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Notes on the description of join-distributive lattices by
permutations

Kira Adaricheva and Gábor Czédli

Abstract. Let L be a join-distributive lattice with length n and width (JiL) ≤ k.
There are two ways to describe L by k − 1 permutations acting on an n-element set:
a combinatorial way given by P.H. Edelman and R. E. Jamison in 1985 and a recent
lattice theoretical way of the second author. We prove that these two approaches are
equivalent. Also, we characterize join-distributive lattices by trajectories.

Introduction. For x 6= 1 in a finite lattice L, let x∗ denote the join of up-

per covers of x. A finite lattice L is join-distributive if the interval [x, x∗] is

distributive for all x ∈ L \ {1}. For other definitions, see K. Adaricheva [2],

K. Adaricheva, V.A. Gorbunov and V.I. Tumanov [3], and N. Caspard and

B. Monjardet [6], see G. Czédli [7, Proposition 2.1 and Remark 2.2] for a re-

cent survey, and see (3) before the proof of Corollary 6 later for a particularly

useful variant. The study of (the duals of) join-distributive lattices goes back

to R. P. Dilworth [11], 1940. There were a lot of discoveries and rediscoveries

of these lattices and equivalent combinatorial structures; see [3], [7], B. Mon-

jardet [17], and M. Stern [18] for surveys. Note that join-distributivity implies

semimodularity; the origin of this result is the combination of M. Ward [19]

(see also R. P. Dilworth [11, page 771], where [19] is cited) and S. P. Avann [5]

(see also P.H. Edelman [13, Theorem 1.1(E,H)], when [5] is recalled).

The join-width of L, denoted by width (JiL), is the largest k such that

there is a k-element antichain of join-irreducible elements of L. As usual, Sn

stands for the set of permutations acting on the set {1, . . . , n}. There are

two known ways to describe a join-distributive lattice with join-width k and

length n by k−1 permutations; our goal is to enlighten their connection. This

connection exemplifies that Lattice Theory can be applied in Combinatorics

and vice versa. We also give a new characterization of join-distributive lattices.

Two constructions. For n ∈ N = {1, 2, . . .} and k ∈ {2, 3, . . .}, let ~σ =

〈σ2, . . . , σk〉 ∈ Sk−1
n . For convenience, σ1 ∈ Sn will denote the identity per-

mutation. In the powerset join-semilattice 〈P ({1, . . . , n});∪〉, consider the

subsemilattice LEJ(~σ) generated by
{

{σi(1), . . . , σi(j)} : i ∈ {1, . . . , k}, j ∈ {0, . . . , n}
}

. (1)
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Figure 1. An example of LEJ(~σ) and LC(~π)

Since it contains ∅, LEJ(~σ) is a lattice, the Edelman-Jamison lattice deter-

mined by ~σ. Its definition above is a straightforward translation from the

combinatorial language of P.H. Edelman and R.E. Jamison [14, Theorem 5.2]

to Lattice Theory. Actually, the original version in [14] describes a decompo-

sition of convex geometries.

To present an example, let σ2 =

(

1 2 3 4

3 2 4 1

)

and σ3 =

(

1 2 3 4

4 2 1 3

)

.

Then ~σ = 〈σ2, σ3〉 ∈ S2
4 , and LEJ(~σ) is depicted in Figure 1. In the label of an

element in LEJ(~σ), only the part before the comma is relevant; to save space,

subsets are denoted by listing their elements without commas. For example,

134,111 in the figure stands for the subset {1, 3, 4} of {1, 2, 3, 4}. The chain

defined in (1), apart from its top {1, 2, 3, 4} and bottom ∅, corresponds to the

black-filled small squares for i = 1, the light grey-filled pentagons for i = 2,

and the dark grey-filled circles for i = 3. Note that LEJ(~σ) consists of all

subsets of {1, 2, 3, 4} but {2}.

Next, we recall a related construction from G. Czédli [7]. Given ~π =

〈π12, . . . , π1k〉 ∈ Sk
n, we let πij = π1j ◦ π

−1
1i for i, j ∈ {1, . . . , k}. Here we com-

pose permutations from right to left, that is, (π1j ◦ π−1
1i )(x) = π1j(π

−1
1i (x)).

Note that πii = id, πij = π−1
ji , and πjt ◦πij = πit hold for all i, j, t ∈ {1, . . . , k}.

By an eligible ~π-tuple we mean a k-tuple ~x = 〈x1, . . . , xk〉 ∈ {0, 1, . . . , n}k such

that πij(xi + 1) ≥ xj + 1 holds for all i, j ∈ {1, . . . , k} such that xi < n. Note

that an eligible ~π-tuple belongs to {0, 1, . . . , n−1}k∪{〈n, . . . , n〉} since xj = n

implies xi = n. The set of eligible ~π-tuples is denoted by LC(~π). It is a poset

with respect to the componentwise order: ~x ≤ ~y means that xi ≤ yi for all

i ∈ {1, . . . , k}. It is trivial to check that 〈n, . . . , n〉 ∈ LC(~π) and that LC(~π) is

a meet-subsemilattice of the k-th direct power of the chain {0 ≺ 1 ≺ · · · ≺ n}.
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Therefore, LC(~π) is a lattice, the ~π-coordinatized lattice. Its construction is mo-

tivated by G. Czédli and E.T. Schmidt [8, Theorem 1], see also M. Stern [18],

which asserts that there is a surjective cover-preserving join-homomorphism

ϕ : {0 ≺ · · · ≺ n}k → L, provided L is semimodular. Then, as it is easy to

verify, u 7→
∨

{x : ϕ(x) = u} is a meet-embedding of L into {0 ≺ · · · ≺ n}k.

To give an example, let π12 =

(

1 2 3 4

4 2 1 3

)

, π13 =

(

1 2 3 4

3 2 4 1

)

, and

let ~π = 〈π12, π13〉 ∈ S2
4 . Then Figure 1 also gives LC(~π); the eligible ~π-tuples

are given after the commas in the labels. For example, 23,020 in the figure

corresponds to 〈0, 2, 0〉. Note that if µ12 =

(

1 2 3 4

3 2 1 4

)

and µ13 = π13,

then LC(~π) ∼= LC(~µ). Furthermore, the problem of characterizing those pairs

of members of Sk
n that determine the same lattice is not solved yet if k ≥ 3.

For k = 2 the solution is given in G. Czédli and E.T. Schmidt [10]; besides

LC(~π) ∼= LC(~µ) above, see also G. Czédli [7, Example 5.3] to see the difficulty.

The connection of join-distributivity to LEJ(~π) and LC(~π) will be given

soon.

The two constructions are equivalent. For 〈γ2, . . . , γk〉 ∈ Sk−1
n , we let

〈γ2, . . . , γk〉
−1 = 〈γ−1

2 , . . . , γ−1
k 〉.

Proposition 1. For every ~σ ∈ Sk−1
n , LEJ(~σ) is isomorphic to LC(~σ

−1).

In some vague sense, Figure 1 reveals why LEJ(~σ) could be of the form

LC(~π) for some ~π. Namely, for x ∈ LEJ(~σ) and i ∈ {1, . . . , k}, we can define

the i-th coordinate of x as the length of the intersection of the ideal {y ∈

LEJ(~σ) : y ≤ x} and the chain given in (1). However, the proof is more

complex than this initial idea.

Proof. Denote ~σ−1 by ~π = 〈π12, . . . , π1k〉. Note that π11 = σ−1
1 = id ∈ Sn. For

U ∈ LEJ(~σ) and i ∈ {1, . . . , k}, let U(i) = max
{

j : {σi(1), . . . , σi(j)} ⊆ U
}

,

where max∅ is defined to be 0. We assert that the map

ϕ : LEJ(~σ) → LC(~π), defined by U 7→ 〈U(1), . . . , U(k)〉,

is a lattice isomorphism. To prove that ϕ(U) is an eligible ~π-tuple, assume

that i, j ∈ {1, . . . , k} such that U(i) < n. Then σi(U(i) + 1) /∈ U yields

σi(U(i) + 1) /∈ {σj(1), . . . , σj(U(j))}. However, σi(U(i) + 1) ∈ {1, . . . , n} =

{σj(1), . . . , σj(n)}, and we conclude that σi(U(i) + 1) = σj(t) holds for some

t ∈ {U(j) + 1, . . . , n}. Hence

πij(U(i) + 1) = (π1j ◦ πi1)(U(i) + 1) = π1j

(

πi1(U(i) + 1)
)

= π1j

(

π−1
1i (U(i) + 1)

)

= σ−1
j

(

σi(U(i) + 1)
)

= σ−1
j

(

σj(t)
)

= t ≥ U(j) + 1.
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This proves that ϕ(U) is an eligible ~π-tuple, and ϕ is a map from LEJ(~σ) to

LC(~π). Since LEJ(~σ) is generated by the set given in (1), we conclude

U =
k
⋃

i=1

{σi(1), . . . , σi(U(i))}.

This implies that U is determined by 〈U(1), . . . , U(k)〉 = ϕ(U), that is, ϕ is

injective. To prove that ϕ is surjective, let ~x = 〈x1, . . . , xk〉 be a ~π-eligible

tuple, that is, ~x ∈ LC(~π). Define

V =
k
⋃

i=1

{σi(1), . . . , σi(xi)}. (2)

(Note that if xi = 0, then {σi(1), . . . , σi(xi)} denotes the empty set.) For

the sake of contradiction, suppose ϕ(V ) 6= ~x. Then, by the definition of ϕ,

there exists an i ∈ {1, . . . , k} such that σi(xi + 1) ∈ V . Hence, there is a

j ∈ {1, . . . , k} such that σi(xi+1) ∈ {σj(1), . . . , σj(xj)}. That is, σi(xi+1) =

σj(t) for some t ∈ {1, . . . , xj}. Therefore,

πij(xi + 1) = π1j(πi1(xi + 1)) = π1j(π
−1
1i (xi + 1) = σ−1

j (σi(xi + 1))

= σ−1
j (σj(t)) = t ≤ xj ,

which contradicts the ~π-eligibility of ~x. Thus ϕ(V ) = ~x and ϕ is surjective.

We have shown that ϕ is bijective. For ~x ∈ LC(~π), ϕ
−1(~x) is the set V given

in (2). Thus ϕ and ϕ−1 are monotone, and ϕ is a lattice isomorphism. �

Two descriptions. The following theorem is a straightforward consequence

of Theorems 5.1 and 5.2 in P.H. Edelman and R.E. Jamison [14], which were

formulated and proved within Combinatorics.

Theorem 2. Up to isomorphism, join-distributive lattices of length n and

join-width at most k are characterized as lattices LEJ(~σ) with ~σ ∈ Sk−1
n .

The next theorem was motivated and proved by the second author [7] in a

purely lattice theoretical way.

Theorem 3. Up to isomorphism, join-distributive lattices of length n and

join-width at most k are characterized as the ~π-coordinatized lattices LC(~π)

with ~π ∈ Sk−1
n .

Remark 4. Since there is no restriction on (n, k) ∈ N × {2, 3, . . .} in Theo-

rems 2 and 3, one might have the feeling that, for a given n, the join-width of

a join-distributive lattice of length n can be arbitrarily large. This is not so

since, up to isomorphism, there are only finitely many join-distributive lattices

of length n.

The statement of Remark 4 follows from the fact that each join-distributive

lattice of length n is dually isomorphic to the lattice of closed sets of a convex

geometry on the set {1, . . . , n}, see P.H. Edelman [12, Theorem 3.3] together
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with the sixteenth line in the proof of Theorem 1.9 in K. Adaricheva, V.A. Gor-

bunov and V.I. Tumanov [3]; see also [7, Lemma 7.4], where this is surveyed.

The statement also follows, in a different way, from [7, Corollary 4.4].

Remark 5. Obviously, Proposition 1 and Theorem 2 imply Theorem 3 and,

similarly, Proposition 1 and Theorem 3 imply Theorem 2. Thus we obtain a

new, combinatorial proof of Theorem 3 and a new, lattice theoretical proof of

Theorem 2.

Comparison. We can compare Theorems 2 and 3, and the corresponding

original approaches, as follows.

In case of Theorem 2, the construction of the lattice LEJ(~σ) is very simple,

and a join-generating subset is also given.

In case of Theorem 3, the elements of the lattice LC(~π) are exactly given by

their coordinates, the eligible ~π-tuples. Moreover, the meet operation is easy,

and we have a satisfactory description of the optimal meet-generating subset

since it was proved in [7, Lemma 6.5] that

Mi(LC(~π)) =
{

〈π11(i)− 1, . . . , π1k(i)− 1〉 : i ∈ {1, . . . , n}
}

.

Characterization by trajectories. For a lattice L of finite length, the set
{

[a, b] : a ≺ b, a, b ∈ L
}

of prime intervals of L will be denoted by PrInt(L).

For [a, b], [c, d] ∈ PrInt(L), we say that [a, b] and [c, d] are consecutive if

{a, b, c, d} is a covering square, that is, a 4-element cover-preserving boolean

sublattice of L. The transitive reflexive closure of the consecutiveness rela-

tion on PrInt(L) is an equivalence, and the blocks of this equivalence relation

are called the trajectories of L; this concept was introduced for some par-

ticular semimodular lattices in G. Czédli and E.T. Schmidt [9]. For distinct

[a, b], [c, d] ∈ PrInt(L), these two prime intervals are comparable if either b ≤ c,

or d ≤ a. Before formulating the last statement of the paper, it is reasonable

to mention that, for any finite lattice L,

L is join-distributive iff it is semimodular and meet-semidistributive. (3)

This follows from K. Adaricheva, V.A. Gorbunov and V.I. Tumanov [3, The-

orems 1.7 and 1.9]; see also D. Armstrong [4, Theorem 2.7] for the present

formulation.

Corollary 6. For a semimodular lattice L, the following three conditions are

equivalent.

(i) L is join-distributive.

(ii) L is of finite length, and for every trajectory T of L and every maximal

chain C of L, |PrInt(C) ∩ T | = 1.

(iii) L is of finite length, and no two distinct comparable prime intervals of L

belong to the same trajectory.

As an interesting consequence, note that each of (ii) and (iii) above, together

with semimodularity, implies that L is finite.
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Proof of Corollary 6. Since any two comparable prime intervals belong to the

set of prime intervals of an appropriate maximal chain C, (ii) implies (iii). So

we have to prove that (i) ⇒ (iii) and that (iii) ⇒ (i); we give two alternative

arguments for each of these two implications. Let n = lengthL.

Assume (i). Then L is semimodular by (3), and it contains no cover-

preserving diamond by the definition of join-distributivity. Thus G. Czédli [7,

Lemma 3.3] implies (ii).

For a second argument, assume (i) again. Let Pow({1, . . . , n}) denote the

set of all subsets of {1, . . . , n}. It is known that L is isomorphic to an appropri-

ate join-subsemilattice F of the powerset
(

Pow({1, . . . , n});∪
)

such that ∅ ∈ F

and each X ∈ F \ {∅} contains an element a with the property X \ {a} ∈ F.

The structure 〈{1, . . . , n};F〉 is an antimatroid on the base set {1, . . . , n} (this

concept is due to R. E. Jamison-Waldner [16]), and the existence of an appro-

priate F follows from P.H. Edelman [12, Theorem 3.3] and D. Armstrong [4,

Lemma 2.5]; see also K. Adaricheva, V.A. Gorbunov and V.I. Tumanov [3,

Subsection 3.1] and G. Czédli [7, Section 7]. Now, we can assume that L = F.

We assert that, for any X,Y ∈ F,

X ≺ Y iff X ⊂ Y and |Y \X | = 1. (4)

The “if” part is obvious. For the sake of contradiction, suppose X ≺ Y and x

and y are distinct elements in Y \X . Pick a sequence Y = Y0 ⊃ Y1 ⊃ · · · ⊃

Yt = ∅ in F such that |Yi−1 \ Yi| = 1 for i ∈ {1, . . . , t}. Then there is a j such

that |Yj ∩ {x, y}| = 1. This gives the desired contradiction since X ∪ Yj ∈ F

but X ⊂ X ∪ Yj ⊂ Y .

Armed with (4), assume that {A = B ∧ C,B,C,D = B ∪ C} is a covering

square in F. Note that A and B ∩ C can be different; however, A ⊆ B ∩ C.

By (4), there exist u, x ∈ D such that B = D \ {u} and C = D \ {x}. These

elements are distinct since B 6= C. Hence x ∈ B and, by A ⊆ C, x /∈ A.

Using (4) again, we obtain A = B \ {x}. We have seen that whenever [A,B]

and [C,D] are consecutive prime intervals, then there is a common x such

that A = B \ {x} and C = D \ {x}. This implies that for each trajectory T

of F, there exists an xT ∈ {1, . . . , n} such that X = Y \ {xT } holds for all

[X,Y ] ∈ T . Clearly, this implies that (iii) holds for F, and also for L.

Next, assume (iii). Since any two prime intervals of a cover-preserving

diamond would belong to the same trajectory, L contains no such diamond.

Again, there are two ways to conclude (i).

First, by [7, Proposition 6.1], L is isomorphic to LC(~π) for some k and

~π ∈ Sk−1
n , and we obtain from Theorem 3 that (i) holds.

Second, H. Abels [1, Theorem 3.9(a⇒b)] implies that L is a cover-preserving

join-subsemilattice of a finite distributive lattice D. Thus if x ∈ L \ {1}, then

the interval [x, x∗]L of L is a cover-preserving join-subsemilattice of D. Let

a1, . . . , at be the covers of x in L, that is, the atoms of [x, x∗]L. If we had,

say, a1 ≤ a2 ∨ · · · ∨ at, then we would get a contradiction in D as follows:

a1 = a1 ∧ (a2 ∨ · · · ∨ at) = (a1 ∧ a2) ∨ · · · ∨ (a1 ∧ at) = x ∧ · · · ∧ x = x.
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Thus a1, . . . , at are independent atoms in [x, x∗]L. Therefore, it follows from

G. Grätzer [15, Theorem 380] and the semimodularity of [x, x∗]L that the

sublattice S generated by {a1, . . . , at} in L is the 2t-element boolean lattice. In

particular, lengthS = t = length
(

[x, x∗]L
)

since {x, x∗} ⊆ S ⊆ [x, x∗]L. Since

the embedding is cover-preserving, the length of the interval [x, x∗]D in D is

also t. Hence |Ji ([x, x∗]D)| = t by [15, Corollary 112], which clearly implies

|[x, x∗]D| ≤ 2t. Now from [x, x∗]L ⊆ [x, x∗]D and 2t = |S| ≤ |[x, x∗]L| ≤

|[x, x∗]D| ≤ 2t we conclude [x, x∗]L = [x, x∗]D. This implies that [x, x∗]L is

distributive. Thus (i) holds. �
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