny]],

Contours → {-−5, -−3, -−1, 0, 0.25, 0.5, 0.75, 1},
ContourShading → False,
ContourStyle → Orange,
DataRange → {{0, 1}, {0, 1}},
FrameLabel → {x, y},
ImageSize → 300,
PlotLabel → "Vorticity Plot"

]

Extraction  of  the  centerline  velocities  is  also  instructive.  First  of  all,  students  are  given
more  experience  viewing  velocity  profiles,  and  second,  there  are  ample  calculations  and
measurements in the literature [7, 8, 9] for comparison with the results obtained here. The
centerline velocities u (in the x direction) and v (in the y direction) were derived from the
streamfunction values using the equations

ui,j =
∂ψ

∂y
=

ψi,j+1 -−ψi,j-−1

2 h
j = 2, …, ny, (25)

vi,j = -−
∂ψ

∂y
=

ψi,+1 j -−ψi-−1,j

2 h
i = 2, …, nx. (26)
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The velocity distributions for u and v in the following figure are drawn along the vertical
and horizontal centerlines, respectively.

Module[
{Nxm = (Nx + 1) /∕ 2, Nym = (Ny + 1) /∕ 2, i, j, u, v, xx},
For[j = 2, j < Ny -− 1, j++,
u[Nxm, j] = (ψ[Nxm, j + 1] -− ψ[Nxm, j -− 1]) /∕ (2 h)];

For[j = 2, j < Ny -− 1, j++, u[Nxm, j] = -−u[Nxm, j]];
For[i = 2, i < Nx -− 1, i++,
v[i, Nym] = -−(ψ[i + 1, Nym] -− ψ[i -− 1, Nym]) /∕ (2 h)];

For[j = 2, j < Ny -− 1, j++, xx[j] = (j -− Nym) /∕ Nym];
Show[
ListPlot[
{
Table[{-−u[Nxm, j], xx[j]}, {j, 2, Ny -− 1}],
Table[{xx[i], v[i, Nxm]}, {i, 2, Nx -− 1}]

},
ImageSize → 300,
AspectRatio → Automatic,
PlotLegends → {Row[{Style["u", Italic], " m/∕s"}],

Row[{Style["v", Italic], " m/∕s"}]},
PlotLabel → "CenterLine Velocities"

],
ListPlot[
{
{0.0, -−0.95}, {-−0.06, -−0.8}, {-−0.18, -−0.34},
{-−0.2, -−0.05}, {-−0.2, 0.0}, {-−0.16, 0.12}, {0, 0.44},
{0.25, 0.7}, {0.5, 0.8}, {0.75, 0.9}, {0.85, 0.9}

},
PlotMarkers → Graphics[{Red, Circle[]}, ImageSize → 8],
PlotLegends → {"Refs. [7, 9]"}]

]
]
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-−0.5 0.5

-−1.0

-−0.5

0.5

CenterLine Velocities

u m/∕s

v m/∕s

Refs. [7, 9]

Importantly, the students were made aware that the profiles they calculated must be com-
pared,  preferably  with  experimental  measurements,  to  test  the  validity  of  the  calculation
technique.  As  can  be  seen  from  the  preceding  figure,  the  calculations  for  the  horizontal
centerline velocities compare very favorably with those reported in the literature [7, 9] for
ℝe = 100. 

■ A More Efficient and Optimized Solution Method
It can be clearly seen that the relaxation procedure, though reasonably easy for students to
follow and therefore educationally productive, is indeed very slow to converge. However,
students must be aware that code should be written efficiently and optimized, making use
of  all  available  concepts  and  procedures.  Therefore,  as  part  of  their  understanding  of
solving  Navier–Stokes  equations  in  the  best  way,  they  were  also  introduced  to  the  fol-
lowing  Mathematica  code.  The  preceding  exercise  was  a  small-scale  problem  using  a
fairly  primitive  method  of  solution,  and  even  for  this  simple  problem,  the  convergence
time  is  prohibitive.  Therefore,  for  large  numerical  computations  and  those  with  more
complex geometry, it is important to use a solution method that will run more efficiently.
This  can be achieved using linear  algebra  and matrices  and highly  optimized functional-
ities  built  into  Mathematica,  namely  NDSolve  and  LinearSolve.  The  following
program  solves  the  same  problem  as  that  described  in  Figure  2,  except  the  Reynolds
number is set at 400 and the computational grid is slightly more dense. The time to solve
this  same  problem was  reduced  by  over  an  order  of  magnitude.  It  should  be  understood
that what the code is solving is the unsteady 2D Navier–Stokes equations. Each iteration
is a time step from impulse-starting conditions to steady state, and for the lid-driven cavity
flow, the unsteady solution converges to the steady state. The animation shown is for the
streamfunction with a Reynolds number of 400.
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◼ Optimized Coding

Module[
(*⋆ global: dx, dy, sf, grid *⋆)
{
ℝe = 400, γ = 1.,
nx = ny = N[Range[0, 50] /∕ 50],
dh, dt = 0.02,
eye, d2x, d2y,
biLeft, biRight, biBottom, biTop,
bi,
vbiLeft, vbiRight, vbiBottom, vbiTop,
LaplacianSV,
vort, sfSol, sfPlots

},
dh = nx[[2]] -− nx[[1]];
{eye, dx, d2x, dy, d2y} =
NDSolve`FiniteDifferenceDerivative[#, {nx, ny},

"DifferenceOrder" → 2]["DifferentiationMatrix"] & /∕@
{{0, 0}, {1, 0}, {2, 0}, {0, 1}, {0, 2}};

grid = Flatten[Outer[List, nx, ny], 1];
{biLeft, biRight, biBottom, biTop} =

Flatten[Position[grid, #]] & /∕@
{{0., y_}, {1., y_}, {x_, 0.}, {x_, 1.}} ;

bi = DeleteDuplicates[
Flatten[{biLeft, biRight, biBottom, biTop}]];

{vbiLeft, vbiRight, vbiBottom, vbiTop} =
Flatten[Position[grid, #]] & /∕@
{{dh, y_}, {1. -− dh, y_}, {x_, dh}, {x_, 1. -− dh}};

LaplacianSV = eye -− dt /∕ℝe (d2x + γ^2 d2y);
LaplacianSV[[bi]] = eye[[bi]];
LUMat = LinearSolve[LaplacianSV];
vort = sf = ConstantArray[0., Length[grid]];
sfSol = Last@Reap[

Do[
rhs = vort -− dt γ (dy.sf dx.vort -− dx.sf dy.vort) ;
rhs[[biLeft]] = -−2 /∕ dh^2 sf[[vbiLeft]];
rhs[[biRight]] = -−2 /∕ dh^2 sf[[vbiRight]];
rhs[[biBottom]] = -−2 /∕ dh^2 γ^2 sf[[vbiBottom]];
rhs[[biTop]] = -−2 /∕ dh^2 γ^2 (sf[[vbiTop]] + dh /∕ γ);
vort = LUMat[rhs];
rhs = dt /∕ℝe vort + sf;
rhs[[bi]] = 0.;
sf = LUMat[rhs];
If[
Mod[timeStep -− 1, 100] ⩵ 0,
Sow[Interpolation[Transpose[{grid, sf}]]]

],
{timeStep, 3000}

]
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]
];

sfPlots = Rasterize@ContourPlot[
#[x, y], {x, 0, 1}, {y, 0, 1},
Contours → {-−0.00005, -−0.008, -−0.1, -−0.08,

-−0.05, -−0.02, -−0.001, 0.001, 0.0001, 0.0005,
0.00001},

ContourShading → False,
ContourStyle → Orange,
ImageSize → 250] & /∕@ First[sfSol];

ListAnimate[sfPlots, AnimationRunning → False]
]

U = Interpolation[Transpose[{grid, dy.sf}]];
V = Interpolation[Transpose[{grid, -−dx.sf}]];

Show[
ListLinePlot[
{
Table[{U[0.5, y], 2 y -− 1}, {y, 0, 1, 1 /∕ 100.}],
Table[{2 x -− 1, V[x, 0.5]}, {x, 0, 1, 1 /∕ 100.}]

},
PlotRange → {{1, -−1}, {1, -−1}},
AspectRatio → 1,
Axes → False,
Frame → True,
GridLines → Automatic,
FrameLabel → {Style["U", Italic], Style["V", Italic]},

, ,
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PlotStyle → {Red, Blue}, FrameStyle → Directive[Black, 12],
PlotLabel →
Text[
Style[Row[{Style["U", Italic], "-−", Style["V", Italic],

" Centerline Velocities"}], 12]]
],
ListPlot[
{{0.0, -−1.0}, {-−0.1, -−0.8}, {-−0.32, -−0.32},
{-−0.2, -−0.05}, {-−0.15, 0.0}, {0.0, 0.25}, {0.2, 0.5},
{0.3, 0.7}, {0.5, 0.87}, {0.75, 0.95}, {0.85, 0.97}},

PlotMarkers → Graphics[{Red, Circle[]}, ImageSize → 8],
PlotLegends → {"Refs. [7, 9]"}

]
]

Refs. [7, 9]

Having established the method of solution, the student would then experiment by varying
the  grid  size  and  seeking  a  solution  independent  of  the  grid,  which  is  very  important  in
CFD  calculations.  Results  would  also  be  obtained  for  different  aspect  ratios  of  the
container.  Again,  where  possible,  calculations  must  be  compared  with  experimental
measurements  to  establish  validity.  As  can  be  seen,  the  calculated  horizontal  velocity
along  the  vertical  centerline  for  ℝe = 400  was  in  good  agreement  with  experimental
results [7, 9].
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■ Summary
This  article  outlines  a  well-defined sequence of  steps  needed to  solve the  Navier–Stokes
equations  cast  in  the  vorticity-streamfunction  form.  The  sequence  is  integrated  with  the
use  of  Mathematica  at  appropriate  stages  to  take  care  of  the  tedious  computations,  and
hence to allow the students to concentrate on the overall details of the solution process. In
addition, it  is now important to integrate computer technology so as to complete lectures
and theory. This has the advantages of helping with the computations, aiding presentation
for  reports  and  analysis,  and  motivating  students.  Incorporating  Mathematica  also  takes
away the “black-box” approach so often being used by students with full CFD commercial
codes,  which  give  no  real  understanding  of  the  numerics  involved.  The  idea  of  efficient
and optimized coding was also introduced.
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