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Variational calculations of ground and excited bound states on atomic and molecular systems
performed with basis functions that explicitly depend on the interparticle distances can generate
very accurate results provided that the basis function parameters are thoroughly optimized by the
minimization of the energy. In this work we have derived the algorithm for the gradient of the
energy determined with respect to the nonlinear exponential parameters of explicitly correlated
Gaussian functions used in calculating n-electron atomic systems with two p-electrons and �n−2�
s-electrons. The atomic Hamiltonian we used was obtained by rigorously separating out the kinetic
energy of the center of mass motion from the laboratory-frame Hamiltonian and explicitly depends
on the finite mass of the nucleus. The advantage of having the gradient available in the variational
minimization of the energy is demonstrated in the calculations of the ground and the first excited 3P
state of the carbon atom. For the former the lowest energy upper bound ever obtained is reported.
© 2010 American Institute of Physics. �doi:10.1063/1.3419931�

I. INTRODUCTION

Very accurate quantum mechanical calculations of the
electronic structures of small atoms have always provided
the testing ground for new computational methods for calcu-
lating the ground and excited bound states. The testing has
been possible due to the availability of very accurate gas-
phase spectra of these systems. Previously, the only atoms
for which the accuracy of the calculations matched the accu-
racy of the experiments were the one-, two-, and three-
electron ones �see, for example, Refs. 1–8�. Recently, it was
demonstrated that with the use of the variational method and
of the explicitly correlated Gaussian functions �ECGFs�, one
can also calculate the energies of ground and excited states
of four-electron atoms and corresponding electronic transi-
tion frequencies with experimental accuracy.9–14

In order to extend the range of the atomic states that can
be calculated with ECGFs, we have recently derived algo-
rithms for the Hamiltonian matrix elements to calculate
states with one and two p-electrons.15,16 The development of
algorithms for calculating states of atoms that include elec-
trons with higher angular momenta using ECGFs is currently
in progress. All algorithms have been developed for an arbi-
trary number of electrons and using the Hamiltonian that
explicitly includes the finite mass of the atomic nucleus. This
Hamiltonian is obtained by separating out the kinetic energy
of the center of mass motion from the total nonrelativistic
laboratory-frame Hamiltonian. As this separation is rigorous,
the total energies obtained in the calculations correspond to
true internal bound states of the studied system. Also, by

setting the mass of the nucleus to values corresponding to the
different isotopes of the system, the isotope spectral shifts
can be calculated. Another advantage of having a variable
nuclear mass in the Hamiltonian is the possibility of calcu-
lating infinite-nuclear-mass energies. These energies can be
directly compared to the energies obtained in the standard
atomic calculations performed assuming the Born–
Oppenheimer �BO� approximation, which is the way the ma-
jority of the atomic calculations have been done. We should
add that as some of those calculations have been performed
using the reduced electron mass, not all the energies from
literature are directly comparable with our results.

Achieving high accuracy in the atomic �and molecular�
calculations with ECGFs is possible provided that the non-
linear exponential parameters of Gaussians are extensively
optimized based on the variational principle. This usually is a
process that takes large amounts of computer time. To accel-
erate the basis set optimization in the ECGF calculations we
have derived and implemented analytical derivatives �i.e.,
gradient� of the energy with respect to the nonlinear
parameters15,17–21 involved in the Gaussian functions. The
gradient-based approach has enabled us to perform very ac-
curate BO and non-BO calculations of atomic and molecular
systems with accuracy unmatched by any previous
calculation.22–27

In this work we continue the development of the gradi-
ent algorithms for calculating the atomic energy levels. The
work is focused on the first derivatives of the energy with
respect to the parameters of explicitly correlated Gaussians
describing atomic states with two p-electrons. The derivation
of formulas for the gradient presented here involves an ap-
proach based on the powerful technique called the matrixa�Electronic mail: ludwik@u.arizona.edu.
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differential calculus. This elegant and very useful technique
is described in Magnus and Neudecker28 and, unfortunately,
is not well known outside of the disciplines of mathematical
statistics and econometrics. Some steps involved in the
present derivations will be useful in deriving algorithms for
the energy gradients with atomic ECGFs representing states
involving electrons with higher angular momenta.

The formulas for the energy gradient derived in this
work have been implemented using the Message Passing In-
terface �MPI� protocol and the calculations have been run on
a multiprocessor computer system. Some details concerning
the implementation are described in Sec. IV. In the next step
we tested the code in calculations concerning the two lowest
3P states of the carbon atom, which is the smallest system
with two p electrons in the ground state. These tests are also
described in Sec. IV.

II. THE METHOD

A. The Hamiltonian

For an atom with N particles �i.e., N−1 electrons and a
nucleus� the laboratory-frame nonrelativistic Hamiltonian
has the following form:

Ĥlab = − �
i=1

N
1

2Mi
�Ri

2 + �
i�j=1

N
QiQj

Rij
, �1�

where Mi are the masses of the particles, Qi are their charges,
Ri are the Cartesian position vectors in the coordinate frame,
and �Ri

are the gradients with respect to Ri. Rij is the dis-
tance between the ith and jth particles, Rij = �R j −Ri�. After
separating out the center of mass motion of the system from

Eq. �1� an internal Hamiltonian, Ĥ, is obtained. This internal
Hamiltonian in the internal Cartesian coordinate system with
the center at the nucleus has the following form:

Ĥ = −
1

2��i=1

n
1

�i
�ri

2 + �
i,j=1

i�j

n
1

m0
�ri

��rj� + �
i=1

n
q0qi

ri
+ �

i�j=1

n
qiqj

rij
,

�2�

where n=N−1 is the number of particles the internal Hamil-
tonian describes, ri=Ri+1−R1 are their internal Cartesian co-
ordinates, m0 is the nucleus mass, q0 is its charge, qi=Qi+1

are the electron charges, and �i=m0mi / �m0+mi� are their
reduced masses, where mi=Mi+1. We call the particles de-
scribed by Hamiltonian �2� pseudoelectrons because even
though they have the same charges as the electrons, their
masses are reduced electron masses. Thus, Hamiltonian �2�
describes the motion of n pseudoelectrons in the central field
of the charge of the nucleus. This motion is coupled through
the Coulombic interactions between the pseudoelectrons and
their interactions with the nucleus charge,

�
i=1

n
q0qi

ri
+ �

i�j=1

n
qiqj

rij
,

where rij = �r j −ri�, and through the mass polarization term,

−
1

2 �
i,j=1

i�j

n

�1/m0��ri
��rj

.

The prime in the mass polarization term indicates the matrix/
vector transpose; this notation is used throughout this work.

B. The basis functions

The atomic system considered here has two p-electrons
and �n−2� s-electrons. The standard procedure for adding
angular momenta can be applied to construct basis functions
for such a case. In our previous work16 we showed that for
an atom with two p-electrons and the total angular momen-
tum quantum number L=1 and its projection on the z-axis
M =0, such as for the ground state of the carbon atom, the
angular factor in the basis functions should be

xiyj − xjyi. �3�

Thus, the suitable explicitly correlated Gaussian basis func-
tions for calculating the ground 3P state of the carbon atom
are

�k = �xik
yjk

− xjk
yik

�exp�− r��Ak � I3�r� , �4�

where ik and jk are integers that indicate the label of the p
electrons, Ak is an n�n symmetric matrix, the subscript k
reflects the fact that the matrix is unique for each basis func-
tion, � is the Kronecker product, I3 is a 3�3 identity matrix,
and r is a 3n vector of the electron �pseudoelectron� coordi-
nates that has the form

r =�
r1

r2

]

rn

� =�
x1

y1

z1

]

xn

yn

zn

� . �5�

In a simplified form, basis function �4� can be written as

�k = �xik
yjk

− xjk
yik

�exp�− r�Akr� , �6�

where Ak=Ak � I3. In the approach described in this work we
use yet another representation of basis function �4�, which is
more convenient in the computational implementation and
more general in terms of providing a representation for other
types of angular ECGFs. The representation utilizes the
sparse 3n�3n symmetric matrix Wk, which for function �4�
comprises only four nonzero off-diagonal elements, two of
which have values of 1/2 the other two −1 /2. The 1/2 ele-
ments are placed in the �3ik−2,3jk−1� and �3jk−1,3ik−2�
positions, while the −1 /2 elements are placed in
�3jk−2,3ik−1� and �3ik−1,3jk−2� positions. With such Wk

basis function �4� has the following form:

�k = �r�Wkr�exp�− r�Akr� . �7�

To make function �7� square integrable it is convenient to
represent Ak in a Cholesky factored form as Ak=LkLk�, where
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Lk is a lower triangular matrix. With this �k is automatically
square integrable regardless of the values of the Lk matrix
elements. The convenience of using the Cholesky represen-
tation of Ak comes in the variational minimization of the
energy with respect to the exponential parameters of �k.
When those parameters are the Lk matrix elements, the opti-
mization can be carried out without any restrictions concern-
ing the values of the variables. Such restrictions would be
necessary if the optimization parameters were the Ak matrix
elements.

The lower triangular matrix, Lk, representing the param-
eters of �k is stored in a vector form, vech Lk, meaning
“vector half.” This particular vector operation utilizes the
structure of a lower triangular matrix. The vech operation is
built by stacking the columns of the matrix one on top of the
other, but by using only the lower triangular portion of the
matrix, i.e., by starting with the diagonal element of the col-
umn and including all elements below the diagonal element
of that column. The vech operation transforms an n�n ma-
trix to an n�n+1� /2 vector. This operation effectively elimi-
nates the storage of zeros from the upper triangular of the Lk

matrix. The vech operation is also used in the gradient deri-
vation in this work to store the derivatives of the Hamil-
tonian and overlap matrix elements calculated with respect to
the elements of vech Lk.

C. Total energy and energy gradient

The optimization of the Lk Gaussian parameters in this
work is performed through the minimization of the
Rayleigh–Ritz variational energy functional. The spatial part
of the wave function of the system, �, is approximated as a
linear combination of K basis functions �k,

��r� = �
k=1

K

ckŶ�k�r� , �8�

where ck are the linear variational parameters and Ŷ is a
permutational symmetry projector represented as a linear
combination of permutational operators. As the Hamiltonian
is spin independent, the calculations can be carried out using
the spin-free approach. This requires that the basis functions
have the appropriate spatial symmetry. In practice, the imple-
mentation of the symmetry is accomplished at the level of
calculating the overlap and Hamiltonian matrix elements as
it was described in our previous work.16 In brief, the ket
functions in those matrix elements are operated on with the

permutation operator P̂= Ŷ†Ŷ �the dagger stands for conju-

gate�, where the Ŷ operator can be derived using a Young
tableaux �see our previous work16� suitable for the state un-
der consideration.

The minimization of the Rayleigh–Ritz functional with
respect to the ck coefficients leads to the secular equation

�H − �S�c = 0, �9�

where H and S are K�K Hermitian matrices of the
Hamiltonian and overlap integrals, with the elements Hkl

= 	�k�ĤŶ†Ŷ��l
 and Skl= 	�k�Ŷ†Ŷ��l
, respectively, and c is a
K-component vector of the linear expansion coefficients ck.

The lowest energy solutions of Eq. �9� represent the ground
state and the higher energy solutions represent excited states.
All of them remain upper bounds to the corresponding exact
energies regardless of any particular choice of the basis func-
tions and the values of the linear coefficients.

The differential of the secular Eq. �9� is

d�H − �S�c = �dH�c − �d��Sc − ��dS�c + �H − �S�dc .

�10�

Multiplying the above equation by c† from the left we obtain

d� = c†�dH − �dS�c . �11�

To get Eq. �11� we used Eq. �9� and assumed that the wave
function is normalized, c†Sc=1. Relation �11� is essentially
the same as the well known Hellmann–Feynman theorem.

Let �t be a vector of the nonlinear parameters the basis
function �t depends on. With that we can now determine the
complete energy gradient. As the tth row and tth column of
matrices H and S depend on �t, the derivative of any arbi-
trary element belonging to that row or that column of either
of the two matrices can be written as

�Hkl

��t
=

�Hkl

��t
�	kt + 	lt − 	kt	lt�, k,l,t = 1, . . . ,K , �12�

and

�Skl

��t
=

�Skl

��t
�	kt + 	lt − 	kt	lt�, k,l,t = 1, . . . ,K . �13�

Further, using Eqs. �11�–�13�, the derivative of the total en-
ergy, �, with respect to the parameters �t is

��

��t
= ct

��
l=1

K

cl� �Htl

��t
− �

�Stl

��t
� + ct�

l=1

K

cl
�� �Hlt

��t
− �

�Slt

��t
�

− ctct
�� �Htt

��t
− �

�Stt

��t
�

= 2R
ct
��

l=1

K

cl� �Htl

��t
− �

�Stl

��t
�� − ctct

�� �Htt

��t
− �

�Stt

��t
� .

�14�

By calculating all such derivatives for all �k�k=1, . . . ,K� pa-
rameters, the complete energy gradient is obtained.

To make the calculations efficient it is best to evaluate
all derivatives of � with respect to the entire vech Lk vector
in a single step rather than performing separate differentia-
tion for individual parameters �Lk�11, �Lk�21, . . . , �Lk�nn be-
cause many of the operations in calculating the derivatives
are identical. With that, the calculation of Eq. �14� requires
the following derivatives of the H and S matrix elements:

�Hkl

��vech Lk�
,

�Hkl

��vech Ll�
,

�Skl

��vech Lk�
,

�Skl

��vech Ll�
. �15�

Now, we will derive the expressions for these derivatives.

D. Matrix elements

The overlap matrix element, Skl, for Gaussian basis
functions �k and �l is16
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Skl = 	�k��l
 = 1
2
3n/2�Akl�−3/2� 1

2�1�2 + �3� , �16�

where �1=tr�Akl
−1Wk�, �2=tr�Akl

−1Wl�, �3=tr�Akl
−1WkAkl

−1Wl�,
and Akl=Ak+Al. Here and below vertical bars around a ma-
trix are used to denote the determinant of the matrix.

For code efficiency, it is advantageous to determine if
any of the traces involved in the formula for calculating an
overlap �or Hamiltonian� matrix element are equal to zero.
Having a zero trace can occur for two reasons: The first is
due to the sum of the diagonal elements simply adding to
zero; the second is due to all diagonal elements being zeros.
The latter case can be easily verified and, when it occurs,
appropriate simplifications can be made in the computer
code to avoid calculating such a trace. The verification in-
volves the analysis of the structure of the matrices whose
product is used to calculate the trace.

For example, by using the sparsity of Wk �Eq. �7��, its
product with the Akl

−1 matrix is found to be traceless. By
explicitly implementing the information regarding the spar-
sity in coding the formulas for the matrix elements and their

derivatives, one can effectively eliminate multiplications by
zeros and make the calculations significantly faster. While
only off-diagonal elements exist in Akl

−1Wk and Akl
−1Wl, the

product Akl
−1WkAkl

−1Wl is not traceless. There exist sets of
nonzero elements in Akl

−1Wk�i ,k� and Akl
−1Wl�k , i� that con-

tribute to the diagonal of Akl
−1WkAkl

−1Wl�i , i�. In this case the
trace is not zero and has to be calculated.

By considering the above, the formula for the overlap
integral �16� in our case simplifies to

Skl = 	�k��l
 = 1
2
3n/2�Akl�−3/2�3. �17�

This is the overlap integral formula used in calculating the
energy gradient. It should be noted that this formula cannot
be reduced or simplified any further.

The Hamiltonian matrix element, Hkl, consists of two
terms, the kinetic energy term, Tkl, and the potential energy
term, Vkl, where Hkl=Tkl+Vkl. The formula for kinetic en-
ergy term is

Tkl = 	�k� − �r�M�r���l
 = 
3n/2�Akl�−3/2� 1
2�1�2 tr�Akl

−1AkMAl� + �3 tr�Akl
−1AkMAl� + �1�tr�Akl

−1WlAkl
−1AkMAl� − tr�Akl

−1AkMWl��

+ �2�tr�Akl
−1WkAkl

−1AkMAl� − tr�Akl
−1WkMAl�� + 2�tr�Akl

−1WkAkl
−1WlAkl

−1AkMAl� + tr�Akl
−1WkMWl�

− tr�Akl
−1WkAkl

−1AkMWl� − tr�Akl
−1WlAkl

−1WkMAl� + tr�Akl
−1WlAkl

−1WkAkl
−1AkMAl��� , �18�

where M is the mass matrix and M=M � I3. In the M
matrix, the diagonal elements are set to
1 / �2m1� ,1 / �2m2� , . . . ,1 / �2mn�, while the off-diagonal ele-
ments are set to 1 / �2m0�. Again, m0 is the mass of the
nucleus and m1 , . . ., and mn are the electron masses. The
terms containing �1=tr�Akl

−1Wk� and �2=tr�Akl
−1Wk� are

again zero reducing the formula for the kinetic energy con-
tribution to the Hamiltonian matrix element to

Tkl = 	�k� − �r�M�r���l


= 
3n/2�Akl�−3/2��3 tr�Akl
−1AkMAl�

+ 2�tr�Akl
−1WkAkl

−1WlAkl
−1AkMAl� + tr�Akl

−1WkMWl�

− tr�Akl
−1WkAkl

−1AkMWl� − tr�Akl
−1WlAkl

−1WkMAl�

+ tr�Akl
−1WlAkl

−1WkAkl
−1AkMAl��� . �19�

The potential energy matrix element is

Vkl = 	�k�
1

rij
��l
 = 2
�3n−1�/2�Akl�−3/2�−1/2

��1

4
�1�2 +

1

2
�3 −

1

12
�−1��1 tr�Akl

−1WlAkl
−1J�

+ �2 tr�Akl
−1WkAkl

−1J� + 2 tr�Akl
−1WkAkl

−1WlAkl
−1J�

+ 2 tr�Akl
−1WlAkl

−1WkAkl
−1J��

+
1

20
�−2�2 tr�Akl

−1WkAkl
−1JAkl

−1WlAkl
−1J�

+ tr�Akl
−1WkAkl

−1J�tr�Akl
−1WlAkl

−1J��� , �20�

where J is a 3n�3n symmetric matrix, J=J � I3, with the
matrix J defined as

J = � Eii, i = j for ri

Eii + Ejj − Eij − Eji, i � j for rij ,
� �21�

where Eij is a matrix with one in the i , jth position and zeroes
elsewhere, and �=tr�Akl

−1J�. Applying again the same analysis
of traces as in the case of the overlap integral, the formula
for the potential energy matrix element reduces to

	�k�
1

rij
��l
 = 2
�3n−1�/2�Akl�−3/2�−1/2

��1

2
�3 −

1

6
�−1�tr�Akl

−1WkAkl
−1WlAkl

−1J�

+ tr�Akl
−1WlAkl

−1WkAkl
−1J��� . �22�
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Additionally the significant sparsity of the J matrix can be
explicitly considered in writing the computer code. With that
the number of operations used can be further reduced.

III. THE GRADIENT DERIVATION

Before differentiating the Hamiltonian matrix elements
with respect to vech Lk, it is useful to write the differential of
the Ak matrix,

dAk = �dLk�Lk� + LkdLk�, �23�

and the differential of Al,

dAl = P��dLl�Ll�P + P�LldLl�P , �24�

as these matrices contain the elements with which the deriva-
tives are determined. The differential of Akl is a sum of the
above two differentials,

dAkl = �dLk�Lk� + LkdLk� + P��dLl�Ll�P + P�Ll�dLl��P .

�25�

This differential can be extended to determine the differential
of Akl as

dAkl = dLkLk� + LkdLk� + P�dLlLl�P + P�LldLl�P

� dAkl � I3. �26�

All formulas for the Skl, Tkl, and Vkl matrix elements contain
the determinant of Ak and traces of matrix products involving
Akl

−1. The differential of the determinant of an arbitrary ma-
trix X, the differential of its inverse, and the differential of its
trace are

d�X� = �X�tr�X−1dX� , �27�

dX−1 = − X−1�dX�X−1, �28�

and

d tr�X� = tr�dX� . �29�

To show the gradient derivation, the overlap integral for-
mula �17� will be used, as it is the simplest of all three
formulas. Then the approach used there will be extended to
Eqs. �19� and �22�. Using Eqs. �27�–�29�, the differential of
the overlap matrix element �17� can be written as

dSkl = d	�k��l
 = − 1
2
3n/2�Akl�−3/2� 3

2 tr�Akl
−1dAkl��3 + d�3� ,

�30�

where

d�3 = tr�Akl
−1Akl

−1dAkWkAkl
−1Wl� + tr�Akl

−1WkAkl
−1dAlAkl

−1Wl�

= tr�Akl
−1WkAkl

−1WlAkl
−1dAk� + tr�Akl

−1WlAkl
−1WkAkl

−1dAl� .

�31�

As it is seen in the derivation of Eq. �31� the property of the
trace of a product of matrices was utilized. This property
allows a cyclic permutation of the matrices to be applied and
move the dAk and dAl differentials to the rightmost positions
in the respective matrix products. This is possible because a
cyclic permutation of matrices in the product under the
trance does not change the trace, i.e., tr�XY�=tr�YX�,
or more generally, tr�XYZ , . . . , PQ�=tr�YZ , . . . , PQX�
=tr�Z , . . . , PQXY�=¯.

Plugging in Eq. �26� to Eq. �31�,

d�3 = tr�Akl
−1WkAkl

−1WlAkl
−1�dLkLk� + LkdLk� + dLlLl� + LldLl��� + tr�Akl

−1WlAkl
−1WkAkl

−1�dLkLk� + LkdLk� + dLlLl� + LldLl���

= tr�Akl
−1WkAkl

−1WlAkl
−1dLkLk�� + tr�Akl

−1WkAkl
−1WlAkl

−1LkdLk�� + tr�Akl
−1WkAkl

−1WlAkl
−1dLlLl�� + tr�Akl

−1WkAkl
−1WlAkl

−1LldLl��

�32�

is obtained by using

tr�A + B� = tr�A� + tr�B� . �33�

To combine the dLk� term with the dLk term and the dLk� term with the dLk the following property of the trace involving matrix
transposition is applied:

tr�XYZ� = tr�Z�Y�X�� . �34�

Using relation �34� in Eq. �32� and transforming tr�Akl
−1dAkl�, also present in the overlap integral formula �30�, in the same way

d�3 was transformed we obtain

dSkl = d	�k��l
 = − 1
2
3n/2�Akl�−3/2� 3

2 �tr�Lk��Akl
−1 + Akl

−1��dLk� + tr�Ll��Akl
−1 + Akl

−1��dLl���3 + tr�Lk��Akl
−1WkAkl

−1WlAkl
−1

+ �Akl
−1WkAkl

−1WlAkl
−1���dLk� + tr�Ll��Akl

−1WkAkl
−1WlAkl

−1 + �Akl
−1WkAkl

−1WlAkl
−1���dLl� + tr�Lk��Akl

−1WlAkl
−1WkAkl

−1

+ �Akl
−1WlAkl

−1WkAkl
−1���dLk� + tr�Ll��Akl

−1WlAkl
−1WkAkl

−1 + �Akl
−1WlAkl

−1WkAkl
−1���dLl�� . �35�
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Let us now list some useful properties of the vec and
vech operators. If X and Y are arbitrary square matrices and
L is a lower triangular matrix, then

�vec X��vec Y = tr�X�Y� , �36�

�vec X��vec L = �vech X��vech L . �37�

Both vec and vech operations transform a matrix into a vec-
tor. vec stacks the columns of a matrix one underneath the
other. Thus, it transforms an n�n matrix into an
n2-component vector. For example, if X is a 2�2 matrix
with elements Xij, then vec X is the following four-
component vector:

vec X =�
X11

X12

X21

X22

� . �38�

As described before, the second operator, vech, elements
transform an n�n matrix into an n�n+1� /2-component vec-
tor. For example, if X is a 3�3 matrix with elements Xij,
then vech X is the following six-component vector:

vech X =�
X11

X12

X13

X22

X23

X33

� . �39�

Using the vech operator, Eq. �30� can be written as

d	�k��l
 = 1
2
3n/2�Akl�−3/2��vech��Akl

−1 + Akl
−1��Lk��d vech Lk + vech��Akl

−1 + Akl
−1��Ll��d vech Ll��3 + vech��Akl

−1WkAkl
−1WlAkl

−1

+ �Akl
−1WkAkl

−1WlAkl
−1���Lk��d vech Lk + vech��Akl

−1WkAkl
−1WlAkl

−1 + �Akl
−1WkAkl

−1WlAkl
−1���Ll��d vech Ll

+ vech��Akl
−1WlAkl

−1WkAkl
−1 + �Akl

−1WlAkl
−1WkAkl

−1���Lk��d vech Lk + vech��Akl
−1WlAkl

−1WkAkl
−1

+ �Akl
−1WlAkl

−1WkAkl
−1���Ll��d vech Ll� . �40�

Equation �40� contains derivatives with respect to the
vech Lk and vech Ll vectors. However, it is computationally
advantageous that the derivatives are taken with respect to
vech Lk and vech Ll. To transform the expression
to the correct form, a transformation matrix, T, must be ap-
plied to the appropriate terms. This transformation matrix
has the dimension of �3n�3n+1� /2�� �n�n+1� /2� and is
defined as

T =
d vech Lk�vech Lk�

d�vech Lk��
. �41�

The notations vech Lk�vech Lk� indicate that the
3n�3n+1� /2-dimensional vector vech Lk is a function of the
n�n+1� /2-dimensional vector vech Lk. The derivative of

vech Lk with respect to vech Lk is defined as the
3n�3n+1� /2�n�n+1� /2 matrix of partial derivatives
whose ijth element is the partial derivative of the ith com-
ponent of vech Lk �a column vector� with respect to the jth
element of �vech Lk�� �a row vector�. It should be noted that
T is independent of index k and is a matrix consisting
of zeroes and ones. Equation �41� can be rearranged to the
following form:

d vech Lk = Td vech Lk, �42�

and a similar form for d vech Ll. Substituting d vech Lk and
d vech Ll in Eq. �40� with Eq. �42� and grouping terms with
vech Lk separately from vech Ll terms the following two de-
rivatives can be written:
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�	�k��l

� vech Lk

= −
1

2

3n/2�Akl

−1�3/2�3

2
vech��Akl

−1 + Akl
−1��Lk�tr�Akl

−1WkAkl
−1Wl� + vech��Akl

−1WkAkl
−1WlAkl

−1

+ �Akl
−1WkAkl

−1WlAkl
−1���Lk�T + vech��Akl

−1WlAkl
−1WkAkl

−1 + �Akl
−1WlAkl

−1WkAkl
−1���Lk�T� , �43�

�	�k��l

� vech Ll

= −
1

2

3n/2�Akl

−1�3/2�3

2
vech��Akl

−1 + Akl
−1��Ll�tr�Akl

−1WkAkl
−1Wl� + vech��Akl

−1WkAkl
−1WlAkl

−1

+ �Akl
−1WkAkl

−1WlAkl
−1���Ll�T + vech��Akl

−1WlAkl
−1WkAkl

−1 + �Akl
−1WlAkl

−1WkAkl
−1���Ll�T� . �44�

Applying the same operations as used to derive the derivatives for the overlap matrix element to the matrix elements for
kinetic and potential energies, Tkl and Vkl, their derivatives can be expressed. Nothing additional is required other than
meticulousness. These derivatives are

�Tkl

� vech Lk
=

�	�k� − �r�M�r���l

� vech�Lk�

= − 
3n/2�Akl�−3/2�3

2
vech��Akl

−1 + Akl
−1��Lk���3 tr�Akl

−1AkMAl� + 2�tr�Akl
−1WkAkl

−1WlAkl
−1AkMAl�

+ tr�Akl
−1WkMWl� + tr�Akl

−1WkAkl
−1AkMWl� + tr�Akl

−1WlAkl
−1WkMAl� + tr�Akl

−1WlAkl
−1WkAkl

−1AkMAl���

+ tr�Akl
−1AkMAl��vech��Akl

−1WkAkl
−1WlAkl

−1� + �Akl
−1WkAkl

−1WlAkl
−1���Lk� + vech��Akl

−1WlAkl
−1WkAkl

−1

+ �Akl
−1WlAkl

−1�WkAkl
−1���Lk��T + �3�vech��Akl

−1AkMAlAkl
−1� + �Akl

−1AkMAlAkl
−1���Lk� − vech��MAlAkl

−1

+ �MAlAkl
−1����Lk��T + 2�vech��Akl

−1WkAkl
−1WlAkl

−1AkMAlAkl
−1 + �Akl

−1WkAkl
−1WlAkl

−1AkMAlAkl
−1���Lk�

+ vech��Akl
−1WlAkl

−1AkMAlAkl
−1WkAkl

−1 + �Akl
−1WlAkl

−1AkMAlAkl
−1WkAkl

−1���Lk�

+ vech��Akl
−1AkMAlAkl

−1WkAkl
−1WlAkl

−1 + �Akl
−1AkMAlAkl

−1WkAkl
−1WlAkl

−1���Lk� − vech��MAlAkl
−1WkAkl

−1WlAkl
−1

+ �MAlAkl
−1WkAkl

−1WlAkl
−1���Lk� + vech��Akl

−1WlAkl
−1WkAkl

−1AkMAlAkl
−1 + �Akl

−1WlAkl
−1WkAkl

−1AkMAlAkl
−1���Lk�

+ vech��Akl
−1WkAkl

−1AkMAlAkl
−1WlAkl

−1 + �Akl
−1WkAkl

−1AkMAlAkl
−1WlAkl

−1���Lk�

+ vech��Akl
−1AkMAlAkl

−1WlAkl
−1WkAkl

−1 + �Akl
−1AkMAlAkl

−1WlAkl
−1WkAkl

−1���Lk� − vech��MAlAkl
−1WlAkl

−1WkAkl
−1

+ �MAlAkl
−1WlAkl

−1WkAkl
−1���Lk� + vech��Akl

−1WkAkl
−1AkMWlAkl

−1 + �Akl
−1WkAkl

−1AkMWlAkl
−1���Lk�

+ vech��Akl
−1AkMWlAkl

−1WkAkl
−1 + �Akl

−1AkMWlAkl
−1WkAkl

−1���Lk� − vech��MWlAkl
−1WkAkl

−1

+ �MWlAkl
−1WkAkl

−1���Lk� + vech��Akl
−1WlAkl

−1WkMAlAkl
−1 + �Akl

−1WlAkl
−1WkMAlAkl

−1���Lk�

+ vech��Akl
−1WkMAlAkl

−1WlAkl
−1 + �Akl

−1WkMAlAkl
−1WlAkl

−1���Lk� + vech��Akl
−1WkMWlAkl

−1

+ �Akl
−1WkMWlAkl

−1���Lk��T� �45�

and
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�Tkl

� vech Ll
=

�	�k� − �r�M�r���l

� vech Ll

= − 
3n/2�Akl�−3/2�3

2
vech��Akl

−1 + Akl
−1��Ll���3 tr�Akl

−1AkMAl� + 2�tr�Akl
−1WkAkl

−1WlAkl
−1AkMAl�

+ tr�Akl
−1WkMWl� + tr�Akl

−1WkAkl
−1AkMWl� + tr�Akl

−1WlAkl
−1WkMAl� + tr�Akl

−1WlAkl
−1WkAkl

−1AkMAl���

+ tr�Akl
−1AkMAl��vech��Akl

−1WkAkl
−1WlAkl

−1� + �Akl
−1WkAkl

−1WlAkl
−1���Ll� + vech��Akl

−1WlAkl
−1WkAkl

−1

+ �Akl
−1WlAkl

−1�WkAkl
−1���Ll��T + �3�vech��Akl

−1AkMAlAkl
−1� + �Akl

−1AkMAlAkl
−1���Ll� − vech��Akl

−1AkM

+ �Akl
−1AkM����Ll��T + 2�vech��Akl

−1WkAkl
−1WlAkl

−1AkMAlAkl
−1 + �Akl

−1WkAkl
−1WlAkl

−1AkMAlAkl
−1���Ll�

+ vech��Akl
−1WlAkl

−1AkMAlAkl
−1WkAkl

−1 + �Akl
−1WlAkl

−1AkMAlAkl
−1WkAkl

−1���Ll�

+ vech��Akl
−1AkMAlAkl

−1WkAkl
−1WlAkl

−1 + �Akl
−1AkMAlAkl

−1WkAkl
−1WlAkl

−1���Ll� − vech��Akl
−1WkAkl

−1WlAkl
−1AkM

+ �Akl
−1WkAkl

−1WlAkl
−1AkM���Ll� + vech��Akl

−1WlAkl
−1WkAkl

−1AkMAlAkl
−1 + �Akl

−1WlAkl
−1WkAkl

−1AkMAlAkl
−1���Ll�

+ vech��Akl
−1WkAkl

−1AkMAlAkl
−1WlAkl

−1 + �Akl
−1WkAkl

−1AkMAlAkl
−1WlAkl

−1���Ll�

+ vech��Akl
−1AkMAlAkl

−1WlAkl
−1WkAkl

−1 + �Akl
−1AkMAlAkl

−1WlAkl
−1WkAkl

−1���Ll� − vech��Akl
−1WlAkl

−1WkAkl
−1AkM

+ �Akl
−1WlAkl

−1WkAkl
−1AkM���Ll� + vech��Akl

−1WkAkl
−1AkMWlAkl

−1 + �Akl
−1WkAkl

−1AkMWlAkl
−1���Ll�

+ vech��Akl
−1AkMWlAkl

−1WkAkl
−1 + �Akl

−1AkMWlAkl
−1WkAkl

−1���Ll� + vech��Akl
−1WlAkl

−1WkMAlAkl
−1

+ �Akl
−1WlAkl

−1WkMAlAkl
−1���Ll� + vech��Akl

−1WkMAlAkl
−1WlAkl

−1 + �Akl
−1WkMAlAkl

−1WlAkl
−1���Ll�

− vech��Akl
−1WlAkl

−1WkM + �Akl
−1WlAkl

−1WkM���Ll� + vech��Akl
−1WkMWlAkl

−1 + �Akl
−1WkMWlAkl

−1���Ll��T� .

�46�

The derivative of the potential energy matrix elements is determined to be

�Vkl

� vech Lk
=

�	�k�
1

rij
��l


� vech Lk

= 2
�3n−1�/2�Akl�−3/2�−1/2��1

2
�−1 vech��Akl

−1JAkl
−1 + �Akl

−1JAkl
−1���Lk� −

3

2
vech��Akl

−1 + Akl
−1��Lk��

� �1

2
tr�Akl

−1WkAkl
−1Wl� −

1

6
�−1�tr�Akl

−1WkAkl
−1WlAkl

−1J� + tr�Akl
−1WlAkl

−1WkAkl
−1J���

+
1

2
�vech��Akl

−1WkAkl
−1WlAkl

−1 + �Akl
−1WkAkl

−1WlAkl
−1���Lk� + vech��Akl

−1WlAkl
−1WkAkl

−1

+ �Akl
−1WlAkl

−1WkAkl
−1���Lk��T +

1

6
�−1�vech��Akl

−1WkAkl
−1WlAkl

−1JAkl
−1 + �Akl

−1WkAkl
−1WlAkl

−1JAkl
−1���Lk�

+ vech��Akl
−1WlAkl

−1JAkl
−1WkAkl

−1 + �Akl
−1WlAkl

−1JAkl
−1WkAkl

−1���Lk� + vech��Akl
−1JAkl

−1WkAkl
−1WlAkl

−1

+ �Akl
−1JAkl

−1WkAkl
−1WlAkl

−1���Lk� + vech��Akl
−1WlAkl

−1WkAkl
−1JAkl

−1 + �Akl
−1WlAkl

−1WkAkl
−1JAkl

−1���Lk�

+ vech��Akl
−1WkAkl

−1JAkl
−1WlAkl

−1 + �Akl
−1WkAkl

−1JAkl
−1WlAkl

−1���Lk� + vech��Akl
−1JAkl

−1WlAkl
−1WkAkl

−1

+ �Akl
−1JAkl

−1WlAkl
−1WkAkl

−1���Lk��T −
1

6
�−2 vech��Akl

−1JAkl
−1 + �Akl

−1JAkl
−1���Lk��tr�Akl

−1WkAkl
−1WlAkl

−1J�

+ tr�Akl
−1WlAkl

−1WkAkl
−1J��� , �47�
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�Vkl

� vech Ll
=

�	�k�
1
rij

��l


� vech Ll

= 2
�3n−1�/2�Akl�−3/2�−1/2��1

2
�−1 vech��Akl

−1JAkl
−1 + �Akl

−1JAkl
−1���Ll� −

3

2
vech��Akl

−1 + Akl
−1��Ll��

� �1

2
tr�Akl

−1WkAkl
−1Wl� −

1

6
�−1�tr�Akl

−1WkAkl
−1WlAkl

−1J� + tr�Akl
−1WlAkl

−1WkAkl
−1J��� +

1

2
�vech��Akl

−1WkAkl
−1WlAkl

−1

+ �Akl
−1WkAkl

−1WlAkl
−1���Ll� + vech��Akl

−1WlAkl
−1WkAkl

−1 + �Akl
−1WlAkl

−1WkAkl
−1���Ll��T

+
1

6
�−1�vech��Akl

−1WkAkl
−1WlAkl

−1JAkl
−1 + �Akl

−1WkAkl
−1WlAkl

−1JAkl
−1���Ll� + vech��Akl

−1WlAkl
−1JAkl

−1WkAkl
−1

+ �Akl
−1WlAkl

−1JAkl
−1WkAkl

−1���Ll� + vech��Akl
−1JAkl

−1WkAkl
−1WlAkl

−1 + �Akl
−1JAkl

−1WkAkl
−1WlAkl

−1���Ll�

+ vech��Akl
−1JAkl

−1WkAkl
−1WlAkl

−1 + �Akl
−1JAkl

−1WkAkl
−1WlAkl

−1���Ll� + vech��Akl
−1WlAkl

−1WkAkl
−1JAkl

−1

+ �Akl
−1WlAkl

−1WkAkl
−1JAkl

−1���Ll� + vech��Akl
−1WkAkl

−1JAkl
−1WlAkl

−1 + �Akl
−1WkAkl

−1JAkl
−1WlAkl

−1���Ll�

+ vech��Akl
−1JAkl

−1WlAkl
−1WkAkl

−1 + �Akl
−1JAkl

−1WlAkl
−1WkAkl

−1���Ll��T −
1

6
�−2 vech��Akl

−1JAkl
−1 + �Akl

−1JAkl
−1���Ll�

��tr�Akl
−1WkAkl

−1WlAkl
−1J� + tr�Akl

−1WlAkl
−1WkAkl

−1J��� . �48�

IV. NUMERICAL ILLUSTRATION

The carbon in the ground 3P state has four s- and two
p-electrons �the electron configuration: 1s22s22p2�. As this is
the smallest atom with two p-electrons in the ground elec-
tronic state, it is a good model system to test the procedure
for calculating the energy gradient described in this work.
The calculations performed in this work have concerned,
apart from the ground state, also the first excited 3P state of
this system and the corresponding transition energy with re-
spect to the ground state. This energy is very well established
experimentally as 71 352.51 cm−1 �the transition between
the J=0 sublevels�.29

Before the calculations for the carbon atom were started,
the gradient procedure was tested for correctness. In the test-
ing we first compared the values of the derivatives of indi-
vidual Hamiltonian and overlap matrix elements determined
with respect to the elements of the Lk matrix with the deriva-
tives calculated using the numerical differentiation. After this
test was successfully completed, the derivatives of the total
energy were checked also against the values obtained using
the numerical differentiation.

The first test calculation for the carbon atom was per-
formed for the ground state of the 12C isotope with only ten
basis functions. For the initial values for the nonlinear pa-
rameters of these functions we used the orbital exponents
taken from the standard 3-21 G orbital Gaussian basis set.
Squares of these exponents were used as the diagonal ele-
ments of the Lk matrices in the initial guesses for the basis
functions and the off-diagonal elements of these matrices
were set to zero. Next a gradient-based optimization was
performed where the values of all Lk matrix elements of the
ten basis functions were simultaneously optimized. This and

the other optimizations performed in this work have been
done with the Broyden–Fletcher–Goldfarb–Shanno �BFGS�
algorithm. This algorithm is usually somewhat more efficient
for small and medium size optimization problems than the
conjugate gradient and limited-memory BFGS algorithms.
The full BFGS algorithm requires storing the complete Hes-
sian �or more precisely, the Cholesky factor of it�, which
becomes prohibitively expensive for problems with many
thousands of variables. However, for the calculations per-
formed in this work the storage requirements for the Hessian
update are moderate and the BFGS algorithm works effi-
ciently.

In Table I we show how the total energy and the norm of
the energy gradient were changing in that optimization as
functions of the iteration number �only values for interaction
numbers being whole multiples of 200 are shown�. As one
can see, it took the optimization procedure 1677 iterations to

TABLE I. The convergence of the total 12C atom energy and the gradient
norm in a global optimization calculation with ten ECGFs in the basis set.
The energy is in hartrees.

Iteration No. Energy Gradient norm

0 
34.707 161 49 0.46�10−2

200 
36.621 903 54 0.30�10−4

400 
36.782 963 59 0.21�10−5

600 
36.893 867 67 0.21�10−5

800 
36.913 420 84 0.15�10−5

1000 
36.919 845 57 0.13�10−6

1200 
36.922 242 62 0.52�10−6

1400 
36.923 386 06 0.30�10−7

1600 
36.923 439 51 0.51�10−11

1677 
36.923 439 52 0.38�10−15
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lower the gradient norm from about 10−2 to
10−15 hartree bohr. When the gradient norm approached
10−15 the variational energy in the given basis was converged
to ten significant figures. This type of optimization progress
is not unusual when a small basis set is optimized. For larger
basis set the progress of the optimization is usually much
slower due to a much larger number of the parameters opti-
mized �in the carbon calculations there are 21 parameters per
Gaussian; 10�21 total in the calculation with ten basis func-
tions� and due to a stronger interdependency between the
basis functions. The ten-function test showed to us that the
gradient procedure works correctly and, as expected, the
lowering of the gradient norm is accompanied by a system-
atic convergence of the energy.

A basis set of ten functions is also used to show the
advantage of the basis set optimization that involves the gra-
dient versus the optimization without the gradient. Both op-
timizations in the test have been performed for the ground
state of the 12C atom and both were started using the same
initial ten-function basis set. To quantity, which is compared,
is the total energy obtained after running the optimization for
one CPU hour. In the optimization that does not utilize the
gradient, this amount of CPU time allowed to lower the total
energy from the initial 
33.505 631 97 to 
35.132 739 46
hartree. In the optimization with the gradient, during the
same amount of time the energy was lowered to

35.926 912 85 hartree clearly showing the advantage of
utilizing the gradient in the variational energy minimization.

The next test was performed for the two 3P carbon states
mentioned above. Both states, i.e., the 2s22p2 3P ground
state considered in the first test and the 2s22p3p 3P state
have the same spatial symmetry. For each of the two states
the basis set was grown to the size of 500 functions by in-
cremental additions of sets of 20 �in the early stage of the
optimization� or 50 �when the number of functions exceeded
200� functions. In generating the new functions we used the
functions already included in the set. By randomly perturb-
ing the exponential parameters of these already included
functions and selecting those from the modified function set
that contribute the most to the energy the new subset of
functions to be added to the basis set was generated. The new
functions were subsequently optimized using the gradient-
based procedure. Two types of optimizations have been per-
formed. When the basis set contained less than 80 functions,
we used a “global” optimization approach where we simul-
taneously optimized all functions in the basis set. When the
basis set exceeded 80 functions, the optimization involved
tuning the parameters of only one function at the time and
cycling over the whole basis set several times. We found this
type of strategy to be more time efficient and robust for
larger basis sets than the simultaneous optimization of all
nonlinear parameters.

We should mention that besides the Lk parameters, there
are two integer parameters, ik and jk, in each Gaussian �6�
that can be optimized. Optimization of these parameters usu-
ally has a small effect on the energy, but for the sake of
completeness of the basis set, it needs to be performed espe-
cially if very accurate energy is sought for. In this work we
only optimized the value of the second parameter, jk, setting

the first to be equal to one in all basis functions �ik=1�. This
optimization was only done once for each function just after
the function was added to the basis set.

In Table II we show how the total energies of the two 3P
states of 12C converge with the number of basis functions.
Results obtained using the basis sets ranging from 100 func-
tions to 500 functions in increments of 100 are shown. We
also show the convergence of the transition energy. As one
can see, 500 functions are definitely not enough to achieve a
high level of convergence for the energy of either of the two
states. Thousands of Gaussians are needed to achieve the
spectroscopic accuracy in this case. However the results ob-
tained with basis sets with sizes up to 500 functions quite
adequately illustrate that the gradient procedure works effi-
ciently in lowering the energies of both states. We should add
that the number of the optimization cycles for smaller basis
sets was larger than for the larger sets �only three for the set
with 500 functions�. This was related to the amount of the
computer time we were able to allocate for this project. This
resulted in the energies for the smaller sets to be better opti-
mized than the energies obtained with the larger sets. As the
energy of the upper state �2s22p3p 3P� requires more opti-
mization cycles than the energy of the ground state to be
converged to a similar level, the transition energies obtained
with the basis sets containing 400 and 500 basis functions
are not as low as they would be, if more cycles were per-
formed. In Table II we also show the energies of the two
states calculated with 500 functions for �C. This was done
by setting the mass of the nucleus to infinity. In those calcu-
lations we used the 12C basis functions without reoptimizing
their exponential parameters �only the linear parameters of
basis functions were recomputed�.

The ground state energy converging faster than the en-
ergy of the excited state is due to more complicated nature of
the spatial wave function of latter state than the former. The
difference in the convergence patterns causes the transition
energy calculated as the difference between the total energies
of the two states to be an upper bound to the exact value.
Thus, as the number of basis functions increases the transi-
tion energy decreases. The target value of the experimental
transition energy of 71 352.51 cm−1 is still off by less than

TABLE II. The convergence of the total nonrelativistic energies of the
ground and first excited 3P states �2s22p2 3P and 2s22p3p 3P� of 12C and �C
and the corresponding transition energy with the number of basis functions.
Total energies are in hartrees and transition energies are in cm−1.

Basis size 2s22p2 3P 2s22p3p 3P Transition energy

12C
100 
37.810 500 84 
37.471 761 87 74 344.61
200 
37.828 749 14 
37.499 145 61 72 339.61
300 
37.834 299 63 
37.506 664 64 71 907.57
400 
37.837 007 63 
37.509 749 61 71 824.83
500 
37.838 416 07 
37.511 548 21 71 739.20

Experimenta 71 352.51

�C
500 
37.840 128 79 
37.513 262 95 71 738.76

aReference 29.
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400 cm−1 at the basis set size of 500 �where the result is
71 739.20 cm−1�, but the energy seems to be converging to
the right value. We should also mention that the contribution
of the relativistic and quantum electrodynamics effects �not
considered in the present work� to the 2s22p2→2s22p3p
transition energy may be quite significant—of the order of
102 cm−1.

As for the total energy of the ground state, our
lowest result obtained with 500 Gaussians for �C is

37.840 128 79 hartree. This value is significantly lower
than the previous best variational ground state upper bound
of 
37.792 860 hartree obtained by Sundholm and Olsen30

in their finite-element multi-configuration Hartree-Fock cal-
culations with a large atomic orbital basis set. In our calcu-
lations the Sundholm and Olsen energy value was already
reached before the basis set size was increased to 80 ECGFs.
Our result can also be compared to the complete-basis-set
limit for the carbon ground state energy estimated by Woon
and Dunning31 to be 
37.838 16 hartree based on their con-
figuration interaction results obtained with the aug-cc-
pCVXZ type basis sets. The comparison suggests that Woon
and Dunning slightly underestimated the magnitude of the
correlation energy contribution.

We should note that, in general, the results of a multipa-
rameter variational optimization can be dependent on the ini-
tial guess for the basis functions used to start the growing of
the basis set. However, as the growing progresses and the
basis set becomes more complete, the dependency of the
results on the initial guess should decrease to eventually
completely disappear at the limit of completeness. Another
problem, which seems to also become less severe as the basis
set becomes larger, are linear dependencies among ECGFs.
This problem is addressed in the calculations by examining
each new basis function before and after the function is op-
timized and added to the basis set for possible linear depen-
dency with all other functions already included in the basis
set. If a linear dependency appears, the new function is dis-
carded and a new function is generated. This process contin-
ues until a linearly independent function is found.

V. SUMMARY

In this work we presented formulas for calculating the
analytical derivatives of the total energy of an atom with two
p-electrons with respect to the exponential parameters of ex-
plicitly correlated all-electron Gaussian functions used to ex-
pand the wave function of the system. The derivatives, which
are collected in the gradient vector, have been employed in
the variational calculations concerning the ground and the
first excited 3P state of the carbon atom. As only 500 Gaus-
sians have been used in the calculations, the results concern-
ing the total energies of the two states, as well as the transi-
tion energy, are not converged to the spectroscopic accuracy.
However they clearly demonstrate the advantage of using the
analytical gradient in the variational energy minimization.
Even with only 500 Gaussians in the basis set, our lowest
energy of the carbon ground state is significantly lower that
the best literature result.

The present calculations have been carried out on a mul-
tiprocessor computer system using the MPI protocol. There
are two ways this project will further evolve in the future.
The first involves redesigning the procedure for the gradient-
based energy minimization procedure so it can be executed
with high efficiency using hundreds or even thousands of
processors. With that calculations for the carbon atom and
for other systems of similar size can be performed using
large basis sets capable of producing results with the spec-
troscopic accuracy. The second way involves calculations of
excited states of four- and five-electron atomic systems.
Those states can either be states with two p-electrons or
states with one d-electron, as the present approach can easily
be extended to those latter types of states.
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