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Abstract. Recently, Einsiedler and the authors provided a bound in terms
of escape of mass for the amount by which upper-semicontinuity for metric
entropy fails for diagonal flows on homogeneous spaces Γ\G, where G is any
connected semisimple Lie group of real rank 1 with finite center, and Γ is
any nonuniform lattice in G. We show that this bound is sharp, and apply
the methods used to establish bounds for the Hausdorff dimension of the set
of points which diverge on average.

1. Introduction

Let G be a connected semisimple Lie group of R-rank 1 with finite center and
Γ a nonuniform lattice in G. Further let a ∈ G \ {1} be chosen such that its
adjoint action Ada on the Lie algebra g of G is R-diagonalizable. The element a
acts on the homogeneous space X := Γ\G by right multiplication, defining the
(generator of the) discrete geodesic flow

(1) T : X→ X, x 7→ xa.

The normalized Haar measure m on X uniquely realizes the maximal metric
entropy hm(T ) of T (see below for more details). The following relation between
metric entropies of T and escape of mass along T -invariant probability measures
on X has been proven in [EKP]. We note that the limit measure ν does not need
to be a probability measure.

Theorem. Let (µj)j∈N be a sequence of T -invariant probability measures on X

which converges to the measure ν in the weak* topology. Then

(2) ν(X)h ν
ν(X)

(T ) +
1

2
hm(T ) · (1− ν(X)) ≥ lim sup

j→∞
hµj (T ),

where it does not matter how we interpret h ν
ν(X)

(T ) if ν(X) = 0.

Since Γ is not cocompact, upper semi-continuity of metric entropy cannot be
expected on X. The theorem above shows that the amount by which it may fail
is controlled by the escaping mass. In this formula, the factor 1

2 is significant:
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it shows that the amount of failure is only half as bad as it could be a priori
(which would be the factor 1).

The first aim of this article is to show that the factor 1
2 is best possible. More

precisely, we will establish the following theorem.

Theorem 1.1. For any c ∈ [12hm(T ), hm(T )], there exists a convergent sequence
of T -invariant probability measures (µj)j∈N on X with limj→∞ hµj (T ) = c such
that its weak* limit ν satisfies

ν(X) =
2c

hm(T )
− 1.

For any such sequence (µj), equality holds in (2) as well as

h ν
ν(X)

(T ) = hm(T ) for ν(X) 6= 0

(and hence ν/ν(X) is the normalized Haar measure on X).

The second aim of this article is to relate the factor 1
2 to the Hausdorff dimension

of the set of points which diverge on average. We recall that a point x ∈ X is
said to diverge on average (with respect to T ) if for any compact subset K of X
we have

lim
n→∞

1

n

∣∣{i ∈ {0, 1, . . . , n− 1} | T i(x) ∈ K
}∣∣ = 0.

It is said to be divergent (with respect to T ) if its forward trajectory under T
eventually leaves any compact subset. In other words, if for any compact subset
K of X we find N ∈ N such that for n > N we have Tnx /∈ K.

Obviously, each divergent point diverges on average. Let

U := {u ∈ G | anua−n → 1 as n→∞}
denote the unstable subgroup with respect to a. From [Dan85] and also from
[EKP] it follows that the Hausdorff dimension of the set of divergent points is
dimG − dimU . However, for the set of points diverging on average we prove
that its Hausdorff dimension is strictly larger than dimG − dimU . Moreover,
we also obtain an upper estimate showing that its dimension is strictly less than
the full dimension. To state these results more precisely, let

D := {x ∈ X | x diverges on average}.
The Lie group G has at most two positive roots, namely a short one, denoted
α, and a long one 2α. Let

p1 := dim gα and p2 := dim g2α.

The group G has a single positive root if and only if it consists of isometries of
a real hyperbolic space. In this case, we set p1 = 0 or p2 = 0 (both cases are
possible and relevant, see Section 2).

Theorem 1.2. For the Hausdorff dimension of D we have the estimates

dimG− 1

2
dimU − p2

2
≤ dimD ≤ dimG− 1

2
dimU +

p1
4
.

The proof of Theorem 1.2 shows that the factor 1
2 of dimU arises for the same

reason as the factor 1
2 in (2). If G consists of isometries of a real hyperbolic
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space, we obtain the following improvement. It is caused by the fact that in this
case, the adjoint action of a has a single eigenvalue of modulus greater than 1.

Theorem 1.3. Suppose that G consists of isometries of a real hyperbolic space.
Then

dimD = dimG− 1

2
dimU.

Therefore, it seems natural to expect the following precise value for the Hausdorff
dimension of D.

Conjecture 1.4. If G is any R-rank 1 connected semisimple Lie group with
finite center, then dimH D = dimG− 1

2 dimU .

For the homogeneous spaces SLd+1(Z)\SLd+1(R), d ≥ 1, and the action of a
certain singular diagonal element of SLd+1(R), the analog of Theorem 1.1 has
been proven in [Kad12]. For d = 2, the Hausdorff dimension of the set of points
which diverge on average is shown in [EK12] to be 6 + 4/3.

2. Preliminaries

The Lie algebra g of the Lie group G is the direct sum of a simple Lie algebra
of rank 1 and a compact one. The compact component does not have any
influence on the dynamics considered here (cf. [EKP]). For this reason, we
assume throughout that g is a simple Lie algebra of rank 1 and, correspondingly,
that G is a connected simple Lie group of R-rank 1 with finite center. This allows
us to work with a coordinate system for G which is adapted to the dynamics,
and G can be realized as the isometry group of a Riemannian symmetric space
of rank 1 and noncompact type. For more background information on this
coordinate system we refer to [CDKR91, CDKR98].

Coordinate system. Let A be the maximal one-parameter subgroup of G of
diagonalizable elements which contains a, the chosen generator for the discrete
geodesic flow T . Then there exists a group homomorphism α : A → (R>0, ·)
such that α(a) > 1 and g decomposes into the direct sum

(3) g = g−2 ⊕ g−1 ⊕ c⊕ g1 ⊕ g2,

where

gj :=
{
X ∈ g

∣∣∣ ∀ ã ∈ A : AdãX = α(ã)
j
2X
}
, j ∈ {±1,±2},

and c is the Lie algebra of the centralizer C = CA(G) of A in G. The ho-
momorphism α is the square root of the “group analog” of the root α in the
Introduction. If g is not isomorphic to so(1, n), n ∈ N, the decomposition (3) is
the restricted root space decomposition of g. If g is isomorphic to so(1, n) for
some n ∈ N (which is equivalent to saying that G consists of isometries of a real
hyperbolic space), either g1 or g2 is trivial. In this case, both

g = g−1 ⊕ c⊕ g1 and g = g−2 ⊕ c⊕ g2

are restricted root space decompositions of g. The first one corresponds to the
Cayley-Klein models of real hyperbolic spaces, the second one to the Poincaré
models (see [CDKR91, CDKR98]). In any case, let n := g2 ⊕ g1 and let N be
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the connected, simply connected Lie subgroup of G with Lie algebra n. Further
pick a maximal compact subgroup K of G such that

N ×A×K → G, (n, ã, k) 7→ nãk (Iwasawa decomposition)

is a diffeomorphism, and let
M := K ∩ C.

The semidirect product NA is parametrized by

R>0 × g2 × g1 → NA, (s, Z,X) 7→ exp(Z +X) · as
with α(as) = s, as ∈ A. Let θ be a Cartan involution of g such that the Lie
algebra k of K is its 1-eigenspace, and let B denote the Killing form. Further
let

p1 := dim g1 and p2 := dim g2.

On n we define an inner product via

〈X,Y 〉 := − 1

p1 + 4p2
B(X, θY ) for X,Y ∈ n.

This specific normalization yields that the Lie algebra [·, ·] of g, even though it
is indefinite, satisfies the Cauchy-Schwarz inequality

|[X,Y ]| ≤ |X||Y |
for X,Y ∈ n (see [Poh10]). We may identify G/K ∼= NA ∼= R>0 × g2 × g1 with
the space

D :=

{
(t, Z,X) ∈ R× g2 × g1

∣∣∣∣ t > 1

4
|X|2

}
via

R>0 × g2 × g1 → D, (t, Z,X) 7→ (t+ 1
4 |X|

2, Z,X).

With the linear map J : g2 → End(g1), Z 7→ JZ ,

〈JZX,Y 〉 := 〈Z, [X,Y ]〉 for all X,Y ∈ g1,

the geodesic inversion σ of D at the origin (1, 0, 0) is given by (see [CDKR98])

(4) σ(t, Z,X) =
1

t2 + |Z|2
(
t,−Z, (−t+ JZ)X

)
.

We shall identify σ with the element in K with acts as in (4). Then G has the
Bruhat decomposition

(5) G = NAM ∪NAMσN.

To modify this Bruhat decomposition into one which is tailored to the dynamics
on X, we recall the following result on fundamental domains of Siegel type. For
s > 0 let

As := {at ∈ A | t > s},
and for any compact subset η of N define the Siegel set

Ω(s, η) := ηAsK.

Proposition 2.1 (Theorem 0.6 and 0.7 in [GR70]). There exists s0 > 0, a
compact subset η0 of N and a finite subset Ξ of G such that

(i) G = ΓΞΩ(s0, η0),
(ii) for all ξ ∈ Ξ, the group Γ ∩ ξNξ−1 is a cocompact lattice in ξNξ−1,
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(iii) for all compact subsets η of N the set

{γ ∈ Γ | γΞΩ(s0, η) ∩ Ω(s0, η) 6= ∅}

is finite,
(iv) for each compact subset η of N containing η0, there exists s1 > s0 such

that for all ξ1, ξ2 ∈ Ξ and all γ ∈ Γ with γξ1Ω(s0, η) ∩ ξ2Ω(s1, η) 6= ∅ we
have ξ1 = ξ2 and γ ∈ ξ1NMξ−11 .

Throughout we fix a choice for η0, s1 (with η = η0) and Ξ. The elements of Ξ
are representatives for the cusps of X (and will also be called cusps). Note that
σNσ = U is the unstable subgroup with respect to a, and the conjugation of
σ(1, Z,X)σ ∈ U by a is given by

a−kσ(1, Z,X)σak = σ(1, α(a)−kZ,α(a)−k/2X)σ (k ∈ Z).

Multiplying (5) with ξ ∈ Ξ from the left and σ from the right yields

G = ξNAMσ ∪ ξNAMU.

Maximal entropy. Let M1(X)T denote the set of T -invariant probability mea-
sures on X. For each µ ∈ M1(X)T let hµ(T ) denote the metric entropy of T
with respect to µ. In [EL10, Section 7.8] it is shown that the maximal metric
entropy

max{hµ(T ) | µ ∈M1(X)T }
of T is uniquely realized by the normalized Haar measure m on X, and it is
given by

hm(T ) =
(p1

2
+ p2

)
logα(a).

Normalization. If the element a in (1) changes (within A) then all metric
entropies scale by the same factor. Thus, for proving Theorem 1.1-1.3 we may
and will assume throughout that a is chosen such that

α(a) = e, (e = exp(1))

letting T result in the time-one geodesic flow.

The height function and an improved choice of s1. In the following
we recall the definition of the height function on X from [EKP] and its for us
significant properties. For any ξ ∈ Ξ consider the ξ-Iwasawa decomposition
G = ξNAK. For g ∈ G let s = sξ(g) > 0 be given by g = ξNasK. Then s is
indeed well-defined. For x ∈ X, its ξ-height is

htξ(x) = sup{sξ(g) | Γg = x}.

Its height is

ht(x) = max{htξ(x) | ξ ∈ Ξ}.
For s > 0 we set

X<s = {x ∈ X : ht(x) < s} and X≥s = {x ∈ X : ht(x) ≥ s}.

The constant s1 in Proposition 2.1 can be chosen such that

(i) if for x ∈ X and ξ ∈ Ξ, we have htξ(x) > s1, then ht(x) = htξ(x),
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(ii) if for x ∈ X, we have ht(x) > s1 and ht(x) > ht(xa), then the T -orbit of
x strictly descends below height s1 before it can rise again. This means
that there exists n ∈ N such that for j = 0, . . . , n − 1, we have ht(xaj) >
ht(xaj+1) and ht(xan) ≤ s1, and

(iii) if x ∈ X and htξ(x) > s1 for some ξ ∈ Ξ, then there is (at least one) element
g = ξnarmu ∈ ξNAMU or g = ξnarmσ ∈ ξNAMσ which realizes htξ(x).
That is, x = Γg and htξ(x) = sξ(g). The components ar and u do not
depend on the choice of g.

We suppose from now on that s1 satisfies these properties.

For any point x ∈ X which is high in some cusp, we have the following explicit
formulas for the calculation of the height of the initial part of its orbit.

Proposition 2.2 ([EKP]). Let x ∈ X, ξ ∈ Ξ and suppose that htξ(xa
k) > s1

for all k ∈ {0, . . . , n}.

(i) If htξ(x) is realized by g = ξnarmσ ∈ ξNAMσ, then

htξ(xa
k) = re−k.

(ii) If htξ(x) is realized by g = ξnarmu ∈ ξNAMU with u = σ(1, Z,X)σ, then

htξ(xa
k) = r

e−k(
e−k + 1

4 |X|2
)2

+ |Z|2
.

Riemannian metric on G and metric on X. The isomorphism

n = g2 × g1 → N, (Z,X) 7→ exp(Z +X),

induces an inner product on N from the inner product on n. Then the isomor-
phism N → U , n 7→ σnσ, induces an inner product on U , and using the inverse
of the exponential map, also on n := g−2 × g−1.

We pick a left G-invariant Riemannian metric on G, which on the tangent space
T1G ∼= g reproduces the inner products on n and n. Let dG denote the induced
left-G-invariant metric on G. For r > 0 let BG

r , BU
r , resp. BNAM

r denote the
r-balls in G, U , resp. NAM around 1 ∈ G. We define

λ0 := min{|λ| | λ is an eigenvalue of Ada with |λ| > 1}.

Thus,

λ0 =

{
e if g1 = {0} (and hence G/K is a real hyperbolic space),

e1/2 otherwise.

Then for any L ≥ 0 we have

aLBU
r a
−L ⊆ BU

λ−L0 r

or, in other words,

dG(ua−L, va−L) ≤ λ−L0 dG(u, v) ≤ dG(u, v)

for u, v ∈ U . Further

cmax{|Z|, |X|} ≤ dG(1, σ(1, Z,X)σ)
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for some constant c > 0 and all u = σ(1, Z,X)σ ∈ U . In order to avoid carrying
too many constants through the calculation, we may assume that c = 1. The
induced metric dX on X is given by

dX(x, y) := min{dG(g, h) | x = Γg, y = Γh}.

We usually omit the subscripts of dG and dX.

Finally, to shorten notation, we use

[0, n] := {0, . . . , n}

for n ∈ N. The context will always clarify whether [0, n] refers to this discrete
interval or a standard interval in R.

3. Upper bound on Hausdorff dimension

Recall that

D = {x ∈ X | x diverges on average}.

Theorem 3.1. The Hausdorff dimension of D is bounded from above by

(i) dimD ≤ dimG− 1

2
dimU +

p1
4
.

If p2 = 0, then

(ii) dimD ≤ dimG− 1

2
dimU.

The proof of this theorem builds on Lemma 3.2 below, which easily follows from
the contraction rate of the unstable direction under the action of a.

Lemma 3.2. Let µ be a probability measure on X of dimension at most β.
Then, for any r > 0, any x ∈ X and any L ∈ N we have

µ(xaLBU
r a
−LBNAM

r ) ≤ crβe(dimNAM+
p1
2
−β)L.

If p2 = 0, this bound can be improved to

µ(xaLBU
r a
−LBNAM

r ) ≤ crβe(dimNAM−β)L
2 .

Here, c is a constant only depending on µ.

Proof of Theorem 3.1. The claimed bound on the Hausdorff dimension of D

follows using the method used to prove Theorem 1.4 and Corollary 1.5 in [EK12],
using Lemmas 8.4 and 8.5 in [EKP] as well as Lemma 3.2. �

4. Lower bound on Hausdorff dimension

In this section we prove the following lower bound on Hausdorff dimension:

Theorem 4.1. The Hausdorff dimension of the set of points in X which diverge
on average is at least

dimG− 1

2
dimU − p2

2
.
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As a tool we use a lower estimate on the Hausdorff dimension of the limit set
of strongly tree-like collections provided by [KM96, §4.1] (which goes back to
[Fal86], [McM87], [Urb91], and [PW94]).

Let U0 be a compact subset of U and let λ be the Lebesgue measure on U (using
the identification U ∼= Rp2 ×Rp1). A countable collection U of compact subsets
of U0 (a subset of the power set of U0) is said to be strongly tree-like if there
exists a sequence (Uj)j∈N0 of finite nonempty collections on U0 with U0 = {U0}
such that

U =
⋃
j∈N0

Uj

and

∀ j ∈ N0 ∀A,B ∈ Uj either A = B or λ(A ∩B) = 0,(6)

∀ j ∈ N ∀B ∈ Uj ∃A ∈ Uj−1 such that B ⊆ A,(7)

dj(U) := sup
A∈Uj

diam(A)→ 0 as j →∞.(8)

Note that (6) implies λ(A) > 0 for all A ∈ U. For a strongly tree-like collection
U with fixed sequence (Uj)j∈N0 we let

(9) Uj :=
⋃
A∈Uj

A for any j ∈ N0.

Clearly, Uj ⊆ Uj−1 for any j ∈ N. Further we call the nonempty set

(10) U∞ :=
⋂
j∈N0

Uj

the limit set of U. For any subset B of U0 and any j ∈ N we define the j-th
stage density of B in U to be

δj(B,U) :=

{
0 if λ(B) = 0
λ(Uj∩B)
λ(B) if λ(B) > 0.

Note that δj(B,U) ≤ 1. Finally, for any j ∈ N0 we define the j-th stage density
of U to be

∆j(U) := inf
B∈Uj

δj+1(B,U).

Lemma 4.2 ([KM96]). For any strongly tree-like collection U of subsets of U0

we have

dimH(U∞) ≥ dimU − lim sup
j→∞

j−1∑
i=0

∣∣ log(∆i(U))
∣∣

| log(dj(U))|
.

4.1. Construction of a strongly tree-like collection. We construct a stro-
ngly tree-like collection such that its limit set consists only of points which
diverge on average. This construction proceeds in several steps.

Proposition 4.3. Let s > 39s1 and R ∈ N. Then there exists x ∈ X≤s such

that for any η in the interval (0, 12) there exists a subset E of B
U
ηe−R/4 with

S = beR/2cp2beR/4cp1 elements such that

(i) for all u ∈ E, the points xu and TR(xu) are contained in X≤s,
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(ii) for any two distinct elements u, v ∈ E we have d
(
TR(u), TR(v)

)
≥ η,

(iii) for all u ∈ E and all k ∈ [0, R] we have T k(xu) ∈ X>s/39.

We may choose for x any element Γg with

g ∈ {ξnarmσ(1, Z0, X0)σ | n ∈ N, r ∈ I,m ∈M},

where ξ ∈ Ξ is any cusp, I is a specific interval in R of positive length and
(1, Z0, X0) is a specific point in N , both being specified in the proof. Thus, the
dimension of the set of possible x is at least dim(NAM).

Proof. Fix a cusp ξ ∈ Ξ and pick an element (Z0, X0) ∈ g2 × g1 with |Z0| =
3
2e
−R/2 and |X0| = 3

2e
−R/4. Define

g := ξnarmσ(1, Z0, X0)σ and x := Γg

with n ∈ N , m ∈M . Set

B :=
{

(Z,X) ∈ g2 × g1
∣∣ |Z| ≤ ηe−R/2, |X| ≤ ηe−R/4}.

In the following we will estimate the height of xak, k ∈ [0, R], and deduce an
allowed range for r such that x satisfies (iii) and (i) for all elements in σBσ.
Since the height does not depend on n and m, we omit these two elements. Let
(Z,X) ∈ B. Recall that

gσ(1, Z,X)σ = ξarσ(1, Z0 + Z + 1
2 [X0, X], X0 +X)σ.

Then

(11) e−R/4 < |X0 +X| < 2e−R/4

and, using |[X0, X]| ≤ |X0||X|,

(12)
5

8
e−R/2 <

∣∣∣∣Z0 + Z +
1

2
[X0, X]

∣∣∣∣ < 3e−R/2.

Let k ∈ [0, R]. Recall that

(13) htξ
(
xσ(1, Z,X)σak

)
= r · e−k(

e−k + 1
4 |X0 +X|2

)2
+
∣∣Z0 + Z + 1

2 [X0, X]
∣∣2

for sufficiently large r (calculated below). Using the upper bounds in (11) and
(12) it follows that

htξ
(
xσ(1, Z,X)σak

)
>

r

13
.

Hence, (iii) is satisfied for r > s
3 (note that then r

13 >
s
39 > s1). Moreover, for

these r, [EKP, Proposition 5.5] shows that

ht
(
xσ(1, Z,X)σan

)
= htξ

(
xσ(1, Z,X)σan

)
.

Using the lower bounds in (11) and (12) we find

ht(xσ(1, Z,X)σak) ≤ r

e−k + 1
2e
−R/2 + 25

64e
k−R .

For r ≤ 25
64s, this implies ht(xσ(1, Z,X)σak) ≤ s for k ∈ {0, R} and hence (i).

To define the set E, we may pick pairwise disjoint elements

(Zi, Xj) ∈ B, i = 1, . . . , beR/2cp2 , j = 1, . . . , beR/4cp1
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such that

|Zk − Z`| ≥ ηe−R, |Xk −X`| ≥ ηe−R/2

whenever k 6= `. Define

E :=
{
σ(1, Zi, Xj)σ

∣∣ i = 1, . . . beR/2cp2 , j = 1, . . . , beR/4cp1
}
.

For any two distinct elements σ(1, Z,X)σ, σ(1, Z ′, X ′)σ ∈ E we have

d(σ(1, Z,X)σaR,σ(1, Z ′, X ′)σaR)

≥ max

{∣∣∣∣Z − Z ′ + 1

2
[X,X ′]

∣∣∣∣ eR, |X −X ′|eR/2}
If X 6= X ′, then

d(σ(1, Z,X)σaR, σ(1, Z ′, X ′)σaR) ≥ |X −X ′|eR/2 ≥ η.

If X = X ′, then

d(σ(1, Z,X)σaR, σ(1, Z ′, X ′)σaR) ≥ |Z − Z ′|eR ≥ η.

This completes the proof. �

To simplify notation we use the following convention: Given a sequence (Sk)k∈N
of positive natural numbers, for any n ∈ N we let

Sn := {(i1, . . . , in) | 1 ≤ ij ≤ Sj , j = 1, . . . , n} = [1, S1]× · · · × [1, Sn]

be the set of n-multi-indices with entries 1, . . . , Sj in the j-th component. If
i = (i1, . . . , in) ∈ Sn and j ∈ [1, Sn+1], then we set

(i, j) := (i1, . . . , in, j) ∈ Sn+1.

Finally we let

S :=
⋃
n∈N

Sn.

We let

Bε(K) := {x ∈ X | d(K, x) < ε}
denote the ε-thickening of the set K ⊆ X.

Theorem 4.4. Let K be a compact subset of X. For any k ∈ N choose natural
numbers Rk, Sk ∈ N such that there exist a subset E(k) ⊆ U of cardinality Sk
and a point xk ∈ K such that for any u ∈ E(k) we have

(14) xku, T
Rk(xku) ∈ K.

Then for any i ∈ S there exists gi ∈ U such that, if we define

E′n := {gi | i ∈ Sn} for n ∈ N,

the following properties are satisfied:

(i) E′1 = E(1),

(ii) for any m ∈ N there exists an enumeration of E(m) by [1, Sm], say

E(m) =
{
u
(m)
1 , . . . , u

(m)
Sm

}
,
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and for any η > 0 there exists R′ = R′(η,K) ∈ N (independent of the
choice of the gi’s) such that with

F (k) :=
k−1∑
i=1

Ri + (k − 1)R′, k ∈ N,

we have

(15) d
(
TF (n)+Rngi, T

F (n)+Rng(i,j)
)
< η

for any n ∈ N, i ∈ Sn, and j ∈ [1, Sn+1], and

(16) TF (k)(x1gi) ∈ xku
(k)
ik
BNAM
η/2 aRkBU

η/2a
−Rk

for any n ∈ N, any i = (i1, . . . , in) ∈ Sn and any k ∈ [1, n].

If, in addition, η0 > 0 is an injectivity radius of Bε(K) for some (fixed) ε > 0,
and

E(k) ⊆ BU
η0/4

for all k ∈ N,

and

d
(
TRku, TRkv) ≥ η0

for any distinct u, v ∈ E(k), any k ∈ N, and in (ii) we have

η < min

{
η0(λ0 − 1)

4λ0
,
ε

2

}
then

(iii) for any n ∈ N, the set E′n has the cardinality of Sn, and
(iv) for any n ∈ N, any distinct i, j ∈ Sn we have

η0 > d(gi, gj) and d
(
TF (n)+Rngi, T

F (n)+Rngj
)
>
η0
2
.

The proof of Theorem 4.4 is based on Lemmas 4.5-4.7 below. Throughout these
lemmas we let K be a fixed compact subset of X.

Recall that the group UNAM is a neighborhood of 1 ∈ G. We fix ε1 > 0 such
that BG

ε1 ⊆ UNAM . The Shadowing Lemma 4.5 below uses the fact that the
subgroups NAM and U intersect in the neutral element 1 only.

Lemma 4.5 (Shadowing Lemma). There exists c > 0 such that for any ε ∈
(0, ε1) and x−, x+ ∈ X with d(x−, x+) < ε there exist u+ ∈ BU

cε and u ∈ BNAM
cε

such that

(17) x−u
+ = x+u

Proof. There exists g ∈ G with d(g, 1) < ε such that x−g = x+.Write g = u+u−1

with u ∈ NAM and u+ ∈ U . Then, d(u+, 1) < cε and d(u, 1) < cε and
x−u

+ = x+u. Now continuity of the decomposition, continuous dependence of
c on u+ and u, and the bounded range for ε implies a uniform constant c. �

The compactness of K and the topological mixing of T imply the following
lemma.
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Lemma 4.6. For any η > 0 and any δ > 0 there exists R′ = R′(δ,K, η) ∈ N
such that for any z−, z+ ∈ Bη(K) and ` ≥ R′ there exists z′ ∈ X such that

d(z′, z−) < δ and d(z+, T
`(z′)) < δ.

The proof of the following lemma is a combination of Lemmas 4.5 and 4.6.

Lemma 4.7. Let η > 0 and let z− and z+ be in Bη(K). Let c be as in the
Shadowing Lemma 4.5. For any δ > 0 let R′ = R′(δ,K, η) be as in Lemma 4.6.
Then there exist u+ ∈ BU

c(c+2)δ and u ∈ BNAM
c(c+2)δ such that

TR
′
(z−u

+) = z+u.

Proof. Throughout we will assume that δ < ε1
c+1 to be able to apply the Shad-

owing Lemma 4.5. If the statement is proven for these small δ, it holds a fortiori
for larger δ. We first use Lemma 4.6 to obtain z′ ∈ X such that

(18) d(z′, z−) < δ and d
(
z+, T

R′(z′)
)
< δ.

Then we apply Lemma 4.5 with x− = z−, x+ = z′ and ε = δ to obtain u+1 ∈ BU
cδ

and u1 ∈ BNAM
cδ such that

(19) z−u
+
1 = z′u1.

The distance between TR
′
(z−u

+
1 ) and z+ is bounded as follows:

d
(
TR
′
(z−u

+
1 ), z+

)
= d
(
TR
′
(z′u1), z+

)
≤ d
(
TR
′
(z′u1), T

R′z′
)

+ d
(
TR
′
z′, z+

)
< (c+ 1)δ.

We apply again Lemma 4.5, this time for x− = TR
′
(z−u

+
1 ), x+ = z+ and

ε = (c+ 1)δ to obtain u+2 ∈ BU
c(c+1)δ and u ∈ BNAM

c(c+1)δ such that

TR
′
(z−u

+
1 )u+2 = z+u.

Now TR
′
(z−u

+
1 )u+2 = TR

′(
z−(u+1 a

R′u+2 a
−R′)

)
. Setting u+ := u+1 (aR

′
u+2 a

−R′)
concludes the proof. �

Proof of Theorem 4.4. We start by proving (i) and (ii). To that end let η > 0
be arbitrary and pick c > 0 as in the Shadowing Lemma 4.5. Set Dη := Bη(K),

δ :=
η

2
· λ0 − 1

c(c+ 2)λ0

and fix R′ with the properties as in Lemma 4.6 applied for this δ. Instead of
proving (16) we will prove the stronger statement

(20) TF (k)(x1gi) ∈ xku
(k)
ik
BNAM
c(c+2)δa

RkBU
r(n,k)a

−Rk

for any n ∈ N, any i = (i1, . . . , in) ∈ Sn and any k ∈ [1, n] where

r(n, k) := c(c+ 2)δ
n−k−1∑
i=0

λ−i0

and r(n, n) = 0 by convention. Since c(c+ 2)δ < η/2 and r(n, k) < η/2, this is
indeed stronger than (16). For the proof of (20) we precede by induction on n.
As a by-product, we will prove (i) and (15).
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For n = 1 and j ∈ [1, S1] we set gi = u
(1)
i . Then (i) and (20) for n = 1

are trivially satisfied. Suppose that for some n ∈ N we constructed the set
E′n fulfilling (20). We show how to construct E′n+1 from E′n such that (20) is
satisfied for n+ 1 and (15) for n.

Let i ∈ Sn and j ∈ [1, Sn+1]. By the inductive hypothesis

TF (n)(x1gi) ∈ xnu
(n)
in
BNAM
η
2

aRnBU
η
2
a−Rn .

Thus,

TF (n)+Rn(x1gi) ∈ TRn(xnu
(n)
in

)a−RnBNAM
η
2

aRnBU
η
2
.

From
a−RnBNAM

η
2

aRnBU
η
2
⊆ BG

η

and TRn(xnu
(n)
in

) ∈ K, it follows that TF (n)+Rn(x1gi) ∈ Dη. Further,

xn+1u
(n+1)
j ∈ K ⊆ Dη.

We apply Lemma 4.7 with

z− := TF (n)+Rn(x1gi) and z+ := xn+1u
(n+1)
j

to obtain u+j ∈ BU
c(c+2)δ and uj ∈ BNAM

c(c+2)δ satisfying

(21) x1gia
F (n)+Rnu+j a

R′ = TR
′
(z−u

+
j ) = z+uj = xn+1u

(n+1)
j uj .

We define
g(i,j) := gia

F (n)+Rnu+j a
−F (n)−Rn ∈ U

and
E′n+1 := {g(i,j) | i ∈ Sn, j ∈ [1, Sn+1]}.

Clearly,

d
(
TF (n)+Rn(gi), T

F (n)+Rn(g(i,j))
)

= d(1, u+j ) <
η

2
,

which proves (15) for n.

We will now show (20) for n + 1. Suppose first that k = n + 1. From the
definition of F (n+ 1) and (21) it immediately follows that

TF (n+1)(x1g(i,j)) ∈ xn+1u
(n+1)
j BNAM

c(c+2)δ.

Suppose now that k ∈ [1, n]. Then

TF (k)(x1g(i,j)) = x1gia
F (n)+Rnu+j a

F (k)−F (n)−Rn

= TF (k)(x1gi)a
−F (k)+F (n)+Rnu+j a

F (k)−F (n)−Rn

∈ TF (k)(x1gi)a
−F (k)+F (n)+RnBU

c(c+2)δa
F (k)−F (n)−Rn .

From the inductive hypothesis we have

TF (k)(x1gi) ∈ xku
(k)
ik
BNAM
c(c+2)δa

RkBU
r(n,k)a

−Rk .

Therefore

(22) TF (k)(x1g(i,j))

∈ xku
(k)
ik
BNAM
c(c+2)δa

RkBU
r(n,k)a

−F (k)−Rk+F (n)+RnBU
c(c+2)δa

F (k)−F (n)−Rn .
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If k = n, then r(n, k) = 0. Hence (22) simplifies to

TF (n)(x1g(i,j)) ∈ xnu
(n)
in
BNAM
c(c+2)δa

RnBU
c(c+2)δa

−Rn .

If k ∈ [1, n− 1], then

−F (k)−Rk + F (n) +Rn =

n∑
i=k+1

Ri + (n− k)R′ =: p(k, n).

Hence

a−F (k)−Rk+F (n)+RnBU
c(c+2)δa

F (k)+Rk−F (n)−Rn ⊆ BU

c(c+2)δλ
−p(k,n)
0

⊆ BU

c(c+2)δλ
−(n−k)
0

.

With r(n, k) + c(c+ 2)δλ
−(n−k)
0 = r(n+ 1, k) it now follows that

TF (k)(x1g(i,j)) ∈ xku
(k)
ik
BNAM
c(c+2)δa

RkBU
r(n+1,k)a

−Rk .

This completes the proof of (ii).

Since (iii) is an immediate consequence of (iv), it remains to prove the two state-
ments in (iv). We start with the first one. Let i = (i1, . . . , in), j = (j1, . . . , jn) ∈
Sn. Then

d(gi, gj) ≤ d(gi, gi1) + d(gi1 , gj1) + d(gj1 , gj).

Since gi1 , gj1 ∈ E(1) ⊆ BU
η0/4

, we have d(gi1 , gj1) < η0/2. To bound the other

two terms, let k ∈ [1, Sn+1]. Then by (15) we have

d
(
TF (n)+Rngi, T

F (n)+Rng(i,k)
)
< η.

Therefore,

d(gi, g(i,k)) < ηλ
−F (n)−Rn
0 .

Applying this observation iteratively, we obtain

d(gi1 , gi) < η
n−1∑
j=1

λ
−F (j)−Rj
0 < η · 1

λ0 − 1
<
η0
4
.

Thus,
d(gi, gj) < η0

as claimed.

Finally, let i, j ∈ Sn, i 6= j. It remains to show that

(23) d(TF (n)+Rngi, T
F (n)+Rngj) >

η0
2
.

Suppose first that we find k ∈ [1, n] such that

d(gia
F (k), gja

F (k)) ≥ η0.
Since F (k)− F (n)−Rn < 0, the assumption

d(gia
F (n)+Rn , gja

F (n)+Rn) ≤ η0
2

would result in

d(gia
F (k), gja

F (k)) ≤ η0
2
.

Therefore, in this case, (23) is obviously satisfied.
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To complete the proof pick k ∈ [1, n] such that ik 6= jk and suppose

d(gia
F (k), gja

F (k)) < η0.

Actually, we may suppose ≤ η0/2, but < η0 turns out to be sufficient. By (16)
we find u−i , u

−
j ∈ BNAM

η/2 and u+i , u
+
j ∈ BU

η/2 such that

TF (k)(x1gi) = xku
(k)
ik
u−i a

Rku+i a
−Rk

and

TF (k)(x1gj) = xku
(k)
jk
u−j a

Rku+j a
−Rk .

Pick h0, hk ∈ G such that Γh0 = x1 and xk = x1hk. Further let γ ∈ Γ be such
that

γh0gia
F (k) = h0hku

(k)
ik
u−i a

Rku+i a
−Rk .

We will show that

(24) γh0gja
F (k) = h0hku

(k)
jk
u−j a

Rku+j a
−Rk

(same γ!). To that end we note that

d
(
h0hku

(k)
ik
u−i a

Rku+i a
−Rk , h0hku

(k)
jk
u−j a

Rku+j a
−Rk

)
≤ d
(
u
(k)
ik
u−i a

Rku+i a
−Rk , u

(k)
ik

)
+ d
(
u
(k)
ik
, u

(k)
jk

)
+ d
(
u
(k)
jk
, u

(k)
jk
u−j a

Rku+j a
−Rk

)
< η +

η0
2

+ η < η0

and
d
(
γh0gia

F (k), γh0gja
F (k)

)
< η0.

Since η0 is an injectivity radius of ∂BGε K, equality (24) now follows. Finally,

d
(
gia

F (n)+Rn , gja
F (n)+Rn

)
≥ d
(
gia

F (k)+Rk , gja
F (k)+Rk

)
= d
(
u
(k)
ik
u−i a

Rku+i , u
(k)
jk
u−j a

Rku+j
)

≥ d
(
u
(k)
ik
aRk , u

(k)
jk
aRk
)
− d
(
u
(k)
ik
aRk , u

(k)
ik
u−i a

Rku+i
)

− d
(
u
(k)
jk
aRk , u

(k)
jk
u−j a

−Rku+j
)

≥ η0 − 2η >
η0
2
.

This completes the proof. �

Definition of the strongly tree-like collection. Fix s0 > 39s1 and set
K := X≤s0 . Further fix an injectivity radius η0 of some neighborhood of K such
that 1

2 > η0 > 0 and choose

η <
η0(λ0 − 1)

4λ0

so small that we may apply Theorem 4.4. For k ∈ N we set R̃k := k and

S̃k := bek/2cp2 · bek/4cp1 .

For any k ∈ N we apply Proposition 4.3 with R̃k, S̃k, s0 and η0 to get a point

xk ∈ K and a subset Ẽ(k) ⊆ B
U
η0e−k/4 with the properties of this proposition.
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For k ≥ k0 := d4 log 4e we have Ẽ(k) ⊆ BU
η0/4

. We set E(k) := Ẽ(k+k0−1),

Rk := R̃k+k0−1, Sk := S̃k+k0−1 for k ∈ N and apply Theorem 4.4 to these
sequences to construct a sequence (E′n)n∈N of sets with the properties as in
Theorem 4.4. For any n ∈ N we set

Un :=
{
uaF (n)+RnB

U
η0/4a

−F (n)−Rn
∣∣∣ u ∈ E′n} .

Let

U0 :=
⋃

U1 =
⋃
u∈E′1

uak0B
U
η0/4a

−k0 ,

which is a compact non-null subset of U , and let U0 := {U0}. We claim that

U :=
⋃
n∈N0

Un

is a strongly tree-like collection on U0. To that end let n ∈ N. Suppose that
g, h ∈ E′n, g 6= h. By Theorem 4.4 we have

d
(
gaF (n)+Rn , haF (n)+Rn

)
>
η0
2
.

Therefore

gaF (n)+RnB
U
η0/4 ∩ ha

F (n)+RnB
U
η0/4 = ∅,

and hence

gaF (n)+RnB
U
η0/4a

−F (n)−Rn ∩ haF (n)+RnB
U
η0/4a

−F (n)−Rn = ∅.

This shows (6) (and even a stronger disjointness). Now let i ∈ Sn and j ∈
[1, Sn+1]. We claim that

g(i,j)a
F (n+1)+Rn+1B

U
η0/4a

−F (n+1)−Rn+1 ⊆ giaF (n)+RnB
U
η0/4a

−F (n)−Rn ,

which is equivalent to

g(i,j)a
F (n)+RnaF (n+1)+Rn+1−F (n)−RnB

U
η0/4a

−F (n+1)−Rn+1+F (n)+Rn(25)

⊆ giaF (n)+RnB
U
η0/4.

Since

F (n+ 1) +Rn+1 − F (n)−Rn = Rn+1 +R′ > 0,

we have

aF (n+1)+Rn+1−F (n)−RnB
U
η0/4a

−F (n+1)−Rn+1+F (n)+Rn ⊆ BU
λ−1
0 η0/4.

Then (25) follows from

λ−10

η0
4

+ d
(
g(i,j)a

F (n)+Rn , gia
F (n)+Rn

)
<
η0
4
· 1

λ0
+
η0
4
· λ0 − 1

λ0
=
η0
4
.

Thus, the sets of the collection are nested in the required way. Finally,

gaF (n)+RnB
U
η0/4a

−F (n)−Rn ⊆ gBU

λ
−F (n)−Rn
0 η0/4

,

and hence

diam
(
gaF (n)+RnB

U
η0/4a

−F (n)−Rn)� λ
−F (n)−Rn
0 .

Therefore, the sequence of supremal diameters converges to 0 as n → ∞. This
completes the proof that U =

⋃
Un is a strongly tree-like collection.
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Throughout we fix this choice of strongly tree-like collection. Moreover, we
define the sets Un, n ∈ N0, and U∞ as in (9) and (10).

Proposition 4.8. Let x1 ∈ K = X≤s0 be as in Theorem 4.4. Then x1g diverges
on average for all g ∈ U∞.

Proof. The structure of the sets in U yields that U∞ consists of the elements

g∞ = lim
n→∞

g(i1,...,in) =
⋂
n∈N

g(i1,...,in)a
F (n)+RnB

U
η0/4a

−F (n)−Rn ,

where (ik)k∈N is any sequence such that ik ∈ [1, Sk] for k ∈ N. Let K′ be any
compact subset of X. Without loss of generality, we may assume that K′ = X≤s
for some large s. In the following we will prove that the amount of time (discrete
time steps) in [0, F (n) +Rn] which is spend in K′ by the points in

x1g(i1,...,in)a
F (n)+RnB

U
η0/4a

−F (n)−Rn

grows sublinearly as n→∞. This will then prove the proposition. To start we
remark that for any given point in x ∈ X, its T -orbit (xak)k∈N0 stays in the strip
X>s1 ∩X≤s for only a uniformly bounded number of consecutive steps (which is
due to the space G/K being of rank one, see [EKP]). Let

` := max{k ∈ N | ∃x ∈ X≤s1 : Tx, . . . , T kx ∈ X>s1 ∩ X≤s, T
k+1x ∈ X>s}

= max{k ∈ N | ∃x ∈ X>s : Tx, . . . , T kx ∈ X>s1 ∩ X≤s, T
k+1x ∈ X≤s1}.

By the choice of s1, as soon as ht(xak) > ht(xak+1) > s1, the orbit strictly
descends until it is below height level s1. Since s0/39 > s1, this means that as
soon as the orbit stays above height s1 for more than 2` consecutive steps, say
for m steps, it necessarily stays in X>s for at least m−2` steps. To simplify the
proof we may assume that s0 is chosen such that

xB
G
η0 ⊆ X>s1

for all x ∈ X>s0/39. We use the notation of the proof of Theorem 4.4. Let n ∈ N
and i = (i1, . . . , in) ∈ Sn. We claim that

(26) x1gia
F (n)+RnB

U
η0/4a

−F (n)−Rn+k ⊆ xmu(m)
im

ak−F (m)B
G
η0

for k ∈ [F (m), F (m) + Rm] and m = 1, . . . , n. For n = 1, this is clearly true.
For j = (j1, . . . , jp+1) ∈ Sp+1 for any p ∈ N, the proof of Theorem 4.4 showed
the identities

gj = g(j1,...,jp)a
F (p)+Rpu+jp+1

a−F (p)−Rp

and

x1gja
F (p)+Rpu+jp+1

aR
′

= xp+1u
(p+1)
jp+1

ujp+1 ,

where u+jp+1
∈ BU

c(c+2)δ and ujp+1 ∈ BNAM
c(c+2)δ. For m = 1, . . . , n− 1, these yield

x1gi = x1g(i1,...,im)

n−m−1∏
p=0

aF (m+p)+Rm+pu+im+p+1
a−F (m+p)−Rm+p

= xm+1u
(m+1)
im+1

a−F (m+1)
n−m−1∏
p=1

aF (m+p)+Rm+pu+im+p+1
a−F (m+p)−Rm+p .(27)
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Therefore

x1gia
F (n)+RnB

U
η0/4a

−F (n)−Rn+k(28)

=
(
xm+1u

(m+1)
im+1

ak−F (m+1)
)(

aF (m+1)−kuim+1a
−F (m+1)+k

)
×
n−m−1∏
p=1

(
aF (m+p)+Rm+p−ku+im+p+1

a−F (m+p)−R−m+p+k
)

×
(
aF (n)+Rn−kB

U
η0/4a

−F (n)−Rn+k
)

for m = 1, . . . , n− 1, and

x1gia
F (n)+RnB

U
η0/4a

−F (n)−Rn+k(29)

= x1gi1a
k
n−2∏
p=0

(
aF (p+1)+Rp+1−ku+ip+2

a−F (p+1)−Rp+1+k
)

×
(
aF (n)+Rn−kB

U
η0/4a

−F (n)−Rn+k
)
.

For k ∈ [F (m+ 1), F (m+ 1) +Rm+1], we have

n−m−1∏
p=1

(
aF (m+p)+Rm+p−ku+im+p+1

a−F (m+p)−Rm+p+k
)
∈ BU

r

with

r = c(c+ 2)δ
n−m−1∑
p=1

λ
−(F (m+p)+Rm+p−k)
0 ≤ c(c+ 2)δ

1

λ0 + 1
≤ η0

4
,

and
aF (m+1)−kuim+1a

−F (m+1)+k ∈ BNAM
η0/4

.

Hence, (28) implies (26) for 2, . . . , n. By the same argument, (29) implies (26)

for 1 (note that gi1 = u
(1)
i1

).

We consider (26) form ∈ {1, . . . , n} and k ∈ [F (m), F (m)+Rm]. Proposition 4.3

shows that xmu
(m)
im

ak−F (m) ∈ X> s0
39

, and hence xmu
(m)
im

ak−F (m)B
G
η0 ⊆ X>s1 for

all k ∈ [F (m), F (m) + Rm]. As discussed above, this implies that for any

point y ∈ x1giaF (n)+RnB
U
η0/4a

−F (n)−Rn , its T -orbit (yak)k∈N0 stays above height

s for (at least) k ∈ [F (m) + `, F (m) + Rm − `]. Thus, in the time interval
[0, F (n)+Rn], this orbit stays above height s for at least

∑n
j=1Rj−2n` steps. In

turn, (yak)k∈N0 visits K′ for at most (n−1)R′+2n` values for k in [0, F (n)+Rn].
One easily sees that

lim
n→∞

(n− 1)R′ + 2n`

F (n) +Rn
= 0,

which completes the proof. �

4.2. Hausdorff dimension.

Proposition 4.9. We have

dimH U∞ ≥
p1
2

=
1

2
dimU − p2

2
.
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Proof. We apply Lemma 4.2. Let k ∈ N and B ∈ Uk. Then

δk+1(B,U) =
λ(Uk ∩B)

λ(B)
=
Sk+1 · λ

(
aF (k+1)+Rk+1B

U
η0/4a

−F (k+1)−Rk+1
)

λ
(
aF (k)+RkB

U
η0/4a

−F (k)−Rk
) ,

and hence

∆k(U) = δk+1(B,U).

For any L ∈ N we have

λ
(
aLB

U
η0/4a

−L) =
(η0

2

)p1+p2
e−L(p2+ p1

2 ) =
(η0

2

)p1+p2
e−Lhm(T ).

Thus,

∆k(U) = Sk+1e
−(Rk+1+R

′)hm(T ).

Note that Rk+1 = k + k0 and

e
1
2
Rk+1hm(T ) ≥ Sk+1 =

⌊
e
k+k0

2

⌋p2
·
⌊
e
k+k0

4

⌋p1
≥ e

k
2
hm(T ).

Then

1 ≥ c2e−
k
2
hm(T ) ≥ ∆k(U) ≥ c1e−

k
2
hm(T )

for some constants c1, c2. It follows that

n−1∑
k=1

∣∣log
(
∆k(U)

)∣∣ � hm(T )

2

n−1∑
k=1

k � hm(t)

4
n2.

Moreover

dn(U) ≤ η0
2
e−

1
2
(F (n)+Rn),

and hence ∣∣log
(
dn(U)

)∣∣ ≥ cn2
4

for some constant c and sufficiently large n. Then

lim sup
n→∞

n−1∑
k=1

∣∣log
(
∆k(U)

)∣∣∣∣log
(
dn(U)

)∣∣ ≤ hm(T ).

Since dimU = p1 + p2, this completes the proof. �

Proof of Theorem 4.1. The space of possible x in Proposition 4.3 (and hence
of possible x1 in Theorem 4.4 and Proposition 4.8) is at least of dimension
dim(NAM). For the Hausdorff dimension of the set D of points in X which
diverge on average this observation implies

dimH D ≥ dimNAM + dim U∞.

Now using Proposition 4.9 completes the proof. �
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5. Proof of Theorem 1.1

In [Kad12], the first named author proved the corresponding statement of The-
orem 1.1 for SLd+1(Z)\ SLd+1(R), d ≥ 1, and the action of a certain diagonal
element of SLd+1(R) (which is singular in terms of symmetric spaces). For the
proof he used the variational principle for entropy and established the existence
of sufficiently large subsets of (n, ε)-separated points in SLd+1(Z)\SLd+1(R)
whose trajectories are bounded but stay high up (near the bound) for a signif-
icant ratio of time (see [Kad12, Theorem 3.2]). These subsets are necessarily
adapted to SLd+1(Z)\SLd+1(R). In Proposition 5.1 below we show the anal-
ogous statement for Γ\G and T being the time-one geodesic flow. After that,
the proof of Theorem 1.1 is an adaption of [Kad12]. For the convenience of the
reader, we provide some details.

Proposition 5.1. Let s > 39s1. Then there exists R′ ∈ N such that for all

R ∈ N, R > 4 log 4, there is a subset Ẽ of X≤s such that the following properties
are satisfied:

(i) There exists s′ > s such that

T `x ∈ X≤s′

for all x ∈ Ẽ and all ` ∈ N0.

(ii) For any m ∈ N we find a subset Ẽ(m) of Ẽ such that

(1) the cardinality of Ẽ(m) is Sm with S = S(R) = be
R
4 cp1 · be

R
2 cp2,

(2) Ẽ(m) is (mR+ (m−1)R′, η′)-separated for some η′ > 0 not depending
on m, and

(3) for any x ∈ Ẽ(m) we have∣∣∣{` ∈ [0,mR+ (m− 1)R′ − 1]
∣∣∣ T `x ∈ X≥ s

100

}∣∣∣ ≥ mR.
To prove Proposition 5.1 we need the following lemma, which is similar to
Lemma 5.2 in [Kad12]. We omit its proof. Let

λ1 := max{|λ| | λ is an eigenvalue of Ada with |λ| > 1}.

Thus,

λ1 =

{
e1/2 if g2 = {0} (and hence G/K is real hyperbolic),

e otherwise.

Lemma 5.2. Let s′ > 0 and pick an injectivity radius η > 0 of X≤s′. Let n ∈ N
and suppose that g, h ∈ U and x0 ∈ X are such that T `(x0g), T `(x0h) ∈ X≤s′ for
all ` ∈ [0, n]. Further suppose that d(g, h) = d(x0g, x0h) and that d(Tng, Tnh) >
η
λ1

. Then there exists ` ∈ [0, n] such that d(T `(x0g), T `(x0h)) ≥ η
λ1

.

Proof of Proposition 5.1. Let K := X≤s and pick η0 ∈ (0, 1/2) such that it is
an injectivity radius of Bη0(K). Apply Proposition 4.3 with η0 and R to get a
subset E ⊆ BU

η0/4
with

S = beR/2cp2beR/4cp1
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elements and x ∈ K with properties as in that proposition. Let

0 < η <
η0(λ0 − 1)

4λ0

be small enough such that we may apply Theorem 4.4. In the following we will
use the notation of Theorem 4.4. For k ∈ N define Rk := R, Sk := S, E(k) := E
and xk := x. Now Theorem 4.4 provides R′ = R′(η,K) ∈ N and a family of
subsets

E′n := {gi | i ∈ Sn}, n ∈ N,

of U with the properties stated there. Let S̃ := [1, S]N and let

i∞ = (ij)j∈N ∈ S̃.

As in the proof of Proposition 4.8, we see that (g(i1,...,in))n∈N is convergent. Let

gi∞ := lim
n→∞

g(i1,...,in).

Define

Ẽ :=
{
xgi∞

∣∣∣ i∞ ∈ S̃
}
,

and

Ẽ(m) :=
{
xgi∞

∣∣∣ i∞ ∈ S̃, ij = 1 for j > m
}

for m ∈ N.

Since the maximal variation of height under one application of T is bounded, the
sequence (Rk)k is constant (namely, R) and the starting points xu, u ∈ E, are
contained in a compact set, we deduce from (27) in the proof of Proposition 4.8
(and a limit over n) that we find s′ > s such that the T -orbit of each element

in Ẽ is contained in the compact set X≤s′ .

Let n ∈ N, i ∈ Sn and m ∈ {1, . . . , n}. From (27) it follows that

xgia
k ∈ xujak−F (m)B

U
η/2

for some j ∈ {1, . . . , S} and all k ∈ [F (m), F (m) + R]. Since xuja
k−F (m) ∈

X≥s/39, we have xgia
k ∈ X≥ s

39
− η

2
. Note that η does not depend on n,m or i.

Thus, for any x ∈ Ẽ it follows that∣∣∣{` ∈ [0,mR+ (m− 1)R′ − 1]
∣∣∣ T `x ∈ X≥ s

39
+ η

2

}∣∣∣ ≥ mR.
For η sufficiently small, this proves (ii3).

Obviously, the cardinality of Ẽ(m) is at most Sm. The equality follows from

(ii2). For the proof of (ii2) we want to make use of Lemma 5.2. For i∞, j∞ ∈ S̃,
Theorem 4.4 yields d(gi∞ , gj∞) < η0. The proof of Proposition 4.8 shows

xgi ∈ xgi1BU
η0/4

for each i = (i1, . . . , in) ∈ Sn, n ∈ N. It follows that xgi∞ , xgj∞ ∈ Bη0(K). Then
η0 being an injectivity radius of Bη0(K) yields

d(gi∞ , j∞) = d(xgi∞ , xgj∞).

Now let m ∈ N and i = (i1, . . . , im), j = (j1, . . . , jm) ∈ Sm, i 6= j. We claim that

d
(
TF (m)+Rg(i,1), T

F (m)+Rg(j,1)
)
>
η0
4
,
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where (i,1) denotes the element in S̃ which extends i with 1’s. We have

d
(
gia

F (m)+R,gja
F (m)+R

)
≤ d
(
gia

F (m)+R, g(i,1)a
F (m)+R

)
+ d
(
g(i,1)a

F (m)+R, g(j,1)a
F (m)+R

)
+ d
(
g(j,1)a

F (m)+R, gja
F (m)+R

)
.

By Theorem 4.4(iv),

d
(
gia

F (m)+R, gja
F (m)+R

)
>
η0
2
.

Let 1n := (1, . . . , 1) ∈ Sn. Then

d
(
gia

F (m)+R, g(i,1)a
F (m)+R

)
= lim

n→∞
d
(
gia

F (m)+R, g(i,1n)a
F (m)+R

)
Since (see the proof of Proposition 4.8)

g(i,1n) = gi

n−1∏
p=0

aF (m+p)+Ru+im+p+1
a−F (m+p)−R

we find

d
(
gia

F (m)+R, g(i,1)a
F (m)+R

)
= lim

n→∞
d
(

1,
n−1∏
p=0

aF (m+p)−F (m)u+im+p+1
a−F (m+p)+F (m)

)

= lim
n→∞

d
(

1,
n−1∏
p=0

ap(R+R′)u+im+p+1
a−p(R+R′)

)
≤ c(c+ 2)δ

∞∑
p=0

λ
−p(R+R′)
0

<
η0
8

(λ0 − 1)2

λ20

1

1− λ−(R+R′)
0

<
η0
8
.

From this the claim follows. Pick now an injectivity radius η′ of X≤s′ such that
η0/4 ≥ η′. Applying Lemma 5.2 with η′ completes the proof. �

Lemma 5.3. For any ε > 0 and any s > s1 there exists a T -invariant probability
measure µ on X such that

hµ(T ) >
1

2
hm(T )− ε and µ(X≥s) > 1− ε.

Proof. Throughout we use the notation of Proposition 5.1. We apply this propo-
sition with 100s to obtain the constant R′ ∈ N. We pick R ∈ N, R > 4 log 4,
such that

R

R+R′
> 1− ε and

logS(R)

R+R′
>

1

2
hm(T )− ε.

Note that this choice is possible since

S(R) =
⌊
e
R
4

⌋p1
·
⌊
e
R
2

⌋p2
>
(
e
R
4 − 1

)p1
·
(
e
R
2 − 1

)p2
� eR( p14 +

p2
2 ) = e

R
2
hm(T ) as R→∞.
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Now we choose a subset Ẽ of X≤100s and a family (Ẽ(m))m∈N of subsets of Ẽ
with the properties as in Proposition 5.1. For m ∈ N let σm denote the uniform

probability measure on Ẽ(m), that is,

σm :=
1

Sm

∑
x∈Ẽ(m)

δx,

where δx denotes the Dirac measure with support {x}. Finite averaging of σm
provides us with the probability measures

µm :=
1

mR+ (m− 1)R′

mR+(m−1)R′−1∑
i=0

T i∗σm

on X with support

mR+(m−1)R′−1⋃
i=0

T iẼ(m) ⊆
⋃
i∈N0

T iẼ =: E.

By Proposition 5.1(i) we find s′ > 100s such that E ⊆ X≤s′ . Let µ be any weak*
limit of (µm)m∈N. Then µ is T -invariant and, due to the compactness of X≤s′ ,
a probability measure. Note that

K :=
⋂
j∈N0

T−jX≤s′

is a compact subset of X on which T induces an action, and E ⊆ K. Thus, µ
can be considered as a T -invariant probability measure on K. Since each set

Ẽ(m), m ∈ N, is (mR + (m− 1)R′, η′)-separated, respectively, the proof of the
Variational Principle [Wal00, Theorem 8.6] shows

hµ(T ) ≥ lim inf
m→∞

logSm

mR+ (m− 1)R′
=

logS

R+R′
.

By the choice of R, we have

hµ(T ) >
1

2
hm(T )− ε.

Moreover, Proposition 5.1(ii3) and the choice of R give

µm(X≥s) ≥
mR

mR+ (m− 1)R′
>

R

R+R′
> 1− ε.

Thus,

µ(X≥s) = µ(K ∩ X≥s) = lim
m→∞

µm(K ∩ X≥s) = lim
m→∞

µm(X≥s) > 1− ε.

This proves the lemma. �

For the proof of Theorem 1.1 we recall that m denotes the normalized Haar
measure on X.

Proof of Theorem 1.1. For sufficiently large n ∈ N we apply Lemma 5.3 with
ε = 1

n and s = n to obtain a T -invariant probability measure µn on X with

µn(X≥n) > 1− 1
n and

(30) hµn(T ) >
1

2
hm(T )− 1

n
.
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Then the weak* limit of the sequence (µn)n is the zero measure. Now (30) and
[EKP, Theorem 7.6] (the theorem presented in the Introduction) show

lim
n→∞

hµn(T ) =
1

2
hm(T ).

Thus, Theorem 1.1 is proven for the case c = 1
2hm(T ). If c is any value in the

interval [12hm(T ), hm(T )], then we consider the sequence (νn)n of T -invariant
probability measures on X given by the convex combination

νn :=

(
2c

hm(T )
− 1

)
m+

(
2− 2c

hm(T )

)
µn.

Its weak* limit ν satisfies

ν = lim
n→∞

νn =

(
2c

hm(T )
− 1

)
m,

hence

ν(X) =
2c

hm(T )
− 1.

Moreover,

lim
n→∞

hνn(T ) =

(
2c

hm(T )
− 1

)
hm(T ) +

(
2− 2c

hm(T )

)
lim
n→∞

hµn(T )

= c.

This finishes the proof. �
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