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A CLASS OF INFINITE CONVEX GEOMETRIES

KIRA ADARICHEVA AND J. B. NATION

Abstract. Various characterizations of finite convex geometries
are well known. This note provides similar characterizations for
possibly infinite convex geometries whose lattice of closed sets is
strongly coatomic and lower continuous. Some classes of examples
of such convex geometries are given.

1. Introduction

There are various ways to characterize finite convex geometries; see
Chapter 3 of our [4], which combines results from Dilworth [9], Edel-
man and Jamison [11], Duquenne [10], and Monjardet [15]. These
characterizations can be either combinatorial or lattice theoretical in
nature.
Infinite versions of convex geometries occur in several sources, each

of which is equivalent to a closure operator with the anti-exchange
property, plus some finiteness conditions to provide structure. Craw-
ley and Dilworth [7] consider dually algebraic, dually coatomic, locally
distributive lattices. Adaricheva, Gorbunov and Tumanov [3] discuss
closure operators with the anti-exchange property whose closure lat-
tices are weakly atomic, dually spatial and atomistic. Adaricheva and
Nation [4] are concerned with algebraic closure operators with the anti-
exchange property. See also Nakamura and Sakaki [16], Adaricheva and
Pouzet [5], and Adaricheva [2].
Here we consider a fourth type, inspired by Gorbunov’s classic re-

sult [12]: Every element of a complete lattice L has a canonical join
decomposition if and only if L is strongly coatomic, lower continuous,
and join semidistributive. Adding lower semidmodularity to the list
will give us an infinite class of convex geometries; see Theorem 7.

2. The anti-exchange property

Definition 1. A closure system (X, γ) satisfies the anti-exchange prop-
erty if for all x 6= y and all closed sets A ⊆ X,

(AEP) x ∈ γ(A ∪ {y}) and x /∈ A imply that y /∈ γ(A ∪ {x}).
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2 KIRA ADARICHEVA AND J. B. NATION

Equivalently, a closure operator satisfies the anti-exchange property
if for all closed sets A ⊆ X and elements x, y /∈ A, if γ(A ∪ {x}) =
γ(A ∪ {y}) then x = y.
Examples of closure operators with the anti-exchange property in-

clude

• the convex hull operator on Euclidean space En,
• the convex hull operator on an ordered set,
• the subalgebra-generated-by operator on a semilattice,
• the algebraic-subset-generated-by operator on a complete lat-
tice.

For a closure system (X, γ), we will let Cld(X, γ) denote the lattice of
γ-closed subsets of X . A closure system is zero-closure if γ(∅) = ∅.

Definition 2. A zero-closure system that satisfies the anti-exchange
property is called a convex geometry.

(This common convention is a bit awkward, as some useful closure
operators with the anti-exchange property have a non-empty closure of
the empty set. Nonetheless, we shall retain it.)
A lattice is strongly coatomic if a < c in L implies that there exists b

such that a ≤ b ≺ c. A closure system is strongly coatomic if its lattice
of closed sets is so.

Theorem 3. For a strongly coatomic closure system (X, γ), the fol-
lowing are equivalent.

(1) (X, γ) has the anti-exchange property.
(2) If A ≺ B in Cld(X, γ), then |B \ A| = 1.

Proof. Assume that (X, γ) has the AEP. If A ≺ B in Cld(X, γ) and x,
y ∈ B \ A, then γ(A ∪ {x}) = B = γ(A ∪ {y}), whence x = y by the
AEP.
Suppose that (X, γ) satisfies (2). Assume that B = γ(A ∪ {x}) =

γ(A ∪ {y}) > A = γ(A). As Cld(X, γ) is strongly coatomic, there is
a closed set A′ such that A ≤ A′ ≺ B. Then B = γ(A′ ∪ {x}) =
γ(A′ ∪ {y}), so x, y ∈ B \ A′. By (2) we have x = y, as desired. �

The equivalence of the preceding theorem is also valid for algebraic
closure systems [4] and [2].

3. SCLCC lattices

A complete lattice is lower continuous if for every down-directed set
D ⊆ L, a ∨

∧
D =

∧
d∈D(a ∨ d). We denote a strongly coatomic,

lower continuous, complete lattice as SCLCC, and a closure system is
SCLCC if its lattice of closed sets is so.
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Some basic properties of SCLCC lattices follow.

Lemma 4. Let L be an SCLCC lattice.

(1) Every nonzero join irreducible element is completely join irre-
ducible.

(2) If w ≻ c in L, then there exists an element k that is minimal
w.r.t. k ≤ w, k � c, and each such element is join irreducible.

(3) Every element of L is a (perhaps infinite) join of join irreducible
elements.

A complete lattice in which every element is a join of completely
join irreducible elements is said to be spatial. Clearly, this is a desir-
able property for any sort of “geometry.” In [5], it was shown that every
weakly atomic convex geometries is spatial. The preceding lemma says
that SCLCC lattices have an even better property: a complete lattice
is strongly spatial if it is spatial and every nonzero join irreducible ele-
ment is completely join irreducible. The set of nonzero join irreducible
elements of a lattice L will be denoted by Ji(L).
The next lemma is useful in connection with local distributivity. A

complete lattice is coatomistic if every element is a meet of coatoms.

Lemma 5. A distributive, coatomistic SCLCC lattice is isomorphic to
the boolean algebra of all subsets of its coatoms.

4. Join semidistributive SCLCC lattices

Next we generalize some equivalences of join semidistributivity which
are well-known for finite lattices.
The implication

(SD∨) w = x ∨ y = x ∨ z implies w = x ∨ (y ∧ z)

is known as the join semidistributive law. In view of Lemma 4 and the
results in Jónsson and Kiefer [13], we consider two potentially infinite
versions of the law:

(SD′

∨
) w = x ∨ y for all y ∈ Y implies w = x ∨

∧
Y

(SD∗

∨
) w =

∨
Y =

∨
Z implies w =

∨
(y ∧ z)

It is an elementary exercise that join semidistributive, lower continuous,
complete lattices satisfy SD′

∨
, and we shall use that at will.

For subsets A, B ⊆ L we say that A refines B, denoted A ≪ B, if
for every a ∈ A there exists b ∈ B such that a ≤ b. Note that A ≪ B
implies

∨
A ≤

∨
B.

We say that w =
∨
A is a canonical join decomposition if the join is

irredundant, and w =
∨
B implies A ≪ B.
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Theorem 6. The following are equivalent for an SCLLC lattice L.

(1) L satisfies SD∨.
(2) L satisfies SD∗

∨
.

(3) Every element of L has a canonical join decomposition.
(4) If w ≻ c in L, then there exists a join irreducible k which is the

unique minimal element such that k ≤ w but k � c.

Proof. (1) ⇒ (4) is an immediate consequence of SD′

∨
.

(4) ⇒ (3). Assume that property (4) holds, and fix an element
w ∈ L. Let C = {c ∈ L : w ≻ c}. For each c ∈ C, we can find an
element kc such that kc ≤ w but kc � c. We claim that w =

∨
c∈C kc

canonically. Clearly
∨

c∈C kc = w, since each kc is below w, while the
join is below no lower cover of w.
If c 6= d ∈ C, then c ∨ d = w. Hence by SD′

∨
we have c ∨ c = w,

where c =
∧
(C \ {c}). By uniqueness, this implies kc ≤ c, i.e., kc ≤ d

whenever c 6= d ∈ C. It follows that the join is irredundant.
Suppose w =

∨
A and consider c ≺ w. There exists some a0 ∈ A

such that a0 � c, though a0 ≤ w, whereupon kc ≤ a0. Since this holds
for all c ∈ C, we have {kc : c ∈ C} ≪ A, as desired.
(3) ⇒ (2). Suppose that w =

∨
S =

∨
T . If there is a canonical join

decomposition w =
∨

U in L, then U refines both S and T , so that for
each u ∈ U there exist s ∈ S with u ≤ s, and t ∈ T with u ≤ t. Hence
each u ≤ s ∧ t for some pair, and it follows that w =

∨
(s ∧ t).

(2) ⇒ (1) clearly, as (1) is a special case of (2). �

5. Characterizations of LCSCC convex geometries

First, we introduce a few more terms.
A strongly coatomic complete lattice is said to be locally distributive

(or lower locally distributive or meet distributive) if for any x ∈ L the
interval [µ(x), x] where µ(x) =

∧
{y : y ≺ x} is a distributive lattice

(and hence for SCLCC lattices a boolean algebra).
For any A ⊆ X , x ∈ A is called an extreme point of A if x /∈

γ(A\{x}). The set of extreme points of A is denoted Ex(A). In lattice
terms, for a strongly spatial lattice L, we identify the element a with
the set Ji(a) = {p ∈ Ji(L) : p ≤ a}. Then x ∈ Ji(a) is an extreme point
of a if a >

∨
(Ji(a) \ {x}). This means that (i) x is join prime in the

ideal id(a), and (ii) there is no other join irreducible y with x < y ≤ a.
Recall that a lattice L is called lower semimodular if a ≺ b implies

a ∧ c � b ∧ c for all a, b, c ∈ L. Equivalently, a lattice is lower
semimodular if a ≺ a ∨ c implies a ∧ c ≺ c.
We now extend some characterizations of finite convex geometries

to SCLCC geometries. In this setting we want to think of a lattice
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in terms of its standard representation as a closure system on its set
of join irreducibles. Note that properties (1)–(2) of the next theorem
are about closure systems, while (3)–(6) are lattice properties. For
the finite case, various parts of the theorem are due to R.P. Dilworth,
P. Edelman and R. Jamison, and V. Duquenne.

Theorem 7. Let L be an SCLCC lattice. Then the following are equiv-
alent.

(1) L is the closure lattice Cld(X, γ) of a closure space (X, γ) with
the AEP.

(2) If A ≺ B in Cld(X, γ), then |B \ A| = 1.
(3) L is locally distributive and lower semimodular.
(4) L is join semidistributive and lower semimodular.
(5) Every element a ∈ L is the join of Ex(a).
(6) Every element of L has a unique irredundant join decomposi-

tion.

Proof. The equivalence of (1) and (2) is Theorem 3.
To see that (2) → (3), let T = Ji(x) and M = Ji(µ(x)). For every

element z in the interval [µ(x), x], we have M ⊆ Ji(z) ⊆ T . Moreover,
for each c ≺ x there is a unique join irreducible xc ∈ T \M such that
Ji(c) = T \ {xc}. Taking intersections, every set Z with M ⊆ Z ⊆ T
is a closed set, representing Ji(z) for some element z in [µ(x), x]. Thus
the entire boolean algebra of subsets [M,T ] occurs, which exhausts the
possibilities, leaving room for no other elements in the interval. Thus
(2) implies local distributivity, and it is clear that (2) implies lower
semimodularity.
Now assume (3), that L is locally distributive and lower semimodu-

lar, and we want to show that L is join semidistributive by means of
property (4) of Theorem 6, which yields (4) of this theorem.
So let w ≻ c, and let a be minimal w.r.t. a ≤ w, a � c. Suppose by

way of contradiction that there exists another such element b. Choose
an element b′ with b ≤ b′ ≺ a ∨ b. Using strong coatomicity, form a
(possibly transfinite) sequence aα for α ≤ κ such that

(i) a0 = a ∨ b and aκ = a,
(ii) aα+1 ≺ aα,
(iii) aλ =

∧
α<λ aα for limit ordinals λ.

We show by induction that (aα ∧ b′) ∨ c = w for all α ≤ κ, so that
aα ∧ b′ � c.
If the statement holds for aα, then by lower semimodularity, aα+1,

aα ∧ b′ and aα ∧ c are three distinct lower covers of aα. Hence by
local distributivity aα+1 ∧ (aα ∧ b′) � aα ∧ c, whereupon aα+1 ∧ b′ � c
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and (aα+1 ∧ b′) ∨ c = w. At limit ordinals, the claim follows by lower
continuity.
For α = κ, this contradicts the minimality of a. Thus L is join

semidistributive.
Before proving that (4) implies (5), let us interpret (5) in a more

traditional way.

Sublemma 8. In an SCLCC lattice, w =
∨
Ex(w) iff for each element

c with c ≺ w, there exists a unique jc in JiL such that jc ≤ w and
jc � c.

Proof. Assume w =
∨

Ex(w), and let c ≺ w. There exists j ∈ Ex(w)
such that j � c, and j �

∨
(Ji(w) \ {j}) because j is extreme. In that

case, the latter join must in fact be c, since c is a join of join irreducibles
below w. Hence j is unique.
Conversely, suppose that for each c ≺ w such a jc exists. Then∨
{jc : c ≺ w} = w, since the join is below w but not below any

of its lower covers. On the other hand, each such jc is extreme, as
c =

∨
(Ji(w) \ {jc}), since jc is the only join irreducible below w that

not below c. �

Now assume (4), that L is join semidistributive and lower semimod-
ular. Let w ≻ c in L. Then SD∨ and lower continuity give us the
existence of a join irreducible element j that is the unique minimal ele-
ment w.r.t. j ≤ w, j � c. If j < y ≤ w, then by lower semimodularity
y ≻ y∧ c, whence y = j∨ (y∧ c) is join reducible. Thus j is an extreme
element for w.
The equivalence of (5) and (6), and that (6) implies (2) for the stan-

dard representation of a spatial lattice L as a closure operator on its
join irreducibles, are both easy. �

A lattice L is called atomistic if every nonzero a ∈ L is a join of
atoms. Atomistic convex geometries were characterized in Proposi-
tion 3.1 of Adaricheva, Gorbunov and Tumanov [3]. For the SCLCC
case, the proof is particularly easy.

Corollary 9. Any SCLCC atomistic join semidistributive lattice is the
closure lattice of some convex geometry.

Proof. It is enough to show that a SCLCC atomistic join semidistribu-
tive lattice is lower semimodular. Indeed, it follows from join semidis-
tributivity that if a ≺ b, then there exists a unique atom t such that
t ≤ b, t � a. If c ≤ b, then either t ≤ c and thus c and c ∧ a differ by
the single atom t, so that c ∧ a ≺ c, or else t � c in which case every
atom below c is below a, whence c ≤ a. �
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6. Examples of SCLCC convex geometries

There are natural examples of the kind of geometries described in
Corollary 9, obtained by taking standard convex geometries and adding
finiteness conditions to ensure strong coatomicity and lower continuity.

• If P is an ordered set such that both the ideal id(x) and the
filter fil(x) are finite for every x ∈ P , then the lattice of convex
subsets Co(P ) is an atomistic SCLCC convex geometry.

• If S is a meet semilatiice such that the filter fil(x) is finite for
every x ∈ S, then the lattice of subsemilattices Sub∧(S) is an
atomistic SCLCC convex geometry.

(We should note that in each example, the closure operator is algebraic,
and an algebraic lattice is dually algebraic iff it is lower continuous.)
For the first type, we know that the convex hull operator on an

ordered set satisfies the AEP; it remains to show that if P has the
property that every principal ideal and filter is finite, then Co(P ) is
strongly coatomic and lower continuous.
Suppose that P has that property, and that A < B in Co(P ). Let

b0 ∈ B \ A. Then either id(b) ∩ A = ∅ or fil(b) ∩ A = ∅, w.l.o.g. the
former. Choose b1 minimal in B ∩ id(b0). Then A ⊆ B \ {b1} ≺ B in
Co(P ). Thus Co(P ) is strongly coatomic.
For lower continuity, it is convenient to use the equivalent formu-

lation in terms of chains; see e.g. Theorem 3.8 of [17]. Let X be
convex, and let C = {Ci : i ∈ I} be a chain of convex subsets of
P . We want to show that

∧
i(X ∨ Ci) ⊆ X ∨

∧
i Ci. Let w be in

the left-hand side, and w.l.o.g. w /∈ X . Either there exists a co-initial
subset D = {Cj : j ∈ J} for some J ⊆ I, and elements xj ∈ X
and yj ∈ Cj, such that xj ≤ w ≤ yj for all j ∈ J , or dually; as-
sume the first. Because fil(w) is finite, there exists a co-initial sub-
set E = {Ck : k ∈ K} with K ⊆ J such that yk = yk′ for all k,
k′ ∈ K. Then yk ∈

⋂
k∈K Ck =

⋂
i∈I Ci, and fixing any k0 ∈ K we have

xk0 ≤ w ≤ yk0. Thus w is in the right-hand side, and Co(P ) is lower
continuous.
Now consider Sub∧(S) for a meet semilattice S. Again, we know

that the subsemilattice operator satisfies the AEP, and it remains to
show that if S has the property that every principal filter is finite, then
Sub∧(S) is strongly coatomic and lower continuous.
If A < B in Sub∧(S), then we can choose b0 maximal in B \ A to

obtain A ≤ B \ {b0} ≺ B.
To show lower continuity, let X be a subsemilattice and let C =

{Ci : i ∈ I} be a chain of subsemilattices of S. Again, we want to show
that

∧
i(X ∨ Ci) ⊆ X ∨

∧
iCi, so let w be in the left-hand side. That



8 KIRA ADARICHEVA AND J. B. NATION

means that for each i ∈ I there exist xi ∈ X and yi ∈ Ci such that
w = xi ∧ yi. Let x =

∧
i xi, which really is a finite meet. If x = w, we

are done. Otherwise, we continue: because fil(w) is finite, there exists
a co-initial subset E = {Ck : k ∈ K} for some K ⊆ I such that yk = yk′
for all k, k′ ∈ K. Then w = x ∧ yk, and yk ∈

⋂
k∈K Ck =

⋂
i∈I Ci, so

w ∈ X ∨
∧

i Ci, as desired.
We can even combine these examples: if S is a meet semilattice

in which every principal filter fil(x) is a finite tree, then the lattice
of convex subsemilattices of S is an SCLCC convex geometry. See
Adaricheva [1] and Cheong and Jones [6].
In a similar vein, if (P,≤) is an ordered set in which every chain is

finite and every interval is finite, then the lattice of suborders of ≤ on
P is an SCLCC convex geometry. See Semenova [18].
Another construction yields SCLCC convex geometries that need not

be atomistic. Our inspriration is the fact that a geometric lattice is iso-
morphic to the ideal lattice of its finite dimensional elements. (There
is no chance for a similar characterization here, since for any non-limit
ordinal α, the dual αd is an SCLCC convex geometry.) Our construc-
tion uses Jónsson and Rival’s characterization of join semidistributive
varieties [14].
Define certain lattice terms recursively: for k ≥ 0,

y0 = y z0 = z

yk+1 = y ∧ (x ∨ zk) zk+1 = z ∧ (x ∨ yk).

Then consider the lattice inclusions

SD∨(k) yk ≤ x ∨ (y ∧ z) .

These are equivalent to the corresponding identities x∨yk ≈ x∨(y∧z).
For example, SD∨(1) is equivalent to the distributive law.

Lemma 10. Let V be a lattice variety. Then every lattice in V is join
semidistributive if and only if V satisfies SD∨(n) for some n < ω.

Let SD∨(n) be the variety of all lattices satisfying SD∨(n).

Theorem 11. Let L0 be a lattice with the following properties.

• fil(x) is finite for each x ∈ L0.
• L0 ∈ SD∨(n) for some n < ω.
• L0 is lower semimodular.

Then the filter lattice L = Fil(L0) is an SCLCC convex geometry.

Proof. As usual, we order the filter lattice by reverse set inclusion: F ≤
G iff F ⊇ G. The filter lattice of any lattice is lower continuous and
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satisfies the equations of the original, in particular SD∨(n) in this case.
It remains to show that L is strongly coatomic and lower semimodular.
Suppose F < G in L, i.e., F ⊃ G. Let k be an element maximal in

F \ G, and note that k is meet irreducible. We claim that the filter
generated by G∪{k}, say H = fil(G, k), satisfies F ≤ H ≺ G. Let ℓ be
any element of H \G. Then ℓ ≥ g∧k for some g ∈ G, and we may take
g ≤ k∗, where k∗ denotes the unique upper cover of k in L0. In that
case, by lower semimodularity, g ≻ g ∧ k, whence also g ∧ k = g ∧ ℓ. It
follows that H = fil(G, ℓ), and since ℓ is arbitrary, H ≺ G. Thus L is
strongly coatomic.
The proof that L is lower semimodular is an adaptation of that for

the corresponding dual claim in Theorem 11.1 of [17]. Assume that
L is lower semimodular, and suppose that F ≺ F ∨ G = F ∩ G in
Fil(L0). Choose an element a maximal in F \G, and note that a is meet
irreducible, thus by the finiteness of fil(a) completely meet irreducible.
Then F = (F ∨ G) ∧ fil(a), and hence F ∧ G = fil(a) ∧ G. Let x
be any element in (F ∧ G) \ G. Since x ∈ F ∧ G, there exists g ∈ G
such that x ≥ a ∧ g. Because L is lower semimodular, a ∧ g ≺ a∗ ∧ g.
On the other hand, every element of L is a meet of finitely many meet
irreducibles, so x /∈ G implies there exists a meet irreducible element
b ≥ x with b /∈ G. Now b ≥ a ∧ g and b � g, so b ∧ g = a ∧ g, whence
a ≥ b ∧ g. Thus fil(b) ∧ G = fil(a) ∧ G = F ∧ G; if follows a fortiori
that fil(x) ∧ G = F ∧G. As this holds for every x ∈ (F ∧G) \G, we
have F ∧G ≺ G, as desired. �

So in particular, we could take L0 to be the elements of finite depth
in a direct product of finite convex geometries that satisfy SD∨(n) for
some fixed n.

7. Discussion

In some sense, algebraic closure operators are the natural settings
for any type of geometry. On the other hand, Crawley and Dilworth’s
setting of dually algebraic and strongly coatomic gives the nice equiva-
lence of local distributivity and unique representations. Our hypothe-
sis of SCLCC is slightly weaker, but means that we must assume lower
semimodulariy along with local distributivity. The lattice (ω+1)d×2,
with its atom doubled, shows that local distributivity by itself is not
sufficient.
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