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In this work we report variational calculations of the two lowest vibrational states of the HD molecule within
the framework that does not assume the Born-Oppenheimer (BO) approximation. The nonrelativistic energies
of the states were corrected for the relativistic effects of the order of & (where a= %), calculated as expectation
values of the operators representing these effects with the nonrelativistic non-BO wave functions. The non-BO
wave functions were expanded in terms of the one-center explicitly correlated Gaussian functions multiplied by
even powers of the internuclear distance. The v=0—1 transition energy obtained in the calculations is com-
pared with the previous calculations, as well as with the transition frequency obtained from the experimental
spectra. The comparison shows the need to include corrections higher than second order in a to further
improve the agreement between the theory and the experiment.
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I. INTRODUCTION

The quantum electrodynamics (QED) provides a general
theoretical framework for calculating energies of stationary
bound states of atoms and molecules with a very high accu-
racy [1,2]. Within this framework an effective approach was
developed to account for the relativistic effects in light mo-
lecular systems based on the perturbation theory. The zeroth-
order level in this approach is the nonrelativistic Schrodinger
equation, and the perturbation Hamiltonian representing the
relativistic effects is obtained based on the so-called nonrel-
ativistic QED (NRQED) theory. A description of the
NRQED theory and of the way the effective operators repre-
senting the relativistic effects are derived can be found in [2],
as well as other sources. One should mention that the pertur-
bation approach to account for the relativistic corrections can
also be independently developed without using NRQED as it
was shown by Bethe and Salpeter [3].

In the NRQED theory the corrections are quantities pro-
portional to different powers of the fine-structure parameter
a (where a:f). In addition to the NRQED corrections one
can also calculate corrections due to the structure of the
nucleus and its polarizability. In the literature, the corrections
proportional to o are referred to as the leading relativistic
corrections. The corrections proportional to higher powers of
a are either pure QED corrections or higher-order relativistic
corrections. In this work we calculated only the o relativis-
tic corrections that include corrections due to the mass-
velocity (MV), Darwin (D), spin-spin (SS), and orbit-orbit
(OO0) interactions. The algorithms for calculating these cor-
rections within the non-Born-Oppenheimer (BO) framework
were presented recently [4,5].

Achieving high accuracy in calculations for diatomic mo-
lecular systems is more demanding than for atoms. This re-
sults from the fact that in the non-BO molecular calculations
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one needs to very accurately describe not only the electronic
correlation effects but also the correlation effects due to the
coupled motions of the electrons and the nuclei, as well as
the nucleus-nucleus correlation effects. The latter effects are
larger than the electron-electron correlation effects because
the nuclei are much heavier and the probability of finding
them near each other is much smaller than for electrons. To
accurately describe the strong nuclear-nuclear correlation in
a non-BO molecular calculation, one needs to use basis func-
tions that effectively separate the nuclei. In our diatomic cal-
culations this is accomplished by using explicitly correlated
Gaussians multiplied by powers of the internuclear distance.
We have shown in several works [6—8] that this basis set
very effectively describes the correlation effects in systems
consisting of particles with different masses interacting with
Coulombic forces. The works also include our earlier
non-BO calculations of the ground rovibrational states of the
HD molecule performed with 512 explicitly correlated
Gaussian functions [9]. The HD calculations shown in the
present work are significantly more accurate than those pre-
sented in that earlier work.

There is a long history of using explicitly correlated
Gaussians in electronic molecular calculations that goes back
to the pioneering works of Boys [10] and Longstaff and
Singer [11]. Later these functions were applied by several
groups including Adamowicz and Sadlej [12] and Ry-
chlewski and co-workers [13,14] in calculations of the cor-
relation energy in small atomic and molecular system. A fea-
ture which makes the correlated Gaussians suitable for
quantum-mechanical molecular calculations is the relative
simplicity of the algorithms for calculating the Hamiltonian
matrix elements with these functions.

We should add that in the non-BO calculations, the non-
relativistic Hamiltonian obtained after the separation of the
motion of the center of mass is isotropic (i.e., rotationally
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invariant) and the states of the system can be described by
wave functions which transform according to the irreducible
representations of the fully symmetric group of rotations. In
particular the ground state or any rotationless state is de-
scribed with a spherically symmetric s-type wave function.
That is why we use spherically symmetric explicitly corre-
lated functions in our calculations. Multiplying them by
powers of the internuclear distance does not change this
symmetry.

In recent works [4,5,15,16] we developed algorithms for
calculating o relativistic corrections for diatomic systems
using non-BO wave functions expanded in terms of explic-
itly correlated Gaussians (ECGs) and the first-order pertur-
bation theory. These algorithms are used in the present HD
calculations. HD is a good model system for very accurate
calculations because it has slight asymmetry of the electronic
charge distribution that originates from the finite-mass effect.
This effect is due to the fact that the electrons, on average,
approach the deuterium nucleus slightly closer than the hy-
drogen nucleus because the electron reduce mass is slightly
larger in the deuterium atom than in the hydrogen atom. The
asymmetry in the electron behavior near the deuterium and
hydrogen nuclei in HD results in an appearance of a slight
dipole moment in this system. This dipole moment makes
detection of the pure vibrational v=0— 1 transition possible
in the experimental spectrum. The HD dipole moment was a
subject of one of our previous calculations [17]. The dipole-
moment value obtained there agreed very well with the ex-
perimental value of 0.000 345 a.u. [18].

The charge asymmetry of HD was considered with the use
of the perturbation theory in the work of Blinder [19] in the
early 1960s. The perturbation theory was also applied in the
HD work of Kolos and Wolniewicz [20,21]. They repre-
sented the all-particle Hamiltonian as a sum of an operator
symmetric with respect to the inversion of the nuclei and an
antisymmetric perturbation. Then they calculated the first-
order wave function as an expansion in terms of basis func-
tions with the u symmetry. To solve the zero-order problem
they used an approach previously applied to calculate all-
particle vibronic energies for the H,, D,, and T, molecules
where the wave functions were expanded in terms of basis
functions with the g symmetry. Also, there were very accu-
rate calculations performed on HD by Wolniewicz [22]
where the HD rovibrational total and transition energies were
determined using the conventional approach of solving the
nuclear equation with the potential-energy curve obtained
from the BO electronic calculations and corrected for the
nonadiabatic, relativistic, and radiative corrections. In this
work we compare our results with the results of Wolniewicz.

We start this work with a brief description of the method
we used (a more complete description of the method can be
found in our recent reviews [6,7]). We also describe the pro-
cedure used to calculate the relativistic corrections. Next we
describe the procedure used to obtain a better estimate of the
lowest experimental pure vibrational transition frequency.
The results obtained in the calculations and their comparison
with the experimental results are presented in Sec. I'V.

II. METHOD USED IN THE CALCULATIONS

The approach used in the present work in the HD calcu-
lations is based on the variational minimization of the total
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energy of the system expressed as the expectation value of

the internal nonrelativistic Hamiltonian, f]nonrel, obtained
from the “laboratory-frame” Hamiltonian by separating out
the center-of-mass motion. For HD the internal Hamiltonian
has the following form:

T (z lp,ssly, v)

1 M fi tlﬂﬁtmo

E q04i 2 tq ) (1)

Ti i<j i ij

In Eq. (1) gy=¢g,=1 are the charges of the nuclei (the proton
and the deuteron) and g,=¢g;=-1 are the electron charges, r
i=1,2,3, are the position vectors of the proton and the two
electrons with respect to the deuteron (placed in the center of
the internal coordinate system and called the * reference par-
ticle”), r; are their lengths, r;=|r;— mg
=3670.482 965 4m, and m;=1836.152 672 47m, [23] are the
masses of the deuteron and the proton, respectively, m,
=m3=m,=1 are the electron masses, and wu;=mom;/(mg
+m;) is the reduced mass of particle i. The internal Hamil-
tonian (1) describes three “pseudoparticles” with charges
equal to the charges of the original particles but with masses
changed to the reduced masses. The pseudoparticles move in
the central potential of the charge of the reference particle. In
Hamiltonian (1) the motions of the three pseudoparticles are
coupled through the Coulomb interactions and through the
so-called mass-polarization term, 12? lEj#lm—OV V.

To calculate the relativistic corrections of the orderj of o?
we use the Breit-Pauli Hamiltonian and the first-order pertur-
bation theory. This approach has been used by others in very
accurate calculations of light atoms and molecules [24-26].
One should also mention the work showing that the two-
electron correlated Gaussians (Gaussian geminals) are ca-
pable of producing good results when the Breit-Pauli Hamil-
tonian is used to represent the relativistic affects [27]. We
should mention that there is an alternative approach for cal-
culating the relativistic corrections based on the direct per-
turbation theory [28]. The approach avoids the problem with
the singularities which are present in the Breit-Pauli Hamil-
tonian, and it is useful when higher-order relativistic correc-
tions are calculated.

In the present calculations we start with the respective
Breit-Pauli operators representing the MV, D, SS, and OO
interactions in the laboratory coordinate frame, and we trans-
form them to the internal coordinate system of the nine co-
ordinates, r;, i=1,2,3. More details of this transformation
for the MV, D, and OO corrections can be found in [4,5]. The
transformed MV, D, SS, and OO Hamiltonians have the fol-
lowing form:

1B 3 4 3
HMV=_§ _3<Evr[> +E_V4 > (2)
Mg \ i=1

zlm
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We should mention that the spin-orbit interactions are zero
for HD due to the singlet multiplicity of the electrons and the
zero total angular momentum of the states we consider in
this work. Also, the spin-spin interaction between the proton
and the electrons is zero because of the electron singlet mul-
tiplicity.

The total relativistic correction was calculated for each
state as the expectation value of the Hamiltonian f]rel repre-
senting all four relativistic corrections,

Hy = Hyy + Hp + Hsg + Hoo (6)

with the non-BO wave function.

The spatial part of the HD non-BO wave functions of the
pure rotationless vibrational states are expanded in terms of
the one-center spherically symmetric ECGs that included
pre-exponential multipliers consisting of the internuclear dis-
tance, rq, raised to a non-negative even power, m,. These are
the same functions as those used before in our non-BO cal-
culations of other diatomic systems [8]. The functions have
the following form:

b= 1% expl-1' (A, ® L)r], ()
where r={r{,r;,ri}’ and ' denotes the vector (matrix) trans-
position. Before the functions in Eq. (7) are used in expand-
ing an HD wave function, they are symmetrized with respect
to the electron labels. Since the transformation between the
laboratory and the internal coordinates is linear, the symme-
trization operator, which originally is defined with respect to
the laboratory coordinates, can be expressed in terms of the
internal coordinates and directly applied to function (7).

In our previous calculations we have demonstrated that
the basis functions in Eq. (7) are very effective in describing
nonadiabatic zero angular-momentum states of diatomic sys-
tems with o electrons. The r** factors in function (7) gener-
ate nodes in the wave function in terms of the r; coordinate
and very effectively describe the nucleus-nucleus correlation
effects. We refer the reader for more information on the
Hamiltonian transformation and the selection of the basis
functions for diatomic non-BO calculations to our recent re-
views [6,7]. The derivation of the algorithms of the matrix

elements with the I:IMV, I:ID, I:ISS, and I:Ioo operators were
described in [4,5].

In the present work we used the standard variational
method applied separately to each state. The minimization of
the Rayleigh quotient with respect to the linear-expansion
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coefficients, {c,}, the Gaussian exponential parameters, {A,},
and the pre-exponential powers, {m;}, and generating the
wave functions
!
o minS Hm e ©
'S({m.{Ade

have been the most time-consuming part of the calculations.
In the minimization of functional (8) with respect to the
Gaussian exponential parameters, we used the analytical en-
ergy gradient which greatly accelerated the process of the
wave-function optimization. Also, in order to avoid restrict-
ing the elements of the A; matrix to make it positive definite,
we used the Cholesky-factored form of A;, A,=L,L;, where
L, is a lower triangular matrix. With such a representation of
A, this matrix is automatically positive definite for any real
values of the L, matrix elements. In the calculation the L,
matrix elements replaced the elements of A as the optimiza-
tion variables. The analytical energy gradient is calculated
with respect to these elements. The pre-exponential powers,
my, in this work ranged from 0 to 250, and all the powers
were partially optimized for each state.

The calculations concerned the two lowest pure vibra-
tional states of HD. As mentioned, the maximum number of
basis functions used for each state was 10 000. To generate
this number of functions the basis set was grown from a
small randomly selected set of a few dozen functions using a
multistep procedure. When the basis set was relatively small
(less than 100 functions) each step involved adding a group
of ten functions, one function at a time, optimizing their
exponential parameters using the gradient-based minimiza-
tion approach, and when the addition was finished, reopti-
mizing the whole basis set using the same gradient-based
approach. In this reoptimization the parameters of all basis
functions were simultaneously adjusted. When the number of
basis functions exceeded 100, the number of functions added
in each step was increased to 20 and the reoptimization of
the whole set at the end of each step was done by adjusting
the parameters of only one function at a time. When the basis
set reached the level of 10 000 functions, the cyclic one-
function-at-a-time optimization was repeated multiple times
to get the lowest possible energy.

After the non-BO nonrelivistic wave functions were gen-
erated for the two states, we used them to calculate the rela-
tivistic corrections. The nonrelativistic energies corrected for
the relativistic effects were used to calculate the transition
frequencies. The non-BO wave functions, W(r), were also
used to calculate the one-particle (i.e., one-pseudoparticle)
density associated with pseudoparticle 1 (i.e., pseudoproton)
using the following formula [29]:

|\P(§’ r27 r3)|2dr2dr3 ’

(&) =(¥(r)|alr, - H|¥(r)) =

)

where 8(r;—¢) is the three-dimensional Dirac delta function.
For HD the pseudoparticle 1 density is equivalent to the
deuteron-proton correlation function. As in the non-BO cal-
culation the molecular structural parameters (bond lengths
and bond angels) are obtained as expectation values of these

032507-3



STANKE et al.

TABLE I. Dunham’s spectral parameters (cm™!) for deuterium
hydride "H?H fitted to the band v=0—1.
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of HD was analyzed by Durie and Herzberg [32].
In this work we determined the frequency of the experi-
mental pure vibrational transition (J=0), v=0— 1, of HD by

Y; v=0—1 making use of the 32 spectral lines (including duplicated
lines measured with different precision) reported in Refs.

Yo 3632.1595(17) [30,33-37]. The spectra in those works were obtained by

Yii . ~1.92865(85) employing different techniques. For example, Ref. [30] used

Y, X 10 1.430636(68) the photoacoustic measurements at a low pressure with a

Yo 45.62989(69) shorter absorption path.

Yo X 102 -2.6088(41) We estimated the v,_,; frequency by fitting the spectral

Yo3 X 10° 2.50(40) line positions to the energy formula of Dunham [38],

Yo4 X 108 -4.8(34) 1\ '

& 1.79 Evl=2 Yij(”"'i) V(+ 1Y, (10)

J min "~ J max 0-5 Y

Lines 32 where v=0,1,2,... and /=0,1,2,... denote the vibrational

Voo 3632.1595(17) and rotational quantum numbers. Then the frequency of the

parameters with the non-BO wave function. There is no defi-
nite molecular structure that comes out from the calculation
such as the structure one gets from a BO calculation. In such
a situation the density plots provide complementary informa-
tion to the expectation values of the structural parameters.
For HD the only parameter that characterizes its structure is
the internuclear distance. In addition to calculating the ex-
pectation value of this distance in this work we also calcu-
lated the deuteron-proton correlation function.

II1. ESTIMATION OF PURE VIBRATIONAL v=0—1
TRANSITION OF HD FROM THE AVAILABLE ROTATION-
VIBRATIONAL SPECTRA

The rotation-vibrational spectrum of deuterium hydride is
very weak as the spectral transitions arise only from the
breakdown of the Born-Oppenheimer approximation and
from the appearance of a very small dipole moment in this
system [30]. The spectral lines of HD were first observed by
Herzberg [31] in 1950. In 1960 the v=0—2 overtone band

Vy_, vibrational transition was directly obtained from the
relation

vo_1=Yi cm™', (11)

derived under the assumption that the higher-order vibra-
tional parameters, Y5, Y3, etc., are negligible.

The calculations were performed using a weighted non-
linear least-squares routine with weights taken as inverse
squares of the uncertainties of the experimental data, u;,
ranging from 0.01 to 0.001 cm™' [33-37,39]. To obtain the
best set of Dunham’s parameters, Y, from the experimental
spectral transitions, we used the following in the fitting pro-
cedure: the minimum number of fitted parameters consistent
with the minimum values of the normalized standard devia-
tion, &, and the standard deviation, o; optimal values of the
estimated standard error, g, of each fitted parameter and of
the coupling coefficient describing the correlation between
each pair of the parameters. The results of the calculation are
presented in Table I.

Even though the parameter Y,X 103=-4.8(34) is not
evaluated as accurately as the other parameters, its absence
from the fit results in a less accurate spectral reproduction at

TABLE II. The convergence of the total nonrelativistic non-BO energies (E,;) of the two lowest vibra-
tional states of the HD molecule with the number of basis functions (in hartree).

No. of basis functions Epe(v=0) Epa(v=1)
1000 -1.1654717568 -1.1489218639
2000 -1.1654718954 —-1.1489224960
3000 -1.1654719119 —1.1489225611
4000 -1.1654719166 —1.1489225754
5000 -1.1654719185 —1.1489225810
6000 -1.1654719197 —1.1489225845
7000 -1.1654719204 —1.1489225863
8000 -1.1654719211 —1.1489225878
9000 —-1.1654719216 —1.1489225887
10000* —1.1654719219(20) —1.1489225894(30)
10000° —1.1654719220(20) —1.1489225895(30)

Uncertainties of the calculated energies are shown in parenthesis.
PResults obtained by performing several additional cyclic optimizations of the nonlinear parameters.
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TABLE III. Relativistic corrections of the order of a? (in hartree) to the non-BO pure vibrational energies
of the two lowest vibrational states of the HD molecule and the contribution of the relativistic correction to

the transitions energy.

No. of basis functions (Hyy+Hp+Hgs) (Hoo) Total relativistic correction
1000 —8.348598 X 1076 —2.529434 X 1076 —~1.087803 X 1073
2000 —-8.357285 X 107° —-2.529410 X 107° —1.088669 X 107
3000 —-8.357542x 1076 -2.529411 X 107¢ —-1.088695 X 107>
4000 -8.360602 X 1076 —-2.529409 X 107¢ -1.089001 X 1072
5000 -8.361319x 107° -2.529407 X 107¢ -1.089073 X 1072
6000 -8.361684 X 1076 -2.529407 X 107¢ —-1.089109 X 1073
7000 —-8.362055 X 107° —2.529407 X 107° -1.089146 X 1072
8000 —-8.363093 X 107° —2.529407 X 107° -1.089250 X 1073
9000 —-8.363099 X 107° —2.529407 X 107° -1.089251 X 1073
10000 —-8.363647 X 107° —2.529406 X 107° -1.089305 X 1073

10000* —-8.363665 X 107° —2.529406 X 107° -1.089307 X 1073
1000 —-8.367559 X 107° —2.417959 X 107° -1.078552x 107
2000 —-8.367752x 107° —2.417927 X 107° -1.078568 X 107
3000 —-8.374977 X 107° —2.417911 X 107° -1.079289 X 107
4000 —-8.373074 X 107° —2.417910 X 107° —-1.079098 X 107>
5000 —-8.374112x 107° —2.417905 X 107° -1.079202 X 107
6000 -8.375121 X 10°¢ —2.417901 X 106 —-1.079302 X 1073
7000 -8.375079 X 1076 —2.417901 X 106 —-1.079298 X 1073
8000 —-8.376297 X 107° —2.417900 X 107° —-1.079420 X 107
9000 —-8.376353 X 1076 —2.417900 X 106 —1.079425 % 1073

10000 —-8.376841 % 107° —-2.417900 X 107¢ -1.079474 X 1072

10000 -8.376838 X 1076 -2.417899 X 107¢ -1.079474 X 1072

Results obtained by performing several additional cyclic optimizations of the nonlinear parameters.

6=1.82. With that, the corresponding frequency becomes
vy_,1=3632.1607(15) cm™'. Including this term gives the
vy, frequency of 3632.1595(17) cm™' that agrees very well
with the somewhat less accurate result of Rich et al. [33] of
Vo1 =3632.159(6).

IV. RESULTS

In Table II we present the total nonrelativistic energies for
the two lowest vibrational states obtained in the calculations.
For each state the energy values obtained with basis sets
ranging in size from 1000 to 10 000 in increments of 1000
are shown. As one can see, a very good convergence has
been achieved for each state. The ninth significant digit is
essentially converged. The ground v=0 state converges
slightly better than the first-excited v=1 state. The additional
optimization cycles for the 10 000-term basis lowered the
energy of the ground state by 0.8 107! hartree and the
first-excited state by 1.3 X 1070 hartree.

In Table III we show the convergence of the (I:ID+I:ID

+I:ID> and <I:IOO> contributions to the & relativistic correc-
tion and their sum. We also provide uncertainty estimates of
these corrections.

The v=0—1 transition frequency calculated with differ-
ent numbers of basis functions are presented in Table IV. We
show the results obtained with and without the relativistic
corrections. The frequencies are compared with the fre-
quency obtained by Wolniewicz [22]. The approach used by
Wolniewicz was based on the Born-Oppenheimer approxi-
mation that produced the zero-order wave function which
was subsequently used to calculate finite-mass corrections
(adiabatic and nonadiabatic) and the relativistic and radiative
corrections. The potential-energy curve, which included
those corrections, was then used to determine the vibrational
energies. Table IV also includes a comparison with the ex-
perimental frequency. Wolniewicz concluded his work by
saying that the most important source of errors in his calcu-
lations was a result of the nonadiabatic corrections. Even
though his final transition energy is in excellent agreement
with the experiment, in view of his concluding statement, the
agreement could have been somewhat fortuitous. As the
present non-BO calculations have been converged to a very
high accuracy at the nonrelativistic level and the finite-mass
effects (both adiabatic and nonadiabatic) have been explicitly
accounted for in the variational energy and the wave func-
tion, these effects are automatically included in our results to
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TABLE IV. Convergence of the HD lowest pure vibrational
transition frequency calculated using the nonrelativistic (Ej.,
—E}",) and relativistic (EVS'—E¥29) total energies.

rel rel
No. of basis functions EvT o0 EVS -0
1000 36322817 3632.3020
2000 3632.1733 3632.1955
3000 3632.1627 3632.1833
4000 3632.1606 3632.1823
5000 3632.1597 3632.1814
6000 3632.1592 3632.1808
7000 3632.1590 3632.1806
8000 3632.1588 3632.1804
9000 3632.1587 3632.1803
10000* 3632.1587(4) 3632.1802(4)

10000° 3632.1587(4) 3632.1802(4)
Wolniewicz [22] 3632.154
Experiment® 3632.1595

Uncertainties of the calculated transition energies are shown in
parenthesis.

®Results obtained by performing several additional cyclic optimiza-
tions of the nonlinear parameters.

“This work.

a very high precision. The finite-mass effects are also explic-
itly included in the calculations of the relativistic effects.
Therefore we did not have to resort to the perturbation theory
to calculate corrections due to these effects (the so-called
recoil corrections) as done in the conventional approach. Ex-
amples of using the conventional approach include recent
work of Pachucki and Komasa [40] and Jaquet and Kut-
zelnigg [41]. We believe that our transition energies are con-
verged to within 0.001 cm™'. This leaves the quantum elec-
trodynamics (QED) corrections as the only source of error in
our determination of the v=0—1 transition frequency.

In the last step the nonrelativistic wave functions obtained
for the v=0 and v=1 states were used to determine some
commonly calculated expectation values. The values are
shown in Table V. They are particularly interesting for HD
because they show the slight asymmetry in the electronic
charge distribution induced by the asymmetry of the nuclear
masses. For example, let us compare the expectation values
of the deuteron-electron distance, (r,), and the proton-
electron distance, (r;,) for the two states. As one can see the
latter values are slightly larger than the former ones, indicat-
ing that in both states the electrons are, on average, closer to
the deuteron than to the proton. This effect is also manifested
in the contact terms, i.e., the (8(r,)) and {(&(r,)) expectation
values. Again the values related to the deuteron for both
states are slightly larger than the values related to the proton.

Finally, we found it interesting to show proton-deuteron
correlation functions (the pseudoproton densities) for the two
states considered in this work. Plots of these densities are
shown in Fig. 1. As noted, as the internal Hamiltonian (1) is
rotationally invariant, the wave functions for rotationless vi-
brational states are spherically symmetric with respect to the
center of the internal coordinate system. Hence, the
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TABLE V. Some expectation values calculated for the v=0 and
v=1 vibrational states of the HD molecule with the wave functions
expanded in terms of 10 000 Gaussian basis functions. All values
are in a.u.

Expectation value v=0 v=1

7h 0.701604 0.678247
(m 0.903137 0.885723
(" 0.903333 0.885916
(i 0.580391 0.567188
(r1) 1.442229 1.525466
(rin) 1.571475 1.615340
(ry) 1.571185 1.615045
(r23) 2.196970 2252414
() 2.104322 2.400880
(riy 3.131202 3.319670
(r3) 3.130094 3318524
(r33) 5781954 6.083447
(8(ry)) 1.713771 X 10712 8.119417 x 10712
(8(ry»)) 0.225891 0.219983
(8(ry)) 0.226371 0.220413
(8(ry3)) 1.623499 X 1072 1.531738 X 102

pseudoproton densities for these states are also fully sym-
metric functions. To emphasize this, we plotted the densities
calculated for a two-dimensional (2D) cross-section cutting
through the center of the internal coordinate system. As ex-
pected, the symmetric 2D density for the v=0 state (the
ground state) has a maximum value on a ring with the radius
equal to about the average value of the HD internuclear dis-

FIG. 1. Deuteron-proton correlation functions for the v=0 and
v=1 pure vibrational states of the HD molecule.
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tance. For the v=1 state, the 2D density shows maxima on
two rings corresponding to the two extrema of the wave
function of the first-excited vibrational state.

To describe the radial oscillations of the v=0 and v=1
wave functions, the Gaussians in the basis set are multiplied
by powers of the internuclear distance r,. The different radial
behaviors of the two wave functions require different distri-
butions of the powers. We found it interesting to show how
different these distributions are for the two states. This is
shown in Fig. 2. As one notices, the powers, which, as men-
tioned before, range from 0 to 250, are, on average, smaller
for the ground state than for the first-excited state. Also, the
powers are more evenly distributed for the excited states than
for the ground state. This is because for the excited state they
need to describe two radial maxima and only one for the
ground state.

V. SUMMARY

In this work we presented accurate calculations for the
two lowest pure vibrational states of the HD molecule using
the non-BO framework and explicitly correlated Gaussian
functions. The non-BO wave functions were used to evaluate
the o relativistic corrections. Even with adding these cor-
rections, the v=0—1 transition frequency still differs from
the experimental value by about 0.02 ¢cm™!. To further in-
crease the accuracy of the calculations one needs to include
the lowest-order QED corrections, as well as corrections due
to the finite sizes of the nuclei and due to their polarizabil-
ities. Our future effort will go in this direction. The future
work will also include calculations of all remaining 16 pure
vibrational states of HD.

The high accuracy demands of the calculations required
that each of the two states is considered separately. Thus a
separate basis set of explicitly correlated Gaussians was gen-
erated for each state. Since both states correspond to the zero
total angular momentum their wave functions were expanded
in terms of Gaussians with the s symmetry. Treatment of
states with nonzero total angular momentum requires multi-
plying the Gaussians by angular factors. Work in deriving
algorithms for calculating matrix elements of the Hamil-
tonian and the energy gradient with such functions is cur-
rently in progress in our laboratory.

PHYSICAL REVIEW A 79, 032507 (2009)
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FIG. 2. Distributions of the r| powers, my, in the 10 000-term
basis sets obtained for the v=0 and v=1 pure vibrational states of
the HD molecule.
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