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Equilibrium configurations from gravitational collapse
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We develop here a new procedure within Einstein’s theoryrafity to generate equilibrium configurations
that result as the final state of gravitational collapse fregular initial conditions. As a simplification, we as-
sume that the collapsing fluid is supported only by tangeptessure. We show that the equilibrium geometries
generated by this method form a subset of static solutiotiset&instein equations, and that they can either be
regular or develop a naked singularity at the center. Wheingukarity is present, there are key differences
in the properties of stable circular orbits relative to th@sound a Schwarzschild black hole with the same
mass. Therefore, if an accretion disk is present around autdiked singularity it could be observationally
distinguished from a disk around a black hole.
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.  INTRODUCTION

It is well known that any spherical distribution of non-irdeting particles (thus in the absence of pressure), causbain
itself against the pull of its own gravitational field and rusdergo complete gravitational collapse. The final outeoifrsuch a
dust collapse is either a black hole or a naked singulariyedding on the initial density configuration and velocistribution
of the particlesl]1]. In recent years, from the study of giaidnal collapse in a wide variety of scenarios — self-&amgollapse
[2], scalar fields|[3], perfect fluids|[4] and other generaitie of matter fields — it has emerged that black holes and naked
singularities have both to be considered as possible fintabowes of complete collapse of a massive matter cloud inrgéne
relativity [5]. This is true also for alternative theoriesgravity such asf(R) gravity and Lovelock gravity [6].

When non-vanishing pressures are present within the nettied — a physically more realistic scenario than dust — detap
gravitational collapse is not the only possible final statence, a question of much physical interest is, if and undeatw
conditions can we have equilibrium configurations thatioate from dynamical gravitational collapse within geheetativity.

In fact, we know that equilibrium non-singular gravitatisigstems exist in nature, e.g., planets, stars, galaxlexf,vahich form
via gravitational collapse, and that these objects areedtgignificance from the perspective of both theory andrebtiens.

We show here that the gravitational collapse of a matterttlgith non-vanishing tangential pressure, from reguldiahdata,
can give rise to a variety of equilibrium configurations as tlollapse final state. We consider here, for the sake of Kitypl
and clarity, the case of collapse with non-zero tangentedgure and vanishing radial pressure. While such a siegplifiodel
represents in some sense an idealized example, the caseartaanlistic matter source, for example composed of a gierfe
fluid (with both radial and tangential pressure), can alsanlbestigated and its equilibrium configurations will be oejed
separately in a future work. Collapse with only tangentigssure provides a relatively transparent structure (mnaicause
the mass function is conserved as we explain below), andcc#isis is of much interest in its own right, since it revealsch ri
array of possibilities. Therefore it is important and uséfistudy and understand these simpler models in order toefigut the
possibilities that they offer on the collapse final states.

Models with vanishing radial pressure were first investigdty Datta in the special case where the matter cloud is ceetpo
of counter-rotating particles in the so called Einsteirstdn geometry [7]. Over the past years, these models haveshadied in
detail in order to characterize the final outcome of compedwitational collapse in terms of black holes and nakegidarities
[8]. We use here the general formalism developed in [9] tdysthe dynamical evolution of a massive matter cloud thdapskes
from regular initial data. We develop a technique and pracethat allows us to investigate when such a collapse candal
form an equilibrium configuration. We show that from such Hagse process static configurations can arise which anereit
regular or singular at the center. We then investigate éopdait toy model belonging to this class which presents &raknaked
singularity and we study the physical properties of an ammelisk in this spacetime.

The main noteworthy feature of the work presented here tstthlhows the existence of solutions in which naked singiger
arise from a dynamical process of gravitational collaptetiag from regular initial conditions. This makes the retsuseful
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and interesting from a physical point of view since many otieked singular geometries that are usually investigaiddrw
general relativity are not obtained from the dynamical etioh of a collapsing cloud with regular initial data (altigh we note
that there exist some much discussed examples of ways tepner Kerr black hole, thus turning it into a naked singtyay
dropping spinning extended bodies through the horizonf@eexample|[10]). We point out here that although we deahwit
an idealized toy model, where the singularity is approaassthptotically, physically it can be interpreted as a sjosviolving
collapse scenario where the central density is increashigh (to a point where quantum effects would become relgyand
which is always visible to faraway observers. At later artdrldmes, as the gravitational collapse evolves, the ps#tanodel
will be arbitrarily close to the idealized final static configtion, with the rate of collapse becoming arbitrarily §meherefore
such a ‘freezing’ of the dynamics aggrows allows us to neglect the collapse at a late enough tilrenwhe central region
has achieved an extremely high density. At this late time ajproximation to a static configuration holds to a high degf
accuracy, and it is meaningful to study its physical prapsre.g., the nature of an accretion disk in the static cardigpn.

The properties of circular orbits for a non-rotating souscstained only by tangential pressure, as discussed héer, d
considerably from corresponding results evaluated folKtie spacetime (see for examplel[11]). Furthermore, theabjwe
study will have different optical properties in terms of dbes and gravitational lensing compared to well studiedaanees
in other static and stationary geometries. In fact, it hankshown that whenever a photon sphere is present, as issbénca
certain Kerr geometries, the effects of gravitational iegsnake a naked singularity indistinguishable from a blacle [12].

In the model presented here, we find naked singularities mathhoton sphere, thus leaving open the possibility tordisiish
such objects from a black hole.

While the arguments presented above provide a number ofatiotis for the present study, the main objective of thiskwor
is to show the existence of models in which asymptoticalifistspacetimes with and without naked singularities aasa
result of dynamical gravitational collapse from regulatiah configurations. It is briefly shown that observatiofedtures e.g.,
of an accretion disk, in such models can be quite differemfthose of a Schwarzschild black hole, though a more ddtaile
investigation of the properties of accretion disks, inahgda parameter study of energy flux and luminosity, is deféto a
future work.

In sectiori]l, we give a brief overview of the general forrsalito describe the dynamical evolution of a matter clouchsnst
by tangential pressure. This formalism can be applied ta#ise of collapse, expansion, bounce or asymptotic equitibrin
section[ll we impose the condition that the system asynegtdéd a state of equilibrium, and we then analyze under what
circumstances a collapsing cloud can settle to such a $itatic Section[1V is then devoted to the analysis of a toy mdde
which the stable circular orbits and related physical prige of interest are presented. This is used to establignydnd in
what manner, such models can be observationally distihgdifrom a black hole. Finally, in sectiéd V we highlight thaim
results and indicate perspectives for future research.

Il. GRAVITATIONAL COLLAPSE
The spherically symmetric spacetime metric describingreadyical gravitational collapse can be written as,
R12
ds® = —e?dt* + ?er + R%d0? (1)

wherev, R andG are functions of the comoving timeand the comoving (Lagrangian) radial coordinateln the case of
vanishing radial pressure the energy-momentum tensovéndiy7y) = p, 171t = 0, T3 = T = ps, and the Einstein equations
take the form

F
prszQR:()v (2)
F/
p = W’ 3
1 v
po = 5pR5, “)
. 1// .
G = 2§RG. (5)

In the aboveF is the Misner-Sharp mass, which describes the amount oéneitlosed by the shell labeled byand is given
by

F=R(1-G+e?R? . (6)

Equation [(2), which results from the assumption of pure ¢aigl pressure, immediately implies thiat= F(r), and so the
mass interior to any Lagrangian radius conserved throughout the evolution. Therefore, atalés the metric describing the
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evolving cloud can be matched to an exterior Schwarzschilatisn with a total masMroT at a boundary: = r;,, which
corresponds to a time-dependent physical radiy@) = R(rp,t) [13].

We note that it is also possible to consider a more generkdps# problem where we allow for non-zero radial pressure. |
that case, the considerable simplification of being ableatcito Schwarzschild may no longer be possible. Howevechiray
to a generalized Vaidya spacetime is always possible forgamgral type | matter field as also for fields with non-zeraalad
pressure, subject to satisfying energy conditions andrattesonable physical regularity conditions. We shall a@rssuch
a more general situation separately, but we focus here ositiyger case of zero radial pressures since it offers censiile
clarity and transparency on the role that pressure playseinynamical evolution of gravitational collapse. Thiaows us
to see clearly how the presence of pressure permits equitibgolutions, as opposed to the case of dust where suchosdut
are never possible. Models with non-zero tangential pressave been of much interest in the past as mentioned alhowegh
this interest was mainly focused on finding the collapse Bteatks in terms of black holes or naked singularities.

There is a scaling degree of freedom available in the defmiif the physical radiu®. Using this we introduce a scaling
functionov(r, t) defined by

R(r,t) = rov(rt), v(r,t;) =1, @)

where the latter condition simply states tliat= » at the initial timet = ¢; from which the collapse develops. In the following
we assume that no shell-crossing singularities, define®’by 0, occur during the evolution. These are supposed to be weak
singularities that arise due to the collision of differeadial shells and would be removable by a suitable changeartiomates.

To avoid shell-crossing singularities we must impose fifat- 0 during the evolution. This in turn implies that the weak gyer
conditions are satisfied for positive pressures duringapst whenevef” > 0.

Our main procedure now for evolving the gravitational godla is as follows. We have six unknowns, namelyy, v, G, F’
andR, and four Einstein equations, so we have the freedom to ehmasfree functions. Once we specify the initial data for the
above six functions at an initial epo¢h= ¢; and specify the two free functions, the system is closed l@d&instein equations
then evolve the collapse to any future time. Typically, weyrnhoose the free functions to be the mass functign), which
specifies the initial mass which is conserved for the clooahffwhich the energy density can be obtained from equadiipn (3
and the tangential pressusg. Then, given the initial values, the future evolution idyudetermined by the Einstein equations
[14]. We note that, while in the present case the mass fumiitime independent and is chosen once and for all, theymess
depends om andt via v(r, t) aspg = pe(r,v). Hence a global choice for the pressure at all times has tajglied, which
then fully fixes the evolution of the system. One could, foample, begin by choosing = Myr?, which corresponds to a
matter cloud that is initially perfectly homogeneous (dansdensity). It is then known that, for certain classestuafices of
the evolution ofpy, a complete gravitational collapse would terminate inegith black hole or a naked singularity final state
[8]. On the other hand, for certain other choices of the pness bouncing behaviour for the cloud may result, wherénitial
collapse is reversed to turn into an expansion [15]. It istine choice we make fai that determines which way the collapse
develops and evolves in future: Whether it will be a contimedlapse to either a black hole or a naked singularity, eretwill
be a bounce at some stage, or it will settle into an equilibriimal configuration as we discuss here.

We note that actually any choice af is equivalent to a choice of a constitutive equation of dtatéhe matter, and vice-versa.
In fact, the relation between the energy density and thectaiig) pressure is given implicitly by equatidn (4),

_pp 1V
k(r,v) = S~ altm (8)
and sopy in general need not have an idealized form such as a lineaolgtrppic function ofp. In fact, it is reasonable
to suppose that the collapsing system will go through veffeidint regimes, moving from its initial low density and wea
gravitational field configuration to later stages where thiesity and gravitational fields might be extremely high.siwould be
reflected in the constitutive equation being, in generaletion ofr andt, taking into account how the matter content changes
during the evolution.

From equationg{4) andl(5), we can solvefaandG to obtain

virt) = Q/Ole%df—i-y(t), 9)
G(r,t) = b(r)e‘lfv1 sdv (10)

We ignore the functiony(t), which comes from integrating equatidg (4), since it can lisebed in a redefinition of the time
coordinate. The free functiorb(r), which comes from integrating equatidn (5), is related ®walocity profile of the particles
(it is easy to check that in the pressureless case we&'geth). The only unknown that remains finally is the metric funoti®,
which is the physical radius for the matter cloud and whicgivgn by the solution of the differential equation fBrprovided
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ds? = —eM o R R dr g2 dr? + R2dO? . (11)

b(r)et Jo $d7

In the present case with the spacetime metric given as aimnie,certain explicitly solved interior models such asH#iestein
cluster are available, we note that in general obtainindi@kgolutions in fully integrated form for the Einstein egtions is
rather difficult except in the simplest cases. Itis also heags necessary. What we really need here for our purpoassaming
regular behaviour of the free functions and the initial datBrmation about the structure of the dynamical collapsédact, the
behaviour of a collapse solution can often be inferred inyre@ases without having to explicitly carry out the full intagons.

Ill. EQUILIBRIUM CONFIGURATIONS

We investigate the following question here: For what cheioeclasses of the pressusg(r, v) (or equivalentlypy(r,t)),
does a cloud that collapses from regular initial conditiapproach asymptotically an equilibrium configuration watistatic
spacetime geometry? In the following, given the freedontimose the tangential pressure functighwe construct classes of
models in which the pressure balances the attraction oftgravthe asymptotic final state, thereby obtaining final iégrium
configurations. This is subject to physical conditions sagthe positivity of energy density and the regularity ofittial data.

For any fixedr, the equation of motiori.{6) can be written in termseh the form of the following effective potential,

(12)

Ve = o (M, €21

v r2

where the function/ (r) is defined byF = 2 M (r), and a suitable choice of this function implies that the MisBharp mass
is well-behaved at the center of the cloug:.( non-singular and without cusps). In the Newtonian angltgy negative of the
effective potential describes the weighted kinetic enafgihe particles in the shell labeled by Notice that, sincé’ does not
depend o, it must be the same throughout the collapse and in the finalilegum state.

From the above equations it is clear that any static conftgurar bounce cannot at all arise in pressureless dustpsala
This is seen immediately from the fact that for diudt= M (r)/v + f(r). Therefore, ifo < 0 at some timeij.e., once collapse
has beguny < 0 continues to be the satisfied at all later times. Furtheingfdensity is not zero, theén= 0 cannot be achieved
at any later time. The continual dust collapse thus inelyitsdrminates in a spacetime singularity as the collapsé §itzde,
which is either covered within an event horizon thus formanglack hole, or is a naked singularity. This final state eitiay
is determined by the nature of the initial data from which¢b#apse evolves. The addition of non-zero pressures g
situation. In particular, it also introduces a degree oéfi@m that can be used to balance the gravitational attratiobtain a
static final equilibrium configuration, as we show below.

In order for the system to reach a static configuration whelagse stabilizes, we require both the velocity and thelacc
eration of the in-falling shells to go to a vanishing valuetlas collapse progresses in future. We therefore need thtnigm
conditions,

b=10=0, (13)

which are equivalenttd” = V., = 0, where

VU€2U<M&>2V7U€2U<K+G1) . (14)
v

V2 r2 r2

As the collapse progresses in time, the evolution metriction v(t, ) approaches in the limit an equilibrium value= v, (r).
The effective potential can be considered as a function fofr any fixed shellr, so from the conditiond (13) we obtain the
limiting equilibrium configuration, (r).

We note that in the comoving coordinates that we have useg] tier final equilibriumi.e., the static limit, is reached in the
limit of the comoving timet going to infinity. If we linearize the effective potentitl near the equilibrium configuration,
we can write it ad/ (v) = H (r)%(v — v.)? for a certain function/ < 0 that can be obtained from the second derivativ& of
Therefore we gefv/(v —ve) = H(r)dt, of (v—wv.) = exp[H (r)(t —t;)], which impliesv — v, ast — +o0. Itis possible that
there might exist some reparametrizatiort tfiat allows the singularity to appear in a finite time. Busihot necessary to find
such a coordinate change explicitly as we prefer to work witinoving coordinates, which have a clear physical intéain
and appeal.
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OnceM (r), or equivalently the mass functidr(r), is chosen, by imposing the conditiofisl(13) we obtain twaatigus that
fix the behaviour of7 andG ,, at equilibrium in terms of the equilibrium solutian(r),

Ge(r) = G(r,v.(r)) =1— Tj%g ) : (15)
M(r)r?

2 Y
(&)

(G,v)e = G,U(’r, Ue(r)) =

(16)

(Y

where the velacity profilé(r) that appears in equation {10) has been absorbeddpte). From equation[(3) evaluated at
equilibrium, we obtain the energy density at equilibrium,

3M +rM’
o(r) = ————, 17
P (T) Ug(ve ¥ T’Ué) ( )
while the tangential pressure can be written as
1 G.o)e 1 r?M((3M +rM’
Poe = _peve( . ) =735 ( ; 2) . (18)
4 G. 4 v2(ve + rvl)(ve — 72 M)

In any gravitational collapse that begins from regulaiahitonditionsj.e., that has a regular mass functigiir), and evolves
towards a final equilibrium state, we have the freedom to shdbe final configuration via the functiep(r). Once we choose
F(r) andv.(r), these two functions fully determine all other quantitieshe final equilibrium:p.(r), G¢(r), (G, ). () and
poe(r). While this fully specifies the final state, we still have theedom to choose how the system evolves between the initial
and final configurations. As stated earlier, the collapséugiem is fully fixed by choosing?'(r) andpy(r, v), one of which,
namely the mass functioR(r), we have already chosen. Thus, in order to go to the desirabdfuilibrium configuration as
collapse limit, the class of allowed pressupgér, v) is to be so chosen that we haug(r, v) — pg.(r) ast — oo, where the
equilibrium pressurey.(r) was determined by the choice of the free functig(y), as indicated above. For this entire class
of py evolutions, the dynamical gravitational collapse will assarily go in the asymptotic limit to an equilibrium spaoet
geometry, which is defined b¥(r) andv.(r).

Thus, we can finally write the metric(lL1) at equilibrium as,

T PeeRé

ds? = —et o TR g2 4

Rf (pe + 4]79@)

dr* + R%dQ? | (19)
Pe

whereR.(r) = rv.(r) is the physical radius of the Lagrangian shelh the final equilibrium configuration. A dynamical
solution of the Einstein field equations, as representechbynetric [1ll) withF'(r) fixed, and with the class of pressures
po(r,t) chosen such thaty — py. (or equivalently choosing a functiar(r, ) such thatr — v.), will therefore tend to a final
equilibrium metric of the form(19), where in the final statetlae functions depend only on

In principle, the above equilibrium metric, which is the fistate of collapse, is not required to be necessarily reailthe
center. In fact we can see from equatibh (3) that sihtés finite atr = 0, whenever we have. (0) = 0, the energy density at
equilibrium diverges at = 0 and the equilibrium metric presents a central spacetimguanity. Clearly, this singularity has
been achieved as the result of collapse from regular irdé#h that respect the energy conditions and it is somehoilasita
those arising in complete gravitational collapse, thougthis case the outer shells do not fall into the singularitytalt at a
finite radius, thus creating a static compact object.

We see from the above that in order to fix completely the behenof py at equilibrium, we need to give the explicit form
at equilibrium ofG andG ,, and both the equilibrium conditions, nameiy= 0 and¢ = 0, are necessary as well as sufficient
for such a purpose. The freedom to choose the tangentiayreeas above in the evolving collapse phase allows forrdiife
effective potentials to have different equilibrium configtions. On the other hand, we can reverse the reasoningraose a
certain equilibrium configuration. (r), which implies a specifipy.. We can then select the class of tangential pressures with
proper limit such that they give rise to that specific effeepotential (see Fid.l 1).

If an equilibrium configuration with a singularity at the t¢enis achieved as the limit of gravitational collapse, iniportant
to check under what conditions the singularity will not be@ed by an event horizon. In the static limit, this simplyang that
the boundary where the cloud matches the vacuum Schwal@ssttérior has a radius greater than the Schwarzschildisadi
Therefore, from the boundary condition at equilibrium wéad a condition for the absence of trapped surfaces atibguih.

In order for the region near the center to be not trapped, wet ftraveF’/R < 1. In the final equilibrium state, writings in
terms of energy density and pressure, we have
F G — 4p96

Z_—1-

= —, 20
R, Pe + 4pge ( )
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FIG. 1: The conditions for equilibrium given in equatién*8quire that, for each, the effective potential’ (r, v) as a function of should
have a maximum, and further that the value of the potentigileataximum must be zero. Thé¥i(r, v) = 0 implicitly definesv. (r).

which is obviously smaller than unity for positive energydigy and positiveys.. Thus, we obtain the interesting result that any
central singularity that forms in the final equilibrium canfration via the collapse dynamics described in this papalways

a naked singularity. This is not surprising since we are rileisg dynamical evolution from regular initial data withitrapped
surfaces. This means that at the initial timyeéhe center of the cloud is not trapped. Since the evolutiomares regular, with
the singularity arising asgoes to the asymptotic limit as the system reaches equilihnive can, in principle, choose any time
slice to be the initial time. This implies that during the vidnevolution the center of the cloud is not trapped and so éméral
singularity that appears in the final equilibrium is naked.

It is relevant to mention here that static interior solusiarfithe Schwarzschild metric have been studied in the passtaric
interiors supported by only tangential pressures werenddyeFlorides|[16], who wrote the most general metric in tlisecand
found solutions depending on the choice of the free funcligr). A static spherically symmetric line element depends only o
the physical radiu®, and it is easy to verify that it can be obtained from the modffB), once a suitable change of coordinates
R = R(r) is made. It therefore follows that the class of equilibriunmfigurations we have obtained here belongs to the family
of static metrics given by Florides. The Einstein equatiareseasily rewritten in this case. The metric functichandv in the
static tangential pressure case are then given by

F(R)

GIR)=1-—F5=,  Wr= Dt

(21)

and equatiori{4) becomes a definition for the tangentiabpres

The important point is, the entire family of static tangahpressure solutions described by Florides can be obtdioed
gravitational collapse as the asymptotic equilibrium tioficollapse, by using the procedure we outlined here.

The physical relevance of such equilibrium configuratiomses from the fact that in the case of a singularity at theszeas
the comoving time increases, the collapse slows down and the central densitydses arbitrarily high. For sufficiently large
values oft the static models do therefore approximate the collapdimgdco an arbitrarily high degree of accuracy (see Eig. 2).

As noted earlier, the naked singularity here, when presetieé final equilibrium configuration, is achieved only asymp
totically by the collapsing cloud as the comoving time gagsnfinity. In the collapsing matter cloud that approaches th
equilibrium, there is no singularity at the center at anytéinime¢. Even when the divergence of the energy density occurs
at an infinite comoving time, what is important to note is ttheg ultra-high density region that develops at the centehef
collapsing cloud continues to be always visible and neagpted. This is the region where classical relativity maynavally
break down at high enough densities and quantum effectstroggiur and dominate. This phase is always obtained in a finite
but large enough time, before the actual singularity of tpglérium. It is the visibility of such a region during calpbse, which
approaches in the limit the equilibrium model with an actuaked singularity at the center, which is the main reasorfor
study of the physical properties of such objects. In contvas know that in the case of collapse to a black hole, tha4iigh
density regions are always necessarily hidden inside theténorizon after a certain stage in the collapse, and amcRlscale
physics that might occur close to the singularity is invisito distant observers.

The basic point we make here is: At later and later times,@sdHapse progresses, the interior metric of the collapsiatter
cloud becomes arbitrarily close to that of the static comfijan metric. This is the sense in which the static or efqriilim
configuration is approached to a higher and higher degreeairacy as the dynamical collapse proceeds. Thus the sellap
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FIG. 2: The collapsing cloud approaches asymptoticallyetiglibrium configuration. Fot > ¢ the central density grows to arbitrarily high
values. No trapped surfaces are present at any time. Ligbtwvauld escape the strong gravity region, reach the boyratat then propagate

to the exterior. Ag grows the collapsing cloud approximates more and more #i& shodel. The boundary remains larger than the photon
sphere for the Schwarzchild spacetime at all times.

eventually freezes as time evolves, with the velocities acckeleration of the collapsing shells becoming arbityesihall,
approaching a vanishing value. The dynamical collapse ptytas to the static tangential pressure model to arbipreggision
at late times, and so the static model is the limiting configion to which it converges.

We have thus obtained here a wide family of gravitationalapde solutions that lead to equilibrium configurationshe t
final state. This family of solutions has the following deggef freedom: Firstly, we have the freedom to choose any form
of the equilibrium functiorv.(r). Then, corresponding to that(r), we have a wide family of tangential pressupgér, v),
or equivalentlypy(r, t), which we can choose from, all of which give the same final ldziim state as a result of dynamical
collapse.

IV. PHYSICAL APPLICATIONS

In this section, we study the physical properties of a paldicstatic naked singularity toy model which is supportgd b
tangential pressure. The aim is to study differences betwéseck hole and naked singularity configurations and to tstdad
observational signatures that might be used to distinguagled singularities and black holes of the same mass. Wes fotthe
nature of stable circular orbits in a chosen metric and dmmghe properties of accretion disks.

In the following, we discuss a specific model where we choleertass function to bE(r) = Myr? such that the regularity
conditions are fulfilled during collapse. The divergencthefenergy density in the limit of the equilibrium configueatis then
achieved by a choice of () such that,(0) = 0. As an example, we consides(r) = cr® where, for simplicity, we set = 1
(thus imposing a scaling in the boundary conditions). I&syeto verify that the value = 0 corresponds to a regular solution
with positive density, namely the ‘constant density’ imes first studied by Florides. On the other haad; 0 givesv.(0) = 0
and implies the presence of a naked singularity at0 in equilibrium. These singular interior models differ frarther regular
interiors for Schwarzschild in the behaviour of the denaitg curvatures near the center (see for example [17] for otigelar
interior solutions with perfect fluid sources and/or cosmg@al constant). The choice of(r) determines the mapping between
the physical radius R and the comoving coordinate the static metricR(r) = rv.(r) = r**!, and this, together with the
choice of F'(r), fixes the static solution. In the specific toy model consddrere, we have

F(r)= Moyr3, ve(r)y=7r%, F(R)= MOR%H. (22)

From the Einstein equations we obtain expressions for théiledqum densityp. and pressurgy.,

3My 1
pe = ——=—, (23)
(a+1) Raix
3M2 Rt
Poe = g . (24)

4(a+1) (1 _ MORi;ﬁ)
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Different values ofy, which correspond to different choicesBf R), lead to different behaviours for the pressure as 0. We
see thaty < 1/2 impliespg. — 0, while a > 1/2 impliespg. — +o0; the transition value: = 1/2 impliespp. — const.

In general, to understand the properties of accretion diskise static tangential pressure spacetimes as given bgtiequ
(21), let us consider test particles in circular orbits. Wiit loss of generality, we take the orbits to be in the eqistplane
(¢ = =/2). Since the static metric is independenttcdnd ¢, we have two conserved quantities, the energy per unit mass,
E = u; = €?(dt/dr), and the angular momentum per unit maész us = R?*(d¢/dr). The normalization condition

u®u, = —1 then gives
1 (dR\? 2
— (=) —E??% 1+—]=0. 25
e <d7‘> e + < + R2> 0 (25)

For circular orbits, we setR/dr = 0, so we require the remaining terms in the above equationdaipdo zero. In addition,
their sum should achieve an extremum at radtug his gives the two conditions

L[ R—F
E2 = 262 <m) , (26)
2 F R\? @)
R2  2R-3F\R,) '’

whereR,, is the physical radius corresponding to the boundary of tagencloud in the final equilibrium state. It is to be noted
that since we are considering accretion disks which rotatyf in a metric that describes an internal fluid, we havessume
that the fluid constituting the naked singularity is weaklteracting with the matter constituting the accretion dekthat the
particles in the disk can have circular geodesic motion.

From equation$(26) and(27) we find that, foy < 3MToT, both the quantitie&? and¢? become negative, thus indicating
that the accretion disk particles must have imaginary gnangl angular momentum to move on circular geodesics. Thisdtre
is true also for perfect fluid interiors describing staticsa®es of the Schwarzschild spacetime. Furthermorezfer 2.5MroT,
the sound speed within the cloud becomes superluminal hakianphysical. For all these reasons, in the following wau
on models withR, > 3MrtoT.

In order to understand the properties of these naked sintyuraodels better and to compare them with the Schwarzschil
black hole case, we now consider a specific example, viz. elmagith« = 2. In this case, both the energy density and the
pressure diverge at the centeras?. From the Misner-Sharp mass, we see that at the bour?ddryor /R, = My. Thus the
energy density is given lyy. = M,/ R? and the pressure satisfies a linear equation of states kp., with 4k = My /(1— Mj).

In this simple model, the condition to avoid an event horigogpecificallyM, < 1. Furthermore, to satisfy the weak energy
condition, we must havk > —1, which corresponds td/, < 4/3. The effective sound speeg is given bycs = py./p. = k,
and if we want this to be less than unity we then reqdifg < 4/5.

From the Einstein equations we figd(R) = In [CRMo/(1=M0)] 'whereC is an integration constant that can be evaluated

from the boundary condition. Thus we obtain

R Mo /(1—Mo)
e () — (1 — M) (E) _ (28)
The complete solution for the metric in the interi®r< R, is then given by,
Mg d 9
R 1— Mg R
ds? = —(1— My) | — dt? 4+ ——— 2d0? . 29
2o () a e TR (29)
This metric matches smoothly to a Schwarzschild spacetirtigs exteriotR > Ry,
MyRy dR?
ds> = —(1— dt? + —————— + R%d0* . 30
== (1M1 0 iy 59

We thus have a one-parameter family of static equilibriuhatfans parametrized by/, (in principle, there is a second parameter
Ry, but this is simply a scale). Each member of this family ofisohs has a naked singularity at the center. As describdidiea
these solutions can be obtained as the end state of dynaroitgdse from regular initial conditions with(r) = Myr3, by
choosing the evolution function(r, ¢) such that it asymptotes to the requiredr) o« r? ast — oo (see equatiol(22)).

In order to specify the nature of the central singularity,ne¢e that the outgoing radial null geodesics in the spaestibove
are given by,

M,

0
dR R 70
By ()7 o
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It is then easy to check that there are light rays escaping fhe singularity (for all values al/, < 2/3). In fact from the
above equation which gives,

Mg
2R, e

t(R) = 5 30, R20=Mo) | (32)
we see immediately that the comoving time required by a phtiaeach the boundary is = 2R, /(2 — 3Mjy) < +oo. It
follows that there are future directed null geodesics ingbacetime which reach the boundary of the cloud, and whit¢hen
past terminate at the singularity, thus showing this to baked singularity. The density and spacetime curvaturesdidiverge
in the limit of approach to the singularity in the past alohgge null trajectories, showing this to be a curvature sargy The
Kretschmann scalar for this naked singularity model, ferith= 2 case, is given by

1 M3(28 — 60My + 33M7)

K
4 (My — 1)2R*

(33)

We see that the Kretschmann scalar diverges in the limit pfagzh to the central singularity. The spacetime is regguary-
where for all values of > 0. A similar situation holds also for other models in this sla$ tangential pressure solutions. The
divergence of curvatures at the center clarifies that thesgenuine spacetime singularity. Then the absence or ogeenf

a trapped surface would determine whether this is a nakeglsirity or not, which again it is in this case, as we have show
above.

Circular geodesics for accretion disks in singular spagegi without an event horizon have been studied in a variety of
scenarios that include static and stationary spacetintbsand without a scalar field ([11] and see also [18]). The orotif test
particles in circular orbits in a given spacetime is chardezed by the existence of certain key parameters such gshtiten
sphere, the minimum radius for bound circular orbits andnti@mum radius for stable circular orbits. As we shall sekwe
the main features that stand out for our static toy modelr@@bsence of an innermost stable circular orbit, meanatgtable
orbits extend all the way to the singularity, and absencéephoton sphere. This marks a sharp contrast with simikalysis
in some other naked singular static and stationary geoesetvhere the presence of both a minimum radius for stablésorbi
and a photon sphere make the objects virtually indistintabte from a black hole, at least as far as their optical ptaseare
concerned (see [12]).

For the toy naked singularity model under consideratiom gthergy per unit mags and angular momentum per unit mass
of the circular orbits may be obtained from equatidns (26@) &). ForR < R,, we find,

pe _ 201 My)? (RN (34)
(2—-3My) \ Ry ’
2 M, R\?

If we want the circular orbit calculated above to be stable require in equatiofi {25) that the term involviBg should be less
divergent ask — 0 compared to the term involving. This then gives the following results fé < R:

Stable circular orbits : My < 2/3, (36)
Unstable circular orbits : My > 2/3. (37)

We see that, depending on the valuel@, either all circular orbits in the interior of this naked gilarity model are stable, or
all are unstable. Note that, apart from having unstableitdroorbits, models with\Z, > 2/3 also give negative values @f>
and/2.

For R > Ry, the metric is given by the Schwarzschild solution with md$sor = MyR,/2. Here we have well-known
results for the stability of circular orbits, viz., orbitsttv R > 6Mrot are stable, while those with < 6MroT are unstable.
Further, the space-time has closed circular photon orbis-a 3MroT (assuming this radius is located outsidlg).

The practical significance of the above results is relatetiedact that a standard thin accretion disk can exist ontiiete
radii where stable circular orbits are available [19]. THasa Schwarzschild black hole of maséroT, an accretion disk will
have its inner edge at the innermost stable circular orliit at 6MroT. Inside this radius, the gas plunges or free-falls until it
crosses the horizon. The existence of a well-defined diskriadge![20], which is the basis for the well-known Novikokierne
model of a relativistic thin accretion disk around a blacletj@9], will be reflected in the radiation spectrum emittedie disk.
Indeed, observations have confirmed the presence of suctiganire several cases [21]. Moreover, assuming that theatentr
object is a black hole, the radius of the disk inner edge haa heed to estimate the spin parameters of the black holgs [22

It is worth noting from equation$ (84) anld {35) that both thergy per unit mas®& and the angular momentum per unit
masst of the gas in the accretion disk vanish in the limit/®f= 0. This means that no mass or rotation is added to the central
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singularity by the accretion disk, whose particles radéatey or otherwise get rid of all their energy and angular mura
before reaching the singularity. It thus follows that thegess of accretion does not affect the naked singulariticiwtan be
considered stable in this respect. This is very differeotfiwhat is expected to happen in the case of a rotating Kerdak
singularity, where the process of accretion of countesitiog particles can spin down the object and turn it into a+es&remal
black hole (see for example [23]).

We considered above several general physical featuregdbthnaked singularity model, many of which also apply to the
general class of static tangential pressure models wittkachsingularity. In general, the observational propewiegccretion
disks can be characterized in terms of the energy flux, lugiiyjand also the spectrum of the emitted radiation. Suatufes
have been analyzed recently within certain models with dakegularities which are present in extremal stationamy Kpace-
time geometries (see e.q. [18]). Such studies might pgskdip towards observationally distinguishing black hdtesn naked
singularities. From such an investigation of differentexdp of accretion disks we may be able to reveal the cruaalifes that
make them different from the widely studied accretion diskihie Kerr spacetime. It has to be noted, however, that matheo
models with static or stationary naked singularities, sagthe Janis-Newman-Winicour (JNW) spacetime, Reissioeddtrom
geometries with) > M or superspinning Kerr geometries need not arise natunadiy tdynamical evolution in gravitational
collapse under Einstein’s equations. Our model, on therdthad, provides a dynamical framework through which actati
compact object with a naked singularity at its core can beaéat as the limit of gravitational collapse of a massive matteud
with non-zero tangential pressure.

A detailed analysis of the properties of accretion diskdriterior solutions with tangential pressure, both in thgutar and
singular cases, is beyond the scope of this paper and wilsoassed in detail elsewhere. Our main purpose here is aarsop
of these naked singularity objects which can form via caégwith a Schwarzschild black hole of the same mass. Thesefo
making use of the stability properties of circular orbitg identify the following two distinct model regimes, eachtwits own
accretion structure, as we discuss below:

o My < 1/3, i.e.,Rb > 6MToT:

In this case, the external Schwarzschild metric has stétalelar orbits all the way down to the boundaRy= R;, where it meets

the interior metric of our naked singularity solution. Cegaently, an accretion disk will follow the standard Nowikbhorne

disk solution down takR = R,. Inside Ry, the interior metric allows stable circular orbits all theaywdown toR = 0. Thus,

the disk will continue into the interior and will extend dowm R = 0. In other words, the disk will have no inner edge.
Assuming the matter cloud that makes up the naked singglaritansparent to radiation (we have already assumedtttiaes

not interact with the gas in the accretion disk), a distargeober will receive radiation from all radii down to the cemnand

the observed spectrum will obviously be very different frirat seen from a disk around a black hole of the same mass. (We
postpone detailed computation of the spectrum to a latersiiyation.) As an aside, note that this space-time hasroolaf

null geodesics (photon sphere).

° 1/3 < My < 2/3, i.e.,6Mrtor > Ry > 3MroT!

In this case, an accretion disk will follow the Novikov-Thearsolution down td?R = 6MroT. Inside this radius, since circular
orbits are unstable in the Schwarzschild space-time, thevijaplunge towards smaller radii. However, once the gaches
the boundary of the interior solution & = R, circular orbits are once again available. Hence, we expeagas to shock and
circularize atR = R;, and then to continue accreting along a sequence of stabldaniorbits all the way down t& = 0. (We
assume that the gas B}, can get rid of its excess angular momentum by some means tthedisk across the gap.) Since
the accretion disk in this model consists of two distinctsegts with a radial gap in between, we expect it to be obsenalty
distinguishable from the previous case. Once again, tisere photon sphere in this space-time.

As we have mentioned before, the models viMror > Ry, > 2MroT (corresponding t@/3 < My < 1) present
unphysical and exotic properties that would indicate thattioundary of the final static configuration should be takenvalue
larger tharBMroT. We note that for the accretion regimes we considered aldveh is the range as given lay, < 2/3, all
reasonable physical properties for the matter fields arsfisat by the particles of the accretion disk.

The interesting point is that due to the absence of a photbharsp naked singularity models withl, < 2/3 are easily
distinguishable from a black hole of the same mass. This®pprthe possibility of using observational data on astrejuay
black hole candidates to test for the presence of a nakedlaiity. The discussion here pertains only to the partictaga model
with o« = 2. Models with other values af, or more generally, models in whieh(r) is more complicated than a power-law in
r, may well give other kinds of behavior that may be worth irigeging.

A key quantity in the case of an accretion disk is the radiaetgy flux as a function of radius. This is given by

J(R) = L _n / " (B wt)ndR (38)
= —-—— —_— w

V=9 (E-wl)? Jp, o
whereR;,, is the radius of the inner edge of the disk,is the mass accretion rate, which for steady state accristiosually
assumed to be constant, and= d¢/dt is the angular velocity of particles on circular orbits. BoBchwarzschild black hole,
R, = 6MroT and f(R) vanishes for smaller radii. This leads to well-known restiftat are widely used for modeling
accretion disks observed in astrophysics. In the case ohaked singularity model, the inner edge of the disk ifat 0.
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Therefore, the flux continues to increase with decreasindiverging atkR = 0 (the integrated total luminosity observed at
infinity is of course finite). The disk ends up being much mamihous as compared to the black hole case (se€ig. 3) and
the two cases may be easily distinguished. The factth&) diverges ask goes to zero is not surprising and is related to the
presence of the singularity.

0,010
00084 |\ = @ —r—=—-= Schwarzschild
Rb =12 MTOT
0,006+
fR)
m
0,004
0,0024
0-

. —T— . .
2 4 6 R/MTOT 10 12 14

FIG. 3: Comparison between the radiant energy flux for anegicer disk around a Schwarzschild black hole with total mekso T (dashed
line), and for an accretion disk in the toy naked singular ed@dth the same mass ai®h, = 12M~roT (solid line).

Although we decided earlier to focus on models with < 2/3, for completeness we briefly discuss here the parameteerang
2/3 < My < 1. For a model in this range, an accretion disk will follow thevikov-Thorne solution down t& = 6MroT.

The lack of stable circular orbits inside this radius wilkthcause the gas to plunge inwards. When the gas créssesiy,
there are still no stable circular orbits available (in cast to the previous cases), so the gas will continue to gualigthe
way down toR = 0. The accretion disk in this case is easily distinguishatdenfeach of the previous two cases. However,
for various reasons, it will most likely be indistinguistefrom a standard Novikov-Thorne disk around a Schwardack

hole of masMro~. Firstly, although the fate of the gas that reaches the nsikedilarity at the center is unclear, since this gas
carries energy and angular momentum it will most likely nfiptlhe nature of the central singularity. Secondly, any atidn

that is emitted from the singularity will not escape to irfimas we showed earlier. Both arguments suggest that thiemall
behave for all practical purposes like a black hole. Thismegs further divided into two subregimes since fgi5 < M < 1

we showed that the sound speed exceeds unity. Note thatitharphoton sphere at the standard Schwarzschild location,
Rphoton = 3MrorT-

All of the above discussion pertains to a model with= 2. It is interesting to note here, for the sake of a comparitiuat,
in a model witha = 0, which corresponds to a regular static solution with norezangential pressure, there are again two
different regimes according to where we take the boundati®tloud. The first regime correspondsitp > 6MroT, and
in this case there is no photon sphere and stable circulésaikiend all the way down to the regular center. In the sécon
regime,6Mrot > R, > 3MToT, the matter in the accretion disk reaches the last staldalair orbit of the Schwarzschild
spacetime ak = 6MroT, then plunges down to the boundary of the interior solufiba R;, inside which stable orbits are
again allowed down to the center. Again there is no photoeghrlhe situation in this respect is thus similar to the fikst
cases studied above for the naked singularity model with 2. The main difference for the = 0 case is that particles in the
accretion disk reach the regular center with non-vanisbmgygy (and vanishing angular momentum). It is useful te mioat
again, forR, < 3MroT the energy and angular momentum have to be imaginary if &fgaig to follow a circular geodesic,
and forR;, < (5/2)MroT the effective sound speed surpasses unity while close tocthedary.

The naked singularity model presented here, which arisea the dynamical gravitational collapse of a massive matter
cloud with non-zero tangential pressure, presents sewveeaésting physical features some of which we have andlizee. In
particular, the accretion disk properties allow it to beidguished observationally from a Schwarzschild blackehaith the
same mass. There are several other physical propertiek ateovorth studying. Particular mention should be made tizalp
phenomena, where the toy naked singularity model disculssezl will have quite different behavior compared to Kerr and
certain other naked singularity spacetimes. The main itapodifference, as far as optical properties and grawitatilensing
are concerned, is the following. All the other naked singtylanodels mentioned above and discussed earlier nedgssamit
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the presence of a photon sphere for a certain range of théasoparameters involved. For example, the Reissner-Nianahs
spacetime with) > M, which has a naked singularity, or the INW naked singulamggessarily admit a photon sphere when
the quantities) — M and the scalar charge are respectively small enough. Such naked singularitige baen termed as
‘weakly naked singular’ (see e.q. [12]), and are expectdzktobservationally indistinguishable from black holepeesally as
far as their optical properties are concerned. As oppostddpthe tangential pressure naked singularity modelksgmted here
have no photon sphere as discussed above. Therefore teasecassarily ‘strongly naked singular’ and will be distirspable
always from black holes.

V. CONCLUDING REMARKS

We have investigated here the equilibrium configuratioasthan be achieved from gravitational collapse of a sphieriatter
cloud with vanishing radial pressure. We showed that diicsitateriors of the Schwarzschild space-time with tangepressure
can be obtained as the limit of some model for dynamical ¢gmonal collapse. These static interiors might be regoitdhey
may have a naked singularity at the center.

The key important features of this model that distinguidhoin other naked singular spacetimes are:

e The naked singularity is obtained via dynamical evolutiba matter cloud starting with regular initial data.

e For the particular class of toy models with= 2, M, < 2/3, that we have focused on, the singularity is not destroyed by
the infall of particles through an accretion disk and henéestable in this sense.

e Due to the absence of a photon sphere in these solutiondnthdar spacetime is always optically distinguishablerfro
a black hole with the same mass.

We also examined and noted here several physical propanitfeatures of accretion disks in these naked singulandgeats,
comparing them with those for a Schwarzschild black holel, wa noted how black holes and naked singularities will have
observationally distinct signatures (e.g., see Hig. 3).

In analogy with the Newtonian case, although the equililborzonfigurations we describe can be reached via a wide class of
pressure evolutions, they sit at the maximum of the effeqtivtential (see Fi@] 1) and are expected to be unstable snuslr
perturbations in the velocities. Therefore, tangentiaspure modelgy(r, v) close to the ones leading to an equilibrium, but
with a different asymptotic behaviour, will lead to eith@neplete collapse or rebounce. Nevertheless, the main p&intish
to make is that static equilibrium configurations as a liroigtavitational collapse do arise and exist, and that thexétism
for collapse in general relativity does not always implytttiee matter cloud must necessarily collapse under its owaxityr
to a final singularity in a ‘short’ time. In fact, since the ddwium configurations described here are reached onlhénlimit
of ¢ going to infinity, all neighbouring solutions (meaning tedsngential pressure evolutions that have an asymptatict li
close to equilibrium) can be ‘long lived’ and could descrilystems that evolve over an arbitrarily long time. In thissse the
equilibrium configurations investigated here constitut@kd toy model to describe ‘long lived’ dynamical modelsheve the
collapse essentially ‘freezes’ as it evolves in time.

We investigated in section IV one specific static equilibrisolution ¢ = 2) with a naked singularity at the center, and we
showed that the accretion properties of such an object ngmjnciple, be quite different from those of a Schwarzsthiack
hole. Other models with different values of the parametee.g., the Florides constant density interior solutian= 0), or a
different functional behaviour of. (r), e.g.,v. ~ ¢r® only nearr = 0 and having a different radial variation away from the
center, could be investigated as well. Other physical featsuch as gravitational lensing or the properties of ttwgrhsphere
could also be considered in more detail in order to have abetiderstanding of the physical nature and propertiesesfeth
theoretical models.

Recently there has been some interest in the possibilitheévationally distinguishing black holes from naked siagties.
Most of these studies deal with naked singularities thapagsent in extremal stationary Kerr spacetimes and therefeed
not arise naturally from dynamical evolution under Einsteequations. Our model, on the other hand, provides a digam
framework through which a compact object with a naked siagtyl at its core can be formed.

The formalism developed in this paper might be applied in strophysical context to describe the final fate of gravitti
objects collapsing under the force of their own gravity. fEhieave been detailed investigations of the last stagesobditean of
a massive star when all the radial shells of matter fall tolwarcentral singularity to make a black hole. From the camattbns
described here other end-states are also possible, e.gydtean could asymptote to a static solution with or withonaked
singularity. The class of static singular solutions mightceivably be of use to describe rare astrophysical phename
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