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Abstract Alzheimer's disease is a chronic neurodegenera-
tive disorder characterized by neuronal loss, cerebrovascu-
lar inflammation, and accumulation of senile plaques in the
brain parenchyma and cerebral blood vessels. Amyloid-β
peptide (Aβ), a major component of senile plaques, has
been shown to exert multiple toxic effects to neurons,
astrocytes, glial cells, and brain endothelium. Oligomeric
Aβ can disturb the structure and function of cell mem-
branes and alter membrane mechanical properties, such as
membrane fluidity and molecular order. Much of these
effects are attributed to their capability to trigger oxidative
stress and inflammation. In this review, we discuss the
effects of Aβ on neuronal cells, astrocytes, and cerebral
endothelial cells with special emphasis on cell membrane
properties and cell functions.
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Introduction

Alzheimer's disease (AD) is a progressive neurodegenera-
tive disorder, which affects higher cognitive functions,

memory, and learning. In AD brains, there is an increased
deposition of amyloid plaques together with the increased
number of activated microglial cells in the parenchyma and
monocytes in the vessel wall [1–6]. Amyloid-β peptide
(Aβ) derived from the amyloidogenic pathway of amyloid
precursor protein (APP) processing [7] is the primary
component of amyloid plaques [8]. Aβ monomers aggre-
gate into oligomers, fibrils, and plaques, which have
different impacts on cellular functions [9–13]. In fact, it
has been reported that oligomeric Aβ is more toxic than
fibrillar and monomeric Aβ [11]. Deposition of Aβ in AD
brains and cerebral vessels results in neurovascular dys-
function and chronic neurodegeneration [14]. In addition,
oligomeric Aβ can induce oxidative stress, apoptosis,
abnormal calcium homeostasis, and long-term potentiation
and can self-assemble into large, voltage-independent, and
nonselective ion channels at cell membranes. Aβ can also
perturb the molecular packing of cell membranes, resulting
in subsequent alterations of biophysical properties of
membranes, such as membrane microviscosity, membrane
molecular order, membrane potential, and permeability.
Altered membrane properties, in turn, may disrupt mem-
brane functions, activities of membrane-related proteins,
and many cellular pathways. Understanding the mecha-
nisms leading to changes of membranes mechanics and
biophysics and how they result in changes in cell functions
should prove to provide insights into new therapeutic
strategies for prevention and treatment of AD.

Aβ–Membrane Interactions in Neurons

The accumulation of Aβ to form senile plaques is one of
the hallmarks of AD. Interactions between Aβ peptides and
neuronal membranes play a vital role in the neurotoxicity
associated with AD [15–23]. By virtue of its structure, Aβ
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is capable of binding to a variety of biomolecules including
lipids and proteins, which, in turn, perturbs the organization
and functions of membranes, such as membrane fluidity
and the formation of ion channel and neurotoxicity [24, 25].
There are two types of Aβ–membrane interactions: Aβ
peptide can either be firmly anchored in a membrane upon
proteolytic cleavage, thereby being prevented against release
and aggregation, or it can have adverse effects when bound to
membrane surfaces by undergoing accelerated aggregation
and causing neuronal apoptotic cell death [21]. On the other
hand, membrane charge and membrane fluidity can influence
the conformational structure of Aβ, Aβ binding, and
permeabilization [26]. For example, when Aβ is exposed
to small amounts of sodium dodecyl sulfate (SDS), which
mimic the negatively charged membrane environment, it is
converted to β-sheet [23].

Aβ binding to plasma membranes can cause the distur-
bance of the structure and function of membranes.Williamson
et al. [22] showed that exogenously applied Aβ was
redistributed on membrane and accumulated in lipid rafts
where the protein composition was altered. After Aβ
treatment, neuronal membranes are depolarized [27] and
exhibit changes in varicosities along neurites and enhance
membrane permeability to propidium iodide [28]. In addi-
tion, using mass spectrometric assay of lipid damage, Murray
et al. [29] showed that oxidative lipid damage caused by Aβ
was accelerated in the presences of ascorbate and copper ion.

In addition to plasma membrane damage, Aβ can cause
intracellular membrane damage. For example, disturbances
of endosomal/lysosomal system are implicated in the
process of neurodegeneration [30]. Aβ in the culture
medium can be taken up by neurons and accumulate inside
the endosomal/lysosomal system. Exposing cultured neu-
rons to soluble Aβ can trigger free radical generation
within lysosomes and disruption of lysosomal membrane
proton gradient and lead to the loss of lysosomal membrane
impermeability preceding to cell death [16].

Cholesterol Modulates Aβ–Membrane Interactions

Cholesterol plays an important role in the pathogenesis of
AD [31–36]. It has been shown that cholesterol can
modulate the interactions between Aβ and membrane
[37] and that membrane insertion ability of Aβ is critically
controlled by the ratio of cholesterol to phospholipids. In
membranes with low concentrations of cholesterol, Aβ
prefers to stay within the membrane surface region and is
mainly in the β-sheet structure. In contrast, as the ratio of
cholesterol to phospholipids rises, Aβ can insert sponta-
neously into the lipid bilayer due to its hydrophobic
C-terminus [38].

In addition, membrane cholesterol can modulate the
cleavage of amyloid precursor protein (APP) and alter the

production of Aβ [33, 36, 39]. In fact, it has been reported
that membrane cholesterol depletion decreases the content
of APP in cholesterol and sphingolipid-enriched membrane
microdomains and subsequently inhibits the amyloidogenic
pathway to produce Aβ. Moreover, depletion of cellular
cholesterol levels reduces the ability of Aβ to act as a seed
for further fibril formation [34, 35]. There is evidence that
plasma membrane cholesterol controls the toxicity of Aβ
[40] and protects cells from apoptosis induced by soluble
oligomers but not fibrils of Aβ [41]. There are some
contradictory results from different studies [42–44], possi-
bly due to using different models and experimental
conditions. Consequently, more systematic studies are
needed to address the discrepancy.

Aβ Induces Membrane Damage and Dysregulation
of Calcium Concentration

Dysregulation of ion homeostasis has been implicated in
the pathogenesis of AD. Dysregulated inositol triphosphate
(IP3) signaling in cortical neurons of knock-in mice
expressing an Alzheimer's-linked mutation in presenilin1
results in exaggerated Ca2+ signals and altered membrane
excitability [45]. Protein kinase C inhibits the transplasma
membrane influx of Ca2+ triggered by 4-aminopyridine in
Jurkat T lymphocytes [46]. Apolipoprotein E epsilon 4
allele (apoE4) has a clear association with AD. ApoE4
molecules can rapidly suppress the activities of delayed
rectifier potassium (IK) channels in hippocampal neurons
when they are applied on the inner side of the neuronal
membrane [47]. Overproduction of apoE4 in neurons may
suppress normal IK channel activities and thus be respon-
sible for the neuronal damages related to the pathogenesis
of AD.

Aβ has been shown to form Ca2+ channels in lipid
vesicles and alter the concentration of intracellular Ca2+ in
neuronal cells and astrocytes [48–55]. Aβ decreases plasma
membrane Ca2+-ATPase (PMCA) activity purified from
normal brain, which plays a crucial role in controlling
cytosolic Ca2+ [56]. Aβ also invoked the release of calcium
from the endoplasmic reticulum (ER) and subsequently
triggered apoptotic pathway [11, 57, 58]. In turn, calcium
signaling increased the aggregation of early protofibrillar
structures and markedly increased conversion of protofibrils
to mature amyloid fibrils, which play a role in the
pathogenesis of AD [59].

Phospholiases A2 and Cell Membrane Properties in AD

Aβ deposits are associated with the activation of phospho-
lipase A2 (PLA2s) [60–62]. These enzymes are ubiquitous
in mammalian cells for catalyzing the cleavage of fatty
acids from sn-2 position of phospholipids. PLA2s are
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classified into three major families: calcium-dependent
cytosolic PLA2 (cPLA2), secretory PLA2 (sPLA2), and
calcium-independent PLA2 (iPLA2). These enzymes are
responsible for maintenance of phospholipid homeostasis in
cell membranes. They are also important in the production
of lipid mediators, such as arachidonic acid (AA), a
precursor for synthesis of eicosanoids [63, 64]. Activation
of PLA2s occurs in a number of pathologic conditions
including AD [63–72].

It has been reported that immunoreactivity of cPLA2

(group IVA) increased in reactive astrocytes in severe AD
patient brains [60, 61]. In addition, increases in immuno-
reactivity of sPLA2-IIA in astrocytes were found in
postmortem inferior temporal gyrus and hippocampal
dentate gyrus and CA3 field of AD brains [62]. Up-
regulation of sPLA2-IIA mRNA was reported in the
hippocampus (confined mainly to dentate gyrus and CA3
field) of AD patients [62]. cPLA2 mRNA was also up-
regulated in the hippocampal CA1 field of AD patients
[73]. Furthermore, Aβ has been shown to activate cPLA2 in
primary rat or mouse cortical neurons and in PC12 cells
[74–77].

PLA2 plays key roles in modulation of membrane
properties under pathologic and physiologic conditions.
For instance, the treatment of immortalized astrocytes
(DITNC) with Aβ promotes the reactive oxygen species
(ROS) production from nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase and activation of cPLA2,
which, in turn, increased membrane molecular order [78].
Membrane microdomains, which are enriched in cholester-
ol, sphingolipids, and saturated phospholipids, are highly
ordered and tightly packed [79, 80]. There is less water
content in these membrane microdomains. The emission
spectrum of LAURDAN, an environment sensitive probe,
is sensitive to membrane phase properties (e.g., molecular
order). The generalized polarization (GP) of LAURDAN
has been defined to characterize the change of the emission
spectrum due to changes in membrane phase properties
[81–86]. Methylarachidonyl fluorophosphonate, the inhib-
itor of cPLA2 and iPLA2, suppressed the increase in
membrane order, but bromoenol lactone (BEL), the specific
inhibitor of iPLA2, did not. These results suggest that
cPLA2 but not iPLA2 mediated the Aβ-induced membrane
molecular order increase [78]. In primary rat cortical
astrocytes, ROS induced by menadione, a redox active
agent, also alters astrocyte membrane molecular order
through activation of cPLA2 [87].

Membrane fluidity is another important parameter for
characterizing the physiologic state of the cells. In AD
brains, there is evidence for reduced membrane fluidity
together with the decreased PLA2 activity [88–90]. Other
studies also show that inhibition of PLA2 reduces mem-
brane fluidity [91, 92]. Injection of PLA2 inhibitor into the

CA1 area of rat hippocampus resulted in reduced mem-
brane fluidity as compared with control [91, 92]. In
addition, inhibition of PLA2 activity also impaired the
formation of short- and long-term memory [91, 92]. This
finding is interesting and may have important implications
in potential therapy for AD.

Mitochondrial Dysfunction in AD

Several lines of evidence suggest that mitochondrial
dysfunction plays an important role in AD pathogenesis.
Studies of postmortem brains indicated that neurons from
AD brains were deficient in pyruvate dehydrogenase and
cytochrome oxidase activity [93]. Mitochondrial encoded
gene expressions were aberrant in AD postmortem brains
and transgenic mice overexpressing human mutant APP
[94, 95]. Several other studies showed decreased ATP
production and increased production of free radicals, lipid
peroxidation, oxidative DNAs, and protein damages in AD
brains [96–99]. Several groups found that Aβ can accumu-
late in mitochondrial membrane and subsequently induce
mitochondrial dysfunction and ROS production [100–103].
The result from rat mitochondria showed that Aβ is
transported into mitochondria via the translocase of the
outer membrane (TOM) machinery, and after the import,
Aβ is associated with the inner membrane fraction [102].
Aβ progressively accumulates in mitochondria and is
associated with the decreased enzymatic activity of respi-
ratory chain complexes (III and IV) and the reduction in the
rate of oxygen consumption and increased ROS production
[100, 103]. Importantly, mitochondria-associated Aβ was
detected as early as 4 months, before extensive extracellular
Aβ deposits in APP transgenic mice [100]. These studies
delineate a new means, through which Aβ potentially
impairs neuronal energetics, contributing to cellular dys-
function in AD [100, 103]. Although the mechanism is still
not fully understood, Aβ-induced mitochondrial dysfunc-
tion is also associated with abnormal mitochondrial
dynamics [104].

Aβ-induced activation of PLA2 may play a role in
mitochondrial dysfunction. In fact, our studies demonstrat-
ed that the Aβ-induced activation of PLA2 led to loss of
mitochondrial membrane potential (ΔΨm) and mitochon-
drial ROS production in primary rat cortical astrocytes
[105]. In this study, oligomeric Aβ was shown to activate
cPLA2 through the NADPH oxidase and mitogen-activated
protein kinase pathway as well as methylarachidonyl
fluorophosphonate, inhibitor of both cPLA2 and iPLA2,
completely suppressed loss of Aβ-induced ΔΨm, indicating
that activation of PLA2 is required for the ΔΨm loss in
astroctyes [105]. On the other hand, BEL, a specific
inhibitor of iPLA2, can only suppress Aβ-induced ΔΨm

loss during the first 12 to 15 minutes, suggesting that iPLA2

140 Mol Neurobiol (2010) 41:138–148



is involved in the initial ΔΨm loss [105]. Since BEL is
specific for iPLA2 inhibition, these results suggest that a lag
time of about 12 to 15 minutes was required for cPLA2 to
induce ΔΨm loss. Consistently, confocal fluorescence
microscopy analysis demonstrated increase in colocaliza-
tion between p-cPLA2 and mitochondria 20 minutes after
Aβ treatment [105]. Taken together, these data suggest a
mechanism for Aβ-induced initial ROS production through
NADPH oxidase, which leads to activation of PLA2, and
activated cPLA2 and iPLA2 in turn target mitochondria and
subsequently cause the ΔΨm loss and mitochondrial ROS
production.

Since PLA2 is responsible for hydrolysis of membrane
phospholipids and for the release of free fatty acids and
lysophospholipids, enhanced PLA2 activity may have a
number of physiologic consequences. Free fatty acids are
classical uncouplers of mitochondrial respiratory chain [106,
107], and lysophospholipids possess detergent properties. AA
release by PLA2 has been shown to trigger a Ca2+-dependent
apoptotic pathway by opening mitochondrial permeability
transition pores (mPTP) [108]. However, the mechanisms
linking Aβ, PLA2, and mitochondrial dysfunctional are still
poorly understood and require additional studies.

Membrane Biophysics and APP Processing

Aβ is derived from cleavage of amyloid precursor protein
(APP) by β- and γ-secretases [7]. Alternatively, APP can
be cleaved by α-secretase and produce neurotrophic and
neuroprotective soluble APP (sAPPα) in a nonamyloido-
genic pathway [109]. Since APP and α-, β-, and γ-
secretases are membrane proteins, APP processing can be
affected by the local membrane environment. The cleavage
of APP by β-secretase (BACE), the primary step to
produce Aβ [110, 111], occurs mainly in lipid rafts, which
are highly ordered membrane microdomains enriched with
cholesterol, sphingolipids, and saturated phospholipids
[112–117]. On the other hand, the activity of α-secretases
is favorable in nonraft domains [31]. Therefore, APP
processing can be altered by manipulating membrane lipid
composition, such as removal of cholesterol and sphingo-
lipids [36, 118–120]. Since PLA2 can alter membrane
properties, it is reasonable that these enzymes can also
affect APP processing and increase sAPPα production
[121]. In our recent study, we demonstrated the capability
of sPLA2-III and AA to increase sAPPα secretion and alter
membrane fluidity in neuronal cells [122]. In another study,
sPLA2-III was shown to increase membrane fluidity in
hippocampal neurons in vivo [123]. Besides AA, docosa-
hexenoic acid (DHA) can also increase membrane fluidity
and sAPPα secretion in human embryonic kidney 293 cells
(HEK) cells and in neuronal SH-SY5Y overexpressing APP
cells [124]. Other studies demonstrated effects of benzyl

alcohol (C6H5OH) to increase membrane fluidity and
sAPPα secretion, whereas Pluronic F68 (PF68) decreased
membrane fluidity and sAPPα secretion [125]. In turn, Aβ
itself accelerates the amyloidogenic processing of APP by
reducing membrane fluidity [125]. These results suggest
that compounds capable of altering membrane fluidity can
modulate sAPPα production. Study by Kojro et al. [36]
showed that treatment with methyl-β-cyclodextrin (MβCD)
to reduce cellular cholesterol increased membrane fluidity,
APP accumulation at the cell surface, and sAPPα secretion.
Our study also showed that sPLA2-III and AA treatment
increased the accumulation of APP at cell surface [122].
These results are consistent with the notion that Aβ
production mainly occurs in endosomes [120, 126–130].

Taken together, increase in membrane fluidity seems to
result in APP accumulation at the cell surface and increase in
sAPPα secretion. Since sAPPα is neuroprotective and
neurotrophic, and α-secretase cleavage of APP may compete
with the BACE cleavage, enhancing the nonamyloidogenic
pathway should prove to be a potential pharmacologic
approach for the treatment of AD.

Effects of Aβ on Cerebral Endothelium

Cerebral endothelial cell (CECs) layer is a major component
of the blood–brain barrier (BBB). CECs layer is consisted of
high-density cells connected by tight junctions. CECs have a
little number of endothelial pores, are rich in mitochondria,
and have a very low content of the pinocytotic vesicles. The
biomechanical properties of the CECs are critical to
regulations of many cellular functions, such as adhesion,
signaling, and morphology and play a vital role in the
maintenance of the BBB permeability and brain parenchyma
homeostasis.

In agreement with impairments of CECs structure and
functions in AD, many studies have indicated the decrease in
cerebral blood flow, reduced microvascular density, and low
immunoreactivity of endothelial markers CD34 and CD31 in
AD brains [131–136]. Light and electron microscopy
studies have demonstrated decreased mitochondrial and
increased pinocytotic vesicles content, swelling, and de-
generation of endothelial cells in AD brain [137, 138]. In
vitro studies have also shown the ability for Aβ to induce
significant dysfunctions in the CECs. Specifically, physio-
logic concentrations of soluble Aβ (10−9–10−6M) induced
dose-dependent reduction of NO production, altered cellu-
lar calcium level by forming calcium-permeable channels in
the membranes, initiated albumin transfer across EC
monolayer, and impaired EC glucose uptake [139–142].
Higher concentrations of Aβ have been demonstrated to
induce mitochondria dysfunction, nuclear chromatin con-
densation, DNA fragmentation, and significant CECs death
[140, 141, 143].
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There is increasing evidence that oxidative stress is a
major mechanism leading to a cerebrovascular dysfunction
in AD. Several studies of transgenic mice overexpressing
APP have demonstrated oxidative damage of CECs, up-
regulation of superoxide dismutase (SOD) around brain
microvessels, and significant impairment of the cerebro-
vascular functions [144–146]. In vitro, the treatment of
CECs with Aβ increased free radical production, and this
effect was attenuated by free radical scavengers [144]. Aβ-
induced oxidative stress in CECs, in turn, initiated a
cascade of redox reactions leading to apoptosis and neuro-
vascular inflammation [141, 143, 147–150]. ROS also
cause CECs membrane depolarization, dysfunction of
membrane binding proteins, and alteration of membrane
structure and functions [151–154].

In AD brains, the increased deposition of Aβ in the
cerebral vasculature has been found to correlate with the
accumulation of monocytes in the vessel walls and
activated microglia cells in the adjacent parenchyma
[155–157]. There is evidence that peripheral monocytes
can migrate across the BBB and differentiate into microglia
[158]. In vitro studies have demonstrated that Aβ deposi-
tion at the endothelial cell layer enhances the transmigration
of monocytes [159–162]. Since primary capture of the
monocytes to endothelium and rolling are mediated by
tethering on selectin–ligand interactions [163–165], me-
chanical properties of the membranes and membrane–
cytoskeleton connectivity as well as the expression of
adhesion molecules are critical for transmigration [166–
171]. To study the direct effects of oligomeric Aβ on
mechanical properties of CECs, atomic force microscopy
(AFM) and quantitative fluorescent microscopy (QIM)
were applied (Askarova et al., unpublished data). QIM
studies have demonstrated that Aβ promoted expression of
adhesion molecules (P-selectin) and increased actin poly-
merization. Consistent with QIM results, AFM data
demonstrated that oligomeric Aβ increased cell stiffness
and the probability of adhesion, but decreased the apparent
rupture force of selectin–ligand bonding, probably due to
dissociation of connectivity between the cytoskeleton and
the bilayer membrane (Askarova et al., unpublished data).

The tight junctions of high electrical resistance and close
cell–cell contacts are also critical biomechanical factors
maintaining brain homeostasis and impermeability of BBB
for the blood cells. Tight junction is a complex of
transmembrane proteins (occluding, claudins, junctional
molecule-1) and submembrane molecules connected to
actin network. In vitro studies have demonstrated that
exposure of CECs to Aβ altered expression of occluding
and claudin-1, disrupted plasma membrane subunits of
claudin-5, and led to relocation of the submembrane protein
ZO-2 to the cytoplasm [172]. Several studies have shown
that oligomeric Aβ also altered actin polymerization within

neurons and CECs [173, 174]. These findings suggest that
the effects of Aβ on actin and tight junction protein
complexes may cause the alteration of endothelial layer
integrity and contribute to the enhanced transmigration of
monocytes across the BBB.

Consequently, chronic neurovascular dysfunctions and
degeneration of endothelium are observed in all stages of
AD and may even precede neuron degeneration in AD
brains [175, 176]. In vivo and In vitro studies have
demonstrated that vascular deposition of Aβ induces
oxidative stress in cerebral vasculature, triggers inflamma-
tory processes and apoptosis, promotes expression of
adhesion molecules, affects tight junctions, and changes
mechanical properties of the CECs membranes in a manner
favoring transmigration of immune cells across BBB.
Continuous degeneration of CECs is likely to impair BBB
permeability, leading to leakage of blood plasma compo-
nents and neurotoxic substances into the brain parenchyma.
Breakdown of BBB functions drives the disease develop-
ment toward exacerbation of oxidative and inflammatory
conditions characteristic of the AD brain and contributes to
further progression of the disease. Understanding the early
molecular and biophysical mechanisms of the CECs
alteration may offer new approaches to diagnosis and
treatment of AD.

Conclusion

Increased deposition and accumulation of Aβ in the brain
parenchyma and cerebral blood vessels and Aβ-altered cell
membranes are the major physiologic events in AD. Here,
we have reviewed the effects of Aβ on neuronal cells,
astrocytes, and CECs with the focus on cell membrane
properties. Strong evidence has shown that Aβ–membrane
binding causes the disturbance of the biochemical, bio-
physical, and functional parameters of the plasma, intracel-
lular, and mitochondria membranes. An alteration of
membrane properties and changes of membrane-related
protein activity in neurons and astrocytes can disrupt
calcium metabolism and, by leading to mitochondria
dysfunctions, can trigger downstream cellular pathways
causing oxidative stress and neurodegeneration. In the brain
endothelium, Aβ interaction with endothelium increases
ROS generation and apoptosis in the CECs induces
inflammation and recruitment of immune cells from a
bloodstream, enhances cell stiffness, and weakens adhesion
between membranes and cytoskeleton.

On the other hand, membrane physical and chemical
properties may influence APP processing, Aβ binding, and
permeabilization to membrane. Therefore, understanding
different molecular mechanisms underlying Aβ–membrane
interactions should provide new insights into the develop-
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ment of preventive and treatment strategies for cerebrovas-
cular and neurodegenerative disorders.
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