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ON SCATTERED CONVEX GEOMETRIES

KIRA ADARICHEVA AND MAURICE POUZET

ABSTRACT. A convex geometry is a closure space satisfying the anti-exchange axiom. For several
types of algebraic convex geometries we describe when the collection of closed sets is order scat-
tered, in terms of obstructions to the semilattice of compact elements. In particular, a semilattice
Q(n), that does not appear among minimal obstructions to order-scattered algebraic modular
lattices, plays a prominent role in convex geometries case. The connection to topological scat-
teredness is established in convex geometries of relatively convex sets.

1. INTRODUCTION

We call a pair (X,¢) of a non-empty set X and a closure operator ¢ : 2% — 2% on X a convex
geometry[6], if it is a zero-closed space (i.e. @ = @) and ¢ satisfies the anti-exchange axiom:

xe Au{y} and z ¢ A imply that y ¢ Au{z}
for all x # ¢y in X and all closed A ¢ X.

The study of convex geometries in finite case was inspired by their frequent appearance in mod-
eling various discrete structures, as well as by their juxtaposition to matroids, see [20, 21I]. More
recently, there was a number of publications, see, for example, [4, [43] 44} [45] [48] [7] brought up by
studies in infinite convex geometries.

A convex geometry is called algebraic, if the closure operator ¢ is finitary. Most of interesting
infinite convex geometries are algebraic, such as convex geometries of relatively convex sets, sub-
semilattices of a semilattice, suborders of a partial order or convex subsets of a partially ordered
set. In particular, the closed sets of an algebraic convex geometry form an algebraic lattice, i.e. a
complete lattice, whose each element is a join of compact elements. Compact elements are exactly
the closures of finite subsets of X, and they form a semilattice with respect to the join operation of
the lattice.

There is a serious restriction on the structure of an algebraic lattice and its semilattice of compact
elements, when the lattice is order-scattered, i.e. it does not contain a subset ordered as the chain
of rational numbers Q. While the description of order-scattered algebraic lattices remains to be
an open problem, it was recently obtained in the case of modular lattices. The description is done
in the form of obstructions, i.e. prohibiting special types of subsemilattices in the semilattice of
compact elements.

Theorem 1.1. [I5] An algebraic modular lattice is order-scattered iff the semilattice of compact
elements is order-scattered and does not contain as a subsemilattice the semilattice £<“(N) of finite
subsets of a countable set.

2010 Mathematics Subject Classification. 06A15,06A06,06B23,06B30.
Key words and phrases. Convex geometry, algebraic lattice, order-scattered poset, topologically scattered lattice,
lattices of relatively convex sets, multi-chains, lattices of subsemilattices, lattices of suborders.

1



2 KIRA ADARICHEVA AND MAURICE POUZET

This theorem was a motivation to the current investigation, due to the fact that convex geometries
almost never satisfy the modular law, see [6]. Thus, studying order-scattered convex geometries
would open new possibilities for attacking the general hypothesis about order-scattered algebraic
lattices. It is known that outside the modular case the list of obstructions must be longer: the
semilattice Q(n) described in [I7] is order-scattered and isomorphic to the semilattice of compact
elements of an algebraic lattice, which is not order-scattered. As it turns out, (n) appears naturally
as a subsemilattice of compact of elements in the convex geometries known as multichains. We show
in section |8 that the semilattice of compact elements of a bichain always contains Q(7), as long as
one of chain-orders has the order-type w of natural numbers, and an other has the order-type n of
rational numbers.
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FIGure 1. Q(n)

More generally, in section [9] we prove in Theorem [9.7] that any algebraic convex geometry whose
semilattice of compact elements K has a finite semilattice dimension will be order-scattered iff K
is order-scattered and it does not have a sub-semilattice isomorphic to (7).

As for the other types of convex geometries, we prove the result analogous to modular case.
It holds true trivially in case of convex geometries of subsemilattices and suborders of a partial
order, since order-scattered geometries of these types are always finite, see section [6} For the
convex geometries of relatively convex sets, we analyze independent sets and reduce the problem to
relatively convex sets on a line. As stated in Theorem the only obstruction in the semilattice
of compact elements in this case is £<“(N). We also discuss the topological issues of the algebraic
convex geometries and establish in Theorem that the convex geometry of relatively convex sets
is order scattered iff it is topologically scattered in product topology. This is the result analogous
to Mislove’s theorem for algebraic distributive lattices [32]. Further observations about the possible
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analogue of Mislove’s result in algebraic convex geometries is discussed in section [d] In particular,
we use some general statements we prove in section [3| about weakly atomic convex geometries to
build an example of an algebraic distributive lattice that is not a convex geometry.

2. PRELIMINARIES

Our terminology agree with [25]. We use the standard notation of v and A for the lattice
operations of join and meet, respectively. The corresponding notation for infinite join and meet is
V and A. The lattices where \/ and A are defined, for arbitrary subsets, are called complete. The
lattice L7, where operations v and A of L are switched, is called a dual lattice of L.

Let L be a lattice. Two elements x,y of L form a cover, denoted by x <y, if x <y and there is
no z € L such that x < z <y. An interval in L is a sublattice of the form [z,y]:={zeL:x <z <y},
for some x <y. A lattice, or more generally a poset, is weakly atomic if every interval with at least
two elements has a cover.

An element y € L is called completely join-irreducible, if there exists a lower cover y. of y such that
z < y implies z < y,, for arbitrary z € L. The set of completely join-irreducible elements is denoted
Jiy(L). The lattice L is called spatial if every element is a (possibly, infinite) join of elements from
Jiy(L). Dually, one can define the notion of completely meet-irreducible elements, and we denote
the set of all such elements in L as Mia (L).

Given a non-empty set X, a closure operator on X is a mapping ¢ : 2% — 2% which is increasing,
isotone and idempotent. A subset Y € X is called closed if Y = ¢(Y'). The pair (X, ¢) is a closure
system. The closure operator ¢ is finitary, if $(Y) = U{o(Y') : Y’ cY,|Y’| < w}, for every ¥ c X.
The collection of closed sets CI(X,¢) forms a complete lattice, with respect to containment. We
recall that a lattice L is algebraic if it is complete and every element is a (possibly infinite) join
of compact elements; these compact elements form a join-subsemilattice in L. If ¢ is finitary, the
compact elements of the lattice L := CI(X,¢) are given by ¢(Y”), for finite Y’ € X, hence L is an
algebraic lattice. The fact that L is algebraic does not ensure that ¢ is finitary. However, every
algebraic lattice L is isomorphic to the lattice of closed sets of some finitary closure operator. In
fact, if X ¢ L is the semilattice of compact elements of L then L is isomorphic to the lattice of
closed sets of the closure space (X, ¢), where ¢(Y) ={pe X :p<VY}, for every Y € X. Obviously,
this operator ¢ is finitary. Alternatively, L is isomorphic to Id X, the lattice of ideals of X (recall
that an ideal of X is a non-empty initial segment which is up-directed). Equivalently, L can be
thought as a collection of subsets of X closed under arbitrary intersections and unions of directed
families of sets. From topological point of view, L is then a closed subspace of 2%, a topological
space with the product topology on the product of |X| copies of two element topological space 2
with the discrete topology. Since 2% is a compact topological space (due to Tichonoff’s theorem),
L becomes a compact space, too.

We recall that if (X, @) is a closure system, a subset Y ¢ X is independent if y ¢ (Y \y), for every
y € Y. A basic property of independent sets is that a closure (X, ¢) has no infinite independent
subset iff the power set P(N) ordered by inclusion, is not embeddable into ClI(X, ¢); furthermore, if
@ is finitary this amounts to the fact that the semilattice S of compact elements of Cl(X,¢) does
not have £<“(N) as a join-subsemilattice, see for example [I4] [30]. Finally, let X’ be a subset of
X. The closure operator ¢x: induced by ¢ on X' is defined by setting ¢x/(Y) := ¢(Y) n X’ for
every subset Y of X'. Clearly Cl(X',¢x/) = {Y nX':Y € Cl(X,¢)}. With the definition of
induced closure, a subset Y of X’ is independent w.r.t. ¢x- iff it is independent w.r.t. ¢. Let
px :ClU(X,¢) - CU(X', px+) defined by setting px/(Y): =Y nX"and O0x/ : Cl(X',¢x') > Cl(X, ®)
defined by setting 0x/(Y) := ¢(Y). These two maps are order preserving and the composition map
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px o 0x is the identity on Cl(X', ¢x-). We will use repeatedly the following result whose proof is
left to the reader.

Lemma 2.1. Let (X, ¢) be closure and (X;)ier be a family of sets whose union is X. Then the map
p from Cl(X, @) into the direct product I;c;C(X;, dx,) and defined by setting p(Y) :== (Y 0 X, )ier
s an order-embedding. Furthermore, if ¢ is finitary, this map is continuous.

As we mentioned in the introduction, a convex geometry is a pair (X, ¢), where ¢() = @ and ¢
satisfies the anti-exchange axiom. A lattice which is isomorphic to the lattice CI(X, ¢) of a convex
geometry will be called a convezity lattice (this is a bit different from the convexity lattice of a
poset introduced in [I2]). Apparently, there is no neat charaterization in lattice theoretical terms of
convexity lattices, except for finite lattices. With Theorem [3.3] we propose one for algebraic lattices.

We recall that the order-dimension of a poset P, denoted by dim(P), is the least cardinal A
for which there exist chains Cj;, i < A, such that P is embeddable into the direct product II;..C;.
Alternatively, dim(P) is the least cardinal k such that the order on P is the intersection of s
linear orders. There is an important literature about poset dimension, e.g. [46] We just recall
that if E is a set of cardinality & then dim(#(F)) = x (H. Komm, see [46]) and if  is infinite,
dim(P<“(E)) =loga(log2(k)) [27], where logs(11) is the least cardinal v such that p < 2. We call a
poset (P,<) order-scattered if it does not have as a sub-poset a chain isomorphic to the chain Q of
rational numbers. We will also refer to the chains isomorphic to Q as chains of order-type 7. Chains
isomorphic to the chain of natural numbers N have order-type w.

3. WEAKLY ATOMIC CONVEX GEOMETRIES

In this section we prove that weakly atomic convexity lattices are spatial. The result will apply
in the next section to produce an algebraic distributive lattice which is not a convex geometry.

Theorem 3.1. A weakly atomic convexity lattice L is spatial. In particular, one can choose Y € L,
define an anti-exchange operator » on'Y in such a way that L is isomorphic to CI(Y,v) and ¥(y)
is completely join-irreducible in CI(Y,v), for every yeY.

Proof. We proceed with the following sequence of claims. The first two hold in every convexity
lattice. Let L := Cl(X, ) where (X, ) is a convex geometry.

Claim 1. Ifc¢<d in L, then c= X1 and d =Xy u{x}, for some X1 € X, v ¢ X;.

Indeed, let ¢ = X7 = ¢(X1) <d = Xy = ¢(X2). Pick any z € Xo ~ X;. Then X5 = ¢(X; U {x}).
If there is another y € Xo N\ X3, y # x, then y € ¢(X; u {z}) implies x ¢ ¢(X; U{y}). Hence
X; < o(X1u{y}) < (X1 u{x}) = Xo, a contradiction to X; < Xo.

Claim 2. Let X < X5 := X; u{x} be a covering in L, then ¢({z}) € Jig(L).

Let YV := ¢({x}) n X;. Then Y = ¢({x}) ~ {z}. Since it is an intersection of two ¢-closed sets,
Y is ¢-closed, and Y < ¢({z}). If Z is any element of L strictly below ¢({x}), then = ¢ Z, hence,
Z <Y. This proves that ¢(z) € Jiy(L).

Claim 3. L is spatial.

Let Z e L. Set Z*:=V{X eJig(L): X < Z}. Clearly, Z* < Z. If Z* < Z, then since L is weakly
atomic the interval [Z*, Z] contains a cover X; < X5. Due to Claim [1} X, := X7 u {z} with z ¢ X;
and, according to Claim [2] ¢({z}) € Jig(L). Since x € Z \ Z* we have ¢({z}) < Z and ¢({z}) £ Z*
contradicting the definition of Z*. Hence, Z* = Z.
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Let Y :={y € X : ¢({y}) € Jig(L)}. Note that ¢(y) \ {y} is ¢-closed, for all y € Y, in particular,
(y1) # ¢(y2), when y1 # y2, y1,y2 €Y.

Let 9 be the closure operator on Y defined for every Z ¢ Y by setting ¢(Z) := ¢(Z)nY.
Then ) satisfies the anti-exchange axiom. Besides, L is isomorphic to CI(Y,%) via the mapping
p: A AnY, where A € ClI(X, ¢). Indeed, p is trivially surjective and, since A = p(ANY’) whenever
A =¢(A), a fact which follows from Claim [3] it is one to one. O

Corollary 3.2. In any of the following cases, the convexity lattice L is spatial:
(1) L is algebraic.
(2) L is order-scattered.

Proof. Every algebraic lattice is weakly atomic (see, for example [24]). Every scattered poset is
weakly atomic. O

We observe that special type of weakly atomic convex geometries were distinguished in [6] as
the strong convex geometries: in addition, the latter are atomistic and dually spatial. According to
Corollary (1), all algebraic convex geometries enjoy the geometric description, which is equivalent
notion of being algebraic and spatial [41].

Theorem 3.3. An algebraic lattice L is a convexity lattice iff it is spatial and for every y € L,
u,v € Jigg(L):

(1) y<yvu=yVvoimpliesu =v.

Proof. Suppose L is a convexity lattice, i.e. L = CI(X,¢) for convex geometry (X,¢). Due to
algebraicity, it is weakly atomic, thus, Theorem can be applied to conclude that L is spatial.
Every y € L represents closed set Y = ¢(Y) € X. Elements u,v € Jig(L) are represented by ¢(z,,)
and ¢(z,), for some x,,, x, € X. The lattice equality yvu = yvv is now translated to z,, € (Y u{x,})
and z, € p(Y u{x,}). According to anti-exchange axiom, we must have xz,, = x,,, or u = v.

Vice versa, suppose L is spatial, for which the equality from the statement of Theorem holds.
Denote X := Jiy (L) and define closure operator on X by setting ¢(Y) =[0,VY]nX, forall Y c X.
Then L = CI(X,¢). Moreover, the anti-exchange axiom holds for ¢. Indeed, take any y € L, then
by isomorphism it corresponds to ¢-closed sets Y ¢ X. Consider u,v € X such that u,v £ y. Then
v <y Vv u means that v € ¢(Y u{u}). Either we assume that u £ y v v and then the anti-exchange
axiom holds, or we get y <y Vv u =y Vv v, which implies v = v. Thus, the anti-exchange axiom holds
every time we assume u # v. g

Another example of weakly atomic convex geometry was presented in [§]. Since it was given in
the form of antimatroid, i.e. the structure of open sets of convex geometry, we will provide the
corresponding definition of super solvable convex geometry here.

Definition 3.4. A convex geometry C := (X, ¢) is called super solvable, if there exists well-ordering
<x on X such that, for all A, B € Cl(C), if A ¢ B, then A~ {a} is ¢-closed, where a := min.,, (A\ B)

We note that the corresponding definition of super solvable antimatroid in [§] is more restrictive
in the sense that X is finite. Super solvable antimatroids with such definition appear as the structure
associated with special ordering of elements in Coxeter groups.

Corollary 3.5. If a convex geometry C := (X, ¢) is super solvable then CI(C) is spatial.

Indeed, the property of super solvable convex geometry guarantees that every interval [D, A] in
the lattice of closed sets is strongly co-atomic, i.e., for every B € [D, A], B # A, there exists A’ < A
such that B < A’. In particular, C is weakly atomic, thus, it is spatial.
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An example of a finite super solvable convex geometry is given also by the lattice of A-subsemilattices
Subs(P) of a finite (semi)lattice P. This follows from result in [26], where it was established for
more general (and dual) lattices of closure operators on finite partially ordered sets. We will deal
with infinite lattices Sub,(P) in section [6]

4. DISTRIBUTIVE LATTICES AND CONVEX GEOMETRIES

We call a topological space Y scattered, if every non-empty subset S of Y has an isolated point,
i.e. there exists y € S and an open set U of Y such that {y} =SnU.

The following connection was established between topological and order characteristic of lattices
in the distributive case.

Theorem 4.1. [32] A distributive algebraic lattice is topologically scattered iff it is order-scattered.
In this section we collect several observations concerning the following

Problem 4.2. Is it true that every algebraic convex geometry that is order-scattered will also be
topologically scattered?

We want to emphasize that the term of “topologically scattered” algebraic lattice L, in Mislove’s
result and Problem assumes the product topology induced on L from 2%, where X is the set of
compacts of L.

Our first observation is that any solution to Problem can not be a generalization of Mislove’s
result. For this, we just need to give an example of an algebraic distributive lattice that cannot be
the lattice of closed sets of any convex geometry.

Example 4.3.

Consider the set L* of cofinite subsets of a countable set X, with the empty set added. Ordered
by inclusion, L* is a complete lattice. Clearly it is distributive and algebraic, in fact, every element
of L* is compact. Besides, it is order-scattered, thus, weakly atomic. On the other hand, there is
no completely join-irreducible elements, hence, L* cannot be a convex geometry, due to Corollary

B,

Our next observation is about multiple possibilities to define the product topology on the same
lattice. Every time there is an embedding of a complete lattice L into 2%, for some set X, we may
think of L as a topological space, whose topology inherits the product topology of 2%. Presumably,
there are different ways of such representations of L.

When we have a convex geometry C := (X,¢) on set X, we have a natural embedding of C
into 2%. Thus, saying about topological scatteredness of a convex geometry, we may assume the
topology inherited from 2%. Not every order-scattered convex geometry is topologically scattered
with respect to this embedding, even when its convexity lattice is distributive.

Example 4.4.

Let P.o be the convex geometry defined on a countable set X, whose closed sets are all finite
subsets of X and X itself. Evidently, the lattice of closed sets is distributive, but not algebraic (this
convex geometry does not have compact elements at all). On the other hand, it is dually algebraic
(in fact the dual lattice is isomorphic to the lattice L* of Example . It is order-scattered, but
not topologically scattered. Indeed, let S := Pco, N {X}. Then, every non-empty open set U of £(X)
has more than one point of intersection with S. Indeed, there are finite X1, Xs € X such that U
contains {Y ¢ X : X; ¢ Y, Xo € X \Y}. Then, every finite Z ¢ X that has X; as a subset, and
avoids Xo isin UNn S.
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In the next example we demonstrate that the same lattice L may be topologically scattered or
not topologically scattered depending on the choice of X and embedding of L into 2X. Before, we
will need the following observation.

Proposition 4.5. If lattice L is topologically scattered with respect to 2%, then its dual lattice L°
is topologically scattered with respect to the same 2°X.

Proof. Observe that the complement operation in 2% is continuous with respect to the product
topology. O

Example 4.6.

Let L* be the lattice of co-finite subsets of a countable set X, with the empty set added to
make it complete (see Example [4.3)). Then it is dual to Pco, from Example Hence, L* is not
topologically scattered with respect to 2%, due to Proposition and Example On the other
hand, L* is an algebraic distributive lattice, and all its elements are compacts. Associating every
element x € L* with the ideal [0,2] ¢ L*, we have an embedding of L* into 2L*, and with respect
to this embedding, L* is topologically scattered, due to Mislove’s theorem |4.1

Finally, despite the fact that not every distributive algebraic lattice is a convex geometry (Ex-
ample , one can think of it as an infinite version of antimatroid. We recall that an antimatroid
stands for the collection of open sets of a convex geometry, thus, it forms a lattice dual to the lattice
of closed sets.

Proposition 4.7. If L is an algebraic distributive lattice, then it is isomorphic to an antimatroid.

Proof. Tt is equivalent to show that L is dually isomorphic to the lattice of closed sets of a convex
geometry. As every algebraic lattice, L has enough completely meet-irreducible elements, that is
every element of L is a meet of elements from M := Mia (L), the set of completely meet-irreducible
elements of L (see for example [24]). Define a closure on M as follows: for any Y € M, set
p(Y):={meM:m>AY}. Then ¢ is a closure operator on M, and the lattice Ci(M, ¢) of closed
sets of ¢ is isomorphic to L?. We claim that ¢ is anti-exchange. Indeed, let A € CI(M,¢), x e M\ A
and z # y such that z € (AU {y}). Then z > a Ay, that is z =2 v (a Ay), where a = A A. Due to
distributivity, = (x va) A (z vy). Thus, x =z Vva or = x vy, since x is meet-irreducible. But
since © ¢ A, x ¥ a, hence, x >y. Since x ¢ A, y¢ A. If y e (A u{z}) then by the same token we
obtain that y >  which is impossible. Hence, ¢ satisfies the anti-exchange axiom. O

We now turn back to Problem The following two sections provide the partial positive
confirmations, when considering some special types of convex geometries.

5. RELATIVELY CONVEX SETS

Let V be a real vector space and X ¢ V. Let Co(V, X) be the collection of sets C'n X, where C
is a convex subset of V. Ordered by inclusion, Co(V, X) is an algebraic convex geometry. Several
publications are devoted to this convex geometry [2] [3] @] 10].

The main goal of this section is to prove the following result.

Theorem 5.1. The following properties are equivalent for a convex geometry L := Co(V, X).
(i) L is topologically scattered;
(i1) L is order-scattered;
(ii) The semilattice S of compact elements of L is order-scattered and does not have a join sub-
semilattice isomorphic to £<“(N);
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(i) X is included into a finite union of lines and on each line ¢ with an orientation, the order on
the points of X 1is scattered.

The equivalence between (¢) and (i¢) is an analogue of Mislove’s result [32], whereas the equiva-
lence between (i) and (i4i) is an analogue of Theorem [1.1

First, we start from the analysis of independent subsets of Co(V,X). Set Co(V) = Co(V,V),
denotes by conv(Y") the closure of a subset Y € V in Co(V') and call it the convex hull of Y. Clearly
the closure induced on X is the closure in Co(V, X). Hence, the independent sets w.r.t. this closure
are the independent sets w.r.t. the closure conv, that we call convexly independent sets, which are
included into X.

Theorem 5.2. The following properties are equivalent for a subset X of V.

(i) X is contained in a finite union of lines;
(i) X contains no infinite convexly independent subset;
(iti) dim(Co(V,X)) is finite.

The proof is elementary. The proof of the equivalence between (i) and (4i) relies on classical
arguments used in the proofs of the famous Erdés-Szekeres theorem (see [33]). A connection between
Erdés-Szekeres conjecture and relatively convex sets is Morris [34], see also [9].

Proof. —(i) = —(ii). We suppose first that V = R2.

If X is not contained in the finite union of lines, then one can find a countable subset X; ¢ X
such that no three points from X; are on a line. Indeed, pick two points x1, 2 from X randomly,
and if z1,...,xy are already picked, choose xy.1 € X so that it does not belong to any line that goes
through any two points from z1,...,zg.

Now form F, the set of 4-element subsets of X7, and colour elements of F' red, if one point of
four is in the convex hull of the others, and colour it blue otherwise. According to the infinite form
of Ramsey’s theorem, there exists an infinite subset X5 € X; such that all four-element subsets of
X5 are coloured in one colour. But it cannot be red colour, because, even for a 5-element subset of
points from X7, at least one 4-element subset would be coloured blue, see [33]. Hence, X5 has all
4-element subsets coloured blue. It follows that X5 is in infinite independent subset of X. Indeed, if
any point z € X5 was in the closure of some finite subset X’ ¢ X5 \ {z}, then, due to Carathéodory
property of the plane, x would be in the closure of 3 points from X', which contradicts the choice
of X2.

Now, we show how to reduce the general case to the case above. For this purpose, let Af(V, X)
be the set An X, where A is an affine subset of V. Ordered by inclusion, Af(V, X) is an algebraic
geometric lattice, that is an algebraic lattice and, as a closure system, it satisfies the exchange
property. Every subset Y of X contains an affinely independent subset Y’ with the same affine span
S as Y'; moreover, the size of Y is equal to dimgs(S) + 1 where dim,sS, the affine dimension of S,
is the ordinary dimension of the translate of S containing {0}.

Suppose that X is not contained in a finite union of lines. Let A be the least cardinal such
that X contains a subset X’ such that X’ is not contained in a finite union of lines and the affine
dimension of its affine span is A. Necessarily, A > 2. If A is infinite then X contains an infinite
convexely independent subset. Indeed, X’ contains an affinely independent subset of size A + 1 and
every affinely independent set is convexely independent. Suppose that A is finite. We proceed by
induction on X\. We may assume with no loss of generality that X’ ¢ R*. If X = 2, the first case
applies.

Suppose A > 2. Let X" be a projection of X’ on an hyperplane V’. If X" is not contained in a
finite union of lines, then induction yields an infinite convexely independent subset of X”. For each
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element a’ in this subset, select some element a in X’ whose projection is a’. The resulting set is
convexely independent. If X" is contained in a finite union of lines, then there is some line such
that its inverse image in X’ cannot be covered by finitely many lines. This inverse image being a
plane, the first case applies.

(i) = (#i1) Let (X;)ser be a family of subsets of V' whose union is X. According to Lemma
Co(V,X) is embeddable into the direct product IL;e;Co(V,X;), thus from the definition of

dimension,
dim(Co(V, X)) < dim(IL,e;Co(V, X;)).

As it is well known, the order-dimension of a product is at most the sum of order-dimensions of
its components (see [46]). Now, according to Lemma stated below, dim(Co(V, X)) <2 if X, is
contained in a line. Thus dim(Co(V, X)) <2 x |I| whenever X is covered by |I| lines.

(i9i) = (4i) If A is a subset of X, Co(V, A) is embeddable into Co(V, X), hence dim(Co(V, A)) <
dim(Co(V, X). If A is convexly independent then Co(V, A) is order isomorphic to £(A) ordered by
inclusion, hence, as mentioned in the preliminaries, dim((A4)) = |A|. Hence, |A| < dim(Co(V, X).

O

Let ind(X) be the supremum of the cardinalities of the convexly independent subsets of X and
line(X) be the least number of lines needed to cover X. The proofs of implications (i) = (4i7) and
(i44) = (4i) show that the following inequalities hold.

(2) ind(Co(V, X)) <dim(Co(V, X)) <2-line(X).

For more on these parameters, see the paper of Beagley [9].
Implication (¢i) = (#4¢) in Theorem has the following corollary pointing out a property which
is not shared by many convex geometries.

Corollary 5.3. If X contains convexly independent sets of arbitrary large finite size, then it contains
an infinite convexly independent set.

Let Co<“(N) be the (semi)lattice of finite intervals of the chain of natural numbers N, ordered
by inclusion, and let £<“(N) be the (semi)lattice of finite subsets of N.

Corollary 5.4. If X is infinite, then the semilattice of compact elements of Co(V,X) contains
either Co“(N) or £<“(N) as a join semilattice.

Proof. Apply Theorem [5.2] If X contains an infinite independent subset, then the semilattice of
compact elements of L := Co(V,X) will have a semilattice isomorphic to £<“(N). Otherwise, X
must be covered by finitely many lines. If X is infinite, then one of the lines will have infinitely
many points from X. Choose an origin and an orientation on that line. Then one can find either
an increasing or a decreasing infinite countable sequence of elements of X on that line. Hence, the
semilattice of compact elements of L has Co<“(N) as a subsemilattice. 0

In the next statement, a set X of points on a line L in V' can be thought as a subset of the line
of real numbers.

Proposition 5.5. Let X be a set of points on a line L in V. The following are equivalent:
(i) Co(V,X) is topologically scattered;

(i) Co(V,X) is order-scattered;

(iii) the semilattice S of compact elements of Co(V,X) is order-scattered;

(iv) X is order-scattered in L.
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The equivalence holds in the more general case of a chain C := (X, <), and the lattice Int(C) of
intervals of X standing for Co(V, X).

We recall that if C' := (X, <) is a chain, a subset A of X is an interval if z,y € A, z € X and
2z <z <y imply z € A. The set Int(C) of intervals of C, ordered by inclusion, forms an algebraic
closure system satisfying the anti-exchange axiom. The join-semilattice of compact elements is made
of the closed intervals [a,b] :={z € X :a <z < b} where a,be X, a<b. Let I(C), resp. F(C), be the
set of initial resp. final, segments of C. Ordered by inclusion these sets are also algebrac closure
systems satisfying the anti-exchange axioms. Let A <€ X; set | A:={y € X :y < a for some a € A}.
Define similarly t A; these sets are the closure of A w.r.t. I(C) and F(C). As subsets of £(X), the
sets I(C), F(C) and Int(C) inherit of the product topology.

The proof of Proposition [5.5is based on the following lemma, on some basic properties of scattered
topological spaces and on a similar property for the collection of initial segment of a chain given in
Proposition below .

Lemma 5.6. The map f from from Int(C) into the direct product I(C)x F(C) defined by f(A) :=
(1 A,1 A) is an embedding. The map g from I(C) x F(C) into Int(C) defined by g(I,J)=InJ is
surjective, order-preserving and continuous.

The proof is straightforward. Note that if X is infinite, the map f is not continuous.
We recall some basic results on scattered spaces.

Lemma 5.7. (1) If Y is a subset of a scattered topological space X then'Y is scattered w.r.t.
the induced topology;
(2) If Y is a continuous image of a compact scattered topological space X then'Y is scattered;
(8) If X is the union of finitely many scattered subspaces then X is scattered;
(4) If Y;, i = 1,...,n, are topologically scattered spaces, then Y := Il Y;, with the product
topology on Y, is topologically scattered too.

The proof of (2), quite significant, is due to A.Pelczynski and Z.Semadeni [37]; the proofs of the
other items are immediate.
The following result goes back to Cantor and Hausdorff.

Proposition 5.8. The following properties for a chain C' are equivalent:
(1) I(C) is topologically scattered;
(2) I(C) is order-scattered;
(3) C is order-scattered.

Furthermore, if a complete chain D is order-scattered, then it is isomorphic to I(C) where C is
some scattered chain.

As a corollary we get the following well-known statement.

Corollary 5.9. Every algebraic lattice L that is topologically scattered (in the product topology of
2% ) is also order-scattered.

Proof of Proposition[5.8. The implications (i) = (i) = (¢i¢) are valid in any algebraic closure
system. Implication (i) = (i) follows from Corollary Implication (ii) = (di7) is trivial.
Implication (i7i) = (iv): the set X being thought as a subset of the line of real numbers, set
C := (C,<) with the order induced by the natural order on the reals; suppose that X contains a
subset A of order type 7. Pick a € A; the intervals [a,b] of X with a <b e A form a chain of compact
elements of order type 7. Implication (iv) = (i): suppose that C' is order-scattered. Then according
to Proposition I(C) and F(C) are topologically scattered. Hence, from (4) of Lemma the
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direct product I(C') x F(C) is topologically scattered. Since according to Lemma Int(C) is the
continuous image of I(C) x F(C'), it is topologically scattered from (2) of Lemma O

Lemma 5.10. The direct product ly.,,Cy of finitely many order-scattered posets is order-scattered.

Proof. Induction by n. It is trivial for n = 1. Suppose it is true for n’. But that there is an
embedding of @ into a product of n’ + 1 posets Py, k < n’ + 1. If for each pair r < g of rationals,
we have r[1] < ¢[1], then Q can be embedded into Cy. If for some p < ¢ we have p[1] = ¢[1], then
interval [p, ¢] ~ Q@ must be embedded into Cy x -+« x Cg11. Then, according to hypothesis, it should
be embedded into one of Csy, ..., Cryq. O

Let Id P be the collection of ideals of a poset.

Lemma 5.11. Id(P x Q) is isomorphic to Id P x1d Q. En particular, if (Ck)r<n is a finite family
of chains then Id(Tg<,,Cy) is isomorphic to Iy, Id(Cy).

This is well-known, see [40] for an example.
For the proof of Theorem [5.1] we use the following corollary of Lemma [5.7] and Lemma [2.1]

Corollary 5.12. Suppose X € Ui, X; € V. If every Co(V,X;) is topologically scattered, then
Co(V, X) is topologically scattered.

Proof. Since the image of Co(V, X ) under p is a subspace of Il;.,Co(V, X;) and, The map p from
Co(V, X) into II;.,,Co(V, X;) defined in Lemma is continuous. Due to (4) of Lemma
IT;.,,Co(V, X;) is topologically scattered, hence the image of Co(V, X) by p is scattered. Since p is
one-to-one, C'o(V, X) must be topologically scattered as well. O

Proof of Theorem[5.11 We note first that implications (i) = (4¢) and (4i) = (4ii) holds for arbitrary
algebraic lattices.

(i) = (#1) Corollary

(it) = (4i7). If S contains a join semilattice isomorphic to £<“(N) then, since L is algebraic, L
contains a join semilattice isomorphic to #(N); since P(N) contains a copy of the chain of real
numbers, L is not order-scattered.

(i4i) = (4v). Suppose that (iii) holds. Since L is algebraic and S does not contain a join subsemi-
lattice isomorphic to £<“(N) then, as mentioned in the preliminaries, X cannot contain an infinite
independent subset. Hence, according to Theorem X should be covered by finitely many lines
l;, i <n. Fori<n, set X; := X n¥;. Since Co(V,X;) is a join subsemilattice of Co(V,X), it is
order-scattered, in particular the order induced by any orientation of ¢; is scattered.

(iv) = (i). Suppose that (iv) holds. Let ¢;, i < n be finitely many lines whose union covers X
and such that the order induced by each orientation on #;n X is scattered. For i < n, set X; := X n¥;.
Due to Proposition[5.5, Cov(V, X;) is topologically scattered. Corollary implies that Co(V, X)
is topologically scattered as well. 0

6. THE LATTICE OF SUBSEMILATTICES AND THE LATTICE OF SUBORDERS

The convex geometries made of the subsemilattices of a semilattice and of the suborders of a
partially ordered set play an important role in the studies of convex geometries in general due to
their close connection to lattices of quasi-equational theories, see [T, 4, 6], 45}, [48].

Theorem 6.1. If S is an infinite meet-semilattice, then the lattice Sub,(S) of meet-subsemilattices
of S always has a copy of Q. Thus, Subs(S) is order-scattered iff S is finite.
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Proof. As it is well known, every infinite poset contains either an infinite chain or an infinite an-
tichain. Let X be such a subset of S. As it is easy to check, such a subset is independent w.r.t.
the closure associated with Sub,(S), hence £(X) is embeddable into Sub,(S). Since X is infinite,
£(X) contains a copy of the real line, hence of Q. O

Similar result holds for the lattice of suborders. For a partially ordered set (P, <), denote by
S(P) the strict order associated to P, i.e. S(P)={(p,q):p<qandp#q,p,qe P} Then, O(P),
the lattice of suborders of P, is the set of transitively closed subsets of S(P).

Theorem 6.2. The lattice of suborders O(P) of a partially ordered set (P, <) is order-scattered iff
S(P) is finite.

Proof. Suppose S(P) is infinite.
Claim 4. O(P) contains a suborder of P which is either

(1) an infinite chain, or
(2) an infinite antichain with an element below or above all the elements of the antichain, or
(8) the direct sum of infinitely many 2-element chains.

Proof of Claim Let (20.n, 711 )new be an infinite sequence or elements of S(P). Let [N]? be
the set of pairs of integers, identified with pairs (n,m), with n < m. Say that two pairs (n,m) and
(n',m") are equivalent if there is a map h from H,, ,, := {@in, Tim 1 <2} into Hyr s = {7, i
i < 2} satisfying h(x; ) = i n and h(z;m) = z; m for i < 2 which is an order-isomorphism of H,, ,,
on H, v, once these sets are ordered according to P. This define an equivalence relation on [N]?.
The number of classes being finite, the infinite version of Ramsey’s theorem ensures that we can
find an infinite subset I of N such that all pairs in []? are equivalent. If there is a pair (n,m) € [I]?
with z; , and x; ., comparable and distinct (for some 7 < 2), then this is the same for all the other
pairs. In this case we obtain an infinite chain. Exclude this case. If there is a pair (n,m) € [I]?
with x; p = ; y, then 2,11, and ;41 must be incomparable and we get an infinite antichain with
an element below or above all the elements of the antichain. Excluding this case, there is a pair
(n,m) € [I]? with %;n incomparable to z; ., for i < 2. If z; ,, is comparable to z;41 m, for some i < 2,
then we get an element below or above all elements of an antichain. This case being excluded, we

get a direct sum of infinitely many 2-element chains, as claimed. O
This claim allows to define an embedding from £(N) into O(P). It follows that Q is embeddable
into O(P). O

7. REPRESENTATION OF JOIN-SEMILATTICES

Let L and L’ be two join-semilattices. A map f: L — L is join-preserving if

3) flavb) = f(a)v f(b)

holds for every a,b € L.
If L and L’ are complete lattive, f preserves arbitrary joins if

(4) fVX) =V I(X)

holds for every subset X of L.
The definitions of meet-preserving maps (for meet-semilattices) and maps preserving arbitrary
meets are similar.



ON SCATTERED CONVEX GEOMETRIES 13

We set L <, L', resp. L <y L', if there is an embedding of L into L’ preserving finite, resp.
arbitrary, joins.

There is a correspondence between maps from a complete lattice L to a complete lattice L’
preserving arbitrary joins and maps from L’ to L preserving arbitrary meets. It goes back to Ore.
We illustrate it with Theorem [7.4] Theorem and Theorem below.

For this purpose, we recall that a subset A of a complete lattice L is meet-dense if every x € L is
the meet (possibly infinite) of elements of A. The complete join-dimension of a complete lattice L
is the least cardinal x such that L can be embedded into a direct product of x complete chains by a
map preserving complete joins; we denote it by dimy(L). The join-dimension of a join-semilattice
L is the least cardinal x such that L can be embedded into a product of k chains by a join- preserving
map. We denote it by dim. (L).

Note that a map f from L to L’ which preserves arbitrary joins sends the least element of L onto
the least element of L'. Thus, if L' is a product of complete chains (C;);<, each with least element
0; then f(0) = (0;):<x. This equality is no longer true if f is only join-preserving, but if we consider
join-semilattices with a least element, we may impose that this equality holds and the value of the
dimension will be the same.

Note that the join-dimension and complete-join-dimensions may differ from the order-dimension.

Example 7.1.

The lattice M3 has order dimension 2. Indeed, if a,b,c are atoms, then we may embed it into
a product of two chains: C7 = 07 < a; < by < ¢y <1y, and (g = 03 < ¢cg < by < ay < 13, and
f(z) = (z1,22). While this embedding preserves the order, it does not preserve the join operation.
It is easy to check that any attempt at using two chains will not result in f(a) Vv f(b) = f(a) Vv f(c) =
f(b) v f(c). On the other hand, one can make representation with three chains: C, =0, < x < 1,
z=a,b,c, and f(z)[y] ==z, if 0<z=y<1, 1, otherwise. Thus, dim, (Ms3) = 3.

Example 7.2.

A more involved example is £<“(N). Indeed, according to [27] if F is an infinite set of cardinal
K, dim(§<“(E)) = log2(log2(k)), while it can be shown that dim, (P<“(E)) = loga(k).

Example 7.3.

Let L := Co(X,V). As already mentioned in inequalities , if X can be covered by n lines
(n < w) then dim(L) < 2-n. On an other hand, if X is the union of three lines, dim, (L) is
infinite. Indeed, according to Corollary it suffices to observe that L contains infinite antichains
of completely meet-irreducibles. This fact is easy to prove: for sake of simplicity, we suppose V := R?
and X be the union of three lines ¢, ¢ and ¢”. Pick x € £ such that some line § containing x meets
¢ in a’, 0" in ' with = belonging to the segment joining a’ and a”. Let A be the union of one of
the two open half-planes determined by ¢ and one of the two open half-lines determined by § and =x.
This set is a completely meet-irreducible convex subset of R2. It turns out that An X is a maximal
convex subset in L not containing = hence is completely meet-irreducible in L. Since distinct lines §
provide incomparable completely meet-irreducibles in L, there are infinite antichains of completely
meet-irreducibles.

The chain-covering-number of a poset P, denoted by cov(P) is the least cardinal number x such
that P can be covered by x chains. We recall Dilworth’s theorem (see, for example [36]): If P is a
(possibly, infinite) poset of finite width n, then cov(P) = n.

The following result illustrates the correspondence we alluded.

Theorem 7.4. For every complete lattice L, the following property holds:
(5) dimy (L) = Min{cov(A) : A is meet-dense in L}.
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Proof. Let A be a meet-dense subset of L and C := (C;);es be a family of chains whose union covers A.
Extend each C; to a maximal chain L; of L (maximal w.r.t. inclusion). Let L’ be the direct product
of the L;’s. For each x € L we set f(x) := (¢;(x))iesr where ¢;(x) := A(L;n 1 x). This defines an
embedding f from L into L’ which preserves arbitrary joins. Indeed, since L; is maximal in L, L; is
a complete sublattice of L; in particular for each x € L, £;(x) is the least element of L; above x. Thus
the map /; is a retraction of L onto L; which preserves arbitrary joins. It follows that f preserves
arbitrary joins. Since A is meet-dense, f is one-to-one and thus is an embedding. This proves that
dimy (L) < Min{cov(A) : A is meet-dense in L}. Conversely, suppose that there is an embedding
f preserving arbitrary joins from L into a product L' :=II;c; L} of complete chains. For 2’ € L set
fu(@) =V 1l 2"). Since f preserves arbitrary joins, f,(z') is the largest element y € L such that
f(y) <x. Tt follows that the map f, preserves arbitrary meets. Since f is one-to-one, it follows that
fvo f(x) =z for every x € L, hence the image A := f,(A’) by f, of every meet-dense subset A’ of
L' is meet-dense in L. To conclude, take A’ := Ujcs A;» where A; = {(x)ier x; = 1; for all i 4 5}
and 1; is the largest element of L;. Then A’ is meet-dense and the union of |I| chains. The converse
inequality follows. O

Corollary 7.5. If L is an algebraic lattice then:
(6) dimy (L) = cov(Mia (L)).

In particular dimy (L) = n with n < oo if and only if n is the mazimum size of antichains of
Min(L).

Proof. If L is an algebraic lattice then Mia (L) is meet-dense and every meet-dense subset of L
contains Mia (L). Apply Equality . According to Dilworth’s theorem if n is the maximum size
of antichains of a poset P then the covering number of P is n.

O

Proposition 7.6. Let P be a join-semilattice with a least element. Then dim,(P) < dimy(Id P).
Equality holds if dim (P) is finite.

Proof. For each x € P set i(zx) :=| . The map i is a join-preserving embedding of P into Id P. The
inequality dim, (P) < dimy(Id P) follows. Let @ be a join-semilattice with a least element and f
a join-preserving embedding from P to ) which carries the least element of P on the least element
of Q. Set f(I):=} f(I). This map is an embedding of Id P into Id Q which preserves arbitrary
joins. Take for @ a finite product IT;c;C; of chains, with |I| = dim, (P). According to Lemma
1d(I;¢;C;) is isomorphic to ey Id C;. Hence dimy (Id P) < |I], as claimed. d

We illustrate the proof of Theorem[7.4]in the case of algebraic lattices and then convex geometries.
This allows to precise Proposition [7.6]

We find convenient to view an algebraic lattice L as the lattice C := Cl(X, ¢) of an finitary closure
system (X, ¢) such that @€ C.

Let z,y € X. We set x <y if ¢(x) € ¢(y). Let D be a chain included in C. Let x,y € X. We set
x <py if every I € D containing y contains x. Trivially, the relation <p is a total quasi-order on X
which contains the order < and every A € D is an initial segment of (X,<p). For every subset A of
Xweset JA:={yeX:y<zforsomexe A} and |p A:={ye X :y<p z for some x € A}.

Lemma 7.7. Let D be a mazimal chain of the lattice C of an algebraic closure (X, $) then:
(1) D =1(X,<p), the lattice of initial segments of the quasi-ordered set (X,<p).
(2) For every Ac X, |p A is the least member of D containing A.
(8) The map lp: C — D defined by setting £p(A) :=lp A preserves arbitrary joins and fizes D
pointwise.
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(4) £p(A) is compact in D for every compact A of C.

Proof. (1). This is well known. For reader’s convenience we give a proof. As mentioned above,
DcI(X,<p). Let I e I(X,<p). Since D is maximal, @ and X belong to D, hence we may suppose
I distinct of @ and X. Let y ¢ T and let = € I such that  <p y (that is 2 <p y and y £p z). By
definition of <p there is some I, , € D such that x € I, , and y ¢ I, ,. Since D is a maximal chain
of C'and CI(X, ¢) is algebraic, D is closed under union. Hence, I, := Ufzer:o<py} Lz,y belongs to D.
Again, since D is a maximal chain of C, D is closed under intersection. Hence I =N I, € D. (2).
Follows immediately from (1). (3). The fact that the map £p preserves arbitrary joins was already
indicated in the proof of Theorem (4). Let Ae K(C). Let F be a finite subset of A such that
¢(F) = A. Since ¢(F) and £p(F') are the least member of C, respectively of D, containing F', we
have ¢(F') c £(D). This yields {p(¢(F)) € {p(¢p(F)), that is £p(A) € £p(F'). Since F € {p(A),
we obtain ¢p(A) =£p(F). Hence {p(A) e K(D).

O

Let C be a set; we set C, := C~ {@} and C := Cu{@}. Let {Cy: k € K} be a family of closure
systems C}, on the same set X. The join of this family denoted by Vi Ck is the closure system on
E with closed sets A := Npex Ak, where Ay, € Cy, for each k € K. We give in (4) of Lemmabelow
a presentation of the join-semilattice K (C') of compact elements of a closure C' when C is the join
of finitely many chains Cy, k < n, and the Cy’s are maximal in C.

Lemma 7.8. Let C = Cl(X,¢), where ¢ is algebraic, M := Mig(C) and (Ci)rex be a family of
chains of C. Then, the union of the Ci’s covers M iff C = /e Ck, the join of the closures Cy’s.
Furthermore, if one of these conditions holds and the Cy are maximal in C then:

(1) The quasi-order < is the intersection of the total quasi-orders <c, ’s;

(2) For every I € C, I =Nger Uk (I) where £;(A) :=lc, A for every Ac X; and

(8) The map ¢ defined by setting ((A) := (Lx(A))rex for every non-empty A< X and (@) := @
induces a one to one map from C into WyerCrs which preserves arbitrary joins.

(4) If K is finite, K :={0,...n—-1}, then ¢ induces a one-to one join-preserving map from K(C)
into Hkmk)*. Furthermore, the image of K(C). is the join-semilattice of Mg, K (Cl )«
generated by the image of the set K(C)1 :={¢(x):x e X}.

Proof. Since C' is algebraic, M is meet-dense. Hence, if the union of the Cy’s covers M, then
C = Ve Cr. Conversely, let I € M. Since C = Viyegx Ck, Urex Cr is meet-dense; since [ is
completely meet-irreducible, I € Upeg Ck-

(1). The intersection of the quasi-orders <¢, contains <. Let x,y € X such that z £ y. By
definition of < there is some I € C such that x ¢ I and y € I. If I € \V/jx Cy, there is some C and
some Ij, € Cj, such that = ¢ I, and I C Iy, hence x £¢, v.

(2) By Lemma £ (I) is the least member of C}, containing I. Since C' = Vi Ck, we have
I'=Nger Ek(I)

(3). As indicated in the proof of Theorem each map ¢, preserves arbitrary joins. Hence,
the map £ := (¢x)k<n from C into the direct product Il Cy preserves arbitrary joins. Due to (2)
above, the map ¢ is one to one. Since ¢(I) # @ amounts to ¢,(I) # @ for every k < n, £ maps C.
into I1;<,Ck )+, hence { has the property stated.

(4). According to (3) and (4) of Lemma ;. induces a join-preserving map from K(C) onto
K(Ck). According to (3) above £ is one-to-one and join-preserving, hence 7 has the property stated.
Finally, observe that K(C), is generated as a join-semilattice by K(C')1; since £ is join-preserving,
the image of K(C), is the join-semilattice of My, K (Cy)« generated by the image of K(C);. O

We describe in Theorem [7.13] below algebraic convex geometries with finite join-dimension.
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We start with three simple lemmas.
Lemma 7.9. If Cy, k€ K, are convex geometries, then C := /i Ck is a conver geometry as well.

Proof. Let D be a maximal chain of C' and ¢p the corresponding closure (namely ¢p(A) is the
least member of D containing A). Let Y ¢ X and 2 # y € X N\ ¢p(Y). (b). The closure operator
associated with C' is defined as ¢(Y) := Ngexe @1 (Y), for any Y € X, where ¢, is the closure operator
associated with Cj. It is enough to show that ¢ satisfies the anti-exchange axiom. Take x # y, so
that z,y ¢ X = ¢(X) and z € ¢(X U{y}). Then z ¢ ¢ (X), for some k € K, but z € ¢ (X U {y}) €
o (P (X) u{y}). Since ¢y satisfies the anti-exchange axiom, we have y ¢ ¢ (¢r(X) u{z}). Then

O

y ¢ ou(X u{z}), thus y ¢ 6(X u{z}).

Lemma 7.10. If C is an algebraic convex geometry then every mazimal chain D is a convex
geometry, in fact D = I(X,<p) for some linear order <p on X.

Proof. By (1) of Lemma we have Cj, = I(X, <) for some total quasi-order <j. Let x # y € X
such that x <p y and y <p «. Since C is algebraic, there is a largest member A of Cy not containing
x;in fact A={ze X :z<pxandx £p z}. Since D is maximal, A’ :=|p x is a cover of A in D. Since
Acop(Au{z})c A" we have p(Au{x}) = A’ Similarly, we have ¢(Au {y}) = A’. This contradicts
the fact that C is a convex geometry. O

Lemma 7.11. Suppose that K is finite. If each Cy is algebraic, then C =\ i Ck is algebraic.

Definition 7.12. A multichain is a relational structure M := (X, (Lk)k=1,,) Where each Ly is
a linear order on the set X. If n = 2 this is a bichain. The components of M are the chains
Cr = (X, Ly) for k:=1,n.

We denote by C(M) the join V-, I(Cy).
For finite convex geometries, see this result in Edelman and Jamison [2]. It is not generally true
in case of infinite dimension, see Wahl [47] and Adaricheva [5].

Theorem 7.13. A closure system (X, @) is an algebraic convex geometry with finite dimension iff
Cl(X,¢)=C(M) for some multichain M.

Proof. Let M := (X,(Lg)g=1,n). For each k := 1,n, the set Dy := I(C}) of initial segments of
C} forms an algebraic convex geometry. Hence, from Lemma and Lemma C(M) is an
algebraic convex geometry of dimension a most n. Conversely, if (X, ¢) is an algebraic convex
geometry of dimension at most n, then there is a family (Dy)g=1,, of maximal chains of C1(X, ¢)
such that CI(X,¢) = Vi1, D. By Lemma Dy, = I(X, <) for some linear order < on X,
hence CI(X,¢) = C(M) for M := (X, ($k)k=1,n)- O

Let M := (X, (Lk)k=1,n) be a multichain, C}, := (X, L) be its components and L :=II,;.,Cy. Let
§: X - L, be the diagonal mapping defined by §(x) = (z,...,z)), §(X) be its range, let A(L) be
the join-semilattice of L generated by 6(X) and A(L) be the join-semilattice obtained by adding a
least element, say {0}, to A(L).

Theorem 7.14. Let M be a multichain and C = C(M) then K(C) is isomorphic to A(L) via a
join-preserving map.

Proof. According to (4) of Lemma ¢ induces a one-to one join-preserving map from K (C) onto
the join-semilattice of Iy, K (Ck). generated by the image of the set K(C); := {¢(x) : z € X}
augmented of a least element. To conclude, observe that each K(C%). is equal to K(Cy); which is
isomorphic to C}. O

In the next section, we look at the case of bichains.
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8. THE SEMILATTICE (7)) AS AN OBSTRUCTION IN ALGEBRAIC CONVEX GEOMETRIES

As it was mentioned in the introduction, the semilattice €2(7) does not appear in the semilattice of
compact elements of an algebraic modular lattice, see [16]. The goal of this section is to demonstrate
with Theorem that ©(n) is a typical subsemilattice of compact elements of convex geometries
associated to bichains (see Theorem [8.3]).

A bichain is a relational structure B := (X, <1,<9) where <; and leq <o are two linear orders on
the set X. To B we associate its components C; := (X, <), Cy := (X, <2), the lattice L := C; xCy, the
convex geometry C(B) := I(C1) vI(Cs) and the join-semilattice K (C(B)) of its compact elements.
According to Theorem K(C(B)) is isomorphic to A(L). We give an other presentation of this
lattice.

Let L be the direct product of two chains C; := (X1,<1) and Cy := (X5,<2). Suppose that X;
and Xy have the same cardinality and let f : X; — X5 be a bijective map from X; onto X5. Let
df: X1 = X1 x X5 be defined by d¢(x) = (z, f(z)) and A(L, f) be the join semilatice of L generated
by 6¢(X1). Let <f be the inverse image of the order <5 by f that is u <y v whenever f(u) < f(v);
let 6 : X7 - X1 xX; and Ly = (X3,<1) x (X1,<y) and let A(Ly) be the join semilatice of Ly
generated by §(X1).

Lemma 8.1. (a) A(L,f) = {(2/,f(2")) € X1 x X : 2" <1 2’ and f(2') <o f(z")}. (b) The
join-semilattices A(L, f) and A(Ly) are isomorphic. In particular, with a bottom element added,
A(L, f) is isomorphic to K(C(B)) where B = (X1,<1,<y).

Proof. (a) Let Z = {(2/,f(2")) € X1 x Xy : 2" <1 2" and f(2') <2 f(2")}. We prove that
Z = A(L,f). First, Z is a join-semilattice of L. Indeed, let (2',f(z”)) and (¢/,f(y")) in
Z. Let u := (u',u") be their join. We claim that v € Z. Indeed, v' = Mazxc, ({2',9'}) and
u” = Maze, {f(2"), f(y'")}). W.lo.g. we may suppose y' <1 o’ that is «’ = a’. If u” = f(a”) then
w= (', f(2'")) hence u € Z as required. Otherwise u” = f(y”). Since v’ =z’ we have y’ <; 2’ and
since (y', f(y")) € Z we have y” <1 ¢’ hence y" <1 2. Since v = f(y"") we have f(a") <2 f(y") and
since (2', f(2")) € Z we have f(z') <o f(2") hence f(z') < f(y"). Tt follows that u = (z', f(y")) € Z
as required. Next, we have trivially d;(X;) € Z. Since Z is a join-semilattice, it follows that
A(L, f) € Z. Finally, we have (2, f(2")) = (2, f(2")) v (2", f(2"")) whenever (2, f(x")) € Z hence
Z ¢ A(L, f). The equality Z = A(L, f) follows.

(b) Let g : X1 x X1 — X3 x X5 defined by setting g(x,y) := (z, f(y)). As it is easy to check, g is an
isomorphism of L onto L. Since it carries 6(X1) onto 67(X1), it carries A(Ly) onto A(L, f). O

If the order-type of the first component of a bichain B is w and the second component is non-
scattered, we say that the lattice C(B) is a duplex, for convenience. We denote by Lp the class of
join-semilattices isomorphic to K (C) for some duplex C.

Two join-semilattice are equimorphic as join-semilattices if each one is embeddable into the other
by some join-preserving map. We have:

Proposition 8.2. Let S’ € Lp. A join-semilattice S is equimorphic to S’ if and only if S is
embeddable as a join-semilattice in the product L of two chains Cy = (X1,<1) and Co := (X2,<2) in
such a way that:

(1) the first projection Ay of S has order type w,

(2) the second projection As of S is non-scattered,
(3) the set S(x):= ({x} x A3) n S is finite for every x € A;.

Proof. Let us prove first that every S € Lp satisfies the conditions above. Let B := (X,<1,<s) be
a bichain, Cy = (X,<1), Cs := (X,<3), L:=C1 x Cy, C(B) :=1(Cy) vI(Cs) and S := K(C(B)) be
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the join semilattice of its compact elements. According to Theorem S is isomorphic to A(L).
Add to X a new element a, set X' := X u{a}, extend both orders to X', deciding that a is the
least element of X’ w.r.t. each order. Let C{ := 1+ C; and C% := 1 + C3 be the resulting chains, let
L' = C x Ch, let §'(2") := (a',2"). Clearly A(L) is isomorphic to A(L’), the join-semilattice of L’
generated by §'(X"). Hence we may suppose that S = A(L’). Supposing that C'(B) is a duplex, the
projections A} and A} of S satisfy conditions (1) and (2). Let us prove that condition (3) holds.
Let z € A}. According to (a) of Lemma 8.1 A(L') = {(2/,2") € X' x X" : 2" < 2’ and 2’ <5 2"},
hence S(z) = {(z,2") e X' x X' : 2" <1 x and = <5 2”}. Since A has order type w, every proper
initial segment is finite, hence S(x) is finite.

Now, suppose that S is equimorphic to A(L) Let L' such that A(L) is isomorphic to S” := A(L').
We may suppose that S is a join-semilattice of S’ with projections A; and A,. Since S’ satisfies
conditions (1) and (3), S satisfies these conditions. Now, Id S is non-scattered, indeed, the second
projection A of S’ embeds into Id S’ (associate (A;x |z, y) NS’ to every y € AL). Since S is
equimorphic to S’, Id S’ embeds into Id S, hence Id S is non-scattered. According to Lemma [5.11
and Lemma [5.10} A; or As is non-scattered. Since A; has order-type w, A is non-scattered, hence
condition (2) holds.

Conversely, suppose that S satisfies the three conditions stated above.

Claim 5. If Al is a countable subset of Ay such that Cyl A} has order-type n then the set (Ap x
{y}) n S is infinite for every y € Aj.

Proof of Claim Enough to prove that for every z; € A; and y € AL there is some z,21 <1
such that (z,y) € S. Let (z1,y) € A; x A},. For every y’ € A, there is some t’ such that (¢',3') € S.
Consider ¢ such that (¢,y) € S and ¢ := Maxze, {x1,t} . From our hypothesis, the set of y’ € AS such
that ¢’ < y is infinite and the set ((A1n | t1) x X2) NS is finite. Hence, there is some y' € A} with
y' <9 y and some x',t; <1 2’ such that (z’,y") € S. Since S is a join-semilattice, (¢t,y) v (a',y") € S.
Since (t,y) v (2',y") = («',y) we may set x = 2’ proving our claim. |

Claim 6. S contains some join-semilattice S1 € Lp.

Proof of Claim @ Let A} be a countable subset of Ay such that Cyt A} has order-type 1. We
prove that there is a one-to-one map g from A} into A; such that (g(y),y) € S for each y € Aj.
Indeed, enumerate the elements of A} into a sequence yg,...4Yn,...; pick zo arbitrary in A% such
that (zo,y0) € S and set g(yo) := xo . Suppose g(ym) = T, be defined for m < n. According to
Claim [5| there is some x larger than all x,,’s such that (z,y,) € S, set g(y,) = x,, = x. Let S; be
the join-subsemilattice of C x Cy generated by the set {(g(y),y) : y € A5}. Setting A} = g(A}) and
f=9tA(L") we may apply Lemma 8.1} hence S; € Lp. o

Claim 7. S embeds by a join-preserving map into S’.

Proof of Claim [7| We may suppose that A; = X; and As = X5. Let L’ such that S’ is isomorphic
to A(L), where L = C} x C}, C} := (X',<}) is a chain of order-type w and Cj := (X', <5) is a
non-scattered chain. We are going to define a map F from L into L’ such that F(S) < A(L'). The
map F will be of the form F(z,y) = (f(z),g(z)), with f and g embeddings of C; into C] and of
Cy into CY. Tt will follow that F' will be one-to-one and will preserve joins and meets, hence its
restriction to S will be a join-embedding into A(L'), hence, into A(L'). First, we define g. Let A%
be a subset of A such that C41 Af has order type n. Due to condition (3), As is countable, hence,
from a Cantor’s result, Cs is embeddable into C51 A]. Let g be such an embedding. Next, we define
f. We proceed by induction. Since C has order-type w, we may enumerate the elements of A; into
the sequence ag <o, < a1 <¢, --.an <¢, -... Let n € N and A;(n) := {am, : m <n}. Suppose that f
defines an embedding of Ci} 4, into C] and F((A1(n) x A3)nS) c A(L"). We extend f to An41
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in such a way that (f(an),g(y)) € A(L') for every y € S(a,). Doing so we will get f as required.
For that, observe that since S’ € Lp, Claim [5| applies. Hence, (A} x {y'}) n S’ is infinite for every
y' € Ay, thus for every y € S(a,,) there is some aj, € A} with f(a,-1) <¢; a; such that (a;,g(y)) € S".
According to condition (3), S(a,) is finite, hence we may set yo := Mine,S(a,) and yj = g(vo)-
Since yj € Ay, (A} x {yj}) nS" is infinite, hence there is some a’ 2¢; Mazc;{a; : y € S(a,)} such
that (a’,yp) € S'. Since S’ is a join-semilattice, we have (a',y;) v (ay,9(y)) = (a’,g(y)) € S’ for
every y € S(ay). It suffices to set f(a,):=d'.
m
From Claim [6] we have S; <, S. Since S’ satisfies conditions (1), (2), (3) and S; € Lp, Claim
asserts that S’ <, S;. From Claim m we have S <, S’. Hence, S and S’ are equimorphic as
join-semilattices. O

Theorem 8.3. Q(n) is equimorphic to any member of Lp.

Proof. By construction, €(n) is a join-semilattice of the product Cy x C2, where Cy is the chain
of non-negative integers and Cj is the chain of dyadic numbers of the the interval [0,1[. The
second projection being surjective, its image is non-scattered; by construction, each intersection
({2} x X2)nQ(n) is finite, hence Proposition 8.2 yields that €2(n) is equimorphic, as a subsemilattice,
to any S € Lp. O

Note that €2(7) is not isomorphic to the semilattice of compact elements of an algebraic convexity
(It will not satisfy Theorem |3.3]).

The fact that members of Lp are equimorphic as join-semilattices which follows from Proposition
can be derived from a result of [38] as explained below.

An embedding of a bichain B := (X, <, <s) into a bichain B’ := (X',<],<}) is any map f: X - X'
which is an embedding of C := (X,<;) into C] := (X’,<}) and an embedding of C5 := (X, <3) into
C4 = (X',<}). Two bichains are equimorphic if each one is embeddable into the other.

Lemma 8.4. Let B:=(X,<1,<9) and B’ := (X',<],<}) be two bichains.
(1) If B is embeddable into B’ then C(B) is embeddable into C(B’) by a map preserving com-
plete joins and K(C(B)) is embeddable into K(C(B') by a join-preserving map.
(2) If the first components of B and B’ are isomorphic to w and the second components are
non-scattered,then B and B’ are equimorphic.

Proof. Ttem (1). Let ¢, resp. ¢’, be the closure associated with C(B), resp. C(B’). Let f: X — X’
be an embedding of B into B’. For A € £(X), set f(A):= ¢'(f(A)). By definition, the restriction
of f to C(B) maps C(B) to C(B’). We check that it preserves arbitrary joins. This relies on the
fact that f(A) = f(©(A)) for every A € (X). This fact is easy to check. Let 2’ € f(o(A)). Then,
there are z{,z} € f(¢(A)) such that =’ <1 z] and 2’ <o af. There are x1,22 € ¢(A) such that
2y = f(x1) and zf = f(x2). Since z; € p(A) there is y; € A such that x; < yp; similarly, there is
y2 € A such that o < yo. Let yf := f(y1) and y) := f(y2); since f preserves the two orders, we have
zq <) yp and 2 <b yh; by transitivity we obtain 2’ <§ yi and 2’ < y5. Hence 2’ € ¢'(f(A)) = f(A.
This yields f(p(A)) c f(A). The reverse inclusion being trivial, we obtain the equality. Let
(A;)icr be a family of members of C(B) and A := \/;; A;. We check that f(A) = Ve f(Ai). We
have A = p(Ujer Ai), hence f(A) = f(o(Uier A:)) = f(User Ai) by he fact above. Since, we have
f(Uier Ai) = ¢ (f(Uier 4i)) = ¢’ (f(Uier 4i)) = Vier ¢’ (f(Ai)) = Vier f(Ai), we obtain the desired
equality. For the last part of the statement, obseve that the map f induces an embedding of
K(C(B)) into K(C(B")).

Item (2). This is a consequence of Corollary 3.4.2, p.167 of [3§]. O



20 KIRA ADARICHEVA AND MAURICE POUZET

Comments 8.5. The notion of bichain is not so peculiar. Several papers related to bichains have
appeared during the last few years. Some are about infinite bichains and are mostly concerned by
their endomorphisms ([42], [29], [19]). Many are about finite bichains and originate in the study
of classes of permutations. To each permutation o of [n] = {1,...,n} one associates the bichain
B, = ([n],<,<s) where < is the natural order on [n] and <, the linear order defined by i <, j if
and only if o(i) < o(j). Conversely, if B := (E,C1,C2) is a finite bichain, then B is isomorphic
to a bichain B, for a unique permutation o on [|E| |. Now, if o and w are two permutations with
domains [n] and [m], one can set o <« if and only if B, is embeddable into B,. This defines an
order on the class & of all permutations. Classes C of permutations such that o € C whenever o <7
for some w e C are called hereditary. Many results have been devoted to the study of he behavior of
the function pc which counts for each integer n the number pc(n) of permutations o on n elements
which belong to C, see the survey [28].

The correspondence between permutations and bichains was noted by Cameron [18] (who rather
associated to o the bichain ([n],<,<,-1)). It allows to study classes of permutations by means of
the theory of relations. In particular, via this correspondence, hereditary classes of permutations
correspond to hereditary classes of bichains and simple permutations, a key notion in the study
of hereditary classes (see the survey [13] and [35]), correspond to indecomposable bichains, which
become, via this correspondance an important class of indecomposable structures (see [22] ).

9. ORDER SCATTERED ALGEBRAIC LATTICES WITH FINITE JOIN-DIMENSION

In this section we characterize by obstructions order scattered algebraic lattices with finite join-
dimension.
The motivation comes from the following result ([38], Theorem 2, p.161):

Theorem 9.1. Let P be an ordered set. Then Id P is order-scattered iff P is order-scattered and
Q(n) is not embeddable into P.

The following conjecture is stated in [16].

Conjecture 9.2. If P is a join-semilattice, then Id P is order-scattered iff P is order-scattered, and
neither £<“(N), nor Q(n), is embeddable into P as a join-semilattice.

It must be noticed that while () is embeddable into £<“(N) as a poset, it is not embeddable
as a join-semilattice. In fact, as was shown in [I7] Corollary 1.8 p.4:

Theorem 9.3. A join-subsemilattice P of £<“(N) contains either £<“(N) as a join-semilattice or
is well-quasi-ordered (that is P contains neither an infinite antichain nor an infinite descending
chain).

More generally, if the lattice L := Id P is modular then Q(7) cannot appear as a join-subsemilattice
of P. In this case, the conjecture above was proved in [I5]. When L is a convex geometry, as was
shown in section [8) Q(n) may be a join-subsemilattice of P.

We are aiming at proving the conjecture for arbitrary algebraic convex geometries, but for now
we restrict the result to convex geometries L := Id P, for which P has a finite v-dimension.

Theorem 9.4. Let P be a semilattice with dimy(P) = n < oo. Then the following properties are
equivalent:

(i) P is embeddable by a join-preserving map into a product of n scattered chains.

(ii) P is embeddable by a join-preserving map into a product of finitely many scattered chains.
(iti) 1d P is topologically scattered;

(iv) Id P is order-scattered;
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(v) Mia(Id P) is order-scattered;
(vi) Mia (Id P) is topologically scattered.

Proof. (i) = (ii). Obvious.

(it) = (di7). Let f be a join-embedding of P into a finite product of chains say @ = IliexCl.
W.lo.g we may suppose that P and each C} have a least element 0 and 0y respectively, and that
f(0) := (0 ) gex- Since Id C}, is isomorphic to I(C} ) where C} = Cj \ {04}, if C}, is order-scattered,
then by Proposition Id C}, is topologically scattered. This being true for all k € K, Tgex Id Cy
is topologically scattered from (4) of Lemma As noticed in the proof of Proposition IdQ
is isomorphic to Ilgex Id Ci. Hence, in our case, Id @) is topologically scattered. Since f is join-
preserving, the set f~'(I) belongs to Id P for I e IdQ. Let g be the map from Id Q to Id P defined
by setting g(I) := f~1(I). As it is easy to check, this map is continuous. Hence by (2) of Lemma
the image of Id @ is topologically scattered. Since f is an embedding, g is surjective (indeed,
I=g(] f(I)) for every I €Id P). Hence Id P is topologically scattered as required.

(i41) = (vi). Obvious: Mia (Id P) is a subset of Id P.

(vi) = (v). Since Mia(Id P) is topologically scattered it is order-scattered (see Corollary .
Hence Mia (Id P) is order-scattered.

(v) = (). The proof follows the same lines as the proof of Theorem Since dimy (P) =n < oo,
by Theorem cov(Mia(Id P)) = n. Let us cover Mia(Id P) by n chains Cy, k < n. Close
each C} by intersection. Let C', be the resulting chain. Since Mia (Id P) is order-scattered, Cy is
order-scattered. Moreover, C, is order-scattered. Hence, by Lemma L := e Id Cy, is order-
scattered. For I € Id P let I;, be the least element .J of C}, such that I ¢ J and let f(I) = (Ip)rex-
The map f is an embedding of Id P into L. Hence Id P is order-scattered.

(iv) = (4). Let f be a join-embedding of P into a product of n chains, say @ = ., Ck. For k <n,
let fi be the projection map from P onto Cy. W.lo.g we may suppose each f; surjective. Let
I €1dC;. Since f is join-preserving, f~*(.J) e Id P. Let g;, be the map from Id Cy, to Id P defined by
setting g (I) := f;*(I). This map is order-preserving and one-to-one. Since Id P is order-scattered,

Id C}, is order-scattered, hence C}, is order-scattered.
O

Remark 9.5. The following question (see [40]) is unanswered. Does a poset P which embeds in a
product of k scattered chains and in a product of n chains embeds into a product of n scattered chains?
Equivalence between (i) and (it) states that the answer is positive if we consider join-semilattices
and join-embeddings.

The proof of Theorem [9.7 below is based on a famous unpublished result of Galvin about parti-
tions of pairs of the rationals which can be stated in terms of the ”bracket” relation by:

(7) n - [n]3.

This relation means that if the pairs of rationals are divided into finitely many classes then there is
an infinite subset of the rationals which is isomorphic to the rationals and such that all pairs belong
to the union of two classes.

An alternative statement is the following:

Theorem 9.6. Suppose the pairs of rationals be divided into finitely many classes A1,..., A,. Fix
an ordering on the rationals with order type w. Then there is a subset X of rationals of order type
n and indices i,j (with possibly i = j) such that all pairs of X on which the natural order on Q and
the given order coincide belong to A;, and all pairs of X on which the two orders disagree belong to
A;.
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The proof of Galvin’s result can be found in [23]; Theorem [9.6 was used in [39].

Theorem 9.7. Let P be a join-semilattice with 0 and L :=1d P be the lattice of ideals of P ordered
by inclusion. If dimyP =n <w, then L is order-scattered iff P is order-scattered and Q(n) is not a
join-subsemilattice of P.

Proof. Let Q € {Q,Q(n)}. If Q is embeddable into P then Id Q) is embeddable into Id P. Since Id Q
contains a chain of order-type 7, Id P is not order-scattered. This proves that if L is order-scattered
then P is order-scattered and £2(n) is not a join-subsemilattice of P.

For the converse, we find convenient to view L as the lattice C := Cl(X, ¢) of an algebraic closure
system (X, ¢) such that @ € C. The join-semilattice P is isomorphic to K, the collection of finitely
generated closed subsets of (X, ¢).

Since dim,P = n < w, there are n maximal chains Cj, k < n, of L whose union covers M :=
Min (Id P), see Proposition By Lemma for each k there is some total quasi-order <; such
that Cy = I(X,<x). Now suppose that C' is not order-scattered. By Lemma e C is not
scattered. By Lemma [5.10[ some C}, is not scattered. Without loss of generality we assume that C
is not scattered.

Claim 8. X, :=(X,<q) is not scattered.

Proof of Claim [8] According to Claim 7.7, Cy = I(X,). The fact that Cy is not scattered implies
that X is not scattered. This is a well known fact. For reader convenience, we give a proof. We
use the fact that the chain of rationals contains a copy of every countable chain (Cantor), hence a
copy of a chain of order type 2-7. Thus Cj contains a sub-chain D of order type 2-7. We may
write the elements of D as d,.s with r € Q,s € {0,1}, these elements being ordered by d,s < dys if
r<r’,orr=7r"and s=0,s" = 1. For each r € Q, pick z, € X such that d,.g <o 2, <o dr1. If r <7’ are
two rationals, then x, <o z,s, but x,» £o9 x,.. Hence, x, <g x,». Thus, the set of z,’s forms a chain of
type  in Xj. O

Let A € X such that the order <y induced on A has order type 1 and let <,, be a linear order
of type w on A. We denote by [A]? the set of pairs of distinct elements of A and identify each
such pair to an ordered pair (x,%) such that = <g y. To each u := (z,y) € A%, we assign a sequence
e(u) = (e1(u),...,ex(w)), where ex(u) =1 if x < y, ex(u) =0 if z > y, and €x(u) =2 if x < y and
Y<kT.

Since €, (u) # 2, this defines a partition of distinct pairs of A into at most 3"71.2 classes.

Claim 9. There is a subset A" of A such that the order <{, induced on A" by <o has order type n
and such that for each k, 1 <k < n, the restriction <) of < to A" is either <{, its dual or <], (the
restriction to A’ of <, ), its dual, or A”?, the complete relation on A’.

Proof of Claim @. According to the bracket relation in @ one can find a subset A’ ¢ A, that
has type 1 with respect to <y such that the range of the restriction of € to distinct pairs of A’ has
at most two elements. Hence, there are n-sequences a := (aq,...,a,) and 8 := (81,...,5,) such
that e(u) € {a, B8} for every u (and the values « and § are attained). Necessarily, a,, # 8. Indeed,
otherwise, €, (u) would be constant, meaning that </, to A would coincide with <{, or with its dual;
this is impossible since <, has order type n. Hence 0,1 € {ay,S,}. With no loss of generality, we
may assume that o, =1 and 3, = 0. Consequently, for every u and every k, 1 < k <n, we have:

(8) ex(u) = ap ife,(u) =1
and

(9) ex(u) = B if €, (u) = 0.
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Furthermore, we have:

(10) oy, = 2if and only if f; = 2.

Indeed, suppose ay, = 2 but B # 2. W.Lo.g. we may suppose 8, = 1. Thus for every u € [A']?,
we have e;(u) =2 if €,(u) =1 and €, (u) =1 if €,(u) = 0. This is impossible. Since the order <,, has
type w we may find x <¢ z <o y such that z <, « <, y. We have €,(z,y) = 2 and ¢, (x,y) = 2. By
transitivity of < we have e (x,z) = 2 which contradicts ex(z, z) = 1.

Now, we may conclude: if aj = 2 then B4 = 2, hence, ex(u) = 2 for every u € [A’]? that is <, is
A" the complete relation on A’. If ay, = 1, then either B4 = 1, or S, = 0. In the first case, <}, is <{;
in the second case, <}, is </,. Similarly, if ag = 0, <, to A" is the dual of <{ if 8 = 0, whereas it is
the dual of </, if By = 1. m

Let C’ be the closure induced on A’, that is C' := (A’,¢") where ¢'(Z) := ¢(Z) n A’ for every
ZcA.

The quasi-orders of the form A’? play no role in C’. Hence from Claim @

Claim 10. There exists a subset £ € {(<()*, <), (<,)*} such that C' is the join of the I(A’,<")
where <’ belongs to LU {<{}.

Since the join-semilattice K(C") of compact elements of C’ embeds into K (C') it suffices to prove
that it embeds n or (7).
There are 8 cases to consider, 4 yield an embedding of 7, the 4 remaining yield an embedding of

Q(n):
Claim 11. (1) n embeds into K(C") if L does not contain {<],}, that is L is either empty or
equal to {(<5)"} or to (<)} or to {(<5)", (<1)*}.
(2) Q(n) embeds into K(C') if L contains {<,}, that is L is equal to {<l}, {<},(<0)*} or
{(=0)", <5} or {<0, <5, (57) %}

Proof of Claim We define a subset of D which is isomorphic to 7 or embeds Q(n). If £ is
empty, we set D := {¢'({z}) : 2 € A’}. In all other cases, D is of the form {¢'({zg,z}) o<z : €
A"} for some xg € A’ If £ ={(<()*}, zo is arbitrary; in all other cases z is the least element of <.
Ttem (1). If £ = @ then, trivially, D is isomorphic to (A’, <)), hence, has order type n. Next, observe
that ¢/ ({0,2}) = {y € A': 20 <y <h 2} if £ is {(<)"} or {(<4)*, (<,)°}, and ¢'({zor}) = fy e A’
y <p o}, if £is {(<])*}. Hence, D forms a chain of type 7.

Item (2). If £ = {<]} then K(C’) embeds 2(n) by Theorem In fact, in this case, as in case
L=A{<,(<)*}, we have ¢'({zo,2}) ={ye A’ :y <z and y <, x}. If Lis £ = {(<()*, <)} or if
L ={<(, <0, (<0)*}, then ¢ ({zo,2}) = {y e A" : 20 <{ y <,  and x¢ <, y </, x}. Hence, D embeds
Q(n).

m

With this last claim, the proof of Theorem [9.7] is complete. 0

Problem 9.8. As it stands, Theorem[9.7 does not allow to prove Theorem[5.1l Eaxtend the conclu-
sion of Theorem[9.7 to join-semilattices of finite order-dimension.
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