Metadata, citation and similar papers at core.ac.uk

Provided by Nazarbayev University Repository

Notes on the description of join-distributive lattices by
permutations

KIRA ADARICHEVA AND GABOR CZEDLI

ABSTRACT. Let L be a join-distributive lattice with length n and width (JiL) < k.
There are two ways to describe L by k — 1 permutations acting on an n-element set:
a combinatorial way given by P. H. Edelman and R. E. Jamison in 1985 and a recent
lattice theoretical way of the second author. We prove that these two approaches are
equivalent. Also, we characterize join-distributive lattices by trajectories.

Introduction. For x # 1 in a finite lattice L, let * denote the join of up-
per covers of x. A finite lattice L is join-distributive if the interval [z, z*] is
distributive for all x € L\ {1}. For other definitions, see K. Adaricheva [2],
K. Adaricheva, V.A. Gorbunov and V.I. Tumanov [3], and N. Caspard and
B. Monjardet [6], see G. Czédli [T, Proposition 2.1 and Remark 2.2] for a re-
cent survey, and see (3)) before the proof of Corollary [fllater for a particularly
useful variant. The study of (the duals of) join-distributive lattices goes back
to R.P. Dilworth [I1], 1940. There were a lot of discoveries and rediscoveries
of these lattices and equivalent combinatorial structures; see [3], [7], B. Mon-
jardet [I7], and M. Stern [I§] for surveys. Note that join-distributivity implies
semimodularity; the origin of this result is the combination of M. Ward [19]
(see also R. P. Dilworth [I1], page 771], where [19] is cited) and S.P. Avann [5]
(see also P.H. Edelman [I3] Theorem 1.1(E,H)], when [0] is recalled).

The join-width of L, denoted by width (JiL), is the largest k such that
there is a k-element antichain of join-irreducible elements of L. As usual, S,
stands for the set of permutations acting on the set {1,...,n}. There are
two known ways to describe a join-distributive lattice with join-width £ and
length n by k — 1 permutations; our goal is to enlighten their connection. This
connection exemplifies that Lattice Theory can be applied in Combinatorics
and vice versa. We also give a new characterization of join-distributive lattices.
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Two constructions. For n € N = {1,2,...} and k € {2,3,...}, let & =
(09,...,0k) € Sﬁ_l. For convenience, o1 € 5,, will denote the identity per-
mutation. In the powerset join-semilattice (P({1,...,n});U), consider the
subsemilattice Lgj(d) generated by

{{oi(1),...,0(j)} s ie{1,... .k}, j€{0,....n}}. (1)
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FIGURE 1. An example of Lg;(&) and Lo(7)

Since it contains &, Lgj(d) is a lattice, the Edelman-Jamison lattice deter-
mined by &. Its definition above is a straightforward translation from the
combinatorial language of P. H. Edelman and R. E. Jamison [I4, Theorem 5.2]
to Lattice Theory. Actually, the original version in [I4] describes a decompo-
sition of convex geometries.

To present an example, let o9 = (; ; i Z11> and o3 = (411 ; :; ;1)

Then & = (02, 03) € S7, and Lg;(&) is depicted in Figure[ll In the label of an
element in Lgj;(d), only the part before the comma is relevant; to save space,
subsets are denoted by listing their elements without commas. For example,
134,111 in the figure stands for the subset {1, 3,4} of {1,2,3,4}. The chain
defined in (), apart from its top {1,2, 3,4} and bottom &, corresponds to the
black-filled small squares for ¢« = 1, the light grey-filled pentagons for i = 2,
and the dark grey-filled circles for ¢ = 3. Note that Lgj(&) consists of all
subsets of {1,2,3,4} but {2}.

Next, we recall a related construction from G. Czédli [7]. Given 7 =
(712, ..., T1k) € SK, we let m; = myj 0 wfil fori,j € {1,...,k}. Here we com-
pose permutations from right to left, that is, (m1; o 7;")(2) = m1,(7y;" (2)).
Note that ms; = id, m;; = 7;', and 7, 07;; = 71 hold for all i, j,t € {1,...,k}.
By an eligible -tuple we mean a k-tuple & = (x1,...,2;) € {0,1,...,n}* such
that m;;(z; +1) > x; + 1 holds for all 4,5 € {1,...,k} such that z; < n. Note
that an eligible 7-tuple belongs to {0, 1,...,n—1}*U{(n,...,n)} since x; = n
implies &; = n. The set of eligible 7-tuples is denoted by Lc (7). It is a poset
with respect to the componentwise order: ¥ < ¢ means that x; < y; for all
ie{l,...,k}. It is trivial to check that (n,...,n) € Lc(7) and that Lo(7) is
a meet-subsemilattice of the k-th direct power of the chain {0 <1 < --- < n}.
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Therefore, L¢(7) is a lattice, the -coordinatized lattice. Tts construction is mo-
tivated by G. Czédli and E. T. Schmidt [8, Theorem 1], see also M. Stern [18],
which asserts that there is a surjective cover-preserving join-homomorphism
©:{0 < --- < n}¥ = L, provided L is semimodular. Then, as it is easy to
verify, u — \/{z : p() = u} is a meet-embedding of L into {0 < --- < n}*.

To give an example, let m2 = (i ; i’ ;L), T3 = (;’ ; i ?), and
let # = (m12,m13) € S7. Then Figure [ also gives Lo(7); the eligible #-tuples
are given after the commas in the labels. For example, 23,020 in the figure
1 2 3 4
3 2 1 4
then Lo (7) 22 Le(ii). Furthermore, the problem of characterizing those pairs
of members of S,’j that determine the same lattice is not solved yet if k > 3.
For k = 2 the solution is given in G. Czédli and E.T. Schmidt [10]; besides
Lo (7) 2 Le(f) above, see also G. Czédli [7, Example 5.3] to see the difficulty.

The connection of join-distributivity to Lgs(7) and L¢(7) will be given
soon.

corresponds to (0,2,0). Note that if 1o = ( ) and 13 = 713,

The two constructions are equivalent. For (y2,...,7v;) € S¥1 we let
(s T =0 -

Proposition 1. For every & € S¥=1, Lg;(d) is isomorphic to Lo(571).

In some vague sense, Figure [l reveals why Lgj(d) could be of the form
L¢/(7) for some 7. Namely, for & € Lg;(6) and i € {1,...,k}, we can define
the i-th coordinate of = as the length of the intersection of the ideal {y €
Ly;(d) : y < z} and the chain given in ([Il). However, the proof is more
complex than this initial idea.

Proof. Denote 3! by @ = (m12,...,m1). Note that m; = 01_1 =id € S,,. For
Ue€ Lgy(d) and ¢ € {1,...,k}, let U(i) = max{j A{oi(1),...,00(5)} C U},
where max & is defined to be 0. We assert that the map

¢: Lry(d) = Lc(7), defined by U — (U(1),...,U(k)),

is a lattice isomorphism. To prove that ¢(U) is an eligible 7-tuple, assume
that 4,5 € {1,...,k} such that U(i) < n. Then o;(U(i) + 1) ¢ U yields
oi(U(i) +1) ¢ {o;(1),...,04(U(4))}. However, o;(U(i) +1) € {1,...,n} =
{o;(1),...,0;(n)}, and we conclude that o;(U(i) + 1) = o0;(t) holds for some
te{U(j)+1,...,n}. Hence

mij (U (i) + 1) = (m1j 0 min )(U (i) + 1) = myj (mia (U (3) + 1))
=, (7, (U@ + 1)) = 05 ' (04(U(i) + 1))

=07 (o;(t)) =t > U(j) + 1.
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This proves that ¢(U) is an eligible #-tuple, and ¢ is a map from Lgj(&) to
L (7). Since Lyj(d) is generated by the set given in (I), we conclude

U= U{Ui(l)v o oi(U(0)}

This implies that U is determined by (U(1),...,U(k)) = ¢(U), that is, ¢ is
injective. To prove that ¢ is surjective, let & = (z1,...,zx) be a T-eligible
tuple, that is, & € Lc(7). Define

k
V= U{Ji(l),...,ai(xi)}. (2)

(Note that if z; = 0, then {o;(1),...,0:(z;)} denotes the empty set.) For
the sake of contradiction, suppose ¢(V) # Z. Then, by the definition of ¢,
there exists an ¢ € {1,...,k} such that o;(x; + 1) € V. Hence, there is a
je{1,...,k} such that o;(z; +1) € {0;(1),...,0;(z;)}. Thatis, o;(x; +1) =
o;(t) for some t € {1,...,z;}. Therefore,

i (wi 4+ 1) = oy (o (s + 1)) = my(my; (s + 1) = 0 oz + 1))

J
= o7 os (1) = t < a,

which contradicts the 7-eligibility of Z. Thus ¢(V) = & and ¢ is surjective.
We have shown that ¢ is bijective. For Z € Lc(7), ¢~ (Z) is the set V given
in [@). Thus ¢ and ¢! are monotone, and ¢ is a lattice isomorphism. O

Two descriptions. The following theorem is a straightforward consequence
of Theorems 5.1 and 5.2 in P. H. Edelman and R. E. Jamison [14], which were
formulated and proved within Combinatorics.

Theorem 2. Up to isomorphism, join-distributive lattices of length n and
join-width at most k are characterized as lattices Lrj(G) with & € SF~1.

The next theorem was motivated and proved by the second author [7] in a
purely lattice theoretical way.

Theorem 3. Up to isomorphism, join-distributive lattices of length n and
join-width at most k are characterized as the 7-coordinatized lattices L¢(T)
with 7 € Sk=1.

Remark 4. Since there is no restriction on (n,k) € N x {2,3,...} in Theo-
rems 2l and B one might have the feeling that, for a given n, the join-width of
a join-distributive lattice of length n can be arbitrarily large. This is not so
since, up to isomorphism, there are only finitely many join-distributive lattices
of length n.

The statement of Remark [ follows from the fact that each join-distributive
lattice of length n is dually isomorphic to the lattice of closed sets of a convex
geometry on the set {1,...,n}, see P.H. Edelman [12, Theorem 3.3] together
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with the sixteenth line in the proof of Theorem 1.9 in K. Adaricheva, V.A. Gor-
bunov and V.I. Tumanov [3]; see also [7, Lemma 7.4], where this is surveyed.
The statement also follows, in a different way, from [7, Corollary 4.4].

Remark 5. Obviously, Proposition [[] and Theorem 2l imply Theorem [B] and,
similarly, Proposition [[] and Theorem [ imply Theorem 2l Thus we obtain a
new, combinatorial proof of Theorem [Bl and a new, lattice theoretical proof of
Theorem

Comparison. We can compare Theorems 2] and Bl and the corresponding
original approaches, as follows.

In case of Theorem 2] the construction of the lattice Lgy(d) is very simple,
and a join-generating subset is also given.

In case of Theorem[3] the elements of the lattice Lo (7) are exactly given by
their coordinates, the eligible 7-tuples. Moreover, the meet operation is easy,
and we have a satisfactory description of the optimal meet-generating subset
since it was proved in [7, Lemma 6.5] that

Mi(Lo(7)) = {{m1(i) = 1,...,mx(i) = 1) :i € {1,...,n}}.

Characterization by trajectories. For a lattice L of finite length, the set
{la,b] : a < b, a,b € L} of prime intervals of L will be denoted by PrInt(L).
For [a,b],[c,d] € PrInt(L), we say that [a,b] and [c,d] are consecutive if
{a,b,c,d} is a covering square, that is, a 4-element cover-preserving boolean
sublattice of L. The transitive reflexive closure of the consecutiveness rela-
tion on PrInt(L) is an equivalence, and the blocks of this equivalence relation
are called the trajectories of L; this concept was introduced for some par-
ticular semimodular lattices in G. Czédli and E. T. Schmidt [9]. For distinct
[a,b], [c,d] € PrInt(L), these two prime intervals are comparable if either b < ¢,
or d < a. Before formulating the last statement of the paper, it is reasonable
to mention that, for any finite lattice L,

L is join-distributive iff it is semimodular and meet-semidistributive. (3)

This follows from K. Adaricheva, V.A. Gorbunov and V.I. Tumanov [3] The-
orems 1.7 and 1.9]; see also D. Armstrong [4, Theorem 2.7] for the present
formulation.

Corollary 6. For a semimodular lattice L, the following three conditions are
equivalent.
(i) L is join-distributive.
(ii) L is of finite length, and for every trajectory T of L and every mazimal
chain C of L, |PrInt(C)NT| = 1.
(i) L is of finite length, and no two distinct comparable prime intervals of L
belong to the same trajectory.

As an interesting consequence, note that each of () and (i) above, together
with semimodularity, implies that L is finite.
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Proof of Corollary[@ Since any two comparable prime intervals belong to the
set of prime intervals of an appropriate maximal chain C, (@) implies (). So
we have to prove that ([l) = () and that () = (); we give two alternative
arguments for each of these two implications. Let n = length L.

Assume (). Then L is semimodular by (@), and it contains no cover-
preserving diamond by the definition of join-distributivity. Thus G. Czédli [T}
Lemma 3.3] implies ().

For a second argument, assume (i) again. Let Pow({1,...,n}) denote the
set of all subsets of {1,...,n}. It is known that L is isomorphic to an appropri-
ate join-subsemilattice § of the powerset (Pow({l, cey ) U) such that @ € §
and each X € §\ {@} contains an element a with the property X \ {a} € §.
The structure ({1,...,n};F) is an antimatroid on the base set {1,...,n} (this
concept is due to R. E. Jamison-Waldner [16]), and the existence of an appro-
priate § follows from P.H. Edelman [12] Theorem 3.3] and D. Armstrong [4]
Lemma 2.5]; see also K. Adaricheva, V.A. Gorbunov and V.I. Tumanov [3|
Subsection 3.1] and G. Czédli [7, Section 7]. Now, we can assume that L = §.
We assert that, for any XY € §,

X<Y iff XCYand|Y\X|=1. (4)

The “if” part is obvious. For the sake of contradiction, suppose X <Y and z
and y are distinct elements in Y\ X. Pick a sequence Y =Y, DY, D--- D
Y: = @ in § such that |Y;_; \Y;| =1 fori € {1,...,t}. Then there is a j such
that |Y; N {z,y}| = 1. This gives the desired contradiction since X UY; € §
but X C XUY; CY.

Armed with (@), assume that {A = BAC,B,C,D = BUC(C'Y} is a covering
square in §. Note that A and B N C can be different; however, A C BN C.
By @), there exist u,z € D such that B = D\ {u} and C'= D\ {z}. These
elements are distinct since B # C. Hence x € B and, by A C C, = ¢ A.
Using (@) again, we obtain A = B\ {z}. We have seen that whenever [A, B]
and [C, D] are consecutive prime intervals, then there is a common z such
that A = B\ {z} and C' = D\ {z}. This implies that for each trajectory T'
of §, there exists an zp € {1,...,n} such that X = Y \ {xr} holds for all
[X.Y] € T. Clearly, this implies that (i) holds for §, and also for L.

Next, assume ({l). Since any two prime intervals of a cover-preserving
diamond would belong to the same trajectory, L contains no such diamond.
Again, there are two ways to conclude ().

First, by [7, Proposition 6.1}, L is isomorphic to L¢(®) for some k and
7 € S¥~1 and we obtain from Theorem [ that ({l) holds.

Second, H. Abels [T, Theorem 3.9(a=-b)] implies that L is a cover-preserving
join-subsemilattice of a finite distributive lattice D. Thus if z € L\ {1}, then
the interval [z, 2], of L is a cover-preserving join-subsemilattice of D. Let
ai,...,a; be the covers of  in L, that is, the atoms of [z,2*|. If we had,
say, a1 < as V ---V at, then we would get a contradiction in D as follows:
ap =ayA(agV---Va) = (g Nag)V---V(ag Aat) =x AN~ ANz = x.
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Thus ay,...,a; are independent atoms in [x,2*];. Therefore, it follows from
G. Grétzer [15, Theorem 380] and the semimodularity of [z,2z*]r that the
sublattice S generated by {a1,...,a;} in L is the 2f-element boolean lattice. In

particular, length S =t = length ([, 2*]) since {z,2*} C S C [z, 2*],. Since
the embedding is cover-preserving, the length of the interval [z,z*]p in D is
also t. Hence |Ji([z,2*]p)| = t by [I5, Corollary 112], which clearly implies

|[z,z*]p| < 2. Now from [z,2*], C [z,2*]p and 2 = |S| < |[z,2*].] <
|[z,z*]p| < 2! we conclude [x,2*];, = [z,2*]p. This implies that [z, z*]; is
distributive. Thus (i) holds. O
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