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Equilibrium configurations from gravitational collapse
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We develop here a new procedure within Einstein’s theory of gravity to generate equilibrium configurations
that result as the final state of gravitational collapse fromregular initial conditions. As a simplification, we as-
sume that the collapsing fluid is supported only by tangential pressure. We show that the equilibrium geometries
generated by this method form a subset of static solutions tothe Einstein equations, and that they can either be
regular or develop a naked singularity at the center. When a singularity is present, there are key differences
in the properties of stable circular orbits relative to those around a Schwarzschild black hole with the same
mass. Therefore, if an accretion disk is present around sucha naked singularity it could be observationally
distinguished from a disk around a black hole.
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I. INTRODUCTION

It is well known that any spherical distribution of non-interacting particles (thus in the absence of pressure), cannotsustain
itself against the pull of its own gravitational field and must undergo complete gravitational collapse. The final outcome of such a
dust collapse is either a black hole or a naked singularity, depending on the initial density configuration and velocity distribution
of the particles [1]. In recent years, from the study of gravitational collapse in a wide variety of scenarios — self-similar collapse
[2], scalar fields [3], perfect fluids [4] and other general forms of matter fields — it has emerged that black holes and naked
singularities have both to be considered as possible final outcomes of complete collapse of a massive matter cloud in general
relativity [5]. This is true also for alternative theories of gravity such asf(R) gravity and Lovelock gravity [6].

When non-vanishing pressures are present within the mattercloud – a physically more realistic scenario than dust – complete
gravitational collapse is not the only possible final state.Hence, a question of much physical interest is, if and under what
conditions can we have equilibrium configurations that originate from dynamical gravitational collapse within general relativity.
In fact, we know that equilibrium non-singular gravitatingsystems exist in nature, e.g., planets, stars, galaxies, all of which form
via gravitational collapse, and that these objects are of great significance from the perspective of both theory and observations.

We show here that the gravitational collapse of a matter cloud with non-vanishing tangential pressure, from regular initial data,
can give rise to a variety of equilibrium configurations as the collapse final state. We consider here, for the sake of simplicity
and clarity, the case of collapse with non-zero tangential pressure and vanishing radial pressure. While such a simplified model
represents in some sense an idealized example, the case of a more realistic matter source, for example composed of a perfect
fluid (with both radial and tangential pressure), can also beinvestigated and its equilibrium configurations will be reported
separately in a future work. Collapse with only tangential pressure provides a relatively transparent structure (mainly because
the mass function is conserved as we explain below), and thiscase is of much interest in its own right, since it reveals a rich
array of possibilities. Therefore it is important and useful to study and understand these simpler models in order to figure out the
possibilities that they offer on the collapse final states.

Models with vanishing radial pressure were first investigated by Datta in the special case where the matter cloud is composed
of counter-rotating particles in the so called Einstein cluster geometry [7]. Over the past years, these models have been studied in
detail in order to characterize the final outcome of completegravitational collapse in terms of black holes and naked singularities
[8]. We use here the general formalism developed in [9] to study the dynamical evolution of a massive matter cloud that collapses
from regular initial data. We develop a technique and procedure that allows us to investigate when such a collapse can halt to
form an equilibrium configuration. We show that from such a collapse process static configurations can arise which are either
regular or singular at the center. We then investigate a particular toy model belonging to this class which presents a central naked
singularity and we study the physical properties of an accretion disk in this spacetime.

The main noteworthy feature of the work presented here is that it shows the existence of solutions in which naked singularities
arise from a dynamical process of gravitational collapse, starting from regular initial conditions. This makes the models useful
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and interesting from a physical point of view since many other naked singular geometries that are usually investigated within
general relativity are not obtained from the dynamical evolution of a collapsing cloud with regular initial data (although we note
that there exist some much discussed examples of ways to overspin a Kerr black hole, thus turning it into a naked singularity by
dropping spinning extended bodies through the horizon, seefor example [10]). We point out here that although we deal with
an idealized toy model, where the singularity is approachedasymptotically, physically it can be interpreted as a slowly evolving
collapse scenario where the central density is increasingly high (to a point where quantum effects would become relevant), and
which is always visible to faraway observers. At later and later times, as the gravitational collapse evolves, the collapse model
will be arbitrarily close to the idealized final static configuration, with the rate of collapse becoming arbitrarily small. Therefore
such a ‘freezing’ of the dynamics ast grows allows us to neglect the collapse at a late enough time when the central region
has achieved an extremely high density. At this late time, the approximation to a static configuration holds to a high degree of
accuracy, and it is meaningful to study its physical properties, e.g., the nature of an accretion disk in the static configuration.

The properties of circular orbits for a non-rotating sourcesustained only by tangential pressure, as discussed here, differ
considerably from corresponding results evaluated for theKerr spacetime (see for example [11]). Furthermore, the objects we
study will have different optical properties in terms of shadows and gravitational lensing compared to well studied analogues
in other static and stationary geometries. In fact, it has been shown that whenever a photon sphere is present, as is the case in
certain Kerr geometries, the effects of gravitational lensing make a naked singularity indistinguishable from a blackhole [12].
In the model presented here, we find naked singularities withno photon sphere, thus leaving open the possibility to distinguish
such objects from a black hole.

While the arguments presented above provide a number of motivations for the present study, the main objective of this work
is to show the existence of models in which asymptotically static spacetimes with and without naked singularities ariseas a
result of dynamical gravitational collapse from regular initial configurations. It is briefly shown that observationalfeatures e.g.,
of an accretion disk, in such models can be quite different from those of a Schwarzschild black hole, though a more detailed
investigation of the properties of accretion disks, including a parameter study of energy flux and luminosity, is deferred to a
future work.

In section II, we give a brief overview of the general formalism to describe the dynamical evolution of a matter cloud sustained
by tangential pressure. This formalism can be applied to thecase of collapse, expansion, bounce or asymptotic equilibrium. In
section III we impose the condition that the system asymptotes to a state of equilibrium, and we then analyze under what
circumstances a collapsing cloud can settle to such a staticlimit. Section IV is then devoted to the analysis of a toy model for
which the stable circular orbits and related physical properties of interest are presented. This is used to establish when, and in
what manner, such models can be observationally distinguished from a black hole. Finally, in section V we highlight the main
results and indicate perspectives for future research.

II. GRAVITATIONAL COLLAPSE

The spherically symmetric spacetime metric describing a dynamical gravitational collapse can be written as,

ds2 = −e2νdt2 +
R′2

G
dr2 +R2dΩ2 , (1)

whereν, R andG are functions of the comoving timet and the comoving (Lagrangian) radial coordinater. In the case of
vanishing radial pressure the energy-momentum tensor is given byT 0

0 = ρ, T 1
1 = 0, T 2

2 = T 3
3 = pθ, and the Einstein equations

take the form

pr = −
Ḟ

R2Ṙ
= 0 , (2)

ρ =
F ′

R2R′
, (3)

pθ =
1

2
ρR

ν′

R′
, (4)

Ġ = 2
ν′

R′
ṘG . (5)

In the above,F is the Misner-Sharp mass, which describes the amount of matter enclosed by the shell labeled byr, and is given
by

F = R(1−G+ e−2νṘ2) . (6)

Equation (2), which results from the assumption of pure tangential pressure, immediately implies thatF = F (r), and so the
mass interior to any Lagrangian radiusr is conserved throughout the evolution. Therefore, at all times the metric describing the
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evolving cloud can be matched to an exterior Schwarzschild solution with a total massMTOT at a boundaryr = rb, which
corresponds to a time-dependent physical radiusRb(t) = R(rb, t) [13].

We note that it is also possible to consider a more general collapse problem where we allow for non-zero radial pressure. In
that case, the considerable simplification of being able to match to Schwarzschild may no longer be possible. However, matching
to a generalized Vaidya spacetime is always possible for anygeneral type I matter field as also for fields with non-zero radial
pressure, subject to satisfying energy conditions and other reasonable physical regularity conditions. We shall consider such
a more general situation separately, but we focus here on thesimpler case of zero radial pressures since it offers considerable
clarity and transparency on the role that pressure plays in the dynamical evolution of gravitational collapse. This also allows us
to see clearly how the presence of pressure permits equilibrium solutions, as opposed to the case of dust where such solutions
are never possible. Models with non-zero tangential pressure have been of much interest in the past as mentioned above, though
this interest was mainly focused on finding the collapse finalstates in terms of black holes or naked singularities.

There is a scaling degree of freedom available in the definition of the physical radiusR. Using this we introduce a scaling
functionv(r, t) defined by

R(r, t) = r v(r, t), v(r, ti) = 1, (7)

where the latter condition simply states thatR = r at the initial timet = ti from which the collapse develops. In the following
we assume that no shell-crossing singularities, defined byR′ = 0, occur during the evolution. These are supposed to be weak
singularities that arise due to the collision of different radial shells and would be removable by a suitable change of coordinates.
To avoid shell-crossing singularities we must impose thatR′ > 0 during the evolution. This in turn implies that the weak energy
conditions are satisfied for positive pressures during collapse wheneverF ′ > 0.

Our main procedure now for evolving the gravitational collapse is as follows. We have six unknowns, namelyρ, pθ, ν, G, F
andR, and four Einstein equations, so we have the freedom to choose two free functions. Once we specify the initial data for the
above six functions at an initial epocht = ti and specify the two free functions, the system is closed and the Einstein equations
then evolve the collapse to any future time. Typically, we may choose the free functions to be the mass functionF (r), which
specifies the initial mass which is conserved for the cloud (from which the energy density can be obtained from equation (3)),
and the tangential pressurepθ. Then, given the initial values, the future evolution is fully determined by the Einstein equations
[14]. We note that, while in the present case the mass function is time independent and is chosen once and for all, the pressure
depends onr andt via v(r, t) aspθ = pθ(r, v). Hence a global choice for the pressure at all times has to be supplied, which
then fully fixes the evolution of the system. One could, for example, begin by choosingF = M0r

3, which corresponds to a
matter cloud that is initially perfectly homogeneous (constant density). It is then known that, for certain classes of choices of
the evolution ofpθ, a complete gravitational collapse would terminate in either a black hole or a naked singularity final state
[8]. On the other hand, for certain other choices of the pressure, a bouncing behaviour for the cloud may result, where theinitial
collapse is reversed to turn into an expansion [15]. It is thus the choice we make forpθ that determines which way the collapse
develops and evolves in future: Whether it will be a continual collapse to either a black hole or a naked singularity, or there will
be a bounce at some stage, or it will settle into an equilibrium final configuration as we discuss here.

We note that actually any choice ofpθ is equivalent to a choice of a constitutive equation of statefor the matter, and vice-versa.
In fact, the relation between the energy density and the tangential pressure is given implicitly by equation (4),

k(r, v) ≡
pθ
ρ

=
1

2
R
ν′

R′
, (8)

and sopθ in general need not have an idealized form such as a linear or polytropic function ofρ. In fact, it is reasonable
to suppose that the collapsing system will go through very different regimes, moving from its initial low density and weak
gravitational field configuration to later stages where the density and gravitational fields might be extremely high. This would be
reflected in the constitutive equation being, in general, a function ofr andt, taking into account how the matter content changes
during the evolution.

From equations (4) and (5), we can solve forν andG to obtain

ν(r, t) = 2

∫ r

0

k
R′

R
dr̃ + y(t) , (9)

G(r, t) = b(r)e4
∫

1
v

k
ṽ
dṽ . (10)

We ignore the functiony(t), which comes from integrating equation (4), since it can be absorbed in a redefinition of the time
coordinatet. The free functionb(r), which comes from integrating equation (5), is related to the velocity profile of the particles
(it is easy to check that in the pressureless case we getG = b). The only unknown that remains finally is the metric functionR,
which is the physical radius for the matter cloud and which isgiven by the solution of the differential equation forṘ provided
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by equation (6). The interior spacetime metric during collapse can then be written as

ds2 = −e4
∫

r

0
kR′

R
dr̃dt2 +

R′2

b(r)e4
∫

1
v

k
ṽ
dṽ

dr2 +R2dΩ2 . (11)

In the present case with the spacetime metric given as above,while certain explicitly solved interior models such as theEinstein
cluster are available, we note that in general obtaining explicit solutions in fully integrated form for the Einstein equations is
rather difficult except in the simplest cases. It is also not always necessary. What we really need here for our purpose is,assuming
regular behaviour of the free functions and the initial data, information about the structure of the dynamical collapse. In fact, the
behaviour of a collapse solution can often be inferred in many cases without having to explicitly carry out the full integrations.

III. EQUILIBRIUM CONFIGURATIONS

We investigate the following question here: For what choices or classes of the pressurepθ(r, v) (or equivalentlypθ(r, t)),
does a cloud that collapses from regular initial conditionsapproach asymptotically an equilibrium configuration witha static
spacetime geometry? In the following, given the freedom to choose the tangential pressure functionpθ, we construct classes of
models in which the pressure balances the attraction of gravity in the asymptotic final state, thereby obtaining final equilibrium
configurations. This is subject to physical conditions suchas the positivity of energy density and the regularity of theinitial data.

For any fixedr, the equation of motion (6) can be written in terms ofv in the form of the following effective potential,

V (r, v) = −v̇2 = −e2ν
(

M

v
+

G− 1

r2

)

, (12)

where the functionM(r) is defined byF = r3M(r), and a suitable choice of this function implies that the Misner-Sharp mass
is well-behaved at the center of the cloud (i.e., non-singular and without cusps). In the Newtonian analogy, the negative of the
effective potential describes the weighted kinetic energyof the particles in the shell labeled byr. Notice that, sinceF does not
depend ont, it must be the same throughout the collapse and in the final equilibrium state.

From the above equations it is clear that any static configuration or bounce cannot at all arise in pressureless dust collapse.
This is seen immediately from the fact that for dustv̇2 = M(r)/v + f(r). Therefore, ifv̇ < 0 at some time,i.e., once collapse
has begun,̇v < 0 continues to be the satisfied at all later times. Further, if the density is not zero, then̈v = 0 cannot be achieved
at any later time. The continual dust collapse thus inevitably terminates in a spacetime singularity as the collapse final state,
which is either covered within an event horizon thus forminga black hole, or is a naked singularity. This final state either way
is determined by the nature of the initial data from which thecollapse evolves. The addition of non-zero pressures changes the
situation. In particular, it also introduces a degree of freedom that can be used to balance the gravitational attraction to obtain a
static final equilibrium configuration, as we show below.

In order for the system to reach a static configuration where collapse stabilizes, we require both the velocity and the accel-
eration of the in-falling shells to go to a vanishing value asthe collapse progresses in future. We therefore need the limiting
conditions,

v̇ = v̈ = 0, (13)

which are equivalent toV = V,v = 0, where

V,v = e2ν
(

M

v2
−

G,v

r2

)

− 2ν,ve
2ν

(

M

v
+

G− 1

r2

)

. (14)

As the collapse progresses in time, the evolution metric functionv(t, r) approaches in the limit an equilibrium valuev = ve(r).
The effective potential can be considered as a function ofv for any fixed shellr, so from the conditions (13) we obtain the
limiting equilibrium configurationve(r).

We note that in the comoving coordinates that we have used here, the final equilibrium,i.e., the static limit, is reached in the
limit of the comoving timet going to infinity. If we linearize the effective potentialV near the equilibrium configurationve,
we can write it asV (v) = H(r)2(v − ve)

2 for a certain functionH < 0 that can be obtained from the second derivative ofV .
Therefore we getdv/(v−ve) = H(r)dt, or (v−ve) = exp[H(r)(t− ti)], which impliesv → ve ast → +∞. It is possible that
there might exist some reparametrization oft that allows the singularity to appear in a finite time. But it is not necessary to find
such a coordinate change explicitly as we prefer to work withcomoving coordinates, which have a clear physical interpretation
and appeal.
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OnceM(r), or equivalently the mass functionF (r), is chosen, by imposing the conditions (13) we obtain two equations that
fix the behaviour ofG andG,v at equilibrium in terms of the equilibrium solutionve(r),

Ge(r) = G(r, ve(r)) = 1−
r2M(r)

ve(r)
, (15)

(G,v)e = G,v(r, ve(r)) =
M(r)r2

v2e
, (16)

where the velocity profileb(r) that appears in equation (10) has been absorbed intoGe(r). From equation (3) evaluated at
equilibrium, we obtain the energy density at equilibrium,

ρe(r) =
3M + rM ′

v2e(ve + rv′e)
, (17)

while the tangential pressure can be written as

pθe =
1

4
ρeve

(G,v)e
Ge

=
1

4

r2M(3M + rM ′)

v2e(ve + rv′e)(ve − r2M)
. (18)

In any gravitational collapse that begins from regular initial conditions,i.e., that has a regular mass functionF (r), and evolves
towards a final equilibrium state, we have the freedom to choose the final configuration via the functionve(r). Once we choose
F (r) andve(r), these two functions fully determine all other quantities in the final equilibrium:ρe(r), Ge(r), (G,v )e(r) and
pθe(r). While this fully specifies the final state, we still have the freedom to choose how the system evolves between the initial
and final configurations. As stated earlier, the collapse evolution is fully fixed by choosingF (r) andpθ(r, v), one of which,
namely the mass functionF (r), we have already chosen. Thus, in order to go to the desired final equilibrium configuration as
collapse limit, the class of allowed pressurespθ(r, v) is to be so chosen that we havepθ(r, v) → pθe(r) ast → ∞, where the
equilibrium pressurepθe(r) was determined by the choice of the free functionve(r), as indicated above. For this entire class
of pθ evolutions, the dynamical gravitational collapse will necessarily go in the asymptotic limit to an equilibrium spacetime
geometry, which is defined byF (r) andve(r).

Thus, we can finally write the metric (11) at equilibrium as,

ds2e = −e4
∫

r

0

pθeR′

e
ρeRe

dr̃dt2 +
R′2

e (ρe + 4pθe)

ρe
dr2 +R2

edΩ
2 , (19)

whereRe(r) = rve(r) is the physical radius of the Lagrangian shellr in the final equilibrium configuration. A dynamical
solution of the Einstein field equations, as represented by the metric (11) withF (r) fixed, and with the class of pressures
pθ(r, t) chosen such thatpθ → pθe (or equivalently choosing a functionv(r, t) such thatv → ve), will therefore tend to a final
equilibrium metric of the form (19), where in the final state all the functions depend only onr.

In principle, the above equilibrium metric, which is the final state of collapse, is not required to be necessarily regular at the
center. In fact we can see from equation (3) that sinceM is finite atr = 0, whenever we haveve(0) = 0, the energy density at
equilibrium diverges atr = 0 and the equilibrium metric presents a central spacetime singularity. Clearly, this singularity has
been achieved as the result of collapse from regular initialdata that respect the energy conditions and it is somehow similar to
those arising in complete gravitational collapse, though in this case the outer shells do not fall into the singularity but halt at a
finite radius, thus creating a static compact object.

We see from the above that in order to fix completely the behaviour of pθ at equilibrium, we need to give the explicit form
at equilibrium ofG andG,v and both the equilibrium conditions, namelyv̇ = 0 andv̈ = 0, are necessary as well as sufficient
for such a purpose. The freedom to choose the tangential pressure as above in the evolving collapse phase allows for different
effective potentials to have different equilibrium configurations. On the other hand, we can reverse the reasoning and choose a
certain equilibrium configurationve(r), which implies a specificpθe. We can then select the class of tangential pressures with
proper limit such that they give rise to that specific effective potential (see Fig. 1).

If an equilibrium configuration with a singularity at the center is achieved as the limit of gravitational collapse, it isimportant
to check under what conditions the singularity will not be covered by an event horizon. In the static limit, this simply means that
the boundary where the cloud matches the vacuum Schwarzschild exterior has a radius greater than the Schwarzschild radius.
Therefore, from the boundary condition at equilibrium we obtain a condition for the absence of trapped surfaces at equilibrium.
In order for the region near the center to be not trapped, we must haveF/R < 1. In the final equilibrium state, writingG in
terms of energy density and pressure, we have

F

Re
= 1−Ge =

4pθe
ρe + 4pθe

, (20)
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V(r,v)

v

r
ve(r)

r1

ve(r )1

V(0,v)

V(r ,v)1

FIG. 1: The conditions for equilibrium given in equation (13) require that, for eachr, the effective potentialV (r, v) as a function ofv should
have a maximum, and further that the value of the potential atthe maximum must be zero. Then,V (r, v) = 0 implicitly definesve(r).

which is obviously smaller than unity for positive energy density and positivepθe. Thus, we obtain the interesting result that any
central singularity that forms in the final equilibrium configuration via the collapse dynamics described in this paper is always
a naked singularity. This is not surprising since we are describing dynamical evolution from regular initial data without trapped
surfaces. This means that at the initial timeti the center of the cloud is not trapped. Since the evolution remains regular, with
the singularity arising ast goes to the asymptotic limit as the system reaches equilibrium, we can, in principle, choose any time
slice to be the initial time. This implies that during the whole evolution the center of the cloud is not trapped and so the central
singularity that appears in the final equilibrium is naked.

It is relevant to mention here that static interior solutions of the Schwarzschild metric have been studied in the past and static
interiors supported by only tangential pressures were given by Florides [16], who wrote the most general metric in this case and
found solutions depending on the choice of the free functionF (r). A static spherically symmetric line element depends only on
the physical radiusR, and it is easy to verify that it can be obtained from the metric (19), once a suitable change of coordinates
R = R(r) is made. It therefore follows that the class of equilibrium configurations we have obtained here belongs to the family
of static metrics given by Florides. The Einstein equationsare easily rewritten in this case. The metric functionsG andν in the
static tangential pressure case are then given by

G(R) = 1−
F (R)

R
, 2ν,R =

F (R)

R2G
, (21)

and equation (4) becomes a definition for the tangential pressure.
The important point is, the entire family of static tangential pressure solutions described by Florides can be obtainedfrom

gravitational collapse as the asymptotic equilibrium limit of collapse, by using the procedure we outlined here.
The physical relevance of such equilibrium configurations comes from the fact that in the case of a singularity at the center, as

the comoving timet increases, the collapse slows down and the central density increases arbitrarily high. For sufficiently large
values oft the static models do therefore approximate the collapsing cloud to an arbitrarily high degree of accuracy (see Fig. 2).

As noted earlier, the naked singularity here, when present in the final equilibrium configuration, is achieved only asymp-
totically by the collapsing cloud as the comoving time goes to infinity. In the collapsing matter cloud that approaches the
equilibrium, there is no singularity at the center at any finite timet. Even when the divergence of the energy density occurs
at an infinite comoving time, what is important to note is thatthe ultra-high density region that develops at the center ofthe
collapsing cloud continues to be always visible and never trapped. This is the region where classical relativity may eventually
break down at high enough densities and quantum effects might occur and dominate. This phase is always obtained in a finite
but large enough time, before the actual singularity of the equilibrium. It is the visibility of such a region during collapse, which
approaches in the limit the equilibrium model with an actualnaked singularity at the center, which is the main reason forour
study of the physical properties of such objects. In contrast, we know that in the case of collapse to a black hole, the ultra-high
density regions are always necessarily hidden inside the event horizon after a certain stage in the collapse, and any Planck scale
physics that might occur close to the singularity is invisible to distant observers.

The basic point we make here is: At later and later times, as the collapse progresses, the interior metric of the collapsing matter
cloud becomes arbitrarily close to that of the static configuration metric. This is the sense in which the static or equilibrium
configuration is approached to a higher and higher degree of accuracy as the dynamical collapse proceeds. Thus the collapse
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R

t

t

high density region

R(r ,t)b

Rb3MTOT

Schwarzschild exteriorinterior of the cloud

0

light rays

FIG. 2: The collapsing cloud approaches asymptotically theequilibrium configuration. Fort > t̄ the central density grows to arbitrarily high
values. No trapped surfaces are present at any time. Light rays would escape the strong gravity region, reach the boundary and then propagate
to the exterior. Ast grows the collapsing cloud approximates more and more the static model. The boundary remains larger than the photon
sphere for the Schwarzchild spacetime at all times.

eventually freezes as time evolves, with the velocities andacceleration of the collapsing shells becoming arbitrarily small,
approaching a vanishing value. The dynamical collapse asymptotes to the static tangential pressure model to arbitraryprecision
at late times, and so the static model is the limiting configuration to which it converges.

We have thus obtained here a wide family of gravitational collapse solutions that lead to equilibrium configurations in the
final state. This family of solutions has the following degrees of freedom: Firstly, we have the freedom to choose any form
of the equilibrium functionve(r). Then, corresponding to thatve(r), we have a wide family of tangential pressurespθ(r, v),
or equivalentlypθ(r, t), which we can choose from, all of which give the same final equilibrium state as a result of dynamical
collapse.

IV. PHYSICAL APPLICATIONS

In this section, we study the physical properties of a particular static naked singularity toy model which is supported by
tangential pressure. The aim is to study differences between black hole and naked singularity configurations and to understand
observational signatures that might be used to distinguishnaked singularities and black holes of the same mass. We focus on the
nature of stable circular orbits in a chosen metric and consider the properties of accretion disks.

In the following, we discuss a specific model where we choose the mass function to beF (r) = M0r
3 such that the regularity

conditions are fulfilled during collapse. The divergence ofthe energy density in the limit of the equilibrium configuration is then
achieved by a choice ofve(r) such thatve(0) = 0. As an example, we considerve(r) = crα where, for simplicity, we setc = 1
(thus imposing a scaling in the boundary conditions). It is easy to verify that the valueα = 0 corresponds to a regular solution
with positive density, namely the ‘constant density’ interiors first studied by Florides. On the other hand,α > 0 givesve(0) = 0
and implies the presence of a naked singularity atr = 0 in equilibrium. These singular interior models differ fromother regular
interiors for Schwarzschild in the behaviour of the densityand curvatures near the center (see for example [17] for other regular
interior solutions with perfect fluid sources and/or cosmological constant). The choice ofve(r) determines the mapping between
the physical radius R and the comoving coordinater in the static metric,R(r) = rve(r) = rα+1, and this, together with the
choice ofF (r), fixes the static solution. In the specific toy model considered here, we have

F (r) = M0r
3, ve(r) = rα, F (R) = M0R

3
α+1 . (22)

From the Einstein equations we obtain expressions for the equilibrium densityρe and pressurepθe,

ρe =
3M0

(α+ 1)

1

R
3α

α+1

, (23)

pθe =
3M2

0

4(α+ 1)

R
2−4α
α+1

(

1−M0R
2−α
α+1

) . (24)



8

Different values ofα, which correspond to different choices ofF (R), lead to different behaviours for the pressure asr → 0. We
see thatα < 1/2 impliespθe → 0, whileα > 1/2 impliespθe → +∞; the transition valueα = 1/2 impliespθe → const.

In general, to understand the properties of accretion disksin the static tangential pressure spacetimes as given by equation
(21), let us consider test particles in circular orbits. Without loss of generality, we take the orbits to be in the equatorial plane
(θ = π/2). Since the static metric is independent oft andφ, we have two conserved quantities, the energy per unit mass,
E = ut = e2ν(dt/dτ), and the angular momentum per unit mass,ℓ = uφ = R2(dφ/dτ). The normalization condition
uαuα = −1 then gives

1

G

(

dR

dτ

)2

− E2e−2ν +

(

1 +
ℓ2

R2

)

= 0 . (25)

For circular orbits, we setdR/dτ = 0, so we require the remaining terms in the above equation to add up to zero. In addition,
their sum should achieve an extremum at radiusR. This gives the two conditions

E2 = 2e2ν
(

R− F

2R− 3F

)

, (26)

ℓ2

R2
b

=
F

2R− 3F

(

R

Rb

)2

, (27)

whereRb is the physical radius corresponding to the boundary of the matter cloud in the final equilibrium state. It is to be noted
that since we are considering accretion disks which rotate freely in a metric that describes an internal fluid, we have to assume
that the fluid constituting the naked singularity is weakly interacting with the matter constituting the accretion disk, so that the
particles in the disk can have circular geodesic motion.

From equations (26) and (27) we find that, forRb < 3MTOT, both the quantitiesE2 andℓ2 become negative, thus indicating
that the accretion disk particles must have imaginary energy and angular momentum to move on circular geodesics. This result
is true also for perfect fluid interiors describing static sources of the Schwarzschild spacetime. Furthermore, forR < 2.5MTOT,
the sound speed within the cloud becomes superluminal, which is unphysical. For all these reasons, in the following we focus
on models withRb > 3MTOT.

In order to understand the properties of these naked singularity models better and to compare them with the Schwarzschild
black hole case, we now consider a specific example, viz., models withα = 2. In this case, both the energy density and the
pressure diverge at the center asR−2. From the Misner-Sharp mass, we see that at the boundary2MTOT/Rb = M0. Thus the
energy density is given byρe = M0/R

2 and the pressure satisfies a linear equation of state,pθe = kρe, with 4k = M0/(1−M0).
In this simple model, the condition to avoid an event horizonis specificallyM0 < 1. Furthermore, to satisfy the weak energy
condition, we must havek ≥ −1, which corresponds toM0 ≤ 4/3. The effective sound speedcθ is given byc2θ = pθe/ρe = k,
and if we want this to be less than unity we then requireM0 < 4/5.

From the Einstein equations we find2ν(R) = ln
[

CRM0/(1−M0)
]

, whereC is an integration constant that can be evaluated
from the boundary condition. Thus we obtain

e2ν(R) = (1−M0)

(

R

Rb

)M0/(1−M0)

. (28)

The complete solution for the metric in the interiorR < Rb is then given by,

ds2e = −(1−M0)

(

R

Rb

)

M0
1−M0

dt2 +
dR2

1−M0
+R2dΩ2 . (29)

This metric matches smoothly to a Schwarzschild spacetime in the exteriorR ≥ Rb,

ds2 = −
(

1−
M0Rb

R

)

dt2 +
dR2

(1−M0Rb/R)
+R2dΩ2 . (30)

We thus have a one-parameter family of static equilibrium solutions parametrized byM0 (in principle, there is a second parameter
Rb, but this is simply a scale). Each member of this family of solutions has a naked singularity at the center. As described earlier,
these solutions can be obtained as the end state of dynamicalcollapse from regular initial conditions withF (r) = M0r

3, by
choosing the evolution functionv(r, t) such that it asymptotes to the requiredve(r) ∝ r2 ast → ∞ (see equation (22)).

In order to specify the nature of the central singularity, wenote that the outgoing radial null geodesics in the spacetime above
are given by,

dR

dt
= (1−M0)

(

R

Rb

)

M0
2(1−M0)

. (31)
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It is then easy to check that there are light rays escaping from the singularity (for all values ofM0 < 2/3). In fact from the
above equation which gives,

t(R) =
2R

M0
2(1−M0)

b

2− 3M0
R

2−3M0
2(1−M0) , (32)

we see immediately that the comoving time required by a photon to reach the boundary istb = 2Rb/(2 − 3M0) < +∞. It
follows that there are future directed null geodesics in thespacetime which reach the boundary of the cloud, and which inthe
past terminate at the singularity, thus showing this to be a naked singularity. The density and spacetime curvatures would diverge
in the limit of approach to the singularity in the past along these null trajectories, showing this to be a curvature singularity. The
Kretschmann scalar for this naked singularity model, for theα = 2 case, is given by

K =
1

4

M2
0 (28− 60M0 + 33M2

0 )

(M0 − 1)2R4
. (33)

We see that the Kretschmann scalar diverges in the limit of approach to the central singularity. The spacetime is regularevery-
where for all values ofr > 0. A similar situation holds also for other models in this class of tangential pressure solutions. The
divergence of curvatures at the center clarifies that this isa genuine spacetime singularity. Then the absence or otherwise of
a trapped surface would determine whether this is a naked singularity or not, which again it is in this case, as we have shown
above.

Circular geodesics for accretion disks in singular spacetimes without an event horizon have been studied in a variety of
scenarios that include static and stationary spacetimes with and without a scalar field ([11] and see also [18]). The motion of test
particles in circular orbits in a given spacetime is characterized by the existence of certain key parameters such as thephoton
sphere, the minimum radius for bound circular orbits and theminimum radius for stable circular orbits. As we shall see below
the main features that stand out for our static toy model are the absence of an innermost stable circular orbit, meaning that stable
orbits extend all the way to the singularity, and absence of the photon sphere. This marks a sharp contrast with similar analysis
in some other naked singular static and stationary geometries where the presence of both a minimum radius for stable orbits
and a photon sphere make the objects virtually indistinguishable from a black hole, at least as far as their optical properties are
concerned (see [12]).

For the toy naked singularity model under consideration, the energy per unit massE and angular momentum per unit massℓ
of the circular orbits may be obtained from equations (26) and (27). ForR < Rb, we find,

E2 =
2(1−M0)

2

(2− 3M0)

(

R

Rb

)M0/(1−M0)

, (34)

ℓ2

R2
b

=
M0

(2− 3M0)

(

R

Rb

)2

. (35)

If we want the circular orbit calculated above to be stable, we require in equation (25) that the term involvingE2 should be less
divergent asR → 0 compared to the term involvingℓ2. This then gives the following results forR < Rb:

Stable circular orbits : M0 ≤ 2/3, (36)

Unstable circular orbits : M0 > 2/3. (37)

We see that, depending on the value ofM0, either all circular orbits in the interior of this naked singularity model are stable, or
all are unstable. Note that, apart from having unstable circular orbits, models withM0 > 2/3 also give negative values ofE2

andℓ2.
ForR ≥ Rb, the metric is given by the Schwarzschild solution with massMTOT = M0Rb/2. Here we have well-known

results for the stability of circular orbits, viz., orbits with R ≥ 6MTOT are stable, while those withR < 6MTOT are unstable.
Further, the space-time has closed circular photon orbits at R = 3MTOT (assuming this radius is located outsideRb).

The practical significance of the above results is related tothe fact that a standard thin accretion disk can exist only atthose
radii where stable circular orbits are available [19]. Thus, for a Schwarzschild black hole of massMTOT, an accretion disk will
have its inner edge at the innermost stable circular orbit atR = 6MTOT. Inside this radius, the gas plunges or free-falls until it
crosses the horizon. The existence of a well-defined disk inner edge [20], which is the basis for the well-known Novikov-Thorne
model of a relativistic thin accretion disk around a black hole [19], will be reflected in the radiation spectrum emitted by the disk.
Indeed, observations have confirmed the presence of such an edge in several cases [21]. Moreover, assuming that the central
object is a black hole, the radius of the disk inner edge has been used to estimate the spin parameters of the black holes [22].

It is worth noting from equations (34) and (35) that both the energy per unit massE and the angular momentum per unit
massℓ of the gas in the accretion disk vanish in the limit ofR = 0. This means that no mass or rotation is added to the central
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singularity by the accretion disk, whose particles radiateaway or otherwise get rid of all their energy and angular momentum
before reaching the singularity. It thus follows that the process of accretion does not affect the naked singularity, which can be
considered stable in this respect. This is very different from what is expected to happen in the case of a rotating Kerr naked
singularity, where the process of accretion of counter-rotating particles can spin down the object and turn it into a near-extremal
black hole (see for example [23]).

We considered above several general physical features of the toy naked singularity model, many of which also apply to the
general class of static tangential pressure models with a naked singularity. In general, the observational propertiesof accretion
disks can be characterized in terms of the energy flux, luminosity, and also the spectrum of the emitted radiation. Such features
have been analyzed recently within certain models with naked singularities which are present in extremal stationary Kerr space-
time geometries (see e.g. [18]). Such studies might possibly help towards observationally distinguishing black holesfrom naked
singularities. From such an investigation of different aspects of accretion disks we may be able to reveal the crucial features that
make them different from the widely studied accretion disksin the Kerr spacetime. It has to be noted, however, that many of the
models with static or stationary naked singularities, suchas the Janis-Newman-Winicour (JNW) spacetime, Reissner-Nordstrom
geometries withQ > M or superspinning Kerr geometries need not arise naturally from dynamical evolution in gravitational
collapse under Einstein’s equations. Our model, on the other hand, provides a dynamical framework through which a static
compact object with a naked singularity at its core can be formed as the limit of gravitational collapse of a massive matter cloud
with non-zero tangential pressure.

A detailed analysis of the properties of accretion disks forinterior solutions with tangential pressure, both in the regular and
singular cases, is beyond the scope of this paper and will be discussed in detail elsewhere. Our main purpose here is a comparison
of these naked singularity objects which can form via collapse, with a Schwarzschild black hole of the same mass. Therefore,
making use of the stability properties of circular orbits, we identify the following two distinct model regimes, each with its own
accretion structure, as we discuss below:
•M0 ≤ 1/3, i.e.,Rb ≥ 6MTOT:
In this case, the external Schwarzschild metric has stable circular orbits all the way down to the boundaryR = Rb where it meets
the interior metric of our naked singularity solution. Consequently, an accretion disk will follow the standard Novikov-Thorne
disk solution down toR = Rb. InsideRb, the interior metric allows stable circular orbits all the way down toR = 0. Thus,
the disk will continue into the interior and will extend downto R = 0. In other words, the disk will have no inner edge.
Assuming the matter cloud that makes up the naked singularity is transparent to radiation (we have already assumed that it does
not interact with the gas in the accretion disk), a distant observer will receive radiation from all radii down to the center and
the observed spectrum will obviously be very different fromthat seen from a disk around a black hole of the same mass. (We
postpone detailed computation of the spectrum to a later investigation.) As an aside, note that this space-time has no circular
null geodesics (photon sphere).

• 1/3 < M0 ≤ 2/3, i.e.,6MTOT > Rb ≥ 3MTOT:
In this case, an accretion disk will follow the Novikov-Thorne solution down toR = 6MTOT. Inside this radius, since circular
orbits are unstable in the Schwarzschild space-time, the gas will plunge towards smaller radii. However, once the gas reaches
the boundary of the interior solution atR = Rb, circular orbits are once again available. Hence, we expectthe gas to shock and
circularize atR = Rb and then to continue accreting along a sequence of stable circular orbits all the way down toR = 0. (We
assume that the gas atRb can get rid of its excess angular momentum by some means to theouter disk across the gap.) Since
the accretion disk in this model consists of two distinct segments with a radial gap in between, we expect it to be observationally
distinguishable from the previous case. Once again, there is no photon sphere in this space-time.

As we have mentioned before, the models with3MTOT > Rb > 2MTOT (corresponding to2/3 < M0 < 1) present
unphysical and exotic properties that would indicate that the boundary of the final static configuration should be taken at a value
larger than3MTOT. We note that for the accretion regimes we considered above,which is the range as given byM0 < 2/3, all
reasonable physical properties for the matter fields are satisfied by the particles of the accretion disk.

The interesting point is that due to the absence of a photon sphere, naked singularity models withM0 < 2/3 are easily
distinguishable from a black hole of the same mass. This opens up the possibility of using observational data on astrophysical
black hole candidates to test for the presence of a naked singularity. The discussion here pertains only to the particular toy model
with α = 2. Models with other values ofα, or more generally, models in whichve(r) is more complicated than a power-law in
r, may well give other kinds of behavior that may be worth investigating.

A key quantity in the case of an accretion disk is the radiant energy flux as a function of radius. This is given by

f(R) = −
ṁ

√
−g

ω,R

(E − ωℓ)2

∫ R

Rin

(E − ωℓ)ℓ,RdR , (38)

whereRin is the radius of the inner edge of the disk,ṁ is the mass accretion rate, which for steady state accretionis usually
assumed to be constant, andω = dφ/dt is the angular velocity of particles on circular orbits. Fora Schwarzschild black hole,
Rin = 6MTOT andf(R) vanishes for smaller radii. This leads to well-known results that are widely used for modeling
accretion disks observed in astrophysics. In the case of ournaked singularity model, the inner edge of the disk is atR = 0.
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Therefore, the flux continues to increase with decreasingR, diverging atR = 0 (the integrated total luminosity observed at
infinity is of course finite). The disk ends up being much more luminous as compared to the black hole case (see Fig. 3) and
the two cases may be easily distinguished. The fact thatf(R) diverges asR goes to zero is not surprising and is related to the
presence of the singularity.

Rb=12MTOT

Schwarzschild

R/MTOT

f(R)
_m

FIG. 3: Comparison between the radiant energy flux for an accretion disk around a Schwarzschild black hole with total massMTOT (dashed
line), and for an accretion disk in the toy naked singular model with the same mass andRb = 12MTOT (solid line).

Although we decided earlier to focus on models withM0 < 2/3, for completeness we briefly discuss here the parameter range
2/3 < M0 < 1. For a model in this range, an accretion disk will follow the Novikov-Thorne solution down toR = 6MTOT.
The lack of stable circular orbits inside this radius will then cause the gas to plunge inwards. When the gas crossesR = Rb,
there are still no stable circular orbits available (in contrast to the previous cases), so the gas will continue to plunge all the
way down toR = 0. The accretion disk in this case is easily distinguishable from each of the previous two cases. However,
for various reasons, it will most likely be indistinguishable from a standard Novikov-Thorne disk around a Schwarzschild black
hole of massMTOT. Firstly, although the fate of the gas that reaches the nakedsingularity at the center is unclear, since this gas
carries energy and angular momentum it will most likely modify the nature of the central singularity. Secondly, any radiation
that is emitted from the singularity will not escape to infinity, as we showed earlier. Both arguments suggest that this model will
behave for all practical purposes like a black hole. This regime is further divided into two subregimes since for4/5 ≤ M0 < 1
we showed that the sound speed exceeds unity. Note that thereis a photon sphere at the standard Schwarzschild location,
Rphoton = 3MTOT.

All of the above discussion pertains to a model withα = 2. It is interesting to note here, for the sake of a comparison,that
in a model withα = 0, which corresponds to a regular static solution with non-zero tangential pressure, there are again two
different regimes according to where we take the boundary ofthe cloud. The first regime corresponds toRb ≥ 6MTOT, and
in this case there is no photon sphere and stable circular orbits extend all the way down to the regular center. In the second
regime,6MTOT > Rb ≥ 3MTOT, the matter in the accretion disk reaches the last stable circular orbit of the Schwarzschild
spacetime atR = 6MTOT, then plunges down to the boundary of the interior solutionR = Rb, inside which stable orbits are
again allowed down to the center. Again there is no photon sphere. The situation in this respect is thus similar to the firsttwo
cases studied above for the naked singularity model withα = 2. The main difference for theα = 0 case is that particles in the
accretion disk reach the regular center with non-vanishingenergy (and vanishing angular momentum). It is useful to note that
again, forRb < 3MTOT the energy and angular momentum have to be imaginary if a particle is to follow a circular geodesic,
and forRb < (5/2)MTOT the effective sound speed surpasses unity while close to theboundary.

The naked singularity model presented here, which arises from the dynamical gravitational collapse of a massive matter
cloud with non-zero tangential pressure, presents severalinteresting physical features some of which we have analyzed here. In
particular, the accretion disk properties allow it to be distinguished observationally from a Schwarzschild black hole with the
same mass. There are several other physical properties which are worth studying. Particular mention should be made to optical
phenomena, where the toy naked singularity model discussedhere will have quite different behavior compared to Kerr and
certain other naked singularity spacetimes. The main important difference, as far as optical properties and gravitational lensing
are concerned, is the following. All the other naked singularity models mentioned above and discussed earlier necessarily admit
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the presence of a photon sphere for a certain range of the solution parameters involved. For example, the Reissner-Nordstrom
spacetime withQ > M , which has a naked singularity, or the JNW naked singularity, necessarily admit a photon sphere when
the quantitiesQ − M and the scalar chargeµ are respectively small enough. Such naked singularities have been termed as
‘weakly naked singular’ (see e.g. [12]), and are expected tobe observationally indistinguishable from black holes, especially as
far as their optical properties are concerned. As opposed tothis, the tangential pressure naked singularity models presented here
have no photon sphere as discussed above. Therefore these are necessarily ‘strongly naked singular’ and will be distinguishable
always from black holes.

V. CONCLUDING REMARKS

We have investigated here the equilibrium configurations that can be achieved from gravitational collapse of a spherical matter
cloud with vanishing radial pressure. We showed that all static interiors of the Schwarzschild space-time with tangential pressure
can be obtained as the limit of some model for dynamical gravitational collapse. These static interiors might be regularor they
may have a naked singularity at the center.

The key important features of this model that distinguish itfrom other naked singular spacetimes are:

• The naked singularity is obtained via dynamical evolution of a matter cloud starting with regular initial data.

• For the particular class of toy models withα = 2, M0 < 2/3, that we have focused on, the singularity is not destroyed by
the infall of particles through an accretion disk and hence it is stable in this sense.

• Due to the absence of a photon sphere in these solutions, the singular spacetime is always optically distinguishable from
a black hole with the same mass.

We also examined and noted here several physical propertiesand features of accretion disks in these naked singularity models,
comparing them with those for a Schwarzschild black hole, and we noted how black holes and naked singularities will have
observationally distinct signatures (e.g., see Fig. 3).

In analogy with the Newtonian case, although the equilibrium configurations we describe can be reached via a wide class of
pressure evolutions, they sit at the maximum of the effective potential (see Fig. 1) and are expected to be unstable undersmall
perturbations in the velocities. Therefore, tangential pressure modelspθ(r, v) close to the ones leading to an equilibrium, but
with a different asymptotic behaviour, will lead to either complete collapse or rebounce. Nevertheless, the main pointwe wish
to make is that static equilibrium configurations as a limit to gravitational collapse do arise and exist, and that the formalism
for collapse in general relativity does not always imply that the matter cloud must necessarily collapse under its own gravity
to a final singularity in a ‘short’ time. In fact, since the equilibrium configurations described here are reached only in the limit
of t going to infinity, all neighbouring solutions (meaning those tangential pressure evolutions that have an asymptotic limit
close to equilibrium) can be ‘long lived’ and could describesystems that evolve over an arbitrarily long time. In this sense, the
equilibrium configurations investigated here constitute avalid toy model to describe ‘long lived’ dynamical models, where the
collapse essentially ‘freezes’ as it evolves in time.

We investigated in section IV one specific static equilibrium solution (α = 2) with a naked singularity at the center, and we
showed that the accretion properties of such an object can, in principle, be quite different from those of a Schwarzschild black
hole. Other models with different values of the parameterα, e.g., the Florides constant density interior solution (α = 0), or a
different functional behaviour ofve(r), e.g.,ve ≃ crα only nearr = 0 and having a different radial variation away from the
center, could be investigated as well. Other physical features such as gravitational lensing or the properties of the photon sphere
could also be considered in more detail in order to have a better understanding of the physical nature and properties of these
theoretical models.

Recently there has been some interest in the possibility of observationally distinguishing black holes from naked singularities.
Most of these studies deal with naked singularities that arepresent in extremal stationary Kerr spacetimes and therefore need
not arise naturally from dynamical evolution under Einstein’s equations. Our model, on the other hand, provides a dynamical
framework through which a compact object with a naked singularity at its core can be formed.

The formalism developed in this paper might be applied in an astrophysical context to describe the final fate of gravitating
objects collapsing under the force of their own gravity. There have been detailed investigations of the last stages of evolution of
a massive star when all the radial shells of matter fall towards a central singularity to make a black hole. From the considerations
described here other end-states are also possible, e.g. thesystem could asymptote to a static solution with or without anaked
singularity. The class of static singular solutions might conceivably be of use to describe rare astrophysical phenomena.
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