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Wilks' dissimilarity for gene
clustering: computational issues

F. MARTA L. DI LASCIO®), ALBERTO ROVERATO(?)

Clustering methods are widely used in the analysis of gene expression data for their ability
to uncover coordinated expression profiles. One important goal of clustering is to discover
co—regulated genes because it has been postulated that co—regulation implies a similar func-
tion. In the context of agglomerative hierarchical clustering, we introduced a dissimilarity
measure based on the Wilks’ A statistic that we called the Wilks’ dissimilarity and showed
its usefulness in the identification of transcription modules. In this paper, we discuss the
ability of the Wilks' dissimilarity to identify clusters of co—expressed genes by providing
an example where the most commonly used dissimilarity measures fail. Furthermore, we
carry out a set of simulations aimed to investigate the use of a sparse canonical correlation
technique in the estimation of the Wilks’ dissimilarity and provide guidelines for its use.
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1 INTRODUCTION

Clustering methods have been widely used in the organization of expression data since the early
paper by [1]. They are now considered important tools for the analysis of expression profiles and
are applied to both the sampling units and the variables, that in this case are genes [2].

In this paper we focus on gene clustering by means of agglomerative hierarchical proce-
dures [see 3, Sections 7.3]. Clustering genes can be useful for many purposes, but it is mainly
motivated by the fact that coordinated expression (co—ezpression) patterns are postulated to
imply a similar function. Clustering can thus be useful to deduce functions of unknown genes
from known genes with co—expression patterns as well as to identify groups of genes which belong
to a same functional module.

The application of hierarchical clustering requires the specification of a measure of dissim-
ilarity between sets of genes, and this is typically obtained by specifying first an appropriate
proximity measure between pairs of genes, and then a linkage rule which gives the dissimilarity
between two sets of genes as a function of the pairwise proximities of genes in the sets. The
notion of co—expression as similarity of genes requires that an appropriate proximity is defined
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and [3, Section 7.3.1] suggests the use of correlation-based proximities when co-regulation of
genes is of concern.

Roverato and Di Lascio introduced in [4] a dissimilarity measure based on the Wilks’ A
statistic that they called the Wilks’ dissimilarity and showed its usefulness in a context where
clustering is performed in order to identify transcription modules. The Wilks’ dissimilarity
amounts to use the Pearson correlation coefficient as a proximity between genes, but differs from
other measures based on the same proximity for the linkage rule. The estimation of the Wilks’
dissimilarity is unfeasible when the number of genes in the cluster exceeds the sample size, and in
this case they computed it by exploiting the method for sparse canonical correlations introduced
by [5].

In this paper, we show the usefulness of the Wilks’ dissimilarity by providing an example
where the most commonly used dissimilarity measures fail to group clusters of co-regulated genes.
Furthermore, we carry out a set of simulations aimed to investigate the use of a sparse canonical
correlation technique in the estimation of the Wilks’ dissimilarity and provide guidelines for its
use.

The paper is organized as follows. In Section 2 we give the notation and the background on
hierarchical clustering required for this paper. Section 3 is devoted to the presentation of the
theoretical properties of the Wilks’ dissimilarity whereas the discussion about its computation
and the simulations are presented in Section 4. Finally, Section 5 contains a brief discussion.

2 NOTATION AND BACKGROUND

In this section we review the theory related to hierarchical clustering as required for this paper.
The reader is referred to 6] for a general introduction to cluster analysis.

Cluster analysis or clustering is the assignment of a set of objects into subsets (called clusters)
so that objects in the same cluster are similar in some sense. Here, we denote by V' = {1,...,p}
the set of objects, that is, of genes. Hierarchical clustering generates a hierarchy of nested clusters
and in the agglomerative approach, the procedure starts with each gene forming a cluster and,
at every next step it moves up in the hierarchy by merging exactly one pair of clusters. The
algorithm stops when the last two clusters are merged to form V. The decision on which clusters
should be combined is based on a dissimilarity measure between sets of genes. In most methods
of hierarchical clustering, this is achieved by means of a prozimity measure, possibly a metric,
between pairs of genes [see 6, Section 4.2.2] and a linkage rule which specifies the dissimilarity
of sets as a function of the pairwise proximities of elements in the sets.

An inappropriate proximity measure for the problem under investigation can lead to mislead-
ing conclusions, and [3, Section 7.3] states that the meaning of “proximity” of gene expression
profiles is different from that of other kinds of objects and that, in this case, correlation—based
proximity measures should be preferred to other proximities such as the Euclidean and the Man-
hattan distances. Hence, typically the dissimilarity between a pair of genes ¢,j € V is taken to
be proportional to 1 — |p;;| or, equivalently, to 1 — p?j where p;; denotes the Pearson correlation
between two genes ¢ and j.

Among the most commonly used linkage rules between two sets there are: the complete
linkage, the single linkage and the average linkage. Under the complete linkage the dissimilarity
between clusters is the maximum dissimilarity between the genes in the two clusters, the single
linkage uses the minimum dissimilarity between genes in the two clusters whereas the average
linkage uses the average of all dissimilarities between genes in the two clusters. A different
linkage rule will result in a different output. The single linkage rule tends to produce long chains
of objects whereas the complete linkage rule tends to produce compact, spherical clusters. The
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average linkage is a compromise between these two extremes [see 6, p. 62].

In order to formally deal with hierarchical clustering algorithms, for a set V' we denote by
P(V) the set of all partitions P = {By,...,B,} of V with 1 < r < p. Assume that the set of
genes V' is submitted to an agglomerative hierarchical clustering algorithm. Then, every step
of the algorithm starts from a partition P = {By,...,B,} € P(V) and merges two elements of
P producing a new partition in 73(V) A dissimilarity measure for V' is a function § = §(Q, P)
defined on all the pairs of subsets @, P C V. Dissimilarity measures are nonnegative, 6(Q, P) > 0,
symmetric, 6(Q, P) = 0(P,Q), and §(Q,P) = 0 for P = Q. Furthermore, whenever we write
d(P, Q) the sets P and @ are meant to be nonempty, P,Q # 0, and disjoint, P N Q = (). The
expression profile for the genes in V' is the realization of a random vector Xy, and we only consider
dissimilarity measures that are computed as a function of the correlation matrix Ryyv = {p;;}

of Xy so that 6(Q, P) is a shorthand for §(Q, P| Ryv ).

In practical applications, a random sample le e ,Xﬁf) from Xy, is available and we denote
by X = Xy the corresponding n X p data matrix. In this case, we write :S\(P, @) to denote the
estimate of 0(Q, P) and note that 6 may often be obtained by plugging an estimate Ryy of Ryy
in §(Q, P), that is, §(P,Q) = (P, Q| Ryy) but this is not always possible as, for instance, for

the case of the Wilks’ dissimilarity when p > n, as described in the forthcoming sections.

3 THE WILKS’ DISSIMILARITY MEASURE

Roverato and Di Lascio introduced in [4] the following correlation based dissimilarity measure
for gene clustering

Definition 1 For a random wvector Xy with correlation matriz Ryy the Wilks dissimilarity is
defined as

_ ’RPUQ,PUQ‘ (1)
IRpp|[Req

for every P,Q CV such that P,Q # () and PN Q = (.

AP, Q)

The Wilks’ dissimilarity A(P, @) is directly obtained from the Wilks’ A statistic

. ‘RPUQ,PUQ)
A(XRXQ) 1= 1= 1 (2)

[Rev| [Rae]
given, among others, in |7, eqn. 7.28|.

Note that, the Wilks’ dissimilarity is not given by first providing a dissimilarity measure
between genes and then by giving a linkage rule. Nevertheless, for every pair of genes 4,5 € V' it
holds that A(i,j) =1 — p?j, where the latter is the usual correlation—based dissimilarity between
genes. Furthermore, we recall that the use of the Wilks’ A in gene clustering is also possible
with a wider class of dissimilarities between genes. More specifically, Roverato and Di Lascio
introduced in [4] a generalized version of the Wilks’ dissimilarity that can be specified in a flexible
way starting from any dissimilarity between genes ¢, j € V that can be written as a function of
|pij|. Hence, Definition 1 introduces, in an implicit way, a linkage rule, and the novelty of the
Wilks’” dissimilarity stands on such linkage rule rather than on the dissimilarity between genes
on which it is based. We refer to |4] for a more comprehensive description of the properties of
the Wilks’ dissimilarity.
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The rest of this section is devoted to the role played by the Wilks’ dissimilarity in gene
clustering when the aim of the procedure is the identification of clusters of co-regulated genes.
This is done by comparing the behavior of the Wilks’ dissimilarity with that of the dissimilarity
measures commonly used in this context, that is, the complete, single, and average linkage rules
applied to the 1 — p?j dissimilarity between pairs of genes.

Consider the case where the task of the clustering procedure is to group co expressed genes.
In this case it seems natural to choose a dissimilarity measure that gives zero dissimilarity to
a pair of clusters when there exists a “perfect” co expression relationship between them. The
following example describes a simple case of perfect co—regulation where the Wilks’ dissimilarity
is shown to behave as expected, whereas the dissimilarities based on the single, complete and
average linkage provide misleading results.

Example 1 Let P,Q C V be a pair of clusters such that Xq is g-dimensional whereas Y = Xp
is a single random variable, namely, |P| = 1. Furthermore, without loss of generality we set
Q = {1,...,q}. We assume that there is a perfect linear co expression relationship between
the genes in Q and the gene in P, formally, Y = Y1 | X;. To simplify the computations, we
assume that the vector Xq has been standardized so that var(X;) = 1 for every i = 1,...,q
and, furthermore, that the correlation between variables in Xg is constant, i.e., cor(X;, X;) = p
for every i,j € Q with i # j. It is worth recalling that this statistical model is well-defined for
—q_% < p < 1. In this framework, it is not difficult to show that

1+ (g—1p
q

cor(Y, X;) = forevery i=1,....q. (3)

If we denote by d.(-,-), ds(+,+) and du(-,-) the dissimilarity measures corresponding to the com-
plete, single and average linkage respectively applied to the 1 — cor(Y, X;)? dissimilarity between
the genes, then if follows from (8) that

(q_l)(l_p). (4)

dc(P7 Q) - dS(Pv Q) - da(Pv Q) -
Hence, even in the case of what we deem to be the most simple instance of perfect co-expression
relationship between genes, the complete, single and average linkage fail to produce a zero dissim-
ilarity. In fact, such linkage rules lead to a dissimilarity equal to zero if and only if ¢ = 1, that
is when the multivariate relationship between Xg and Xp boils down to a bivariate relationship.
In particular, note that, for any fized value of p, equation (4) is an increasing function of q so
that, in this case, the larger the number of genes in Q) the larger is the dissimilarity assigned to
P and Q by the complete, single and average linkage rules which is an unexpected, and clearly
misleading, behavior. The Wilks’ dissimilarity, on the contrary, behaves as expected because, from

the perfect linear relationship between Xg and Xp it follows that |Rpug,pug| = 0 and therefore
AP, Q) =0, as required.

The above example is somehow surprising. The average linkage rule is perhaps the most
common of the linkage methods considered here and it is popularly known as UPGMA (Un-
weighted Pair Group Method with Arithmetic Mean) but, nevertheless, it fails to recognize a
straightforward instance of co-regulation. This can be explained by noticing that the main dif-
ference between the Wilks™ dissimilarity and the other considered linkage rules stands on the
use they make of the information contained in the correlation matrix. More specifically, for two
clusters P and @), the complete, single and average linkage are based on the information provided
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by the set of bivariate distributions of Xy; 5 for every « € P and j € (), whereas the Wilks’
dissimilarity fully exploits the information on the linear association between P and @) provided
by the multivariate distribution of Xpyg. The perfect co-regulation relationship considered in
the example above is very simple but, nevertheless, it cannot be detected by any dissimilarity
measure that is a function of Rp¢ only.

4 ESTIMATION OF THE WILKS’ DISSIMILARITY WHEN p IS LARGER THAN
n

In the previous section, we have shown that the Wilks’ dissimilarity represents an appealing
correlation—based dissimilarity measure. However, its use is difficult in practice when the number
of variables, i.e. of genes, exceeds the available sample size n, as in the case of microarray data. In
the Gaussian case, f{pUQJaUQ has full rank, with probability one, if and only if n > (|P|+|Q]) [8]
and therefore, the computation of /)\\(P, Q) = AP, Q|ﬁqu’PuQ) makes sense whenever (|P|+|Q)])
is smaller than the sample size n, but it is not obvious how to proceed for larger clusters.

It can be shown [see 7, eqn. 7.29] that A(P, Q) is the determinant of the correlation matrix
of the canonical variables of Xp and Xq [9] and, more specifically, if g, for k = 1,...,h, are
the canonical correlations between Xp and X it holds that

h

AP,Q) =[] =g (5)

k=1

Hence, an alternative way to compute A is through the canonical correlations between the two
clusters P and ). The computation of canonical correlations via maximum likelihood [9] involves
finding two vectors u and v such that the correlation between Xpu and Xgv is maximum, that
is, consists in solving the following

max u’ X5bXgv  subject to u’ XLXpu <1 and VTXSXQV <1. (6)
u,v

The maximization in (6) has a closed—form solution for u and v with probability one only if n >
(|P| + |@Q|). Otherwise, in order to compute the canonical correlations, additional assumptions,
such as sparsity, have to be posed on the correlation structure of variables.

In recent years there has been a substantial amount of work on high dimensional and com-
putationally tractable methods for sparse covariance matrix estimation and related techniques,
such as canonical correlation analysis; see, among others, [10], [11] and [5]. In order to obtain an
estimate of A within the ‘small n, large p’ framework we exploit the connection between A and
the canonical correlations in (5) and apply the method for sparse canonical correlation analysis
developed by [5]. Following this approach it is possible to compute, under the assumption of
sparsity, a smaller number of canonical correlations by imposing two additional penalties P, and
P, in (6). These are convex penalty functions which can take on different forms. Here they
take on the lasso penalty form so that P; and P» are the Li—norm of the vectors u and v:
Pi(u) = > 7 Juil and Pao(v) = >, |vi|. In high-dimensional problems, it has been shown
that treating the covariance matrix as diagonal can yield good results [12, e.g.] so that substi-
tuting the identity matrix I for both X]:C,Xp and XCSXQ in (6) a sparse version of the canonical
correlations can be obtained by solving the following problem
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where ||u||, denotes the L,norm of the vector u,i.e. (3., g)sll and ¢; and ¢y are restricted to
theranges 1 < ¢; < y/nand 1 < co < /|P|, respectively, in order to do active the constraints [see
5].

The use we make of the sparse canonical correlations computed from (7) is different from
the original one proposed by [5]. Beyond the matter of choosing the value for the constraints
c1 and ca, the use of sparse canonical correlations for the estimation of A is not straightforward.
We address here two main questions. Firstly, we are forced to use sparse canonical correlations
whenever (|P|+ |Q]|) > n, but it is well-known that, as pointed out by [13], the eigenstructure
of a covariance matrix tends to be systematically distorted by the sample covariance matrix
unless n > (|P| + |Q|) [14]. Therefore, it is not clear whether the sparse canonical correlations
should be preferred to the traditional maximum likelihood estimation even when (|P| + |Q|)
is large but, nevertheless, smaller than n. Secondly, when computing A by (5) it is clear that
the smallest canonical correlations, whose values are close to zero, have small impact on the
value of \. Tt is therefore of interest investigate the behavior of a modified version of (5) that
only involves a smaller number, A’ < h, of canonical correlations. Our aim is to study these
two issues by comparing the performance of the estimate of A obtained through the standard
maximum likelihood procedure, denoted by Ay, and the estimate of A obtained through the
sparse procedure, denoted by //\\sp. This is carried out by means of a simulation study.

41 A MONTE CARLO STUDY

We perform a Monte Carlo study randomly generating data from a multivariate Gaussian dis-
tribution. We first compute the maximum likelihood estimate of the canonical correlations as
well as their sparse estimate as described in the previous section. We obtain, in this way, two
different estimates of the canonical correlations and for each one of them we compute two further
different estimates of A\: g and )\Sp1 are Computed by applying (5) to the maximum likelihood
and sparse estimates, respectively, while )\st2 and )\spg are obtained by involving in the compu-
tation of (5) the A = min(|P|,|Q],5) largest canonical correlations estimated through the two
considered methods.

We simulate two scenarios, one in which the true correlation structure of the clusters is
randomly generated and one in which it is constant with Rpug pug = {p} and p = 0.5. In both
these two scenarios, without loss of generality, we set |P| = |Q| and we allow the dimension of
the two clusters P and @ to be compared to vary from 2 to 48 and the sample sizes n in (50, 250).
In all the simulations we have that n > p in such a way that the computation of A through the
standard canonical correlations is feasible. For each experimental setting we perform B = 100
replications and we compare the four estimates of A with its true value by computing, for each
cluster dimension considered, the relative root mean squared error (RRMSE) defined as

B -~ 2
B 1 Aeb — A
RRMSE = | = ( : ) (8)

b=1

where X* is one of the four estimates considered. Note that we compute the standard canonical
correlations by means of the CANCOR function of the R package STATS while we obtain the sparse
canonical correlations via the CCA function of the R package PMA [15] with the default values for
the parameters of lasso penalty functions. The results are shown in Figures 1 and 2 in which
the logarithm of the relative root mean squared error is plotted against the dimension of the
two clusters compared.  Figure 1 gives the results of simulations for n = 50 (Figure on the
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Figure 1. Simulation results for n = 50,250 (top and bottom) and Rpug pug = {p} with
p = 0.5. z—axes: dimension of clusters, y—axes: log relative root mean squared error of the
estimates. Solid (red) line for A1, dashed (blue) line for Agp1, dotted (violet) line for Ag¢a,
dot—dashed (green) line for Agp2. This figure appears in color in the electronic version of this
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Figure 2. Simulation results for n = 50,250 (top and bottom) and randomly generated
correlation structures. x—axes: dimension of clusters, y—axes: log relative root mean squared
error of the estimates. Solid (red) line for Agt1, dashed (blue) line for Ay, dotted (violet) line
for Xstg, dot—dashed (green) line for Xspg. This figure appears in color in the electronic version
of this article.
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small sample size, the performance of the estimates for A based on the standard estimation of the
canonical correlations appears to be worse than /):spg but better than //\\sp1, irrespectively of the
number of canonical correlations involved in its computation. Hence, the number of canonical
correlations involved in the computation of A seems to not affect the performance of the standard
estimates of A whereas plays an important role when its sparse version is of concern. Indeed,
)\Sp shows a relative root mean squared error uniformly higher than that of )\Stl and )\Stg only
when all the sparse canonical correlations estimated are involved in its computation. When n is
large (Figure 1, bottom panel), the standard estimates outperform both /)\\spl and Xspg for small
clusters but, as soon as the dimension of clusters increases, the RRMSE of /)\\stg tends to coincide
with that of Xspg. Here, the number of canonical correlations involved in the computation of A
appears to have an effect on both the estimation methods considered. By this set of simulations
we may conclude that (7) Xspg appears to be the best estimate of A when the sample size is
small with respect to the dimension of the clusters, (i) }\\stz is the most appropriate estimate of
A when the sample size is large, (i7i) the biggest error arises with Xspl. Finally, note that, as
expected, the RRMSE of the four estimates considered increases according to the dimension of
the clusters compared, that is, according to the closeness of the cluster dimension to the sample
size. Figure 2 gives the results of the second set of simulations for n = 50 (Figure on the top
panel) and n = 250 (Figure on the bottom panel). In both the scenarios the performance of /)\\st
outperforms the other one. When n is large, the RRMSE of Xstl is uniformly lowest whereas
that of )\Stg increases with the dimension of the clusters compared converging to that of >\Sp1 and
Xspg. In this simulation setting the sample size appears to have poor influence in the comparison
between the two estimation methods considered for all but Xstg.
From the simulations performed, we may conclude that

(i) when the correlation structure of the clusters is constant, few canonical correlations should
be involved in the computation of A and their sparse version is advised as soon as n is close
to the dimension of the clusters to be compared;

(ii) when the correlation structure of the clusters is not constant, all the canonical correlations
computed between the two sets compared should be used to estimate A and their maximum
likelihood estimate is the most appropriate independently from the sample size.

5 DISCUSSION

In this paper we have shown interesting features of A, a dissimilarity measure based on the Wilks’
A statistic and recently introduced by [4] in the context of agglomerative hierarchical clustering
of genes. In particular, we have shown that the most commonly used dissimilarity measures can
fail to identify very basic, linear, co-expression relationships between genes whereas the Wilks’
dissimilarity behaves consistently in such situations.

There are, however, some difficulties in the estimation of A. Unlike the complete, single and
average linkage whose computation is always feasible, the computation of the Wilks’ dissimi-
larity requires that the sample version of the correlation matrix of the two clusters compared,
ﬁ,qu, puQ, has full rank. Consequently, when the number of genes in the clusters exceeds the
sample size the computation of X\ becomes unpracticable. A possible solution to this problem
is based on the indirect estimation of A by exploiting its connection with canonical correlation
and, more specifically, by exploiting existing methods for the estimation of sparse canonical cor-
relations. We have focused on the method developed by [5] and we have carried out a set of
simulations so as to better understand the use of this method for the computation of A and,
eventually, provide guidelines for its use.
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