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Bias in the presence of MNAR

Bias in regression coefficient estimates when 
assumptions for handling missing data are 
violated: a simulation study

ABSTRACT 

Background: The purpose of this simulation study is to compare bias in the estimation of regression coefficients 
between multiple imputation (MI) and complete case (CC) analysis when assumptions of missing data mechanisms 
are violated.
Methods: The authors performed a stochastic simulation study in which data were drawn from a multivariate normal 
distribution, and missing values were created according to different missing data mechanisms (missing completely 
at random (MCAR), at random (MAR), and not at random (MNAR)). Data were analysed with a linear regression 
model using CC analysis, and after MI. In addition, characteristics of the data (i.e. correlation, size of the regression 
coefficients, error variance, proportion of missing data) were varied to assess the influence on the size and sign of bias.
Results: When data were MAR conditional on Y, CC analysis resulted in severely biased regression coefficients; they 
were consistently underestimated in our scenarios. In the same scenarios, analysis after MI gave correct estimates. 
Yet, in case of MNAR MI yielded biased regression coefficients, while CC analysis did not result in biased estimates, 
contrary to expectation.
Conclusion: The authors demonstrated that MI was only superior to CC analysis in case of MCAR or MAR, with 
respect to bias and precision. In some scenarios CC may be superior to MI. Often it is not feasible to identify the 
cause of incomplete data in a given dataset. Therefore, emphasis should be placed on reporting the extent of missing 
values, the method that was used to address the problem, and the assumptions that were made about the mechanism 
that caused missing data.
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INTRODUCTION

One of the most ubiquitous problems in epidemiological 
studies is that of missing values. The standard approach 
to handling missing values for most statistical packages, 

and therefore the easiest method to implement, is to omit 
subjects with missing data on at least one of the variables 
used for the analysis. This method is called complete case 
(CC) analysis, and can result in a considerable loss of 
statistical power since fewer subjects are included in the 
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analysis than planned. Moreover, CC analysis may cause 
considerable bias in the parameter estimates [1-4].

The extent of the problem has been widely 
acknowledged for decades by statisticians and many 
methods to deal with missing values have been developed 
since. Most methods aim to impute values, providing 
the analyst with a complete dataset. These methods 
make specific assumptions about the mechanism(s) that 
caused the data to be missing. An increasingly popular 
imputation method among researchers is Multiple 
Imputation (MI) [5]. This method creates multiple 
completed datasets, usually 5, 10, or more. For each 
dataset, missing values are estimated using regression, 
or predictive mean matching (i.e. a value is drawn at 
random from a set of donors with predicted values close 
to the predicted value for the incompletely observed 
record), or another method, and always introduces a 
stochastic element that creates inter-dataset variability. 
Pooling results from these datasets produces estimates 
that have correct standard errors [2-4,7]. As used in 
practice, MI usually assumes data are either MCAR or 
missing conditional on the value of other variables in 
the model, including the outcome variable. The latter 
mechanism is called Missing at Random (MAR) [6]. For 
circumstances in which the MCAR or MAR assumption 
is met, MI has been shown to be superior to other 
popular imputation methods such as imputation with the 
(conditional) mean, the missing-indicator method, last 
observation carried forward, and single imputation. 

The use of any method for handling missing data 
can introduce bias if the missing data assumptions are 
not met. However, it is not customary that such methods 
are reported in detail, and if they are, the authors usually 
do not provide convincing support for the validity of the 
assumptions [8]. A third and more problematic missing 
data mechanism is often overlooked, namely Missing 
Not at Random (MNAR), in which values are missing 
conditional on their own true value or the value of 
covariates that are unmeasured.

In a recent simulation study, White and Carlin [9] 
showed that when data are not MCAR, there are some 
scenarios in which a CC analysis yields negligible 
bias while MI can introduce considerable bias when 
estimating coefficients of a regression model. They also 
provide an index for assessing the likely gain in precision 
from MI. These findings raise some doubt about the 
routine application of MI as a panacea for dealing with 
missing data.

In the present article, we focused on bias in the 
estimation of regression coefficients after MI as compared 
to CC analysis in scenarios when assumptions were 
violated, with particular emphasis on scenarios that 
have received little attention in other simulation studies. 
Furthermore, we assessed which parameters of the 
regression model determined the extent of the bias, if any, 
and whether they influenced the sign of bias. We focused 

in particular on MI as the imputation method, since it is 
commonly considered to be superior to other popular 
methods. To compare MI with CC analysis, we performed 
a Monte Carlo simulation study.

METHODS
Study design

We performed a Monte Carlo simulation study to 
evaluate properties of MI and CC in several missing data 
scenarios. We simulated data based on a linear model 
given by

Y = β0 + β1X1 + β2X2 + ε   (1)

in which Y is the continuous outcome variable, X1 and 
X2 are both continuous independent variables, β0 is the 
intercept, and X1 and X2 denote the regression coefficients 
for the corresponding X variables, and ε is the error 
variable (or residual). The independent variables as well as 
the error variable were drawn from a multivariate normal 
distribution with zero means, unit variances and correlation 
between the independent variables equal to p. The errors 
were drawn from an independent normal distribution with 
zero mean and variance equal to σ2. The model intercept, 
β0, was set to 0.

To determine the influence of sample size (n), the error 
variance (σ2), the correlation between the independent 
variables (p), and the size of the regression coefficients 
relative to one another (β1 and β2), we varied all these 
factors throughout the simulation study. Table 1 shows all 
the values considered for the different simulations. This 
amounts to 315 different scenarios of complete data.

Creation of missing values

We created missing values on the X1 variable 
according to the MCAR, MAR and the MNAR 
mechanisms. For the MCAR mechanism, a randomly 
selected proportion of X1 was deleted, independent 
of the values of any other variable in the model. This 
was done by simulating a variable from a Bernoulli 
distribution of the same size as X1, with a probability 
of success (i.e. the value = 1) equal to the proportion 
missing values according to the scenario. For each 
value of the Bernoulli-distributed variable that was ‘1’, 
the corresponding X1 value was deleted.

The MAR mechanism was divided into MAR 
conditional on the X2 variable (i.e. the lower the X2 
value, the higher the probability that the corresponding 
X1 value was missing), and MAR conditional on Y (i.e., 
the lower the Y value, the higher the probability that 
the corresponding X1 value was missing. To do so, we 
simulated a normally distributed variable with standard 
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deviation unity and a mean determined by the proportion 
of missing values that particular scenario dictated. This 
variable was compared either to X2 or Y, depending on 
the missing value mechanism. If the value of the random 
variable was lower than the corresponding X2 or Y, the 
corresponding X1 value was not manipulated, if it was 
higher the X1 value deleted. 

To simulate a MNAR mechanism, the probability for 
any value to be missing was associated with its own value 
(i.e., the lower the value, the higher the probability of 
being missing). We created these missing values similar to 
the MAR mechanism. In this case, the normally distributed 
variable was compared to X1, as opposed to X2 or Y. 
These 4 mechanisms were applied separately to all 315 
datasets. Furthermore, we varied the proportion of missing 
values in all datasets (π). We created missing values in 
proportions of 0.25, 0.50 and 0.75. Therefore, a total of 
315 * 4 * 3 = 3.780 different conditions were examined 
in this simulation study.

Data analysis

We analysed all these scenarios using both CC 
analysis and after MI using linear regression analysis to 
estimate regression coefficients. The linear model that 
was analysed was of the same structure as {1}. MI was 
performed using the mice package (Multiple Imputation 
using Chained Equations), which was developed by the 
Netherlands Organization for Applied Scientific Research 
(TNO) [10]. The default settings were used, which means 
that the imputations were generated using the frequently 
employed method of predictive mean matching, and the 
number of multiple imputations was set to 5. All simulations 
were performed 1,000 times to obtain stable estimates of 
regression coefficients and standard errors. R [11] was 
used for simulating the data and performing all analyses.

RESULTS

Table 2 shows the mean of the parameter estimates 
and corresponding standard errors both for the complete 

and incomplete data scenarios. The incomplete data 
were analysed using CC analysis and analysis after 
MI. All scenarios reported in table 2 had the following 
settings: n = 1000, σ2 = 1, β1 = β2 = 1, p = 0.00, 
and π = 0.50.

Complete case analysis

Compared to the results generated for the complete 
data, standard errors increased with an increasing 
proportion of missing data. When the MCAR assumption 
held, regression coefficients were unbiased. Moreover, 
when data were MAR, conditional on X2, or when data 
were MNAR, conditional on its own true value, CC analysis 
also yielded unbiased regression parameter estimates. 
Only when data were MAR, conditional on the outcome 
variable Y, CC analysis resulted in biased estimates. 
Both regression coefficients were underestimated, with the 
intercept being overestimated.

Multiple Imputation

When data were MCAR or MAR, which is an 
assumption of MI, the analysis yielded unbiased parameter 
estimates. The standard errors were slightly higher than 
those computed on the complete data, because the 
uncertainty of imputation was taken into account. When 
the MAR assumption was violated (i.e. MNAR), analysis 
after MI overestimated the regression coefficient of X1, and 
underestimated the intercept. The regression coefficient of 
X2, however, was unbiased. 

Influence of model parameters

The following results describe conditions in which the 
sample size n was 1000 and, unless otherwise stated, the 
true values of the regression coefficients β1 and β1 were 1, 
the error variance was 1, the proportion of missing values 
was 0.5 and the correlation between the independent 
variables was 0.

VALUES CONSIDERED FOR SIMULATION
Sample size (n) 100 500 1000

Error variance (σ2) 0.5 1 2 4 8

Correlation between X
1
 and X

2
 (ρ) -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

Coefficient for X1 (β1
)1 0.5 1 2

Coefficient for X2 (β2
)1 2 1 0.5

Proportion missing data (π) 0.25 0.5 0.75

1Not all possible combinations of the regression coefficients were considered, only (β1 and β2 respectively) 0.5 and 2, 1 and 1, and 2 and 0.5.

TABLE 1. Variables That Were Varied Between Simulations and the Values That Were Considered.
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CC analysis when data are MAR conditional on Y

Figure 1(a-f) shows the influence of model parameters 
on scenarios in which CC analysis yielded biased results, 
namely when data were missing at random, conditional 
on the dependent variable Y. Figure 1a and 1b illustrate 
that the size of bias in the estimated intercept was 
greatly influenced by the variance in the error term and 
consequently the variance of Y. Furthermore, the size of 
bias was proportional to the proportion of missing values 
of the X1 variable. The correlation between predictor 
variables and the true values of the regression coefficients 
seems to have had no influence on the bias of the mean 
intercept estimate.

Figures 1c and 1d show the size of the estimated 
regression coefficient of X1, (i.e. β1). The same conclusions 
hold as for the estimation of the intercept, but now the 
correlation between the independent variables X1 and 
X2 also influenced bias. The bias was highest with a 
high negative correlation, and lowest with a high positive 
correlation. The relation seemed linear within the simulated 
range. Figure 1d illustrates that the bias depended on the 
true value of the regression coefficient; it was proportional 
to its size.

Figure 1e and 1f show the estimation of the regression 
coefficient β2. For both graphs, the same conclusions can 
be drawn as for the estimation of the regression coefficient 
for X1. In our scenarios considering MAR, conditional 
on the dependent variable Y, CC analysis consistently 
underestimated the regression coefficients and thus resulted 
in a negative bias.

Analysis after MI when data are MNAR conditional on X1

Figure 2(a-f) shows the influence of model parameters 
on scenarios in which analysis after MI yielded biased 
results, namely when data were missing not at random, 
conditional on the true value of X1. Figure 2a and 2b 
show the results for the model intercept, revealing that 
the bias was dependent on the error variance (thus the 
variance on Y), the correlation between X1 and X2, the 
proportion of missing values in the X1 variable and the size 
of the regression coefficients relative to one another. The 

bias increased as a function of the variance of the error 
term. The weaker the correlation between the independent 
variables was, the larger the bias in the estimation of the 
intercept. This relationship can be described by a curve 
(see figure 2a). Just as in the previous examples with CC 
analysis, the bias increased as a function of the proportion 
of missing values. Contrary to results from the CC analysis, 
the true value of the regression coefficients also influenced 
bias in the estimated intercept.

Figure 2c and 2d show bias in the estimation of 
the regression coefficient of X1. The results were similar 
to those of the estimation of the intercept. However, we 
observed an inverse relation between the error variance 
and the magnitude of the bias. It shows that the lower the 
variance was, the higher the bias. Furthermore, instead of 
an overestimation of the regression coefficient, scenarios 
with an error variance of 4 or 8, and a correlation 
between the independent variables of 0.75 showed 
a slight underestimation of the regression coefficient. 
Figure 2d shows that the model slightly overestimated the 
regression coefficients, the size of bias being proportional 
to the true value. However, in this scenario bias was not 
that much affected by the proportion of missing values.

Figure 2e and 2f illustrate bias in the estimation of 
the regression coefficient for X1 when data were missing 
not at random. Bias increased as a function of error 
variance. In these scenarios it was evident that the model 
underestimated the coefficient in case of a negative 
correlation between X1 and X2, and overestimated in 
case of a positive correlation. Bias in the estimation of this 
coefficient was hardly influenced by both the proportion of 
missing values, and the true value of the coefficient.

DISCUSSION

Our simulations indicate that estimated regression 
coefficients for incomplete data can be biased using a 
standard approach like CC analysis, but also when using 
a sophisticated method like MI. When data were MCAR 
or MAR, conditional on X2, both methods performed 
well, although a larger loss of precision when using CC 
could be observed because of the omission of patients, 

COMPLETE CASE ANALYSIS (CC) MULTIPLE IMPUTATION (MI)
β
0

β
1

β
2

β
0

β
1

β
2

Complete data 0.00 (0.032) 1.00 (0.032) 1.00 (0.032) 0.00 (0.032) 1.00 (0.032) 1.00 (0.032)

MCAR 0.00 (0.045) 1.00 (0.045) 1.00 (0.045) 0.00 (0.039) 1.00 (0.036) 1.00 (0.040)

MAR conditional on X
2

0.00 (0.054) 1.00 (0.045) 1.00 (0.054) 0.00 (0.046) 1.00 (0.036) 1.00 (0.046)

MAR conditional on Y -0.59 (0.048) 0.77 (0.044) 0.77 (0.044) 0.02 (0.042) 0.99 (0.039) 1.00 (0.043)

MNAR conditional on X
1

0.00 (0.054) 1.00 (0.054) 1.00 (0.045) 0.39 (0.044) 1.11 (0.046) 1.00 (0.041)

TABLE 2. Mean of the Regression Coefficient Estimates (and Corresponding Standard Errors) for complete and missing data 
scenarios in which n = 1000, σ2 = 1, β1 = β2 = 1, ρ = 0.00, and π = 0.50.
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Figure 1(a-f). The mean estimated regression coefficients using CC analysis when data are missing conditional on the outcome 
variable Y, i.e. MAR conditional on Y. The dotted line represents the true value of the regression coefficient. The three graphs on 
the left show the effect of the correlation between X1 and X2, and the variance of the error term, on the bias in the regression 
coefficients after CC analysis. In the graphs on the right, the proportion of missing values and the size of the regression 
coefficients were varied.
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Figure 2(a-f). The mean estimated regression coefficients after MI when data are MNAR conditional on X1. To assess the influence of 
the β2 value and the proportion of missing values on the mean β2 estimate (figure 2f), we set ρ = 0.50, since figure 2E shows no bias 
when ρ = 0.00. The dotted line represents the true value of the regression coefficient. The three graphs on the left show the effect of the 
correlation between X1 and X2, and the variance of the error term, on the bias in the regression coefficients after MI. In the graphs on 
the right, the proportion of missing values and the size of the regression coefficients were varied.
In all conditions, the relative size of the bias in the estimated regression coefficients was not affected by sample size (data not shown).
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which holds for all missing data conditions we analysed. 
Contrary to what we expected, CC analysis only yielded 
biased regression coefficients when missing data were 
MAR conditional on Y. Moreover, when data were 
MNAR results obtained after MI were biased whereas CC 
yielded correct estimates. This is not likely to hold for all 
possible MNAR mechanisms, but it did hold for all MNAR 
mechanisms simulated in this study. In scenarios where CC 
analysis lead to biased results the regression coefficients 
were consistently underestimated. Conversely, in scenarios 
where analysis after MI yielded biased results, the 
regression coefficients were in most cases overestimated. 
In most of the scenarios we considered, the magnitude 
of the bias was influenced by the error variance, or the 
variance on Y, by the correlation between the independent 
variables, the proportion of missing values and the true 
value of the regression coefficients β1 and β2.

Relatively little attention has been given to MNAR 
in other empirical and simulation studies. It is described 
as unlikely to occur [12], or described as a scenario for 
which no universal method can provide reliable estimates 
of regression coefficients [4,6,12,13]. A prime example of 
data MNAR is the following. Consider a personal question 
in a survey that people with a particular value or answer 
are less likely to complete, for instance asking smoking 
status among pregnant women. Women who still smoke 
during pregnancy are more likely to skip the question than 
women who do not smoke. Another example is asking for 
income or salary, a question less likely to be completed 
by people with very low or high incomes. When visiting 
a gynecologist during pregnancy, body mass index (BMI) 
may be recorded only when it is suspected to be relevant, 
that is either very low or very high. For clinical laboratory 
results, MNAR may occur when a ceiling effect is present, 
i.e. when a level above which a variable cannot be 
measured is reached, and is therefore not observed.

It follows from our results that determining the missing 
data mechanisms are crucial for choosing the correct 
method for handling missing values. Yet it is hard, if not 
impossible, to prove empirically that one mechanism in 
particular can be kept responsible for missing data, or 
to rule out another. It can only be assumed after detailed 
inspection of the raw data and thinking thoroughly about 
the data collection procedure. Furthermore, despite the fact 
that the missing data mechanisms are usually presented 
as mutually exclusive, it is likely that, in any given large 
multivariable dataset, combinations of mechanisms can 
cause incomplete data, presenting the analyst an even 
more difficult problem deciding what method to use. A 
result of this could be that imputation methods perform 
worse in empirical datasets, compared to the many 
simulation studies performed under perfect circumstances.

One important drawback of our study is that there 
are many more theoretical scenarios that can be simulated 
using some sort of MNAR mechanism, which falls well 
beyond the scope of this article. We emphasise that, 

since these were not simulated, we cannot generalise 
our results to these many scenarios. This also holds for 
scenarios in which the model is expanded with more 
covariates, interaction terms, multilevel structure, or other 
features. Yet, we aimed to present a simple simulation for 
illustrative purposes, and discussing many more missing 
data mechanisms is unlikely to alter our conclusion.

An important improvement would be if authors of 
empirical articles put more emphasis on the absolute 
number and proportion of missing values and the missing 
data. Stating how many patients will be omitted from the 
analysis if CC analysis is used and how many values 
are missing on each variable of interest, are of great 
importance for the interpretation of the results. A sound 
description of the assumptions that were made and why, 
and the method or methods chosen for handling these 
missing values should follow, providing the interested 
reader with sufficient information to determine the validity 
of the results in the context of the research question 
addressed. Any differences between results obtained after 
CC analysis and analysis after MI could provide insight in 
the stability of the results.

CONCLUSION

In conclusion, this paper does not intend to discourage 
the use of MI or CC analysis for that matter. However, we 
intended to demonstrate the importance of keeping in mind 
that MI has some pitfalls, and CC analysis may provide 
valid results in some scenarios where MI fails to do so. An 
uncertainty is always introduced when missing values are 
present, and the data analyst should realize that in this 
case, data used for the analyses never equal the data as 
they were collected, whatever method is used. Therefore, 
one should always give enough information for the reader 
to get an impression of the extent of the problem.
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