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Two-stage re-estimation adaptive 
design: a simulation study
Francesca Galli(1), Luigi Mariani(1)

Background: adaptive clinical trial design has been proposed as a promising new approach 
to improve the drug discovery process. among the many options available, adaptive sample size 
re-estimation is of great interest mainly because of its ability to avoid a large ‘up-front’ commitment 
of resources. In this simulation study, we investigate the statistical properties of two-stage sample 
size re-estimation designs in terms of type I error control, study power and sample size, in comparison 
with the fixed-sample study. 
Methods: we simulated a balanced two-arm trial aimed at comparing two means of normally 
distributed data, using the inverse normal method to combine the results of each stage, and 
considering scenarios jointly defined by the following factors: the sample size re-estimation method, 
the information fraction, the type of group sequential boundaries and the use of futility stopping. 
calculations were performed using the statistical software sas™ (version 9.2).
results: under the null hypothesis, any type of adaptive design considered maintained the prefixed 
type I error rate, but futility stopping was required to avoid the unwanted increase in sample size. 
When deviating from the null hypothesis, the gain in power usually achieved with the adaptive design 
and its performance in terms of sample size were influenced by the specific design options considered. 
conclusIons: we show that adaptive designs incorporating futility stopping, a sufficiently high 
information fraction (50-70%) and the conditional power method for sample size re-estimation have good 
statistical properties, which include a gain in power when trial results are less favourable than anticipated. 
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IntroductIon

It is being increasingly recognized that a 
growing expense for biomedical research does 
not lead to an increased number of successful 
therapies that enter in clinical practice. 

Reasons identified are: (1) a diminished 
margin for therapeutic improvement, which 
escalates the level of difficulty in proving 
drug benefit; (2) genomics and other 
innovative scientific tools having not yet 
reached their full potential; (3) mergers 
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and other business arrangements that have 
decreased developmental candidates; (4) easy 
targets are the focus as chronic diseases are 
more difficult to study; (5) a persistently 
high failure rate in drug development; and 
(6) the rapidly escalating research costs 
and complexity, which decrease willingness/
ability to bring many candidates forward into 
the clinic [1]. 

In 2004, taking into account the situation, 
the Food and Drug Administration (FDA) 
launched a project, called Critical Path Initiative, 
aimed at driving innovation in the scientific 
processes through which medical products are 
developed, evaluated, and manufactured [2]. 
Later, in 2006, the FDA released the Critical 
Path Opportunities List, a document collecting 
76 projects aimed at filling the gap between 
the resources spent and the results obtained in 
clinical research. One of these projects focused 
on the development of innovative clinical trial 
methodologies, such as Bayesian approaches or 
adaptive designs, able to use prior experience 
or accumulated information in the effort to 
improve research efficiency [3].

Adaptive designs in particular are defined 
by the FDA as typical of those studies that 
incorporate a prospectively planned opportunity 
for modification of one or more protocol 
specified aspects regarding patient selection, 
treatment and assessment, or even the statistical 
hypotheses to be tested; this is done based on 
the analysis of accumulated data from the 
subjects enrolled up to a given point in time. 
Analyses of the accumulated data performed 
at prospectively planned time points within 
the study are also labelled as interim analyses, 
and can be performed in a fully blinded or an 
unblinded manner, as well as with or without 
formal statistical hypothesis testing [4]. 

There are many proposals on how to 
conduct an adaptive study. The main design 
types can be classified according to the phase of 
clinical research (learning or confirmative phase) 
in which they are suitable. Designs indicated 
in the learning phase are (1) adaptive dose 
finding design and (2) adaptive seamless phase 
I/II design. Designs suitable in the confirmatory 
phase are (1) sample size re-estimation design; 
(2) biomarker adaptive (or enrichment) design; 
(3) adaptive randomization design; (4) adaptive 
treatment switching design; (5) adaptive group 
sequential design; (6) adaptive hypotheses 
design; (7) adaptive recursive design. Finally, 

a type of adaptive design useful for both the 
learning and confirmatory phase is the adaptive 
seamless phase II/III design. 

Among such a variety, the approach that 
has the largest applicability is the sample 
size re-estimation design, through which it is 
possible in the course of the study to increase or 
decrease the sample size initially planned based 
on interim results. The reasons for interest in this 
approach are obvious: one may avoid to oversize 
the study if intermediate results are favourable, 
or to miss clinically meaningful treatment effects 
if intermediate results are less optimistic than 
anticipated. At the same time, however, there 
is controversy in the statistical literature about 
the actual benefits implied by the re-estimation 
design in comparison with studies incorporating 
conventional interim analyses [5]. 

In this paper, we report the results of 
simulations used for investigating the statistical 
properties of two-stage sample size re-estimation 
designs in terms of type I error control, study 
power and sample size. Such an assessment was 
made in comparison with classic fixed-sample 
and group-sequential studies, and considering 
various options available for sample size 
re-estimation designs.

Methods

Before describing simulations in detail, it is 
important to recall the process used to combine 
the results of each stage of an adaptive study 
according to the inverse normal method, as 
proposed by Lehmacher and Wassmer [6], 
and the available methods for sample size 
re-estimation. 

In general, the test statistic resulting from 
the combination of independent p-values is 
given by

   (1)

where k is one of the K planned stages,     
k = 1,2,…,K,  is the p-value of the -th stage 
and Φ-1(·) denotes the inverse cumulative 
standard normal distribution function. 

An advantage of the inverse normal method, 
unlike the Fisher combination test [7], is that 
classical group sequential boundaries for early 
acceptance or rejection of the null hypothesis 
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may be used in conjunction with test statistic 
(1), thus simplifying study design. Since the 
Φ-1(1 – p

k
)’s, k = 1,2,…,K, are independent and 

standard normally distributed, the proposed 
approach maintains type I error rates α exactly 
for any (adaptive) choice of sample sizes [6]. 

Two methods may be used for sample-
size re-estimation. The first one is based on 
the effect size ratio [8] which requires that 
re-estimation of the sample size after the 
interim analysis is given by

where N is the newly estimated sample 
size for the entire study, N

0
 is the initial sample 

size (estimated using the method of a classic 
study), E is the observed effect size and E

0
 is 

the initial estimate of effect size (used for the 
estimation of N). 

The second re-estimation method is based 
on the conditional power [1], i.e. the conditional 
probability of rejecting the null hypothesis 
during the rest of the trial based on the 
observed interim data. When using the inverse 
normal method for combining independent 
p-values, the re-estimation of sample size after 
the interim analysis in a two-stage adaptive trial 
is given by

Where N2 is the newly estimated sample 
size only for the second stage of the trial, σ2 is 
the known variance, δ is the target difference 
between group means, Φ-1(·) denotes the 
inverse cumulative standard normal distribution 
function, α2 is the critical value for the final 
analysis according to the chosen decision 
boundaries, p

1
 is the p-value achieved at the 

interim analysis and cP is the pre-planned 
conditional power. For obvious practical 
reasons, sample size extension is typically 
capped to a suitably chosen maximum overall 
sample size. 

As regards simulations, we assumed 
the situation of a balanced two-arm trial 
aimed at comparing two means of normally 
distributed data. Using a fixed-sample design, 
233 observations per trial arm (466 overall) are 
required to test a standardized effect size δ=0.3 
with type I error rate and power set to 2.5% 

and 90%, respectively. Various scenarios were 
considered based on a number of factors. 

The first one was the information fraction, 
i.e. the ratio between the sample size at which 
the interim analysis is conducted and the 
sample size fixed a priori for the entire study 
(obtained with conventional methods for the 
fixed-sample design). Most two-stage studies 
use an information fraction for the interim 
analysis equal to 50%, i.e. half of the sample 
size planned; in addition to this choice, we also 
considered information fractions of 30% or 70%. 

The second factor was the type of group 
sequential boundaries. We decided to consider 
O’Brien and Fleming’s and Pocock’s boundaries, 
which are the most frequently used and cover 
two quite heterogeneous settings. While O’Brien 
and Fleming’s boundaries imply monotonically 
decreasing critical values, making it difficult 
to stop the trial early but with almost no loss 
of statistical power, the opposite properties 
characterize Pocock’s boundaries, in which 
critical values are constant at each stage [9]. 

Both O’Brien and Fleming’s and Pocock’s 
boundaries allow early stop of the study 
only for efficacy of treatment tested or, in 
other words, for the rejection of the null 
hypothesis at the interim analysis. Quite 
commonly, however, researchers are willing 
to stop the trial prematurely when results are 
not sufficiently promising, that is for futility. 
Therefore, we allowed for this by exploring 
the use of a futility threshold represented by a 
p-value at the interim analysis p

1
≥0.5. 

Finally, we considered both re-estimation 
methods described before, with capping at 
one and a half the sample size fixed a priori 
(maximum 350 observations per trial arm) and 
cP set to 0.90. 

For each scenario jointly defined by the 
above factors, we performed 1x106 simulations 
and calculated the proportion of simulated studies 
yielding significant results: (1) under the null 
hypothesis, H

0
, to evaluate the type I error rates; 

(2) under the alternative hypothesis, H
1
, to assess 

the power of the study; (3) in between the null and 
alternative hypothesis, H

0
/H

1
, as a way to show 

the gain achievable with sample size re-estimation. 
In particular, we assumed in this setting an effect 
size δ=0.2, implying a drop in power of the fixed-
sample design from 90% to 53%. 

Additional simulation outputs were: (1) the 
futility stopping probability, i.e. the probability 
of early stopping of the study with acceptance 
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of the null hypothesis; (2) the efficacy stopping 
probability, i.e. the probability of early 
stopping of the study with rejection of the null 
hypothesis; (3) the average sample size. 

Calculations were performed using two 
macros, written with the statistical software 
SAS™ (version 9.2) by the authors, which are 
supplied in the Supplementary Materials. 

results

Simulation results obtained using the 
effect size ratio and the conditional power 
re-estimation methods are shown in detail in 
Tables 1 and 2, respectively. 

Under H0, any type of adaptive design 
considered was able to maintain the type I 
error rate equal to the nominal 2.5% level, 
with no difference over the distinct scenarios 
used for testing adaptive designs. A striking 
result, however, was the increase in sample 
size when the futility stopping rule was not 
adopted, compared to the size of the fixed-
sample study. Such an increase was slightly 
affected by the chosen information fraction, 
the type of decision boundary and the method 
for sample size re-estimation. At worst (70% 
information fraction, O’Brien and Fleming’s 
boundary, effect size re-estimation method, 
Table 1) the average increase amounted to 49% 
(348 subjects per trials arm compared to 233 for 
the fixed-sample design), which is close to the 
limit imposed by the capping. Such a drawback 
was no longer evident when adopting a futility 
stopping rule. Rather, a gain in efficiency was 
obtained in this case insofar, at no cost in 
terms of type I error probability, sample size 
was somewhat diminished, provided that the 
information fraction did not exceed 50%. 

Results in terms of power and sample size 
under H

1
 and H

0
/H

1
 are plotted in Figures 1 and 

2. In these plots, power and sample size of the 
fixed-sample design are represented by horizontal 
reference lines. In power plots, the dots above 
or below the reference line indicate whether 
power is preserved (or even increased) or not in 
the specific simulation; similarly, dots in sample 
size plots above or below the reference line 
indicate whether sample size is increased (loss 
of efficiency) or decreased (gain in efficiency) 
compared to the fixed-sample design. 

Under H
1
, and using the effect size 

re-estimation method (Figure 1a), a gain in 
power beyond the nominal level was always 
achieved. However, contrary to what one 
normally expects from group sequential trials, 
sample size was increased when using the 
O’Brien and Fleming’s boundary, even in the 
presence of a futility stopping rule. In contrast, 
a reduction in sample size was steadily obtained 
with the Pocock’s boundary. 

The picture was rather different when using 
the conditional power re-estimation method 
(Figure 1b). Power was again preserved, at 
least when adopting an information fraction 
of 50% or 70%, but sample size was steadily 
diminished by 7% to 20% compared to that 
required by the fixed-sample design, with no 
relevant effect of the type of decision boundary 
and the use or less of futility stopping. 

Under the intermediate hypothesis H
0
/H

1 

and using the effect size ratio re-estimation 
method (Figure 2a), the adaptive approach 
always improved study power compared to 
that obtained with a fixed-sample design; the 
best outcome was obtained with the O’Brien 
and Fleming’s boundary and a 70% information 
fraction, a condition in which 74% power was 
achieved. On the other hand, the price to pay 
to improve study power was an increase in 
sample size varying between 8% and 32%.

With the conditional power re-estimation 
method (Figure 2b), study power showed 
considerable improvement only using an 
information fraction of 50% or 70%. Compared 
with the performance of the effect size ratio 
re-estimation method, such an improvement was 
slightly smaller, considering that study power 
reached a maximum of 67-68% (versus 74%), but 
the price in terms of sample size increase was 
also smaller, ranging between 4% and 17%. 

Finally, the futility stopping probability 
(FSP) and the efficacy stopping probability 
(ESP), obviously not affected by the re-estimation 
method, were influenced by the information 
fraction and, when considering ESP, also by 
the type of decision boundaries. In particular, 
FSP (when allowed for by design) tended to 
decrease with increasing information fraction 
under H

1
 and H

0
/H

1
. ESP, while stable under H

0
, 

tended to increase with increasing information 
fraction under H

1
 and H

0
/H

1
; furthermore, 

under otherwise similar conditions, ESP was 
always larger with Pocock’s compared to 
O’Brien and Fleming’s boundaries, compatibly 
with the conservative nature of the latter. 
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table 1

two-stage adaptive design with the effect size ratio re-estimation method*

information 
fraction

decision 
boundaries

hypothesis
futility  

stopping
fsp
(%)

esp
(%)

average 
sample 

size
(per group)

probability 
of rejecting 

h
0

(%)

simulation
number

30%

O’Brien/ 
Fleming

H
0

No 0 0.3 336 2.5 1

Yes 50.0 0.3 203 2.5 2

H
1

No 0 15.4 258 95.4 3

Yes 3.8 15.4 247 93.1 4

H
0
/H

1

No 0 5.3 301 67.7 5

Yes 11.9 5.3 268 65.5 6

Pocock

H
0

No 0 1.5 334 2.5 7

Yes 50.0 1.5 201 2.5 8

H
1

No 0 34.4 227 93.2 9

Yes 3.8 34.4 216 91.2 10

H
0
/H

1

No 0 16.0 284 60.8 11

Yes 11.8 16.0 251 59.2 12

50%

O’Brien/ 
Fleming

H
0

No 0 0.3 345 2.5 13

Yes 50.0 0.3 231 2.5 14

H
1

No 0 30.9 245 96.7 15

Yes 1.1 30.9 242 96.1 16

H
0
/H

1

No 0 10.3 303 71.9 17

Yes 6.3 10.3 288 71.1 18

Pocock

H
0

No 0 1.5 344 2.5 19

Yes 50.0 1.5 229 2.5 20

H
1

No 0 54.7 217 95.7 21

Yes 1.1 54.7 214 95.2 22

H
0
/H

1

No 0 25.9 284 67.2 23

Yes 6.3 25.9 270 66.5 24

70%

O’Brien/ 
Fleming

H
0

No 0 0.3 348 2.5 25

Yes 50.0 0.3 255 2.5 26

H
1

No 0 46.6 246 97.2 27

Yes 0.3 46.6 246 97.0 28

H
0
/H

1

No 0 16.1 307 73.8 29

Yes 3.6 16.1 301 73.6 30

Pocock

H
0

No 0 1.5 346 2.5 31

Yes 50.0 1.5 254 2.5 32

H
1

No 0 70.2 219 96.6 33

Yes 0.3 70.2 218 96.5 34

H0/H
1

No 0 35.5 284 70.2 35

Yes 3.6 35.5 277 69.9 36

*Futility stopping probability (FSP), efficacy stopping probability (ESP), average sample size and probability of rejecting the null 
hypothesis by varying information fraction, decision boundaries and futility stopping rule
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table 2

two-stage adaptive design with the conditional power re-estimation method*

information 
fraction

decision 
boundaries

hypothesis
futility  

stopping
fsp
(%)

esp
(%)

average 
sample 

size
(per group)

probability 
of rejecting 

h
0

(%)

simulation 
number

30%

O’Brien/ 
Fleming

H
0

No 0 0.3 325 2.5 37

Yes 50.0 0.3 184 2.5 38

H
1

No 0 15.4 198 90.2 39

Yes 3.8 15.4 187 87.8 40

H
0
/H

1

No 0 5.3 250 59.3 41

Yes 11.9 5.3 216 57.1 42

Pocock

H
0

No 0 1.5 333 2.5 43

Yes 50.0 1.5 193 2.5 44

H
1

No 0 34.4 205 91.0 45

Yes 3.8 34.4 195 89.0 46

H
0
/H

1

No 0 16.0 262 57.0 47

Yes 11.8 16.0 229 55.5 48

50%

O’Brien/ 
Fleming

H
0

No 0 0.3 336 2.5 49

Yes 50.0 0.3 220 2.5 50

H
1

No 0 30.9 200 92.2 51

Yes 1.1 30.9 197 91.6 52

H
0
/H

1

No 0 10.3 258 64.1 53

Yes 6.3 10.3 242 63.3 54

Pocock

H
0

No 0 1.5 341 2.5 55

Yes 50.0 1.5 224 2.5 56

H
1

No 0 54.7 198 93.8 57

Yes 1.1 54.7 195 93.4 58

H
0
/H

1

No 0 25.9 263 63.4 59

Yes 6.3 25.9 248 62.8 60

70%

O’Brien/ 
Fleming

H
0

No 0 0.3 344 2.5 61

Yes 50.0 0.3 250 2.5 62

H
1

No 0 46.6 217 93.9 63

Yes 0.3 46.6 216 93.8 64

H
0
/H

1

No 0 16.1 273 67.7 65

Yes 3.6 16.1 266 67.4 66

Pocock

H
0

No 0 1.5 345 2.5 67

Yes 50.0 1.5 252 2.5 68

H
1

No 0 70.2 210 95.7 69

Yes 0.3 70.2 209 95.5 70

H
0
/H

1

No 0 35.5 272 68.0 71

Yes 3.6 35.5 265 67.7 72

*Futility stopping probability (FSP), efficacy stopping probability (ESP), average sample size and probability of rejecting the null 
hypothesis by varying information fraction, decision boundaries and futility stopping rule
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figure 1

a)

b)

Power and average sample size under the alternative hypothesis (H1) according to simulation number (see Tables 1-2 for identifying 
associated scenarios) using the effect size ratio re-estimation method (Figure 1a) or the conditional power method (Figure 1b) 
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figure 2

a)

b)

Power and average sample size under the intermediate hypothesis (H0/H1) according to simulation number (see Tables 1-2 for identifying 
associated scenarios) using the effect size ratio re-estimation method (Figure 2a) or the conditional power method (Figure 2b)
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dIscussIon

The possibility of adapting some of the 
characteristics of a clinical trial, such as sample 
size, based on the results of one or more interim 
analysis is definitely a great opportunity. It 
must be underlined, however, that this kind 
of adaptation is not always applicable or ideal: 
for example, it is more easily manageable when 
the response to treatment can be measured and 
recorded in a short period of time. Furthermore, 
any type of interim analysis adds complexity to 
the logistics management of the trial. 

These problems aside, from the statistical 
viewpoint it is important that changes made 
on the basis of interim results do not adversely 
affect the operative characteristics of the study. 
Basically, it is fundamental that type I error 
rate is maintained as close as possible to the 
pre-established level under the null hypothesis, 
and that study power is preserved under 
a reasonably wide range of conditions not 
covered by the null hypothesis, with the least 
possible price to pay in terms of sample size. 

Results of our simulations are very 
instructive in showing that a gain in power is 
generally obtained with re-estimation adaptive 
designs, but that at the same time not all 
choices about the various options available 
are equally able to ensure good trial statistical 
properties. Therefore, when designing a study 
which allows for sample size re-estimation, it 
is of utmost importance to carefully check the 
implications of the options specifically chosen. 
This task is typically performed by simulation, 
using for instance the macros supplied in 
the Supplementary Materials or one of the 
commercially available ad hoc packages. There 
are however some guidelines that may be 
drawn from our investigation useful to guide 
applied statisticians. 

First of all, one very obvious and unwanted 
drawback of re-estimation adaptive designs is 
the remarkable increase in sample size under the 
null hypothesis. This disadvantage, however, 
can be totally prevented by incorporating an 
early stopping rule for futility, which use is 
thus to be considered mandatory in this setting. 

The choice of information fraction is also 
crucial. Only if it is sufficiently high (50% or 
70% in our simulations), study power shows 
considerable improvement when intermediate 
results are less favourable than anticipated. 
Theoretically, the nominal power might be 

fully achieved with sample size re-estimation. 
However, since a clear upfront commitment in 
terms of sample size is typically required by both 
the sponsors and ethical committees, limitation 
in the maximum sample size is commonly 
adopted, which limits as well maximum power 
recovery. Again, the “capping threshold” (1.5 
in our simulations) is one of the study design 
parameters that need to be assessed in the 
planning phase under reasonable scenarios. 

Regarding re-estimation methods, we 
showed more favourable properties for the 
conditional power method. Such a procedure, 
compared with the effect size re-estimation 
method, is more efficient (sample size is steadily 
diminished) under the alternative hypothesis, 
as well as in conditions intermediate between 
the null and alternative hypotheses. 

Finally, when considering the joint use of 
futility stopping, 50-70% information fraction 
and conditional power re-estimation method, 
only trivial differences emerged in the statistical 
properties of O’Brien and Fleming’s or Pocock’s 
decision boundaries. It must be considered, 
however, that researchers are usually willing 
not to stop the trial too early because of 
favourable results, which is a justification for 
preferring the more conservative O’Brien and 
Fleming’s boundaries. 

As mentioned in the Introduction, there is 
controversy about the actual benefits implied 
by the re-estimation design in comparison 
with studies incorporating conventional interim 
analyses. In such a comparison, the most 
critical aspect from the statistical viewpoint 
is the loss of statistical efficiency resulting 
from the weighting scheme used to combine 
the results of each stage of an adaptive study 
according to the inverse normal method, as 
well explained by Fleming [10]. This author 
supports his argument on the basis of an 
example in which first and second stage 
sample sizes, 200 and 1 100 respectively. are 
greatly imbalanced. The imbalance, however, 
is unlikely to be so relevant in most practical 
conditions. The consequent loss of efficiency 
might thus be trivial and easily offset by the 
advantage of a smaller up-front investment of 
sample size resources, followed by a larger 
subsequent investment contingent on seeing 
promising results from the interim analysis, 
whenever a futility stopping rule (as done in our 
simulations) or conditional power calculation 
are incorporated into study monitoring. 
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In conclusion, although the presented 
simulations are limited to a restricted set of 
possible scenarios, our findings are in agreement 
with theory and may be regarded as sufficiently 
generalizable to other settings. In any case, as 
underlined before, applied statistician willing 
to adopt the type of adaptive designs here 

discussed must carefully check their properties 
in the specific situations through simulation of 
a number of possible scenarios. In this case, 
as we have shown with our investigation, 
re-estimation adaptive designs may actually 
improve the statistical quality of clinical trials. 
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