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ABSTRACT 

The generation and early evolution of boundary 

layer transitional instabilities, named Tollmien-

Schlichting (T-S) waves, in airfoil cascade flows are 

studied. The energy exchange between the mean flow 

and the flow instabilities is computed by performing 

Direct Numerical Simulation of the fluid flow 

governing equations and by calculating the fluctuating 

kinetic energy (FKE) budget within the separated 

boundary layer. The driving role of the FKE 

production in the wavelength modulation process 

associated to the receptivity phenomenon, i.e., the 

generation of T-S waves, is demonstrated. The FKE 

production largely hastens the wavelength modulation 

around the inflection point of the mean velocity profile 

across the boundary layer. Above the inflection point, 

the fluctuating pressure field favors the energy 

transport and provides the energy necessary to convect 

the instabilities out of the boundary layer. The 

evolution of the T-S waves depicts an asymmetric 

distribution of the production term in the transverse 

direction, i.e., in the lower half of the boundary layer 

the mean flow provides energy to the instabilities while 

the opposite occurs in the upper half. 

 

INTRODUCTION 

In a recent numerical study, Rojas & Amon (1997) 

explored the subcritical and supercritical boundary 

layer receptivity and stability in unperturbed and 

perturbed flows within airfoil cascades for low 

Reynolds numbers (Re). Receptivity is understood as 

the physical mechanism by which energy is transferred 

from the typically long wavelength free-stream 

disturbances to the short wavelength boundary layer 

transitional instabilities (Morkovin, 1969). The 

stability of the boundary layer depends on the 

attenuation or promotion of the primary transitional 

waves, known as Tollmien-Schlichting  (T-S) waves. 

Rojas & Amon (1997) found that for the unperturbed 

flows, above a critical Reynolds number Rec, the 

boundary layer separates and becomes unsteady. 
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Through the visualization of the instability evolution, it 

was concluded that the boundary layer separation 

provided the rapid and localized change in the mean 

flow capable to trigger the generation of primary 

transitional instabilities, or receptivity. That work 

(Rojas & Amon, 1997), provided an explanation to the 

receptivity phenomenon and to the evolution of the T-S 

waves based on direct observation of the instantaneous 

flow field and the fluctuating component of the flow. 

The observations revealed the refractory nature of the 

boundary layer receptivity as the bubble within the 

separated boundary layer offered an increased 

resistance to the instability convection and forced the 

wave speed reduction while keeping the wave 

frequency constant. The wave speed reduction explains 

the consequent wavelength modulation necessary for 

the generation of the T-S waves. 

The main objective of this work is to study the 

boundary layer receptivity and stability through a non-

classical approach. This investigation is performed 

through the evaluation and analysis of the fluctuating 

kinetic energy (FKE) budget of the velocity and 

pressure fluctuations computed using Direct Numerical 

Simulations (DNS). DNS is a valuable tool to study 

incompressible flows since no assumptions are 

necessary to solve the full Navier-Stokes and mass 

conservation equations. The DNS here proposed is 

based on spectral element spatial discretization which 

provided the necessary high accuracy to solve the steep 

gradients of the pressure and velocity fields that 

develop within the boundary layer. The FKE budget, 

though traditionally used in the evaluation of turbulent 

flows, has proven to be useful in the investigation of 

different energy transfer mechanisms between the 

mean and the fluctuating flow in weakly transitional 

regimes (Majumdar & Amon, 1997). Majumdar & 

Amon (1997) recently presented results of the study of 

the oscillatory momentum transport in transitional 

flows within communicating channels. Their objective 

was to identify mechanisms responsible for sustaining 

the fluctuating flow by evaluating the FKE terms. They 

found that the pressure fluctuation and the production 

terms are mainly responsible for the exchange of 

energy between the mean and the fluctuating flow. In 

particular, the pressure fluctuation contributed to 

sustaining the flow fluctuations in the vortical 

communicating region, whereas the production term 

was mainly responsible for sustaining the FKE in the 

near-parallel channel flow. 

FKE Budget 

The kinetic energy equation for the fluctuating 

components of the velocity and pressure (1) results 
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from the time-averaged manipulation of the 

momentum and mass conservation equations, starting 

from the Reynolds decomposition (Hinze, 1987). The 

equation (1) represents the conservation of FKE in the 

elementary control volume depicted in Fig. 1 

(Bradshaw, 1975). The equation (1) states that within 

an elementary control volume, the balance among the 

diffusive transport of FKE by the fluctuations, the work 

of the fluctuations to diffuse through the viscous field, 

the production and dissipation must equal the time rate 

of increase of FKE and the convection of FKE by the 

mean flow. This equation is expressed in non-

dimensional form as: 
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     (1) 

where, 

 

q’ : fluctuating kinetic energy FKE=(u1’
2+u2’

2)/2 

-u'iu'j : fluctuating (Reynolds) stress 

Ui : time-averaged velocity 

T1 : time rate of increase of FKE 

T2 : convective diffusion of FKE by the mean flow 

T3 : work of the total dynamic pressure of the 

            fluctuations 

T4 : production of FKE 

T5 : work of the viscous shear stresses of the 

            fluctuations 

T6 : viscous dissipation of FKE 

Terms T1-T6 are non-dimensionalized by c U/


3
. 

We validated the kinetic energy subroutine in two 

ways. First, the sum of the fluctuating components of 

the velocity, u’ and v’, within one period of the flow 

fluctuation must be very small (e.g., in the order of the 

machine round-off error); and second, the sum of terms 

T3 through T6 must be approximately, within the 

round-off error of the machine, equal to T2. The 

second validation was performed within the suction-

side boundary layer and the quasi-potential region 

between the two airfoils. The validation confirmed that 

T1 is neglegible as it should be for asymptotically 

converged flows. 

From the expressions of the energy terms in eqn. 

(1), it is possible to predict some features of the energy 

exchange within the flow. For example, the production 

of FKE, T4, may be affected in two different ways : 

when ij, T4 usually gives a positive contribution to 

the kinetic energy of the instabilities (Hinze, 1987). 

Lin (1955) demonstrated that viscosity effects at the 

wall lead to a phase shift between the streamwise and 

the transversal velocity components of a two-

dimensional disturbance, and consequently to a 

positive value of the Reynolds shear stress u u
1 2

' ' . 

Since close to the wall, except for separated regions, 

U1/x2>0, a positive value of the production T4 is 

expected near the airfoil surfaces within the boundary 

layer. 

When i=j, T4 tends to be negative for spatially 

accelerated flows and positive for retarded flows; 

therefore, a decrease of static pressure in the flow 

direction (favorable pressure gradient) inhibits the 

fluctuations and an increase in static pressure (adverse 

pressure gradient) promotes fluctuations. 

 

MODELING AND APPROACH 

Mathematical Model 

The geometry under consideration, depicted in 

Fig. 2, corresponds to the midspan airfoil-to-airfoil 

surface of an experimental stator row (Dring, Blair, 

Joslyn, Power & Verdon, 1988). The governing 

equations are the incompressible two-dimensional 

Navier-Stokes and conservation of mass equations: 
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where, x=x*/c, y=y*/c, u=u*/U, v=v*/ U, p= 

p*/.U
2, t=t*.U/c and subject to the following 

boundary conditions: 

a) inflow boundary conditions 
     u
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b) outflow boundary conditions 
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c) blade wall 
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(D is the computational domain with the 

reference corners A through H shown in Fig. 2) 
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Further details of the temporal and spatial 

discretization for this geometry can be found in Rojas 

& Amon (1995).  

Numerical Approach 

DNS is used to solve the discretized governing 

equations. The spatial discretization of the domain is 

conducted using the spectral element technique 

(Patera, 1984; Korczag & Patera, 1986; Amon, 1993). 

The spectral element technique is a high-order, 

weighted-residual technique that combines the 

geometric flexibility of the finite element technique 

with the accuracy and rapid convergence of spectral 

methods. 

The temporal discretization of the Navier-Stokes 

equations must accomplish three major objectives. 

First,  limitations  in  computer time suggest that the 

non-linearities be treated explicitly, i.e, the convective 

term should be calculated from values of the velocity 

from the previous time-steps. Second, the viscous term 

should be treated implicitly to avoid unreasonable 

time-step restrictions. These time-steps restrictions 

would be prohibitive because of the high resolution of 

spectral techniques adjacent to boundaries (Gottlieb & 

Orszag, 1977). Finally, the pressure should also be 

calculated implicitly, because of the divergence-free 

velocity  imposed  at each time-step. In response to 

these needs, a time-stepping scheme based upon a 

consistent choice of approximation spaces for the pres-

sure and velocity within the semi-discrete formulation 

of the time-dependent term in the Navier-Stokes 

equations is used. The complete solution of the Navier-

Stokes equations involves first  treating the wave-like 

equation for the non-linear convective terms explicitly, 

and then  solving the resultant Stokes problem at each 

time-step by the Uzawa iterative procedure (Rønquist, 

1988). 

Details of the formulation and the methodology 

may be encountered in Rojas & Amon (1995). 

The spectral mesh with 784 elements and 25 

collocation points per element is depicted in Fig. 3 for 

three contiguous blades. 

Calculation of the FKE Terms 

The FKE terms are determined through the 

spectral evaluation of the velocity and pressure spatial 

derivatives. Lagrangian-Legendre’s interpolants are 

used in the expansions for the velocity and pressure. 

For instance, any of the scalar components of the 

problem (x-velocity, y-velocity and pressure) can be 

represented as a Nth-order polynomial, g() on a local 

domain, simplified for practical purposes to one-

dimension as   [-1,1]. This polynomial is expanded 

within the code in the finite series: 

g h g
j

j

N

j
( ) ( ) ( )  




0

                            (4) 

           

The Lagrangian interpolants, hj() are Nth-order 

polynomials such that :  

h j i ij( )    for all i,j  0,...,N2           (5)

            

That is, each interpolant is 1 at one collocation 

point and 0 at all other collocation points. 

The nodal Lagrangian-Legendre interpolants, hj, 

can be written as : 

h
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where Lk(), k=1,2,3,... is the Legendre 

polynomial and prime denotes differentiation. 

The Gauss-Lobatto-Legendre collocation points 

are related to the actual coordinates x and y by : 
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With this expression relating the local and global 

coordinates, the spatial derivatives are computed as a 

function of the local derivatives. The first local 

derivative of the polynomial g() at the nodal points i 

is given by : 

g h g D g
i j i j ij j

j

N

j

N

' '( ) ( ) ( )   




00

                    (8) 

    (8)  

where gj = g(j), prime denotes differentiation and 

the nodal interpolant derivative matrix, D, is defined 

as: 

D
dh

d
ij

j
i


( )              (9)

       

NUMERICAL RESULTS 

The next sub-sections describe the numerical 

results obtained for a self-sustained fluctuating basic 

flow at Re=1000 (Re based on the blade chord and 

free-stream velocity.) The objective of the analysis is to 

explain the boundary layer receptivity and stability 

characteristics within self-sustained oscillatory basic 

flows. We include results based on the mean flow 

vorticity, viscous shear stress, Reynolds stress and the 

FKE itself to help in the interpretation of the FKE 

budget. Figure 4 depicts the airfoil with locations along 

the suction side and normal direction to the wall at 
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different positions downstream the leading edge, as 

they will be referred to in the figures. 

Mean Flow Characteristics 

Figures 5a through 5h show the plots of the 

tangential velocity, vorticity, shear stress, Reynolds 

shear stress and fluctuating kinetic energy at different 

perpendicular locations along the suction-side 

boundary layer under favorable pressure gradient 

(FPG) and adverse pressure gradient (APG). The 

regions under FPG and APG are separated in the 

figures by the minimum pressure point (MPP). The 

section of the boundary layer under FPG is 

characterized by the largest vorticity and shear stress 

on the wall, although these two parameters diminish 

steeply when approaching the boundary layer outer 

region. The section of the airfoil under APG is 

characterized, as expected, for presenting an inflection 

point in the velocity profile at every transversal station. 

Since the flow close to the airfoil wall has a large 

component parallel to it, the vorticity (z) and shear 

stress (xy) are generated at the wall and maximized 

around the inflection point. The time-averaged kinetic 

energy of the fluctuations q '  rapidly increases as the 

flow convects from the leading edge towards the 

trailing edge. Under APG, as expected, q '  is enhanced 

faster and preferentially towards the boundary layer 

outer edge as a consequence of the interaction with the 

wake instabilities. The intensity of the Reynolds 

stresses u u
t n

' '  is similarly enhanced towards the trailing 

edge, though under APG its distribution alternates 

from positive and moderate close to the wall, as 

predicted by Lin (1955), to negative and large towards 

the outer edge of the boundary layer. 

Time-average Equilibrium of the Flow 

The calculation of the FKE terms T2-T6 is 

accomplished within the entire domain. However some 

scatter in the pressure term (T3) product of the large 

gradients and the discontinuity in the derivatives 

across the boundary of contiguous elements suggested 

to calculate the pressure term as the balance of the 

FKE. However, for this calculation to be accurate, it 

requires that T1 be negligible. Figure 6 shows (a) T3 

directly computed from the fluctuating velocity and 

pressure fields; and (b) T3 obtained from the balance of 

the FKE equation, neglecting T1. In the comparison, 

T3 is shown within the airfoil suction-side boundary 

layer. The comparison shows that T3 obtained from the 

balance of the FKE equation, while smoothing out the 

scatter in the computed T3, reproduces accurately the 

main features of the computed term. Neglecting T1 is 

consistent with the fact that although we are 

considering unsteady flows, in time-average, the flow 

is steady and in equilibrium without localized gain or 

loss of FKE. From now on, the T3 shown in the FKE 

budgets is the calculated to balance the equation, while 

T1 is assumed to be zero everywhere. 

FKE Budgets  

Figure 7 shows the FKE budget for Re=1000 in 

five different stations: beyond the leading edge (L3), 

downstream the minimum pressure point -MPP- (L5), 

at the separation point (L6), in the middle of the 

separated bubble (L7) and close to the trailing edge 

(L8). The FKE budgets are presented as a function of 

the normal distance to the wall dn, non-

dimensionalized by the local boundary layer thickness 

. At the entrance (L3), moderate dissipation of FKE 

(T6) over the wall is accompanied by a favorable 

fluctuating pressure term (T3) which provides FKE 

uniformly across the section to sustain the convection 

(T2) of the long wavelength instability generated at the 

leading edge. The production term (T4), as expected 

under FPG, is almost negligible within the lower half 

of the boundary layer, while negative within the upper 

half. A negative T4 indicates that the mean flow 

withdraws energy from the instability and promotes its 

attenuation. Between the MPP and the separation point 

(SP) at L5, the FKE budget describes the energy 

transport during the wavelength modulation process 

that gives rise to the receptivity phenomenon, i.e., the 

generation of T-S waves. While the fluctuating 

pressure field (T3) offers resistance to the convection 

of the instability within the lower half of the boundary 

layer, the production is intensive around the inflection 

point and assists the wavelength modulation. The 

largest production of FKE around the inflection point 

reflects the highest level of shear stress and vorticity 

we observed around the inflection point in the mean 

flow (see Fig. 5e). Since the shear stress and the 

vorticity are measures of the level of deformation and 

rotational velocity of fluid elements, respectively, it is 

expected that the largest deformation of the mean flow 

will cause the largest amount of work against the 

fluctuating shear stresses, i.e., T4. Within the boundary 

layer upper half, the production becomes negligible 

and the fluctuating pressure (T3) becomes the driving 

force that sustains the instability convection along with 

the mean flow (T2). The distribution of the Reynolds 

stresses across the station, shown in Fig. 8, confirms 

that the largest momentum exchange of the fluid 

fluctuation in the tangential and normal direction u u
t n

' '  

occurs towards the outer edge of the boundary layer.  

To further the study of the receptivity using the 

FKE terms, we plot the distribution of T2, T3 and T4 

over the area where the wavelength modulation occurs. 

Figures 9a, 9b and 9c depict the distribution of T2, T3 
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and T4, respectively, within the airfoil suction-side 

boundary layer between the MPP and the SP. The three 

figures show characteristic behaviors around the 

inflection point of the velocity profile, which is located 

at about 0.3 from the wall in the middle of the section 

between the MPP and the SP. The wavelength 

modulation is marked by a progressive reduction of the 

instability convection (T2) reaching a minimum in the 

middle of the section and followed by a progressive 

recovery towards the SP. The fluctuating pressure field 

(T3), while contributing moderately to the instability 

convection within a sub-layer very close to the wall, 

offers resistance to the instability development around 

the inflection point and probably is the opposite force 

that explains the reduction of wave phase speed that 

forces the refraction of the wave. The production term 

T4, while intense around the MPP and immediately 

downstream the SP, is reduced considerably towards 

the middle of the section between the MPP and the SP. 

The reduction of the production of FKE during the 

intermediate phase of the wavelength modulation 

might result from the instability wavelength 

contraction that is done against the mean flow and 

therefore, while in process, requires the transport of 

FKE to the mean flow. 

The characteristics of the T-S wave evolution are 

understood from the observations at stations L6, L7 and 

L8. The FKE budgets at stations L6, L7 and L8, show 

the FKE transport at the SP, the middle of the bubble 

and further downstream close to the trailing edge, 

respectively, as shown in Fig. 7. The FKE budgets at 

these three stations are qualitatively similar and 

quantitatively larger for the stations L7 and L8 

compared to the station L6. The larger energy transport 

at L7 and L8 obeys to the evolution of T-S waves within 

the bubble. At all three locations, both z and xy are 

maxima around the IP as seen in Figs. 5f through 5h. 

Within the lower half of the boundary layer the 

vorticity increases towards the center, and the unsteady 

pressure gradient (T3) offers moderate resistance to the 

FKE transport. The FKE production (T4) within the 

separated boundary layer shows a diffusive distribution 

indicating that energy is transferred within the lower 

half to account for the convection along the mean flow, 

while energy is released back to the mean flow by 

about the same proportion within the upper half. 

Within the upper half of the boundary layer the 

convection of the instability along with the mean flow 

(T2) is proportional to the distance from the wall and 

is promoted by the fluctuating pressure gradient (T3) 

in the transversal direction. Therefore the propagation 

of T-S waves within the airfoil boundary layer can be 

seen as promoted by two agents: within the boundary 

layer lower half, the propagation of T-S waves is 

supported by the work of deformation-restoration of the 

mean flow under adverse pressure gradient against the 

fluctuating stresses (T4), while within the upper half, 

the T-S wave propagation is sustained by the pressure 

fluctuations which assist the wave convection and the 

transfer of energy to the mean flow. 

 

CONCLUDING REMARKS 

The mechanisms of energy exchange and 

transformation between the mean flow and the 

fluctuations in the Fluctuating Kinetic Energy (FKE) 

equation are computed for a weakly transitional 

boundary layer flow within an experimental airfoil 

cascade. Particular attention is given to the analysis of 

the FKE budgets within the airfoil suction-side 

boundary layer to explain the receptivity phenomenon 

and the stability characteristics. 

For unsteady basic flows at Re=1000, the initiation 

of the instability wavelength modulation process, 

marked by the minimum pressure point, is 

accompanied by the production of FKE predominantly 

around the mean velocity inflection point. Above and 

underneath the inflection point, the production decays 

gradually towards the boundary layer edges. The 

production of FKE mainly accounts for the energy 

demanded to convect the instability against an adverse 

fluctuating pressure gradient while the wavelength 

contraction is taking place. Above the inflection point, 

the fluctuating pressure gradient favors the convection 

of instabilities out of the boundary layer. The evolution 

of T-S waves within the separated bubble is 

characterized by a transverse asymmetric production of 

FKE; positive within the lower half of the boundary 

layer and negative within the upper half. The positive 

production reaches its maximum around the inflection 

point. Within the upper half of the boundary layer, the 

T-S wave convection is intensified by the action of the 

fluctuating pressure field. 
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Fig 1  Balance of FKE in elementary control 

volume 

 

 

Fig. 2  Two-dimensional computational 

domain 
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Fig. 3 Mesh discretization. 784 macro-elements 
 

 

 
Fig. 4  Airfoil suction-side perpendicular stations 
 

 

 

 
Fig. 5 Mean flow characteristics across boundary 

layer (a) L4; (b) L5; (c) L7 

FIGURE 21. Mean flow 

characteristics across 

the boundary layer 

perpendicular 

stations. (a) L1; (b) L2; 

(c) L3; (d) L4; (e) L5;     

(f) L6; (g) L7; (h) L8. 

Basic flow at 

Re=1000. 
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FIGURE 1. Two-dimensional 

computational 

domain depicting 

relative dimensions 

and history points 

(P1, P2 and P3) 

locations. Low-

solidity (h/c=0.914), 

experimental axial 

gas turbine first 

stator. 

 

FIGURE 2. Typical spectral two-

dimensional mesh 

discretization 

including collocation 

points. 784 macro-

elements and 25 

collocation points per 

macro-element. 

 

FIGURE 3. Balance of 

Fluctuating Kinetic 

Energy in an 

elementary control 

volume. Includes the 

transport, production 

and dissipation 

terms. 

 

FIGURE 4. Mean pressure 

contour plot for the 

basic flow at 

Re=1000. 

 

FIGURE 5. Boundary layer 

thickness  non-

dimensionalized by 

the blade chord c as 

a function of Re and 
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the airfoil suction-

side arclength. 

 

FIGURE 6. Streamtraces for the 

basic flows at 

Re=231 and 

Re=1000. 

 

FIGURE 7. Carpet plot of Sp’ 

throughout the entire 

domain at a 

characteristic time for 

basic flow at 

Re=1000. 

 

FIGURE 8. Sp’ vs. time at eight 

locations close to the 

suction-side wall 

(dn/c=0.0115) along 

the streamwise 

direction. Basic flow 

at Re=1000. 

 

FIGURE 9. Fourier power 

spectrum of the x-

velocity at point P1. 

Basic flow at 

Re=1000. 

 

FIGURE 10. Wavelength 

modulation observed 

in Sp’ vs. time plot 

along line close to 

the suction-side wall 

(dn/c=0.016) at three 

different times within 

one period of the 

fluctuation. Basic flow 

at Re=1000. 

 

FIGURE 11. Contour plot of Sp’ 

within the airfoil-to-

airfoil section at four 

times within one 

period of the 

fluctuation. Basic flow 

at Re=1000. 

 

FIGURE 12. Contour plot of Sp’ 

within the airfoil-to-

airfoil section at four 

times within one 

period of the 

fluctuation. Basic flow 

at Re=600. 

FIGURE 13. Comparison between 

the mean flow 

pressure coefficient 

Cp obtained 

numerically at 

Re=1000 and the one 

obtained 

experimentally by 

Dring et al. (1987) at 

Re=5.9x10
5
. 

 

FIGURE 14. Stokes wave 

generated by the 

superposed 

perturbation with 

d=26.4 and =0.02. 

(a) carpet plot of Sp; 

and (b) contour plots 

of p at four times 

within the 

perturbation period. 

 

FIGURE 15. Carpet plots of Sp’ at 

the moment when 

inlet perturbation 

vanishes for 

subcritical perturbed 

flow. Re=231 and 

=0.02. (a) d=88.0; 

(b) d=26.4. 

 

FIGURE 16. Local measurement 

of the subcritical 

perturbed field at 

Re=231. Subcritical 
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flow perturbed with 

=0.02 and, d=88.0 

and d=26.4. (a) 

Fourier power 

spectrum of the x-

velocity at point P1; 

(b) Sp’ vs. X along 

quasi-parallel lines to 

the suction-side wall. 

 

FIGURE 17. Local measurement 

of the supercritical 

perturbed field at 

Re=1000, =0.02. 

Fourier power 

spectrum of x-velocity 

at point P1. (a) 

d=88.0; (b) d=26.4. 

 

FIGURE 18. Carpet plot of Sp’ at 

the moment when 

inlet perturbation 

vanishes for 

supercritical 

perturbed flow, 

compared to basic 

flow at characteristic 

time for Re=1000, 

=0.02, and d=88.0 

and d=26.4. (a) 

throughout the entire 

computational 

domain;  (b) 

throughout airfoil 

suction-side 

boundary layer. 

 

FIGURE 19. Local receptivity 

measurement at point 

P1. Sp’amp vs. d,  

and Re. (231 Re 

1000; 0.005  

0.02; 8.8  1100). 

 

FIGURE 20. Airfoil suction-side 

perpendicular 

stations where 

transverse parameter 

distributions are 

plotted. 

 

FIGURE 21. Mean flow 

characteristics across 

the boundary layer 

perpendicular 

stations. (a) L1; (b) L2; 

(c) L3; (d) L4; (e) L5;     

(f) L6; (g) L7; (h) L8. 

Basic flow at 

Re=1000. 

 

FIGURE 22. Contour plot of T3 

within the airfoil 

suction-side 

boundary layer. 

Comparison between: 

(a) directly-computed 

T3, and (b) T3 

resulting from the 

balance of the FKE 

equation using T1=0. 

Basic flow at 

Re=1000. 

 

FIGURE 23. FKE budget across 

boundary layer 

perpendicular 

stations. Basic flow at 

Re=1000. 

FIGURE 24. Reynolds shear 

stress -u u
t n

' '  

distribution across 

boundary layer 

perpendicular 

stations. Basic flow at 

Re=1000. 

 

FIGURE 25. Contour plots of FKE 

terms within strip 
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enclosing the region 

where T-S waves 

generate. Basic flow 

at Re=1000. (a) T2; 

(b) T3; (c) T4. 

 

FIGURE 26. Changes in the mean 

flow, measured 

across boundary 

layer perpendicular 

stations. Subcritical 

perturbed flow at 

Re=231 with =0.02, 

and d=88.0 and 

d=26.4. (a) L2; (b) L4; 

(c) L5; (d) L7; (e) L8. 

 

FIGURE 27. Changes in the FKE 

terms, measured 

across boundary 

layer perpendicular 

stations. Subcritical 

perturbed flow at 

Re=231 with =0.02, 

and d=88.0 and 

d=26.4. (a) L2; (b) L4; 

(c) L5; (d) L7; (e) L8. 

 

FIGURE 28. Changes in the mean 

flow, measured 

across boundary 

layer perpendicular 

stations. Supercritical 

perturbed flow at 

Re=1000 with =0.02, 

and d=88.0 and 

d=26.4. (a) L2; (b) L4; 

(c) L5; (d) L7; (e) L8. 

 

FIGURE 29. Changes in the FKE 

terms, measured 

across boundary 

layer perpendicular 

stations. Supercritical 

perturbed flow at 

Re=1000 with =0.02, 

and d=88.0 and 

d=26.4. (a) L2; (b) L4; 

(c) L5; (d) L7; (e) L8. 

 

FIGURE 30. Three-dimensional 

computational 

domain. (a) mesh 

with 630 macro-

elements; (b) open 

mesh depicting 

macro-elements and 

5x5x5 nodes per 

macro-element. 

 

FIGURE 31. Flow field at midspan 

section. Comparison 

between three-

dimensional and two-

dimensional 

simulations. Basic 

flow at Re=400. (a) 

streamtraces based 

on x- and y-velocity 

components; (b) 

mean pressure field.  

 

FIGURE 32. Carpet plot of Sp’ at 

midspan section at 

characteristic time. 

Three-dimensional 

simulation of basic 

flow at Re=400. 

 

FIGURE 33. Carpet plots of Sp’ at 

midspan section. 

Three-dimensional 

simulations at 

Re=400. Comparison 

between basic flow at 

characteristic time 

and perturbed flow 

with =0.02 and 

d=26.4 when the 
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inlet perturbation 

vanishes. 
 


