
FAMILIES WITHOUT MINIMAL NUMBERINGS

K. Sh. Abeshev,1 S. A. Badaev,2 and M. Mustafa3

Keywords: computable numbering, Ershov hierarchy, minimal numbering.

It is proved that for any nonzero computable ordinal and its arbitrary notation a, there
exists a Σ−1

a -computable family without minimal computable numberings.

INTRODUCTION

Families without minimal computable numberings are analogs of Blum’s speed-up theorem.
Two such families of c.e. sets were constructed by V’yugin [1] and Badaev [2], based on different
ideas. In the Rogers semilattice of the family built in [1], every element is a least upper bound for
two incomparable elements. The family of c.e. sets without minimal computable numberings built
in [2] makes essential use of the following criterion of minimality for a (not necessarily computable)
numbering.

THEOREM 1 [2]. A numbering ν : ω → S is minimal if and only if, for every c.e. set W , the
equality ν(W) = S entails the existence of a positive equivalence ε such that

∀x∀y ((x, y) ∈ ε → ν(x) = ν(y))& ∀x∃y (y ∈ W & (x, y) ∈ ε).

The minimality criterion allows us to construct a computable family of c.e. sets without
computable minimal numberings by using simple diagonal considerations: if a computable
numbering indexes a family then it is not minimal in the family.

The study of computable numberings of families of sets in the Ershov hierarchy revealed new
phenomena compared to computable numberings of families of c.e. sets. In [3], for example, we can
find a family consisting of two sets, of which one is included in the other, whose Rogers semilattice is
1Al-Farabi Kazakh National University, Al-Farabi ave. 71, Alma-Ata, 050038 Kazakhstan;
kuanqk@gmail.com. 2Al-Farabi Kazakh National University, Al-Farabi ave. 71, Alma-Ata, 050038
Kazakhstan; Serikzhan.Badaev@kaznu.kz. 3Al-Farabi Kazakh National University, Al-Farabi ave.
71, Alma-Ata, 050038 Kazakhstan; Manat.Mustafa@kaznu.kz.

1

one-element. In [4], it was shown that a complete analog of Khutoretskii’s classical theorem [5] does
not hold in the Ershov hierarchy. A family which consists of two disjoint sets and has no principal
computable numbering was constructed in [6]. All these results were obtained for d.c.e. sets, i.e.,
sets in the class Σ−1

2 of the Ershov hierarchy.
Therefore, it is natural to raise questions as to which properties of computable numberings that

hold in the classical sense will also hold for computable numberings in the Ershov hierarchy. In
this regard, an interesting problem is whether or not there exist families of sets without minimal
computable numberings [7, Question 11]. The main result of the present paper is proving the
existence of such families in each class of sets from all levels, whether finite or infinite, of the
Ershov hierarchy.

THEOREM 2. For every nonzero computable ordinal and its arbitrary ordinal notation a,
there exists a Σ−1

a -computable family A of sets that has no Σ−1
a -computable minimal numbering.

Recall some necessary notation and notions. We use Kleene’s O, an ordinal notation system
(see [8] for details). For a ∈ O, |a|O denotes an ordinal for which a is a notation; Kleene’s partial
ordering on the set O is denoted by <O. Ordinal notations are used for defining infinite levels of the
Ershov difference hierarchy introduced initially in [9-11]. However, we use another representation
for sets in the Ershov hierarchy, namely, one given in [12].

Let a be a notation for a nonzero computable ordinal. We say that a set A of numbers belongs
to the class Σ−1

a in the Ershov hierarchy if there exist computable functions f(z, s) and h(z, s)
such that for all z, s, the following conditions hold:

(1) A(z) = lim
s

f(z, s) with f(z, 0) = 0 (hereinafter, X(z) denotes the characteristic function of
a set X);

(2) (a) h(z, 0) = a& h(z, s + 1) ≤O h(z, s);
(b) f(z, s + 1) �= f(z, s) ⇒ h(z, s + 1) �= h(z, s).
We call h a change function for A with respect to f . A pair 〈f, h〉 of functions satisfying

conditions (1) and (2) is called a Σ−1
a -approximation of a Σ−1

a -set A. A numbering of a nonempty
set A is any surjective map α : ω → A. If α and β are numberings of A, then we say that α is
reducible to β (written α � β) if there is a computable function f such that α(n) = β(f(n)) for all
n ∈ ω. Two numberings α and β are said to be equivalent (written α ≡ β) if α � β and β � α. A
numbering α of A is minimal if, for every numbering β of A, β � α implies α ≡ β.

Following [13], we say that a numbering α : ω −→ A of a family of Σ−1
a -sets A is Σ−1

a -computable
if

{〈n, x〉 : x ∈ α(n)} ∈ Σ−1
a .

Hence α is a Σ−1
a -computable numbering of a family A if there exists a Σ−1

a -approximation of a
universal set {〈n, x〉 : x ∈ α(n)}; i.e., there are computable functions f(n, x, s) and h(n, x, s) such
that

α(n)(x) = lim
s

f(n, x, s), f(n, x, 0) = 0

2

for all n and x, and h(n, x, s) is a change function for the set {〈n, x〉 : x ∈ α(n)} of a numbering
α with respect to f .

If α is a Σ−1
a -approximation of a numbering α then αs denotes a numbering whose universal

set is
{〈n, x〉 : f(n, x, s) = 1}.

By π we denote a computable numbering of the family of all possible Σ−1
a -computable

numberings. In correspondence with this numbering is a pair of approximating functions
fπ(k, n, x, s) and hπ(k, n, x, s) defining Σ−1

a -computability of the sequence {πk}k∈ω of numberings
uniformly in k. Denote by pπ(k, n, x, s) a computable function defined as follows.

Put pπ(k, n, x, s) = a if hπ(k, n, x, s) = a; otherwise, put pπ(k, n, x, s) = hπ(k, n, x, t), where
t < s is the greatest number for which hπ(k, n, x, s) <O hπ(k, n, x, t). Obviously, hπ(k, n, x, s) <O

pπ(k, n, x, s) if hπ(k, n, x, s) �= a. Furthermore, if hπ(k, n, x, s) �= a and hπ(k, n, x, s + 1) �=
hπ(k, n, x, s) then pπ(k, n, x, s + 1) <O pπ(k, n, x, s).

Denote by ε0, ε1, ε2, . . . a computable numbering of all positive equivalences on ω, and by {εs
m}

a double strongly computable sequence of equivalences on initial segments of the natural series
such that for all m and s,

εs
m ⊆ εs+1

m , εm =
⋃

s∈ω

εs
m.

For all undefined notions, we refer the reader to [14].

1. PROOF OF THE MAIN THEOREM

We will construct A as a family indexed by some Σ−1
a -computable numbering α, in which each

set of A will have either one or two indices.

Requirements. We build a numbering α and a sequence of c.e. sets Πk, k ∈ ω, meeting the
following requirements:

C: α is Σ−1
a -computable;

Pk: if πk is a numbering of A then πk(Πk) = A;
Nk,m: if πk is a numbering of A then

∃x∃y((x, y) ∈ εm & πk(x) �= πk(y)) ∨ ∃x∀y ∈ Πk((x, y) /∈ εm).

Now we describe strategies to meet these requirements.

Strategy for C. We construct a pair of computable numberings f(n, x, s) and g(n, x, s) in
stages to form a Σ−1

a -approximation to a numbering α. In fact, we could well do without even
mentioning α since α is defined uniquely by the pair of functions f, g. However, it seems more
convenient to give an informal explanation of the ideas behind our construction in terms of the
numbering α.

3

In the numbering α, each pair of consecutive indices 2x, 2x + 1 is intended to meet exactly one
requirement Nk,m. For this reason, we will consider the number x as the standard index 〈k,m〉 of
some pair (k,m). Sets α(2x) and α(2x + 1) will have some common static part, but each of these
will also have its own dynamically changeable part. At each stage of the construction below, the
dynamic part of a set consists exactly of two numbers. At each stage, one element of the dynamic
part of each of the sets α(2x) and α(2x + 1) can be moved into the common static part of these
sets, but no number of the static part of a set can be moved into its dynamic part. In addition, two
numbers of sets α(2y) and α(2y + 1) with y �= x can be enumerated simultaneously into both sets
α(2x) and α(2x + 1), and then can be extracted simultaneously from both α(2x) and α(2x + 1).
In the limit, two sets α(2x) and α(2x + 1) may coincide or be distinct, depending on whether the
process of moving elements from the dynamic parts into the static part is infinite or finite. At all
nonzero stages, the static part of a pair of sets α(2x), α(2x+1) is not included into the static part
of any α(z), z /∈ {2x, 2x + 1}, and at stage 1, the static parts of α(2x) and α(z) are nonempty
and disjoint. Thus, in the numbering α, each set of A will have either one or two indices; in the
latter case, these two indices are consecutive natural numbers of the form 2x, 2x + 1. We describe
in precise terms the process showing how both sets α(2x) and α(2x + 1) increase with increasing
their dynamic parts.

Fix three arbitrary injective computable functions d0 : ω2 �→ ω, d1 : ω2 �→ ω, and σ : ω3 �→ ω

with pairwise disjoint ranges. For every x, values for the function λeλs σ(x, e, s) form the static
part of the sets α(2x) and α(2x + 1), while some (or all) values of the function λs dj(x, s) are
enumerated step by step into the dynamic part of α(2x + j), where j ≤ 1. At the beginning of the
construction, for each x, we put

α0(2x) = α0(2x + 1) = ∅,
α1(2x) = {σ(x, e, i) : e, i ∈ ω} ∪ {d0(x, 0), d0(x, 1)},
α1(2x + 1) = {σ(x, e, i) : e, i ∈ ω} ∪ {d1(x, 0), d1(x, 1)}.

Then we declare the numbers d0(x, 0) and d1(x, 0) to be active and declare the numbers d0(x, 1)
and d1(x, 1) to be semi-active.

The process of changing the dynamic parts of α(2x) and α(2x + 1) (under certain conditions)
begins with the following actions:

the number d0(x, 0) is enumerated into the static part of α(2x + 1) and thereafter ceases to be
active;

the number d1(x, 0) is enumerated into the static part of α(2x) and thereafter ceases to be
active;

the semi-active numbers d0(x, 1) and d1(x, 1) are declared active;
the number d0(x, 2) is enumerated into the dynamic part of α(2x) and is declared semi-active;
the number d1(x, 2) is enumerated into the dynamic part of α(2x + 1) and is declared semi-

active.
Thus, as a result of these actions, a pair of active numbers is moved from the dynamic parts

4

of the sets α(2x) and α(2x + 1) into their static part and ceases to be active; a pair of semi-active
numbers is activated; the next two unused numbers are declared semi-active, and one of them is
enumerated into the dynamic part of α(2x), and the other into the dynamic part of α(2x + 1).

Changing the dynamic parts of α(2x) and α(2x + 1) proceeds as an iterative process. An
iteration step for a pair of active numbers d0(x, i) and d1(x, i) is described in the following:

Procedure D(x, i):
the number d0(x, i) is enumerated into α(2x + 1) and thereafter ceases to be active;
the number d1(x, i) is enumerated into α(2x) and thereafter ceases to be active;
the semi-active numbers d0(x, i + 1) and d1(x, i + 1) are declared active;
the number d0(x, i + 2) is enumerated into α(2x) and is declared semi-active;
the number d1(x, i + 2) is enumerated into α(2x + 1) and is declared semi-active.
Without loss of generality, we may assume that πs

0(y) = ∅ for all s and y. By our construction,
for every x, none of σ(x, 0, i), i ∈ ω, is extracted from α(2x) and α(2x+1), nor is enumerated into
α(2y) and α(2y + 1) for x �= y. Therefore,

{α(2x), α(2x + 1)} ∩ {α(2y), α(2y + 1)} = ∅

for any distinct numbers x and y.

Strategy for Pk in isolation. For every k, we split the set Πk of πk-indices into three parts:
Lk, Rk, and Ok. If πk is a numbering of A, then we require that

Lk contain exactly one πk-index for every set α(2x), with 〈x〉0 = k;
Rk contain exactly one πk-index for every set α(2x + 1), with 〈x〉0 = k and α(2x) �= α(2x + 1);
Ok consist of all πk-indices of the remaining sets, i.e., all sets of the form α(2z) or α(2z + 1),

with 〈z〉0 �= k.
Note that in this case the set Πk = Lk ∪Rk ∪Ok will contain exactly one πk-index for each set

of the subfamily
{α(2x), α(2x + 1) : 〈x〉0 = k}.

Our idea is that the equality α(2x) = α(2x + 1) could occur only in the limit. An important
point in the strategy for Pk is the following: if α(2x) �= α(2x + 1) then this inequality is explicitly
recognized at a finite stage.

Clearly, the above requirements for the strategy for Pk ensure that α(Πk) = A. Also, for the
set Πk to be c.e., it is necessary that the requirements have a computable realization. The sets Lk,
Rk, and Ok will consist of some values for partial computable functions l(x), r(x), and o(x, e, i)
defined as follows. Let x = 〈k,m〉0. In the approximation πs

k, we choose two distinct πk-indices y0

and y1 such that d0(x, 0) ∈ πs
k(y0) and d1(x, 0) ∈ πs

k(y1); put l(x) = y0 and r(x) = y1. For every
pair (e, i) of numbers, where e �= k, we define o(x, e, i) = i if σ(x, e, i) ∈ πe(i). Note that

o(x, e, i) ↓⇒ σ(x, e, i) ∈ πe(i)& o(x, e, i) = i.

5

Put

Lk = {l(x) : 〈x〉0 = k},
Rk = {r(x) : 〈x〉0 = k & α(2x) �= α(2x + 1)},
Ok = {o(x, k, i) : (x, k, i) ∈ dom(o)& 〈x〉0 �= k}.

When the values l(x), r(x), and o(x, e, i) are defined, we should take care that these values be
correct. For a numbering πk of the family A, below we show how to ensure that πk(o(x, k, i)) ∈
{α(2x), α(2x + 1)} if 〈x〉0 �= k, and that α(2x) = πk(l(x)) and α(2x + 1) = πk(r(x)) if 〈x〉0 = k.

Procedure O(x, e, i). This procedure can be performed at some stage s of the construction
only if the value o(x, e, i) has been defined by stage s. Thus, if the inactive number σ(x, e, i) is not
in the set πe(i) at stage s, then we proceed as follows:

(1) enumerate σ(x, e, i) into all sets α(z), z /∈ {2x, 2x + 1};
(2) wait for σ(x, e, i) to appear in πe(i) at some stage s′ > s;
(3) at stage s′, remove the number σ(x, e, i) from all sets α(z), z /∈ {2x, 2x + 1}, and thereby

complete the procedure.
If πk is a numbering of A and o(x, k, i) is defined then the procedure O(x, k, i) guarantees

that πk(i) will be one of the sets α(2x) or α(2x + 1). Indeed, at stage 0, the number σ(x, k, i)
is enumerated into both sets α(2x) and α(2x + 1), never to leave them. Until the moment when
the value o(x, k, i) is defined, the number σ(x, k, i) cannot enter the sets α(2z) and α(2z + 1)
for all z �= x. At the moment when the value o(x, k, i) becomes defined in the construction, the
number σ(x, k, i) is in the set πk(i). If σ(x, k, i) is not removed from πk(i) at later stages, then
πk(i) ∈ {α(2x), α(2x + 1)}, since σ(x, k, i) is not contained in the sets α(2z) and α(2z + 1) for
z �= x. On the other hand, if the number σ(x, k, i) leaves πk(i) after stage s, then either it will come
back to πk(i) later or the procedure O(x, e, i) will be performed. After item (1) of the procedure
is effected, all sets of the family A will contain the number σ(x, k, i); since πk(i) ∈ A, ‘waiting’ in
item (2) will be successful, and by item (3), the number σ(x, k, i) will be removed from all sets
α(2z) and α(2z + 1) for z �= x. Clearly, the procedure O(x, e, i) cannot be performed infinitely
many times. Hence πk(i) ∈ {α(2x), α(2x + 1)}.

In fact, we have shown that if πk is a numbering of A then o(x, k, i) is defined and

σ(x, k, i) ∈ πk(i) ⇐⇒ πk(i) ∈ {α(2x), α(2x + 1)}.

Procedure L(x, i). This procedure is performed for the active number d0(x, i) and the set
πk(l(x)), where k = 〈x〉0. Recall that the number d0(x, i) active at stage s is contained in αs(2x)
and is not contained in αs(2x + 1).

Thus if the active number d0(x, i) is not in πk(l(x)) at stage s, then we proceed as follows:
(1) enumerate d0(x, i) into all sets α(z), z �= 2x;
(2) wait until d0(x, i) is enumerated into πk(l(x)) at some stage s′ > s;

6

(3) at stage s′, remove the number d0(x, i) from all sets α(z), z �= 2x.
It is not difficult to show that if the number d0(x, i) is declared active at some stage and remains

active afterwards, then α(2x) = πk(l(x)).

Procedure R(x, i). This procedure derives from the procedure L(x, i), with the number d0(x, i)
and the set πk(l(x)) replaced by d1(x, i) and πk(r(x)), respectively.

A priori, we may need to simultaneously perform two or more procedures such as above, which
is apt to lead to conflicts. To avoid these, we can easily order (in a suitable priority list) the
procedures performed with elements of α(2x) and α(2x + 1) so that, at every stage, no more than
one procedure is carried out, and item (1) of every next procedure starts only after the completion
of item (3) in the previous procedure. Note that in the case where πk is a numbering of A, if a
procedure starts then it will eventually be completed.

Thus our strategy to meet the requirement Pk is the following:
do not extract inactive numbers from those sets of A into which these numbers are enumerated

for the first time;
for every i ≤ 1, do not extract active numbers di(x, j), j ∈ ω, from the set α(2x + i);
perform the procedure O(x, e, i) whenever it is necessary and does not lead to conflict;
perform the procedure L(x, i) whenever it is necessary and does not lead to conflict;
perform the procedure R(x, i) whenever it is necessary and does not lead to conflict.
It only remains to describe a mechanism for recognizing the moment when, in constructing the

set Rk, we could ensure that α(2x) �= α(2x + 1). We can do this right now if we note that

Rk = {r(x) : 〈x〉0 = k & (l(x), r(x)) ∈ ε〈x〉1}.

The reason why this equality holds will be explained in describing the following strategy.

Strategy for Nk,m in isolation. To meet the requirement Nk,m, we use two πk-indices l(x)
and r(x) of the sets α(2x) and α(2x + 1), where x = 〈k,m〉. Under the assumption that πk is a
numbering of A, we wait for the values l(x) and r(x) to be defined as in the strategy for Pk above,
and then begin to enumerate ever more new numbers into the sets α(2x) and α(2x + 1) through
their dynamic parts, so that α(2x) and α(2x + 1) could become equal in the limit (remaining
distinct at each finite stage) and simultaneously check whether the pair (l(x), r(x)) appears in the
enumeration of ε(m). As soon as it does, we stop changing α(2x) and α(2x + 1). It remains to
ensure that in the limit,

α(2x) = πk(l(x)), α(2x + 1) = πk(r(x)).

For every x = 〈k,m〉 fixed, we execute the procedure N(k,m) to meet the requirement Nk,m:
namely, at each step s, for the active numbers d0(x, i) and d1(x, i),

check whether the pair (l(x), r(x)) of numbers belongs to the set εs(m);
check whether the following two inclusions hold:

{d0(x, i), d0(x, i + 1)} ⊆ πs
〈x〉0(l(x)),

7

{d1(x, i), d1(x, i + 1)} ⊆ πs
〈x〉0(r(x));

the procedure D(x, i) is executed iff the answer to the first question is negative, while the
answer to the second one is affirmative.

Conflicts between strategies. Obviously, strategies of the same type cannot conflict with
each other, since their instructions are executed for distinct pairs of sets. For the same reason,
there are no conflicts between strategies Pk′ and Nk,m if k′ �= k.

Formally, a conflict between strategies Pk and Nk,m arises in the following situation: there is
a same stage at which the conditions for applying the procedures L(x, i) or R(x, i) on the one
hand and the procedure N(k,m) on the other hand hold for the same pair of sets α(2x), α(2x+1),
where x = 〈k,m〉. In such situations, we have the following priority list for the execution of the
procedures (from higher to lower): L(x, i), R(x, i), D(x, i).

Construction. We build in stages s computable functions f(x, y, s) and h(x, y, s) and partial
computable functions o(x, e, i), l(x), and r(x).

Stage s = 0. Let f(x, y, 0) = 0 and h(x, y, 0) = a for all x and y. The values o(x, e, i), l(x), and
r(x) are undefined for all x, e, i.

Below we assume by default that f(x, y, s + 1) = f(x, y, s) and h(x, y, s + 1) = h(x, y, s) for all
those x, y for which the values of f(x, y, s + 1) and h(x, y, s + 1) are not explicitly defined at stage
s + 1.

Stage s = 1. For each x and for all y ∈ {σ(x, e, i) : e, i ∈ ω} ∪ {d0(x, 0), d0(x, 1)},
put f(2x, y, 1) = 1 and h(2x, y, 1) = 1. For each x and for all y ∈ {σ(x, e, i) : e, i ∈
ω} ∪ {d1(x, 0), d1(x, 1)}, let f(2x + 1, y, 1) = 1 and h(2x + 1, y, 1) = 1. The numbers d0(x, 0)
and d1(x, 0) are declared active, while d0(x, 1) and d1(x, 1) are declared semi-active.

Stage s+1, s > 0. Let 〈s〉0 = 〈x, e, i〉, x = 〈k,m〉. We follow the instructions of 10 steps below,
one by one, unless there is an explicit command to go to another step. If the conditions of a step
do not hold, then by default we pass to the next step.

(1) If k �= e, o(x, e, i) is undefined, and fπ(e, i, σ(x, e, i), s + 1) = 1, then put o(x, e, i) = i.
(2) If k �= e, o(x, e, i) is defined, fπ(e, i, σ(x, e, i), s + 1) = 0, and f(2x + 2, σ(x, e, i), s) = 0,

then let
f (z, σ(x, e, i), s + 1) = 1, h(z, σ(x, e, i), s + 1) = hπ(e, i, σ(x, e, i), s + 1)

for all z /∈ {2x, 2x + 1}.
(3) If k �= e, o(x, e, i) is defined, fπ(e, i, σ(x, e, i), s + 1) = 1, and f (2x + 2, σ(x, e, i), s) = 1,

then put
f (z, σ(x, e, i), s + 1) = 0, h(z, σ(x, e, i), s + 1) = hπ(e, i, σ(x, e, i), s + 1)

for all z /∈ {2x, 2x + 1}.
(4) If k = e, l(x) and r(x) are undefined, fπ(k, y0, d0(x, 0), s+1) = 1, and fπ(k, y1, d1(x, 0), s+

1) = 1 for some distinct y0 and y1, then choose the least such y0 and y1 and define l(x) = y0 and
r(x) = y1.

8

(5) If k = e, l(x) and r(x) are defined, the number d0(x, i) is active or has been active, and

fπ(k, l(x), d0(x, i), s + 1) = f(2x + 2, d0(x, i), s) = 0,

then let
f(z, d0(x, i), s + 1) = 1, h(z, d0(x, i), s + 1) = pπ(k, l(x), d0(x, i), s + 1)

for all z �= 2x, if d0(x, i) is active, and for all z /∈ {2x, 2x + 1} if d0(x, i) is not active. Go to step
(10).

(6) If k = e, l(x) and r(x) are defined, the number d0(x, i) is active or has been active, and

fπ(k, l(x), d0(x, i), s + 1) = f(2x + 2, d0(x, i), s) = 1,

then put
f(z, d0(x, i), s + 1) = 0, h(z, d0(x, i), s + 1) = pπ(k, l(x), d0(x, i), s + 1)

for all z �= 2x, if d0(x, i) is active, and for all z /∈ {2x, 2x + 1} if d0(x, i) is not active, and go to
step (7). Otherwise, go to step (10).

(7) If k = e, l(x) and r(x) are defined, the number d1(x, i) is active or has been active, and

fπ(k, r(x), d1(x, i), s + 1) = f(2x + 2, d1(x, i), s) = 0,

then let
f(z, d1(x, i), s + 1) = 1, h(z, d1(x, i), s + 1) = pπ(k, r(x), d1(x, i), s + 1)

for all z �= 2x + 1, if d1(x, i) is active, and for all z /∈ {2x, 2x + 1} if d1(x, i) is not active. Go to
step (10).

(8) If k = e, l(x) and r(x) are defined, the number d1(x, i) is active or has been active, and

fπ(k, r(x), d1(x, i), s + 1) = f(2x + 2, d1(x, i), s) = 1,

then let
f(z, d1(x, i), s + 1) = 0, h(z, d1(x, i), s + 1) = pπ(k, r(x), d1(x, i), s + 1)

for all z �= 2x + 1, if d1(x, i) is active, and for all z /∈ {2x, 2x + 1} if d1(x, i) is not active, and go
to step (9). Otherwise, go to step (10).

(9) If k = e, l(x) and r(x) are defined, (l(x), r(x)) /∈ εs+1
m , the numbers d0(x, i) and d1(x, i) are

active, and

fπ(k, l(x), d0(x, i), s + 1) = fπ(k, l(x), d0(x, i + 1), s + 1) = 1,

fπ(k, r(x), d1(x, i), s + 1) = fπ(k, r(x), d1(x, i + 1), s + 1) = 1,

f(2x, d1(x, i), s) = f(2x + 1, d0(x, i), s) = 0,

9

then put

f(2x, d1(x, i), s + 1) = 1, f(2x + 1, d0(x, i), s + 1) = 1,

h(2x, d1(x, i), s + 1) = 1, h(2x + 1, d0(x, i), s + 1) = 1

and declare the numbers d0(x, i) and d1(x, i) to be inactive. Declare the semi-active numbers
d0(x, i + 1) and d1(x, i + 1) to be active. Define

f(2x, d0(x, i + 2), s + 1) = 1, f(2x + 1, d1(x, i + 2), s + 1) = 1,

h(2x, d0(x, i + 2), s + 1) = 1, h(2x + 1, d1(x, i + 2), s + 1) = 1

and declare the numbers d0(x, i + 2) and d1(x, i + 2) to be semi-active.
(10) Go to the next stage.
The construction is completely described. Clearly, steps (2) and (3) of the construction

correspond to the procedure O(x, e, i), steps (5) and (6) to the procedure L(x, i), steps (7) and (8)
to the procedure R(x, i), and step (9) aims to meet the requirement Nk,m.

Obviously, the functions f and h are computable, while l, r, and o are partial computable.
Define a numbering α by setting α(n)(y) = lim

s
f(n, y, s) for all n and y. Let A = {α(n) : n ∈ ω}.

Denote by S(x, e, i) the set of all stages s + 1 for which 〈s〉0 = 〈x, e, i〉.
The proof of the theorem proceeds via several lemmas.

LEMMA 1. A pair 〈f, h〉 of functions is a Σ−1
a -approximation to a numbering α, and hence

α is Σ−1
a -computable.

Proof. It is sufficient to verify that h is a change function for α. By construction, h(n, y, 0) = a

for all n and y. We are left to verify that for each pair of numbers n, y and for all s, the following
two properties hold:

(i) h(n, y, s + 1) ≤O h(n, y, s);
(ii) f(n, y, s + 1) �= f(n, y, s) ⇒ h(n, y, s + 1) �= h(n, y, s).
Properties (i) and (ii) are evident for every s and for all pairs (n, y) like
n = 2x, y ∈ {σ(x, e, i) : e, i ∈ ω} ∪ {d0(x, i) : i ∈ ω};
n = 2x + 1, y ∈ {σ(x, e, i) : e, i ∈ ω} ∪ {d1(x, i) : i ∈ ω};
n ∈ ω, y /∈ range(d0) ∪ range(d1) ∪ range(σ).

We verify these properties for the other pairs.
For every x, if y ∈ {σ(x, e, i) : e, i ∈ ω} and n /∈ {2x, 2x + 1}, then the function λs h(n, y, s)

can change its values only at stages s + 1 ∈ S(x, e, i), for which x = 〈k, m〉 and k �= e, as a result

of executing steps (2) and (3) of the construction. At such steps, h(n, y, s + 1) = hπ(e, i, y, s), and
so properties (i) and (ii) for the function λsh(n, y, s) follow from those for λshπ(e, i, y, s) in virtue
of ≤O being a transitive relation.

Now we consider the case where (n, y) is a pair with n �= 2x and y = d0(x, i) for arbitrary x and
i. If the number d0(x, i) never becomes active or x /∈ dom(l), then f (n, y, s) = 0 and h(n, y, s) = a
for all s, and hence there is nothing to prove.

10

Let x = 〈k,m〉 for some m and suppose that at stage s0+1 ∈ S(x, k, i) the active number d0(x, i)
is enumerated for the first time into α(n) for every n �= 2x due to step (5). Then f(n, d0(x, i), so) =
0, h(n, d0(x, i), so) = a and f(n, d0(x, i), so +1) = 1, h(n, d0(x, i), so +1) = pπ(k, l(x), d0(x, i), s0 +
1). We show that h(n, d0(x, i), so + 1) <O h(n, d0(x, i), so). Indeed, at stage s0 + 1, the value l(x)
is already defined. Let s1 + 1 be a stage at which this value became defined. Then s1 < s0, and
at stage s1 + 1, step (4) holds and fπ(k, l(x), d0(x, 0), s1 + 1) = 1. Therefore, by stage s0 + 1, the
function λspπ(k, l(x), d0(x, i), s) has changed its value at least twice. This implies that

pπ(k, l(x), d0(x, i), s0 + 1) <O pπ(k, l(x), d0(x, i), s1 + 1) ≤O a.

Hence h(n, d0(x, i), so + 1) <O h(n, d0(x, i), so).
Thus properties (i) and (ii) hold for the desired pairs if s ≤ s0. For all pairs 〈n, d0(x, i)〉, if

n /∈ {2x, 2x + 1} and s ≤ s0, then properties (i) and (ii) for the function λsh(n, d0(x, i), s) follow
from those for λs pπ(k, l(x), d0(x, i), s).

After stage s0 up to stage s2+1 at which the number d0(x, i) is enumerated into the set α(2x+1)
via the procedure D(x, i) (if ever), satisfaction of (i) and (ii) for the function λsh(2x+1, d0(x, i), s)
follows from the properties of the function λs pπ(k, l(x), d0(x, i), s).

Thus we need to consider properties (i) and (ii) for s = s2. According to the instructions of
step (9), f(2x+1, d0(x, i), s2) = 0, f(2x+1, d0(x, i), s2 +1) = 1, and h(2x+1, d0(x, i), s2 +1) = 1.
Furthermore,

pπ(k, l(x), d0(x, 0), s2) ≤O h(2x + 1, d0(x, i), s2),

if, by stage s2 + 1, d0(x, i) has been enumerated at least once into α(2x + 1) due to step (5) of the
construction, and h(2x + 1, d0(x, i), s2) = a otherwise. This, together with the inequalities

1 ≤O hπ(k, l(x), d0(x, 0), s2) <O pπ(k, l(x), d0(x, 0), s2),

yields h(2x + 1, d0(x, i), s2 + 1) <O h(2x + 1, d0(x, i), s2). Hence properties (i) and (ii) hold for
s = s2 as well. Finally, f(2x + 1, d0(x, i), s) = h(2x + 1, d0(x, i), s) = 1 for all s ≥ s2 + 1. Thus
properties (i) and (ii) are also true for the pair 〈2x + 1, d0(x, i)〉 with all s.

In the symmetric case where n �= 2x + 1 and y = d1(x, i), properties (i) and (ii) can be proved
in a similar way. Lemma 1 is completed.

LEMMA 2. If πk is a numbering of the family A, then, for any x and i with 〈x〉0 �= k, the
value o(x, k, i) is defined if and only if πk(i) = α(2x) or πk(i) = α(2x + 1).

Proof. Necessity. Let x, i be any pair of numbers such that 〈x〉0 �= k and the value o(x, k, i)
is defined. Consider a stage s0 + 1 ∈ S(x, k, i) at which the value o(x, k, i) became defined. This
is possible only by virtue of the execution of step (1) at this stage. Then fπ(k, i, σ(x, k, i), s0 +
1) = 1, i.e., σ(x, k, i) ∈ πs0+1

k (i). By construction, the number σ(x, k, i) is enumerated due to
the instructions of step 1 into the sets α(2x) and α(2x + 1) only; later on, it can be enumerated
into other sets of A only via step (2). If step (2) is not performed at all stages of S(x, k, i) then
πk(i) = α(2x) or πk(i) = α(2x + 1).

11

Let s1 + 1 ∈ S(x, k, i) be the least stage at which step (2) holds. Then s1 > s0 and

fπ(k, i, σ(x, k, i), s1 + 1) = 0 and f(z, σ(x, k, i), s1 + 1) = 1

for every z. This means that at stage s1 + 1 the number σ(x, k, i) is contained in all sets of the
family A except the set πk(i). Since πk is a numbering of A, it follows that at some later stage the
number σ(x, k, i) will be enumerated into πk(i) again. Let s2 +1 ∈ S(x, k, i) be the least stage such
that s2 > s1 and fπ(k, i, σ(x, k, i), s1 +1) = 1. Then step (3) holds at stage s2+1, and consequently
f(z, σ(x, k, i), s1 + 1) = 0 for all z other than 2x and 2x + 1. Beginning from some stage s3, the
values of the function λs fπ(k, i, σ(x, k, i), s) will stabilize at 1, and hence f(z, σ(x, k, i), s) = 0 for
all z other than 2x and 2x + 1 and for all s ≥ s3. Therefore, πk(i) = α(2x) or πk(i) = α(2x + 1).

Sufficiency. Let 〈x〉0 �= k and πk(i) = α(2x) or πk(i) = α(2x + 1). By construction, the
number σ(x, k, i) is enumerated at step 1 into the sets α(2x) and α(2x + 1), never to be removed.
Consequently, there is a stage s0 such that fπ(k, i, σ(x, k, i), s) = 1 for all s ≥ s0. Let s1 + 1 ∈
S(x, k, i) be the least stage at which s1 ≥ s0. If the value o(x, k, i) has not been defined by stage
s1+1 then, at this stage, all conditions of step (1) hold, and o(x, k, i) will be set equal to i. Lemma 2
is proved.

LEMMA 3. For any x and z, if x �= z then α(2x) and α(2x+1) are distinct from all sets α(z)
with z /∈ {2x, 2x + 1}. Moreover, α(2x) = α(2x + 1) if and only if the procedure D(x, i) is carried
out for all i.

Proof. Let x = 〈k,m〉. If k �= 0, then at step 1 the numbers σ(x, 0, i), i ∈ ω, are enumerated
into both sets α(2x) and α(2x + 1). Since fπ(0, i, σ(x, 0, i), s) = 0 for all i and s, it follows that
o(x, 0, i) cannot be defined at any stage of the construction via step (1). Therefore, the numbers
σ(x, 0, i) cannot be enumerated due to step (2) into any set α(z) for all z /∈ {2x, 2x + 1}.

If k = 0 then at step 1 the number d0(x, 0) is enumerated into α(2x), while d1(x, 0) is
enumerated into α(2x + 1). Since fπ(0, y, d0(x, 0), s) = 0 and fπ(0, y, d1(x, 0), s) = 0 for all y

and s, the values l(x) and r(x) cannot be defined via step (4) at any stage of the construction.
Hence steps (5) and (7) cannot be used to enumerate the numbers d0(x, 0) and d1(x, 0) into any
set α(z) for all z /∈ {2x, 2x + 1}.

Thus each of the sets α(2x) and α(2x + 1) contains a number that is never enumerated into
any of the sets α(z) for z /∈ {2x, 2x + 1}.

To prove the second statement of the lemma, note that

{σ(x, e, i) : e, i ∈ ω} ⊆ α(2x) ∩ α(2x + 1),

and that any number of α(z) for z /∈ {2x, 2x+1} is contained in α(2x) iff it is contained in α(2x+1).
Hence the equality or inequality of the sets α(2x) and α(2x + 1) is completely determined by the
number of stages at which the procedure D(x, i) is effected. Lemma 3 is proved.

LEMMA 4. If πk is a numbering of A, then λm l(〈k, m〉) and λm r(〈k, m〉) are computable
functions and

α(2〈k, m〉) = πk(l(〈k, m〉)), α(2〈k, m〉 + 1) = πk(r(〈k, m〉)).

12

Proof. Let πk be a numbering of the family A. We show that the functions λm l(〈k,m〉) and
λm r(〈k,m〉) are total. Choose an arbitrary number m and let x = 〈k,m〉. At step 1, d0(x, 0) is
enumerated into α(2x) and d1(x, 0) is enumerated into α(2x + 1), never to be removed. Note that
at each stage of the construction, the value l(x) is defined iff the value r(x) is defined.

Assume that both l(x) and r(x) are undefined throughout the construction. Then at each stage
s + 1 ∈ S(x, k, i) steps (1)-(9) do not hold, and hence d0(x, 0) is not enumerated into any set
α(z) with z �= 2x, while d1(x, 0) is not enumerated into any set α(z) with z �= 2x + 1. Let y0

and y1 be πk-indices of α(2x) and α(2x + 1). Clearly, y0 �= y1. Then fπ(k, y0, d0(x, 0), s) = 1 and
fπ(k, y1, d1(x, 0), s) = 1 for all s starting with some s0. This implies that the conditions of step (4)
hold at infinitely many stages of S(x, k, i), a contradiction. Thus the values l(x) and r(x) are both
defined at some stage s1 + 1 ∈ S(x, k, i).

We fix a number i and show that d0(x, i) /∈ α(z) for all z /∈ {2x, 2x + 1}. If d0(x, i) is never
declared semi-active, then d0(x, i) /∈ α(z) for all z. If d0(x, i) is declared semi-active at some stage
and remains semi-active at all later stages, then d0(x, i) ∈ α(2x) and d0(x, i) /∈ α(z) for all z �= 2x.

Consider the case where the number d0(x, i) is declared active at some stage s0 and remains
active at all stages s ≥ s0. Then f(2x, d0(x, i), s) = 1 for all s ≥ s0. If f(2x + 2, d0(x, i), s) = 0 for
all s ≥ s0 then d0(x, i) /∈ α(z) for all z other than 2x and 2x + 1.

Let s1 + 1 be the least stage such that f(2x + 2, d0(x, i), s1 + 1) = 1. Then s1 + 1 > s0 and
step (5) holds at stage s1 + 1; hence fπ(k, l(x), d0(x, i), s1 +1) = 0 and f(z, d0(x, i), s1 + 1) = 1 for
all z. If fπ(k, l(x), d0(x, i), s+1) = 0 for all s > s1, then step (6) does not hold at all further stages
of S(x, k, i), and f(z, d0(x, i), s + 1) = 1 for every z and for all s > s1. Consequently, the number
d0(x, i) is contained in all sets of the family A but is not contained in πk(l(x)); therefore, πk is not
a numbering of A, a contradiction. Hence there is a least stage s2 +1 > s1 +1 of S(x, k, i) at which
step (6) holds. Then f(z, d0(x, i), s + 1) = 0 for all z �= 2x. Thus, at stages s, s1 + 1 ≤ s ≤ s2 + 1,
the procedure L(x, i) has been performed completely and the function λs hπ(k, l(x), d0(x, i), s) has
changed its value at least once. After stage s1, therefore, the procedure L(x, i) can be carried out
only finitely many times. Since πk is a numbering of A, every execution of this procedure will be
finished by fulfilling the instructions of step (6).

If the number d0(x, i) remains active till the end of the construction, then step (9) does not
hold at stages in S(x, k, i), and so α(2x) is the only set in A that contains d0(x, i). If the number
d0(x, i) becomes inactive at some stage s3 + 1 ∈ S(x, k, i), then step (9) holds at this stage; i.e.,
the procedure D(x, i) is performed. The number d0(x, i) remains inactive at further stages as well.
At stages s > s3 + 1, d0(x, i) can be enumerated into all sets α(z) with z /∈ {2x, 2x + 1} via
the procedure L(x, i) only. As shown above, every execution of this procedure will be finished by
fulfilling the instructions of step (6). Therefore, the number d0(x, i) is not contained in any set
α(z) with z /∈ {2x, 2x + 1}.

Now we show that α(2x) = πk(l(x)). By Lemma 3, α(2x) �= α(z) for all z /∈ {2x, 2x + 1}. If,
starting with a stage s′, the number d0(x, i) is active for some i, then d0(x, i) ∈ πk(l(x)) ∩ α(2x)

13

and d0(x, i) is not contained in any set α(z) with z �= 2x. Hence α(2x) = πk(l(x)).
On the other hand, declaring every number d0(x, i), i ∈ ω, to be active means that the procedure

D(x, i) will be performed for all i. Then {d0(x, i), d1(x, i) : i ∈ ω} ⊆ α(2x) ∩ α(2x + 1) and no
number d0(x, i) is contained in any set α(z) with z /∈ {2x, 2x + 1}. Furthermore, for every such z

and every y ∈ α(z),
y ∈ α(2x) ⇐⇒ y ∈ α(2x + 1).

Hence α(2x) = α(2x + 1) = πk(l(x)).
The equality α(2x + 1) = πk(r(x)) can be proved similarly. Lemma 4 is completed.
Let

Lk = {l(x) : 〈x〉0 = k},
Rk = {r(x) : 〈x〉0 = k & 〈l(x), r(x)〉 ∈ ε〈x〉1},
Ok = {o(x, k, i) : (x, k, i) ∈ dom(o)& 〈x〉0 �= k},
Πk = Lk ∪ Rk ∪ Ok.

LEMMA 5. If πk is a numbering of the family A, then Πk is a c.e. set that contains exactly
one πk-index of each of the sets {α(2〈k,m〉), α(2〈k,m〉 + 1) : m ∈ ω} and all πk-indices of other
sets.

Proof. Πk is a c.e. set since l, r, and o are partial computable functions, and εm is a c.e. relation
for every m. The other statements of the lemma follow from Lemmas 2-4. Lemma 5 is proved.

Now we are in a position to complete the proof of the theorem. By Lemma 1, α is a Σ−1
a -

computable numbering. Using the criterion given in Theorem 1, we show that the family A = α(ω)
has no Σ−1

a -computable minimal numbering.
Let ν be an arbitrary Σ−1

a -computable numbering of A. Then ν = πk for some k. Theorem 1
can be reformulated in a more convenient form. Namely:

THEOREM 3. A numbering πk of the family A is not minimal if and only if there is a c.e. set
W such that πk(W) = A, and for every m, one of the following holds:

(a) ∃u∃v((u, v) ∈ εm & πk(u) �= πk(v)),
or
(b) ∃u∀w ∈ W ((u,w) /∈ εm).
As the set W we take Πk. By Lemma 5, πk(Πk) = A. Let εm be an arbitrary c.e. equivalence.

Put x = 〈k,m〉. In view of Lemma 4, the numbers l(x) and r(x) are defined. There are two cases
to consider:

Case 1. Let 〈r(x), l(x)〉 ∈ εm.
Then 〈r(x), l(x)〉 ∈ εs+1

m for all stages s + 1 ∈ S(x, k, i), i ∈ ω, beginning with some s0 + 1.
At these stages, therefore, step (9) of the construction does not hold. Hence the procedure D(x, i)
is performed only for finitely many numbers i. By virtue of Lemmas 3 and 4, πk(r(x)) �= π(l(x)).

Consequently, Theorem 3(a) holds for u = r(x) and v = l(x).

14

Case 2. Let 〈r(x), l(x)〉 /∈ εm.
We will show that the procedure D(x, i) is performed for every i in this case. Let i > 0 be a

number such that, at some stage s1 + 1 ∈ S(x, k, i − 1), the numbers d0(x, i + 1) and d1(x, i + 1)
are declared semi-active. Then the procedure D(x, i − 1) is performed at stage s1 + 1, whereby

fπ(k, l(x), d0(x, i), s1 + 1) = 1, fπ(k, r(x), d1(x, i), s1 + 1) = 1,

and the numbers d0(x, i) and d1(x, i) are declared active.
We show that the procedure D(x, i) will be carried out at some later stage in S(x, k, i). Lemma 4

shows that if step (5) (step (7)) holds at some stage in S(x, k, i), then step (6) (step (8)) will hold
at some later stage in S(x, k, i). Therefore, for some s2 + 1 ∈ S(x, k, i),

fπ(k, l(x), d0(x, i), s + 1) = 1, fπ(k, r(x), d1(x, i), s + 1) = 1,

f(2x, d1(x, i), s) = 0, f(2x + 1, d0(x, i), s) = 0

for all s+1 ∈ S(x, k, i) with s ≥ s2. By Lemma 4, α(2x) = πk(l(x)), α(2x+1) = πk(r(x)), and, as
long as the numbers d0(x, i + 1) and d1(x, i + 1) remain semi-active, they cannot be enumerated
into sets distinct from α(2x) and α(2x + 1), respectively. Therefore, for some s3 ≥ s2,

fπ(k, l(x), d0(x, i + 1), s + 1) = 1, fπ(k, r(x), d1(x, i + 1), s + 1) = 1

for all s + 1 ∈ S(x, k, i) after stage s3, as long as d0(x, i + 1) and d1(x, i + 1) remain semi-active.
Hence step (9) is effected at a least stage s4+1 ≥ s3 in S(x, k, i). Then, at this stage, the procedure
D(x, i) is carried out.

Thus 〈r(x), l(x)〉 /∈ εm and the procedure D(x, i) will be executed for every i. Then r(x) /∈ Πk,
and by Lemmas 3 and 4, πk(r(x)) = π(l(x)). If 〈r(x), w〉 /∈ εm for all w ∈ Πk distinct from l(x),
then condition (b) of Theorem 3 holds for u = r(x) and for all w ∈ Πk. If, however, 〈u,w〉 /∈ εm for
some w ∈ Πk distinct from l(x), then, by Lemma 5, condition (a) of Theorem 3 holds for u = r(x)
and v = w.

Thus at least one of the conditions (a) or (b) specified in Theorem 3 holds in either case.
Consequently, πk is not a minimal numbering. Theorem 2 is proved.

REFERENCES

1. V. V. V’yugin, “On some examples of upper semilattices of computable enumerations,”
Algebra and Logic, 12, No. 5, 277-286 (1973).

2. S. A. Badaev, “Minimal enumerations,” Sib. Adv. Math., 2, No. 1, 1-30 (1992).

3. S. A. Badaev and Zh. T. Talasbaeva, “Computable numberings in the hierarchy of Ershov,”
Mathematical Logic in Asia, S. S. Goncharov (Ed.), World Scientific, NJ, 17-30 (2006).

4. S. A. Badaev and S. Lempp, “A decomposition of the Rogers semilattice of a family of
d.c.e. sets,” J. Symb. Log., 74, No. 2, 618-640 (2009).

15

5. A. B. Khutoretskii, “On the cardinality of the upper semilattice of computable enumerations,”
Algebra and Logic, 10, No. 5, 348-352 (1971).

6. K. Sh. Abeshev, “On the existence of universal numberings for finite families of d.c.e. sets,”
Math. Log. Q., 60, No. 3, 161-167 (2014).

7. S. A. Badaev and S. S. Goncharov, “Theory of numberings: Open problems,” in Computability
Theory and Its Applications, Current Trends and Open Problems, Cont. Math., 257,
S. Cholak et al. (Eds.), Am. Math. Soc., Providence, RI (2000), pp. 23-38.

8. H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New
York (1967).

9. Yu. L. Ershov, “A hierarchy of sets. I,” Algebra and Logic, 7, No. 1, 25-43 (1968).

10. Yu. L. Ershov, “On a hierarchy of sets, II,” Algebra and Logic, 7, No. 4, 212-232 (1968).

11. Yu. L. Ershov, “On a hierarchy of sets. III,” Algebra and Logic, 9, No. 1, 20-31 (1970).

12. C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy,
Stud. Log. Found. Math., 144, Elsevier, Amsterdam (2000).

13. S. S. Goncharov and A. Sorbi, “Generalized computable numerations and nontrivial Rogers
semilattices,” Algebra and Logic, 36, No. 6, 359-369 (1997).

14. Yu. L. Ershov, The Theory of Numberings [in Russian], Nauka, Moscow (1977).

16

	INTRODUCTION
	1. PROOF OF THE MAIN THEOREM
	REFERENCES

