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Choosing the right strategy to model 
longitudinal count data in Epidemiology: 
An application with CD4 cell counts 
Daniele de Brito Trindade(1), Raydonal Ospina(1), Leila D. Amorim(2),*

BACKGROUND: Statistical models for analysis of correlated count data are important for answering 
epidemiological issues that involve taking individual count measurements repeatedly over time 
through the use of longitudinal studies. Conventional regression models for this type of data are 
inadequate and can lead to inappropriate conclusions and inference. Longitudinal studies in Public 
Health involve evaluation and monitoring of patients with infectious diseases, such as HIV/AIDS, to 
assess their health status, to check the effectiveness of the treatment, and to make prognosis about 
the evolution of the disease, including interdependencies of clinical manifestations. The purpose 
of this article is to describe various statistical strategies for the analysis of longitudinal count data 
with emphasis on how to choose the most suitable model for the data and in the interpretation of 
the results. 
METHODS: We illustrate the applicability of various statistical strategies by evaluating the effect of 
associated factors on lymphocyte CD4+T cell count in HIV seropositive patients in Salvador, Bahia, 
Brazil. We describe the Poisson and Negative Binomial models using the multilevel (ML) approach and 
the generalized estimations equations (GEE) for the analysis of longitudinal count data. 
RESULTS: The interpretations of the results derived from ML and GEE differ and thus their direct 
comparison should be avoided. 
CONCLUSION: We believe that the statistical methods for the analysis of longitudinal studies with 
correlated count data can be useful to address several important issues in public health, especially in 
helping to monitor patients and checking the effectiveness of treatments.
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INTRODUCTION

The use of statistical models for the 
analysis of correlated count data has grown 
in public health research. In fact, a recent 
review shows that from a selection of 108 

articles in the medical field between 2000 
and 2012 using generalized linear mixed 
models (GLMMs) 20.4% considered models for 
count data [1]. The most common models for 
count data include the Poisson and Negative 
Binomial (NB) distributions. Christofides and 
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collaborators, for example, used the Poisson 
random effects model to predict the incidence 
of pregnancy due to sexual violence [2] and 
a hospital surveillance study used the NB 
model to identify the associations between 
year, seasons and rate of infections to evaluate 
infection by Clostridium difficile [3].

Longitudinal Studies (LS) are crucial in 
dealing with epidemiological issues as they 
trace the behavior of the response variable 
(outcome) over time, investigating the effect 
of covariates on the profile of the outcome, 
making predictions, and assessing global or 
individual changes in the response over time 
[4]. In biostatistics these studies are known 
as cohort studies, whereas in areas such as 
sociology, economics and business, they are 
referred to as panel studies. Data from LS have 
unique characteristics, including their temporal 
ordering and dependence between consecutive 
measurements [4].

Past literature has focused mainly on 
the description of models for correlated 
data of continuous or binary responses for 
applied researchers, referring particularly 
to its characterization and application using 
linear or logistic models [5-9]. The theoretical 
developments of Poisson and NB models have 
led to methodological extensions for analysis 
of longitudinal data in the recent past. These 
lastest innovations are currently available in 
statistical software. Nevertheless, they have 
not been widely used and disseminated by 
applied researchers, which is partially due to 
their technical complexity. At the same time, 
there is a consensus about the inappropriacy 
of using conventional regression models to fit 
correlated data, which would provide incorrect 
standard errors and, consequently, could 
lead to misleading inference and conclusions 
[4-9]. Therefore, there is a need for a unified 
framework to present and describe these 
methods making them easily accessible to 
researchers in the field of Public Health. 
This paper aims to present distinct modeling 
strategies for the analysis of longitudinal count 
data, explaining their use and limitations so 
as to promote a better understanding of the 
usefulness of these tools in answering scientific 
questions in Epidemiology. To illustrate this, 
we analyze data on the number of CD4+T 
lymphocytes repeatedly measured in HIV 
seropositive individuals in Salvador, Bahia, 
Brazil. 

HIV/AIDS remains a global challenge and 
a major public health problem. The World 
Health Organization estimates that so far 
around 25 million men, women, and children 
have died from AIDS worldwide [10]. In Brazil, 
544,846 AIDS cases were reported from the 
beginning of the epidemic until 2009. In the 
city of Salvador, the capital of the State Bahia 
in the Northeast of Brazil, 2,944 new cases 
were registered between 2000 and 2008. In 
the context of this epidemic, the assessment 
of the number of CD4+ T lymphocytes over 
time is important to monitor the history of 
HIV infection and its consequent progression 
to AIDS. The CD4+ T cell counts and the 
quantification of the viral load have been used 
both in the indication and evaluation of the 
need for modification of antiretroviral regimens 
[5]. Given the magnitude of this epidemic and 
the methodological challenges to implementing 
a more effective and robust analysis, we 
characterize different statistical strategies for 
analyzing longitudinal count data, illustrating 
their applicability and interpretation through 
the evaluation of the effect of factors associated 
with CD4+ counts in HIV patients. 

METHODS

Data. The data refers to 587 HIV-
seropositive patients in the city of Salvador, 
who were registered on the Laboratory Testing 
Control System (SISCEL, in Portuguese) of 
the Brazilian Ministry of Health between 
January 2002 and August 2012. This system 
was developed with the purpose of monitoring 
the laboratory procedures of lymphocyte 
T CD4/CD8 cell counting and to perform 
the quantification of HIV viral load both 
for treatment indication and for monitoring 
patients undergoing antiretroviral therapy. 

The CD4+ cell counts have great intra and 
inter variability, specifically when values are 
above 200 cells/mm³, hindering its identification 
in the early stages of the infection. So far there 
is no objective ideal value of the number 
of CD4+ cells to specify the beginning of 
the antiretroviral treatment for all patients 
because the rate of disease progression can 
vary widely among individuals. The viral load 
(VL) is defined as the number of virus copies 
in 1 milliliter of blood. Initial results in 
untreated patients can reach up to 1 million 
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or more copies/ml. During treatment, high VL 
is between 5,000 and 10,000 copies/ml. A low 
VL (between 40 and 500 copies/ml) indicates 
slow disease progression [6]. Given the usual 
limits for the CD4+ count and VL, individuals 
who had CD4+ above 1,500 cells/mm³, either at 
baseline or during follow-up periods, and those 
with a VL greater than 1 million copies/mm at 
baseline were excluded from our analysis. 

Statistical modeling considered the number 
of CD4+ cells as the outcome, which was 
measured at different points in time after 
receiving the antiretroviral therapy provided 
by the government program. The covariates 
include patient’s gender (0 = male, 1 = female) 
and the following information at baseline: age 
(in years); a dummy variable treatment (0 = 
he/she was not in treatment before registration 
at SISCEL, 1 = he/she was in treatment); the 
categorized CD4+ in baseline (0 if CD4+ <350 
cells/mm³, and 1 if CD4+ ≥ 350 cells/mm³) 
and categorized VL (0 if VL <500 copies/ml, 
1 if VL between 500 (inclusive) and 5,000 
copies/ml, and 2 if VL ≥ 5,000 copies/ml). 
The time variable, in years, was also included 
in the model to indicate when the CD4+ 
count was taken after registration at SISCEL. 
Furthermore, the individuals do not have 
the same number of repeated measurements 
(number of observations per patient ranged 
from 1 to 24) and the measurements were 
taken at different time points, i.e. the study is 
unbalanced and unequally spaced. 

Statistical Models

Regression Models for Count Data. Count 
data are quite common in epidemiological 
studies. This type of data assumes only non-
negative integer values (i.e. 0, 1, 2, ...) and is 
usually modeled using the Poisson distribution, 
which is characterized by having equal mean 
and variance of the response variable (Y

i
), 

hence, E(Y
i
) = Var (Y

i
) = μ

i
 . However, when 

overdispersion is present, i.e. when E (Y
i
) 

< Var (Y
i
), the Poisson model is no longer 

appropriate. In such situations, the Negative 
Binomial model can be used, and is denoted 
by Y

i
 ~ NB(μ

i
, μ

i
 + αμ

i
2), where α controls for 

the overdispersion [11]. To illustrate the use of 
these models, consider our CD4+ data. Let Y

i 
be 

the number of CD4+ cells recorded in the ith 
row of the dataset (i=1, 2, …, 8,072). Assuming 

that the observations are independent, the 
data can be described by a Poisson or by a NB 
model to evaluate the effects of the covariates 
on the CD4+ counts, which can be defined as:

log(μ
i
)=β

0 
+ β

1 
x time+ β

2 
x treatment + β

3 
x 

gender + β
4
 x age + β

5
 x CD4_baseline + β

6
 x VL_

dummy1 + β
7
 x VL_dummy2                        (1)

where μ
i
 denotes the mean number of 

CD4+ for the ith individual and 8,072 is the 
total number of observations, which refers to 
repeated measurements of 587 individuals in 
this study. The main difference between the 
Poisson and the NB models is the additional 
parameter and, consequently, the specification 
of the likelihood functions associated with them. 
The parameter estimation can be achieved via 
likelihood maximization by using a nonlinear 
optimization procedure [12].

Note that the traditional regression 
models for counting responses assume that the 
observations are independent. However, when 
clustered or longitudinal designs are used this 
assumption is no longer reasonable [13].

Models for Longitudinal Data. The models 
for longitudinal data are required when there 
are repeated measurements of the outcome for 
the same individual over time, which leads to 
a dependence structure in the data. The two 
approaches commonly used to analyze longitudinal 
data are the conditional and the marginal models 
[14]. One of the most important conditional 
models for longitudinal data is the linear mixed or 
multilevel model, in which the coefficients have 
an individual or cluster-specific interpretation. 
This model is conditional on random effects that 
describe the behavior of a response that varies for 
a specific individual. In marginal models on the 
other hand, the dependent variable (outcome) is 
modeled separately from the correlation between 
the measurements of each sample unit (denoted as 
intra-unit or intra-individual correlation). Consider 
a generic notation, where m individuals that 
are followed-up may have n

i 
repeated measures 

which can vary between individuals, and consider 
that index i denotes individuals and j indicates 
the observations. Using generalized estimating 
equations (GEE) as a marginal strategy, the expected 
marginal mean, E (Y

ij
) i=1,...,m and j=1,...,n

i
, is 

modeled as a function of the explanatory variables 
[4]. The dependence structure among repeated 
measurements of the same individual are dealt 
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with via the definition of the “working” correlation 
matrices, which are shown in Table 1.

Multilevel Approach. The simplest 
multilevel model for count data considers a 
single random intercept effect that represents 
the differences between the individuals. Let  
Xt

ij
= (X

ij2
, X

ij3
,...,X

ij(p-1)
) be the covariate matrix, 

t
ij
  the time when the jth measure of the ith 

individual was taken, β= (β
2
, β

3
, ..., β

(p-1)
)T, and  

b
oi
 ∼ N (0, t

o
) assumed to be independent of Xt

ij
. 

Then, the linear predictor is given by: 

log(μ
ij
)= n

ij
 =y

0i
+y

1i
t
ij
+ Xt

ij
β,                      (2)

where  y
0i 

=
 
β

0 + 
b

oi

 
y

1i 
=

 
β

1

 
The model parameters are estimated by 

maximum likelihood using iterative methods 
such as the Fisher Scoring or the Newton- 
Raphson [13]. 

In many practical situations, it is reasonable 
to assume not only an average per individual, but 
also that the effects on repeated measurements of 
the response are dependent on random effects. 
Therefore more complex multilevel models that 
include two random effects can be suitable. For 

instance, the random coefficients given in (2) can 
be defined as: y

0i
=β0+β0i and Y

1i
= βi +b

1i
, where 

the random vector b
i
=[b

0i 
b

1i
] follows a bivariate 

normal distribution with mean 0 and covariance 
matrix . Again, upon Poisson or 
NB distributional assumptions for the response 
variable the parameters are estimated iteratively 
using the Newton-Raphson algorithm to maximize 
the likelihood function. The random effects 
can in theory take any probability distribution. 
However, for ease of computation, control and 
robustness of inferential processes the statistical 
packages restrict its use to particular cases. 

Model selection is based on consistent 
Akaike information criterion (CAIC) defined as 
CAIC = -2L + p[log(mn)+1], where L is the log-
likelihood function, n is the average number of 
repeated measurements, and p is the number 
of parameters [15]. The model with the lowest 
CAIC is chosen.

Marginal Approach. GEE are extensions 
of GLMM’s for correlated data and require 
only the correct specification of univariate 
marginal distributions provided one is willing 
to adopt a “working” correlation matrix [11]. 
The linear predictor is specified as n

ij
=ZT

ij
β*, 

where β*= (βo,β1,...,β(p-1))
T is a p-dimensional 

TABLE 1

TYPES OF WORKING CORRELATION MATRIX MATRICIAL FORM

Independent: 
Assume that correlations for distinct measurements of the same 

individual are zero. 
This form is not adequate for longitudinal studies because 

their data are generally highly correlated. 

Exchangeable: 
Assume that correlations between all repeated measurements of the 

same individuals are equal.

Autoregressive of order 1 (AR1): 
Assume that adjacent correlations are greater in magnitude. 

The intra-individual correlation over time is an exponential function 
of its length. For longitudinal data, this is the most parsimonious 

correlation structure because it depends on one single parameter and 
yet it enables the correlations to diminish over time. 

Unstructured: 
All n(n-1)/2 correlations of R

i
 are estimated. This structure is more 

efficient and useful when there are only few time points. 
When there are several repeated measurements, the estimation of 

this structure is very complicated. Besides that, missing data 
makes it difficult to estimate R

i
.

WORKING CORRELATION MATRICES COMMONLY USED IN MARGINAL MODELS CONSIDERING AN EXAMPLE WITH 
THREE REPEATED MEASURES FOR ALL SUBJECTS
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vector of fixed parameters associated with the 
covariate vector ZT

ij=
(1,t

ij
,X

ij2
,X

ij3
,...,X

ij(p-1)
). A 

link function that relates the marginal mean to 
the linear predictor is specified. In the case of 
the Poisson and NB distributions the canonical 
link function is the logarithm (log), i.e., 
μ

ij
=exp (ZT

ij 
β*). In this approach, the variance 

is written as a function of the mean [13]. The 
estimates of β are obtained by the Newton-
Raphson iterative method. Model selection is 
carried out based on the criterion of quasi-
likelihood under the independence model 
(QIC) [16]. This criterion compares models 
with different correlation structures, such that 
the smallest QIC identifies the best model [17]. 

Computational Support. We used software 
R version 3.2.0[18] and Stata[19] version 10 to 
implement the methods described here. Details 
on syntax are presented in the Appendix.

RESULTS

In this study 63% of HIV seropositive 
individuals were males, 90% were under 
treatment at baseline and the average age of 
patients was 38 years (1 to 83 years). The mean 
follow-up was 4.6 years (3 months to 10.6 years). 
At baseline, 59% of patients had CD4 counts 
below 350 cells/mm³ and 64% had VL above 
5,000 copies/ml. Overdispersion was detected in 
the data, indicating NB as the most appropriate 
model. However, for comparison and illustration 

of the methods described here, we present 
results for the NB and Poisson models.

The individual profiles graph for 10 randomly 
chosen patients is shown in Figure 1. Analyzing 
information displayed in Figure 1 we can 
gain insights regarding the variability between 
individual units at a given point in time; the 
variance within units over time; and the trends 
over time. Note that the space between the 
lines represents between unit variability and 
the change in each line (slope) represents 
within variability. We observe a wide variability 
in the number of CD4 and in the number of 
repeated measurements.

The relative risk estimates using GEE-
Poisson and NB models, with different correlation 
structures, are presented in Table 3. According 
to the QIC, the best marginal model to fit this 
data is the NB with exchangeable correlation 
structure. It can be observed that patients with 
CD4 + counts above 350 cells/mm³ at baseline 
had a mean number of CD4 cells which was 
43% greater than those with counts below that 
(RR=1.427; 95%CI=1.326-1.552). Those patients 
who were undergoing treatment at baseline had 
an average number of CD4+ 38.0% greater than 
patients who were not undergoing treatment, 
controlling for the other covariates in the 
model (RR=1.379; 95%CI=1.172-1.614). It is 
important to highlight that the interpretation of 
the estimates from Poisson and NB models are 
similar when using the same modelling strategy 
(marginal or conditional).

Figure 2 presents the estimated trajectories 

FIGURE 1

INDIVIDUAL PROFILES FOR CD4+ COUNT IN 10 RANDOMLY SELECTED INDIVIDUALS. SALVADOR-BA, 2002-2012
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STAT I S T I CA L  METHODS

Epidemiology Biostatistics and Public Health - 2015, Volume 12, Number 4

M O D E L L I N G  L O N G I T U D I N A L  C O U N T  D A T A

for the average number of CD4+ in accordance 
with the estimates obtained by GEE-NB model 
with exchangeable correlation structure for 
four patients with specific profiles for a period 
of 10 years. The first patient was not receiving 
treatment at baseline, male, 70 years old, with 
CD4 + at baseline below 350 cells/mm³ and VL 
above 5,000 copies/ml (Patient 1). The second 
patient also was not undergoing treatment at 
baseline, female, 35, CD4+ at baseline above 
350 cells/mm³ and VL between 500 copies/
ml and 5,000 copies/ml (Patient 2). The third 
patient was undergoing treatment, male, 50 
years old, baseline CD4+ below 350 cells/
mm³ and VL between 500 copies/ml and 5,000 
copies/ml (Patient 3). The fourth patient was 
undergoing treatment, female, 20, CD4+ at 

baseline above 350 cells/mm³ and VL less than 
500 copies/ml (Patient 4).

The prediction equation is given as:

log(μ
i
) = 5.6173 + 0.0325 x time + 0.3189 

x treatment + 0.0476 x gender - 0.0009 x age + 
0.3608 x CD4_baselina + 0-0126 x VL_dummy1 
+ 0.0041 x VL_dummy2

As expected, all four individuals had 
increasing average numbers of CD4+ cells over 
time according to their predicted individual 
profiles (Figure 2). Patient 1 had the worst 
performance. Interestingly, even though patient 
2 was not undergoing treatment at baseline, 
she performed better than patient 3. This is 
due to other characteristics of these individuals, 

TABLE 2

ASSOCIATED FACTORS

POISSON MODEL NEGATIVE BINOMIAL MODEL

INDEPENDENT

MULTILEVEL MODEL 
WITH A RANDOM 
INTERCEPT (WITH 

GAMMA DIST.)

INDEPENDENT

MULTILEVEL MODEL 
WITH A RANDOM 

INTERCEPT 
(WITH BETA DIST.)

RR (CI 95%) RR (CI 95%) RR (CI 95%) RR (CI 95%)

TIME 1.033*
(1.033;1.034)

1.030* 
(1.029;1.030)

1.040*
(1.032;1.041)

1.023* 
(1.022;1.028)

TREATMENT 1.181* 
(1.174;1.184)

1.434* 
(1.233;1.664)

1.169* 
(1.103;1.236)

1.391*
(1.245;1.545)

GENDER

MALE 1.000 1.000 1.000 1.000

FEMALE  1.076* 1.049  1.083*  1.089*

(1.074;1.078) (0.955;1.150) (1.046;1.108) (1.027;1.156)

AGE IN BASELINE 1.000* 
(1.001;1.001)

1.000 
(0.995;1.003)

1.000 
(0.999;1.002)

1.021* 
(1.017;1.023)

CATEGORIZED CD4+ COUNT  

< 350 CELLS/MM3 1.000 1.000 1.000 1.000

≥ 350 CELLS/MM3 1.372* 1.429* 1.362* 1.501*

(1.371;1.377) (1.308;1.570) (1.348;1.425) (1.415;1.586)

VIRAL LOAD

VL < 500 COPIES/ML 1.00 1.00 1.00 1.00

500≤ VL<5,000 
COPIES/ML

0.923*
(0.922;0.928)

0.978
(0.843;1.145)

0.942*
(0.892;0.980)

0.951
(0.881;1.035)

VL≥5,000 COPIES/ML 1.000*
(1.003;1.007)

1.099
(0.903;1.124)

1.099
(0.975;1.045)

0.901*
(0.850;0.957)

CAIC 1,313,136.0 513,370.4 113,784.8 109,053.4

*p-value < 5%
Abbreviations: RR, relative risk; CI, confidence interval; CAIC, Consistente Akaike Information Criteria.

RELATIVE RISK ESTIMATES FOR ANALYSIS OF LONGITUDINAL CD4+ CELL COUNTS IN HIV-SEROPOSITIVE
INDIVIDUALS USING MULTILEVEL POISSON AND NEGATIVE BINOMIAL MODELS. SALVADOR-BAHIA. 2002-2012
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TABLE 3

ASSOCIATED FACTORS
GEE-POISSON MODEL

INDEPENDENT AR1 EXCHANGEABLE 
RR (CI 95%) RR (CI 95%) RR (CI 95%)

TIME 1.033*
(1.033;1.034)

1.031*
(1.021;1.036)

1.029*
(1.025;1.037)

TREATMENT 1.179*
(1.174;1.184)

1.193*
(1.026;1.380)

1.482*
(1.262;1.746)

GENDER 
MALE 1.000 1.000 1.000
FEMALE 1.076* 1.052 1.078

(1.074;1.078) (0.970;1.141) (0.988;1.177)

AGE IN BASELINE 1.000*
(1.000;1.001)

1.000
(0.996;1.005)

1.000
(0.997;1.005)

CATEGORIZED CD4+ COUNT    
< 350 CELLS/MM3 1.000 1.000 1.000
≥ 350 CELLS/MM3 1.371* 1.369* 1.324*

(1.371;1.371) (1.272;1.480) (1.210;1.433)

VIRAL LOAD
VL < 500 COPIES/ML 1.000 1.000 1.000

500≤ VL < 5,000 COPIES/ML 0.927*
(0.922;0.928)

0.927
(0.815;1.055)

0.951
(0.824;1.101)

VL≥5,000 COPIES/ML 1.099* 
(1.003;1.007)

0.992
(0.909;1.086)

1.099
(0.914;1.113)

QIC 44,164,807.9 44,171,363.8

ASSOCIATED FACTORS

GEE-NEGATIVE BINOMIAL MODEL

INDEPENDENT AR1 EXCHANGEABLE

RR (CI 95%) RR (CI 95%) RR (CI 95%)

TIME 1.041*
(1.029;1.044)

1.032*
(1.024;1.040)

1.031*
(1.027;1.039)

TREATMENT 1.169*
(1.066;1.279)

1.182*
(1.012;1.373)

1.379*
(1.172;1.614)

GENDER
MALE 1.000 1.000 1.000
FEMALE  1.082* 1.048 1.051

(1.028;1.128) (0.971;1.144) (0.965;1.142)

AGE IN BASELINE 1.000
(0.999;1.003)

1.000
(0.996;1.005)

1.000
(0.995;1.003)

CATEGORIZED CD4+ COUNT
<350 CELLS/MM3 1.000 1.000 1.000

 ≥ 350 CELLS/MM3  1.389*
(1.325;1.449)

 1.401*
(1.295;1.506)

 1.427*
(1.326;1.552)

VIRAL LOAD
VL<500 COPIES/ML 1.000 1.000 1.000

500≤ VL < 5,000 COPIES/ML 0.943
(0.867;1.008)

0.939
(0.822;1.065)

0.981
(0.846;1.123)

VL≥5,000 COPIES/ML 1.099
(0.956;1.067)

0.992
(0.912;1.092)

0.999
(0.915;1.102)

QIC 116,849.7 116,829.4

*p-value < 5%
Abbreviations: RR, relative risk; CI, confidence interval; QIC, Quasi-likelihood Information Criteria.

RELATIVE RISK ESTIMATES FOR ANALYSIS OF LONGITUDINAL CD4+ CELL COUNTS IN HIV-SEROPOSITIVE
INDIVIDUALS USING GEE- POISSON AND NEGATIVE BINOMIAL MODELS. SALVADOR-BAHIA. 2002-2012
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especially for their CD4+ counts at baseline.
It is worth noting that the interpretation 

of the results from marginal and conditional 
models differs. Although both approaches model 
the average number of CD4+ cells, the marginal 
model has a population-average interpretation 
while the multilevel model, being conditional 
on random effects, provides an individual 
interpretation. Therefore, the results from these 
models should not be directly compared.

An important step in fitting a regression 
model is the verification of possible departures 
from the assumptions of the model. This 
diagnostic analysis is usually performed 
through residual analysis. However, due to the 
complexity of our data structure (unbalanced 
and unevenly spaced) there were no diagnostic 
methods available in R or Stata. Thus, their 
implementation represents a challenge for 
future work.

DISCUSSION

Analysis of longitudinal data using 
conventional regression models is inadequate 
as they fail to consider the dependence 

between observations over time. Longitudinal 
data may also present additional complexities 
in its structure, which may occur due to 
the imbalance and/or the fact that they are 
unevenly spaced, or owing to missing data. 
It is up to the data analyst to conduct a 
thorough exploratory analysis to evaluate the 
data structure and choose the statistical model 
that best suits it. For the analysis of count 
data in particular, the two most widely used 
statistical models are the Poisson and NB 
models. The choice depends on characteristics 
inherent to the data, for example the NB 
model is appropriate when overdispersion is 
suspected [20,21]. The parameter estimates 
based on NB are not very different from 
those based on the Poisson model. However, 
the Poisson regression underestimates the 
standard errors when overdispersion is present, 
leading to inappropriate inference. A simple 
way to choose between these two models is to 
compare them based on some criteria, such as 
AIC, CAIC or QIC, depending on the adopted 
modeling strategy. Another way is to estimate 
the scale parameter from NB and to test the 
null hypothesis that it is equal to zero.

The choice of the modeling strategy 

FIGURE 2

PREDICTION OF FOUR INDIVIDUAL PROFILES FOR CD4 COUNT FOR A PERIOD OF
10 YEARS ACCORDING TO GEE-NB MODEL
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depends on the purpose of the study, especially 
because the results from these models can 
lead to different interpretations. The GEE 
estimates the regression coefficients as in a 
cross-sectional study, modelling the population-
average response and, separately, it models the 
correlation between two observations from the 
same individual at two different points in time. 
The multilevel model, on the other hand, deals 
with the regression coefficients and the intra-
subject correlation simultaneously in a single 
equation, in which the response is modeled 
as a function of the covariates and random 
effects[14]. These methods are complex and 
some of them are still under development. 
To date we know of no implementation 
of regression diagnostic methods for very 
complex data structures as the described in our 
application. It should also be noted that the 
distribution associated to the random effects 
varies according to the statistical software. 

Despite the limitations and methodological 
complexity, the use of LS with counts as 
responses is important in epidemiological 
studies, as is the case of our application. 
Other authors have monitored and evaluated 
the natural history of HIV using repeated 
measurements of CD4+, which were analyzed 
by using the multilevel linear model. To 
consider this type of modeling, an alternative 
embodiment is to use the CD4+ percentage 
as the outcome rather than a count [22] or 
using a transformation to the cell count (for 
example, square root of the number of cells) 
[23] so that the assumptions of normality and 
homoscedasticity of the errors are fulfilled. We 
implemented these strategies on our data but 
we found evidence of violation of the model 
assumptions. An additional limitation of using 

linear mixed models for longitudinal count 
data is that they do not enable the estimation 
of measures of association such as the relative 
risk. In addition to allowing the specification 
of a dependency structure between multiple 
measurements on the same individual, one of 
the advantages of the models for longitudinal 
count data described in this article is the 
possibility of including both fixed covariates, 
such as race or sex, and time-dependent 
covariates, such as type of treatment regimen 
or number of infections in the last quarter.

The methods described in this work enable 
the description of the impact of several factors 
on lymphocyte CD4+ counts in HIV-seropositive 
patients using all available information. We 
believe that this type of analysis can be useful 
to address several important issues in public 
health as well as help in monitoring patients and 
checking the effectiveness of their treatments.
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APPENDIX: COMPUTATIONAL SYNTAX

The R software refers to a language and an integrated development environment for statistical 
calculations and graphics, being freely distributed and available at www.r-project.org21. Stata software 
is a statistical program that was developed in C and released in 198522. The most current version of 
Stata is 14. There are available versions of R and Stata for Windows, Macintosh, Linux and Unix.

Software R  

To fit the multilevel Poisson models one can used the lme4 library through the glmer function.  
Particularly to fit the random intercept Poisson multilevel model it is necessary to consider the 
argument (1 | id). The syntax is:

glmer(CD4 ~ time + treat + gender + age + CD4_baseline + factor (VL_baseline) + (1|id), 
data=database, family=poisson)

On the other hand, for fitting the multilevel model with two random effects, being associated to the 
intercept and time variable, it is necessary to use the argument (time | id). In this case, the syntax is:

glmer(CD4 ~ time + treat + gender + age + CD4_baseline + factor (VL_baseline)+ (time|id), data= 
database, family=poisson)

The Negative Binomial multilevel models are implemented using the glmmADMB library 
through the function glmmadmb. The syntax is similar to the previous one, substituting the name of 
the function and the argument concerning the distribution to:

family="nbinom".

For the random intercept Poisson and NB models implemented in R, b
0i
  follows a Normal 

distribution. For multilevel models with two random effects the joint distribution of random effects 
b

0i
 and b

1i
 is considered to be bivariate normal in the software R. 

To fit GEE using the Poisson distribution, the geepack library can be used along with geeglm 
function. The syntax considering the autoregressive (AR1) correlation structure is:

geeglm(CD4 ~ time + treat + gender + age + CD4_baseline + factor (VL_baseline), data = database, 
family = poisson, id = id, corstr = “ar1”)

For other correlation structures one should only change the argument corstr for "exchangeable" 
or "unstructured". To date this function does not support the fit of NB models.

Software Stata
It is possible to fit the multilevel Poisson and NB models using xtpoisson and xtnbreg 

commands, respectively. The default distribution for the random intercept for multilevel Poisson 
model is the Gamma distribution, but one can alter that to normal distribution using the normal 
argument. The syntax for fitting the corresponding models is:

xi: xtpoisson CD4 time treat gender age CD4_baseline i.VL_baseline, nolog re i(id)

xi:  xtpoisson CD4 time treat gender age CD4_baseline i.VL_baseline, nolog normal re i(id)

For multilevel NB models, the default distribution of the random intercept is Beta. The syntax 
is given by:

xi: xtnbreg CD4 time treat gender age CD4_baseline i.VL_baseline, nolog re i(id)

Regarding the GEE approach, the functions used to fit the NB and Poisson models are, 
respectively, xtgee and xtnbreg. The syntax using AR1 correlation structure is:

xi: xtgee CD4 time treat gender age CD4_baseline i.VL_baseline, nolog fam(poisson) corr(ar1) 
i(id)
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xi: xtnbreg CD4 time treat gender age CD4_baseline i.VL_baseline, nolog pa corr(ar1) i(id)

Other options for corr argument are exch, ind and unstr. The  QIC can be calculated after 
installation of the function QIC.do. The syntax associated with the GEE- AR1 Poisson model, for 
example, is:

qic CD4 time treat gender age CD4_baseline i.VL_baseline, nolog eform fam(poisson) corr(ar1) i(id)
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