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Multiplicative models for survival percentiles: 
estimating percentile ratios and multiplicative 
interaction in the metric of time

ABSTRACT 

Evaluating percentiles of survival was proposed as a possible method to analyse time-to-event outcomes. This approach sets 
the cumulative risk of the event of interest to a specific proportion and evaluates the time by which this proportion is attained. 
In this context, exposure-outcome associations can be expressed in terms of differences in survival percentiles, expressing the 
difference in survival time by which different subgroups of the study population experience the same proportion of events, or 
in terms of percentile ratios, expressing the strength of the exposure in accelerating the time to the event. Additive models for 
conditional survival percentiles have been introduced and their use to estimate multivariable-adjusted percentile differences 
and additive interaction on the metric of time has been described. On the other hand, the percentile ratio has never been 
fully described, neither statistical methods have been presented for its models-based estimation. To bridge this gap, we 
provide a detailed presentation of the percentile ratio as a relative measure to assess exposure-outcome associations in the 
context of time-to-event analysis, discussing its interpretation and advantages. We then introduce multiplicative statistical 
models for conditional survival percentiles and present their use in estimating percentile ratios and multiplicative interactions 
in the metric of time. The introduction of multiplicative models for survival percentiles allows researchers to apply this 
approach in a large variety of context where multivariable adjustment is required, enriching the potentials of the percentile 
approach as a flexible and valuable tool to evaluate time-to-event outcomes in medical research.
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INTRODUCTION

Survival data are commonly evaluated by fixing 
an observational time within which quantities of interest 
(hazard, rates, or risks of the event) are estimated. Different 
authors have underlined the need to complement these 
common approaches providing additional measures to 
present the time dimension of the association [1-3]. A 

possible suggested approach is to set the risk/probability 
of the outcome to a specific value and to evaluate 
survival percentiles, defined as the time-points by which 
that specific proportion of cases is achieved [2]. This 
approach provides considerable advantages, especially 
for inevitable health outcomes, such as death, when one is 
more interested in the time to occurrence of the event rather 
than its probability [3]. 
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In the context of survival percentiles, measures of 
association can be presented in terms of percentile 
differences or percentile ratios [1] and express the effect 
of a given exposure in the unit of time in absolute or 
relative terms, respectively. Statistical modelling of survival 
percentiles can be carried out with methods to estimate 
conditional quantiles of censored outcomes, which allow 
directly modelling the percentiles of the time variable as a 
function of possible covariates [2]. The use of this approach 
to estimate multivariable adjusted percentile differences 
[4-6] and to assess additive interaction in the metric of 
survival time [7] has been described. On the other hand, 
to the best of our knowledge, a detailed description of the 
percentile ratio and its advantages has never been carried 
out. Moreover, there is no established statistical framework 
to estimate percentile ratios, strongly limiting the potentials 
and applicability of this useful measure of association 
[1, 8, 9]. A complementary presentation of relative and 
absolute measures has been extensively recommended, 
as this would provide a comprehensive summary of the 
exposure-outcome association [10]. 

In this paper we provide a detailed presentation 
of the percentile ratio as a relative measure to assess 
exposure-outcome associations in the context of survival 
analysis, discussing its interpretation and advantages. 
We then proceed by introducing multiplicative models for 
conditional survival percentiles, and present their use in 
estimating percentile ratios and multiplicative interactions 
in the metric of time.

REVIEW OF THE PERCENTILE APPROACH: 
ESTIMATING PERCENTILE DIFFERENCES WITH 
ADDITIVE MODELS

In time-to-event analysis we are interested in assessing 
the occurrence of an event D and the time T by which that 
event is achieved. Survival percentiles, which are visually 
summarised in the survival curve, link these two quantities, as 
they represent the time points by which different proportions 
of the study population have experienced the event of interest 
[2]. Figure 1 depicts the survival curves for two populations 
of individuals (e.g. exposed and non-exposed). In the figure, 
survival percentiles are identified corresponding to a given 
proportion p and by calculating the time points. t0 is the 
time by which p% of non-exposed individuals experience 
the event, while t1 is the time by which the same fraction of 
events is attained by exposed participants. 

In the context of survival percentiles, an intuitive measure 
of association is given by t1 - t0, defined as the difference 
in the pth survival percentile (PD=percentile difference). This 
absolute measure of association represents the difference 
in time by which exposed and non-exposed participants 
experience the same fraction of events. For example, when 
p=0.5, the measure corresponds to the difference in median 
survival between exposed and non-exposed. 

Estimators of the survival function, such as the 
non-parametric Kaplan-Meier method, can be used to 
calculate survival percentiles with standard errors and 
confidence intervals. Statistical methods for quantiles 
of censored outcomes can be used to model survival 
percentiles conditional on covariates [11-14]. These 
statistical approaches offer all the advantages of 
multivariable regression modelling, such as the possibility 
of adjusting for confounders and assessing interactions. 
Among the available methods, Laplace regression offers 
additional advantages in terms of modelling flexibility 
and computational speed [11,15]. In brief, Laplace 
models the percentiles of the time variable of interest as 
a function of a set of predictors. The errors are assumed 
to follow an asymmetric Laplace distribution, assumption 
that has been shown to have minimal influence on 
the model performances under different scenarios [11, 
16-20]. Model estimation is performed by maximising the 
likelihood through a gradient search algorithm [21], and 
standard errors and confidence intervals can be either 
derived numerically or via bootstrap [22]. 

In its basic form, a Laplace regression model 
establishes a linear association between a predictor E and 
the pth survival percentile of the time variable T 

T(p|E=e) = βp0+ βp1 ∙ e     (1)

βp0 estimates the time by which p% of participants 
with E=0 experience the event (t0 from figure 1). βp1 is an 
estimate of the pth PD t1 - t0, as it indicates the difference in 
time by which participants with E=1 experience the same 
fraction of events of participants with E=0. 

Model (1) can be extended by inclusion of additional 
covariates to estimate multivariable-adjusted PDs. Inclusion of 
a product term between two exposures of interest will serve as 
a test of additive interaction in the metric of time [7]. 

PERCENTILE RATIOS

Given the fixed percentile p, another measure of 
association between the exposure E and the pth survival 
percentile can be defined by taking the ratio of survival 
percentiles (PR=percentile ratio) t1 and t0 [1, 8, 9]. 

PRp= t1 / t0    (2)

This measure indicates how much faster/slower 
exposed participants attain the fixed proportion of p% of 
cases. For example, a PR of 0.5 would indicate that non-
exposed participants achieve that proportion 50% slower - 
that is - the time by which exposed subjects experience the 
fixed proportion of cases is half of the time by which the 
same proportion is achieved by non-exposed participants. 
As any ratio measure, PRp requires t0 → 0, implying 
that the time by which p% of non-exposed participants 
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experience the event D must be larger than 0. A PR ranges 
from zero (in the extreme case of t1 =0) to infinity (when 
t0 → 0). The null association occurs in the case of PR=1, 
when exposed and non-exposed participants achieve the 
fraction of events p at the same time t. 

Both PRs and PDs can be calculated for any observed 
percentile and the statistical model for a given percentile is 
not making any assumption on the behaviour of the survival 
curve at other levels of p. This property is not shared by 
common statistical methods for the analysis of survival data. 
The exposure-outcome measures of association can be 
evaluated as a function of p, thus reflecting the percentile-
varying and, equivalently, time-varying dimension of the 
association [23]. 

MODEL-BASED ESTIMATION OF 
PERCENTILE RATIOS

A possible procedure to estimate the PRp is to fit model 
(1) and subsequently predict the survival percentiles t0 and 
t1 as a nonlinear combinations of the estimated βp0 and 
βp1. An alternative approach is to build a multiplicative 
model on the pth survival percentile directly estimating the 
percentile ratio. Thanks to the property of equivariance to 
monotone transformations (EMT) [24], peculiar of quantiles 
and not shared by the mean, this second alternative is 
straightforward. Let h(.) be a non-decreasing function. The 
property of EMT implies that for any random variable T the 
quantiles of the transformed random variable h(T) are the 
transformed quantiles of the original T. 

To define a multiplicative model for survival percentiles 
an intuitive approach is to specify a model that is linear 
on the logarithm of time. The property of EMT assures that 
this can be achieved by simply operating a logarithmic 
transformation on the original time variable and by fitting 
a linear model on this new outcome. 

log[T(p|E=e)]= βp0*+ βp1* ∙ e   (3)

Coefficients estimated from this log-linear model can 
be used to back-calculate survival percentiles by applying 
the exponential transformation 

T(p|E=e)= exp(βp0*+βp1* ∙ e) = exp(βp0*) ∙ exp(βp1* ∙ e) 
   (4)

The pth survival percentile among exposed (t1 of 
Figure 1) is therefore estimated by,

 [T(p|E=1)]= exp (βp0*) ∙ exp(βp1*) 

and the same survival percentile among non-exposed 
(t0 of Figure 1) by

[T(p|E=0)]= exp (βp0*)

It simply follows that an estimate of the PR is given by

t1 / t0 = [exp (βp0*) ∙ exp (βp1*)] / [exp (βp0*)] = 
exp(βp1*)   (5)

FIGURE 1. Survival curves for two groups of subjects. The fixed percentile is showed by the horizontal line and the corresponding 
survival percentiles are indicated on the x-axis.
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An estimate of the PR associated with the exposure 
E only requires a logarithmic transformation of the time 
variable. After fitting a regression model on the percentile 
of interest of the logarithm of time, the PR is estimated 
by the exponential of the coefficient associated with the 
exposure E. The Stata command for Laplace regression 
[22] simplify this step by allowing the inclusion of the 
option link(log), which automatically transforms the time 
variable of interest and gives back the percentile ratios 
associated with the included covariates. Caution must be 
taken when using the logarithm of individual times exactly 
equal to 0. Zero survival time values could be eventually 
replaced with small positive values. 

In the Online Supplementary Material we also show 
that model (4) is an accelerated failure time model [25] 
for the pth survival percentile and that the PR associated 
with the exposure of interest shares the same interpretation 
of an acceleration factor. Also, an extension to continuous 
exposures is presented in the Online Supplementary Material.

MULTIPLICATIVE INTERACTION IN THE METRIC 
OF TIME

Inclusion of a product term in a linear model for 
survival percentiles, such as Laplace regression, serves as 
a test for additive interaction in the metric of time [7]. We 
here explore the meaning and estimation of multiplicative 
interaction in the context of survival percentiles. Let G and 
E be two binary predictors, which can take values 0 or 
1 and are associated with the outcome D. Given a fixed 
proportion of events p we can defined the pth survival 
percentile t00, t10, t01, and t11, which depict the time by 
which participants in all the possible combinations of G 
and E (respectively G=0, E=0; G=1, E=0; G=0, E=1; 
G=1, E=1) achieve the fraction of events p. Following the 
common notation used in terms of risk [26], we can define 
a measure of multiplicative interaction between G and E 
at the pth survival percentiles as 

Ip=(t11 ∙ t00)/(t10 ∙ t01)     (7)

If t11/t01=t00/t10 then Ip=1 and we are in the presence 
of multiplicativity of the effect. If Ip>1 there is a positive 
interaction on the multiplicative scale, while a situation 
of Ip<1 implies that the combined effect of G and E 
on D is minor than the product of the two main effects. 
In the Online Supplementary Material we show that 
inclusion of a product term in a multiplicative model for 
survival percentiles will serve as a test for the presence of 
multiplicative interaction as defined in equation (7). 

ILLUSTRATIVE EXAMPLE

To illustrate the meaning, interpretation and estimation 

of PRs we used data from 14.786 old participants (70-
83 years at baseline) of the Cohort of Swedish Men and 
the Swedish Mammography Cohort, largely described 
elsewhere [27]. These cohorts were established in 1997 
in central Sweden and followed-up for 15 years (1 
January 1998 - 31 December 2013) during which 8415 
participants of the subcohort herein evaluated died (58%). 
For illustrative purpose we considered the self-reported 
information on smoking status (current/never), body mass 
index (BMI, continuous), total physical activity (summarised 
in MET-hrs/day and categorised as low, if <42, or high, 
if >42) and age at baseline (continuous), investigating time 
to death from all-causes as primary outcome. 

First, we evaluated differences in the 50th survival 
percentile (median survival) according to categories of 
smoking status. The crude estimates of median survival, 
calculated with the Kaplan-Meier estimator, were 11.7 
years for current smokers (t1) and 14.4, years for never 
smokers (t0). The PD and PR between current and never 
smokers, calculated by taking the difference and the 
ratio of this two quantities, were PD50= - 2.7 years and 
PR50=0.81. Median survival was attained 19% slower in 
non-smokers than in smokers. This acceleration resulted in 
a median survival difference of 2.7 years. 

We also evaluated the impact of smoking on median 
survival further adjusting for age at baseline, by fitting a 
Laplace regression model on the 50th survival percentile 
with smoking status and age at baseline as predictors. 
We fit two models on the original survival time and on its 
logarithmic transformation. The 50th PD between current 
and never smokers and the corresponding PR, were similar 
to the crude estimates (50th PD= -2.6 years, 95% CI: -3.0, 
-2.3; 50th PR=0.79, 95% CI: 0.76, 0.81) 

To investigate how the association is changing over 
time, Figure 2 presents age-adjusted PDs and PRs for 
smoking status for all observed percentiles (1st - 55th). The 
absolute difference in survival between current and never 
smokers increased up to 3 years before slowly shortening. 
On the other hand smoking showed a strong relative 
effect at low percentiles, representing the early deaths, 
(1st PR=0.4) and progressively decreased from 60% to 
19% at higher percentiles (55th PR=0.81), thus reflecting a 
weakening of the relative strength of the exposure. 

Next, the age-adjusted association between the 
continuous predictor of BMI and median survival (50th 

percentile) was evaluated in a multiplicative model. To relax 
the linear assumption in the dose-response relationship we 
evaluated BMI by means of restricted cubic splines, with 
3 knots at fixed percentiles of the distribution (Figure 3), 
and we observed that the association between BMI and 
the median ratio (50th PR) was strongly inverse U-shaped. 
Comparing to participants with median BMI (24.8 kg/
m2), the time by which 50% mortality risk was attained 
was accelerated by up to 19% (PR=0.81, 95% CI: 0.75-
0.87) for those with BMI=15, and 17% (PR=0.83, 95% 
CI: 0.76-0.90) for those with BMI=40. 
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We finally fitted an additive and a multiplicative 
model to estimate age-adjusted median survival as a 
function of smoking and physical activity, including an 
interaction term between the two dichotomous predictors. 
Current smoking and low physical activity were both 
associated with shorter survival either in the additive and 
multiplicative model. When looking at the multiplicative 
scale the interaction effect was negligible, as the presence 
of both exposures only increased by 2% the strength of the 
two main effects (50th PR associated with the product term 
=0.98). However, evaluating interaction on the additive 
scale showed that median survival among participants 
with both exposures was shortened by additional 5 months 
(50th PD associated with the product term =-0.4 years). 

DISCUSSION

In this paper we presented the percentile ratio as a 
relative measure of association in the context of survival 
percentiles and introduced multiplicative models for survival 
percentiles, presenting how these can be used to estimate 
multivariable adjusted percentile ratios and multiplicative 
interaction in the metric of time. 

Evaluating survival percentiles was introduced as 
a possible approach to time-to-event outcomes [2]. The 
probability of the event and the time to its occurrence 
are the two equally critical quantities of interest in 
survival analysis. Nevertheless, all common statistical 

methods focus on the risk/rate/hazard of the event, while 
committing limited consideration to the time dimension 
[1, 28]. However, there are different situations in which 
the most relevant research question may be ‘’when is the 
event happening?’’ rather than ‘’is the event happening?’’ 
[1, 28, 29]. Percentiles describe the survival distribution 
thoroughly and provide valuable insights in understanding 
the link between the probability of the event and the time 
by which this is attained. Moreover, differently from other 
methods in survival analysis, such as the popular Cox 
regression, the assumption of a constant exposure-outcome 
association over follow-up is not required. On the contrary, 
by focusing on different percentiles one can evaluate how 
the association of interest is changing according to the 
proportion of cases occurring over time [2, 23]. 

When evaluating survival percentiles, exposure-
outcome associations have been mainly expressed in 
terms of percentile differences [4-6, 30-32]. While this 
absolute measure provides advantages in understanding 
the magnitude of the association in terms of delayed 
survival, there are different situations in which evaluating 
the strength of the exposure in relative terms might be 
of greater interest. Both relative and absolute measures 
of association have their own advantages and their 
complementary use to present epidemiological results 
has been extensively recommended [10, 33]. This study, 
introducing a statistical technique to estimate percentile 
ratio in epidemiological studies, enriches the potentialities 
and advantages of evaluating survival percentiles in 

FIGURE 2. Percentile ratios (straight line) and percentile differences (dashed line) between smokers and non-smokers calculated for 
the observed range of percentiles.
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time-to-event analysis. The percentile ratio, which was 
introduced in the clinical trials literature [8], and suggested 
as a possible measure to summarise literature data 
[9], can be interpreted as the acceleration factor of 
an accelerated failure time model, as it represents the 
strength of the exposure in accelerating the time to the 
event. A complementary presentation of relative and 
absolute measures of association allows illustrating the 
exposure-outcome relationship in two different and equally 
meaningful ways. For example, a constant difference 
in survival over time would imply a decreasing relative 
strength of the exposure. In our illustrative example smoking 
had a progressively lower relative effect on survival, while 
the absolute effect increased over the first quartile of 
the survival distribution and decreased in the remaining 
observed percentiles. 

We also addressed the relevant topic of interaction in 
survival analysis [26]. Interaction is commonly assessed as 
a departure from additivity or multiplicativity of the effects 
and it has been showed that absence of interaction on one 
scale is likely to imply the presence of interaction on the 
other scale [34]. In general, presenting both additive and 
multiplicative interaction would provide a complete picture 
of how two exposures interact in predicting the outcome 
and this procedure has been widely recommended [35, 
36]. For instance, in the illustrative example that we 
presented we documented a considerable combined 
effect on the additive scale, despite observing a negligible 
multiplicative interaction. To the best of our knowledge, 
the method herein presented to estimate multiplicative 

interaction, together with the one recently introduced to 
derive additive interaction [7], make evaluating survival 
percentiles the only approach that allows, in survival 
analysis, to estimate, interpret and present interaction 
between two predictors according to both scales.

Evaluating survival percentiles in epidemiological 
studies was eased by the introduction of statistical methods 
for conditional quantiles of possibly censored outcomes, 
which provide all regression modelling advantages such 
as adjusting for confounders and assessing interaction [7, 
15]. Thanks to their unique properties, statistical approaches 
based on quantile estimation offer considerable advantages 
[24], and their regular application in epidemiology 
has been recommended [37]. In this study we have 
shown another remarkable added value of the percentile 
approach, as the same statistical model can be used to 
provide a relative and an absolute measure of association 
with a simple outcome transformation. Among the possible 
methods for censored quantile regression we have used 
Laplace regression [11], which is available in Stata [22], 
and provides various advantages in terms of computational 
speed and modelling flexibility [15, 21]. Other methods 
are available in main statistical software and can represent 
valid alternatives to Laplace [12-14]. 

In conclusion, the introduction of multiplicative models 
for survival percentiles allows researchers to apply this 
approach in a large variety of context where multivariable 
adjustment is required, enriching the potentials of the 
percentile approach as a flexible and valuable tool to 
evaluate time-to-event outcomes in medical research.

FIGURE 3. 50th percentile ratios (acceleration factors by which half of the cohort has died) as a function of BMI. Data were fitted 
by age-adjusted Laplace regression on the 50th percentile of the logarithm of time. Dashed lines represent 95% CIs. The reference 
value is the median BMI and the histogram represents the distribution of BMI in the study population.

e11841-6



ORIGINAL ARTICLES Epidemiology Biostatistics and Public Health - 2016, Volume 13, Number 3

Multiplicative models for survival percentiles

Funding

This work was partly supported by a Young Scholar 
Award from the Karolinska Institutet’s Strategic Program 
in Epidemiology. The study was also supported by the 
Swedish Research Council. 

Disclaimer

The authors declare no conflict of interest

REFERENCES
1. Uno H, Claggett B, Tian L, et al. Moving beyond the hazard ratio in 

quantifying the between-group difference in survival analysis. J Clin 
Oncol 2014;32(22):2380-2385.

2. Orsini N, Wolk A, Bottai M. Evaluating percentiles of survival. 
Epidemiology 2012;23(5):770-771.

3.  Lytsy P, Berglund L, Sundstrom J. A proposal for an additional clinical 
trial outcome measure assessing preventive effect as delay of events. 
Eur J Epidemiol 2012;27(12):903-909.

4.  Bellavia A, Larsson SC, Bottai M, Wolk A, Orsini N. Fruit and 
vegetable consumption and all-cause mortality: a dose-response 
analysis. Am J Clin Nutr 2013;98(2):454-459.

5. Rizzuto D, Orsini N, Qiu C, Wang HX, Fratiglioni L. Lifestyle, social 
factors, and survival after age 75: population based study. BMJ 
2012;345:e5568.

6.  Bellavia A, Akerstedt T, Bottai M, Wolk A, Orsini N. Sleep duration 
and survival percentiles across categories of physical activity. Am J 
Epidemiol 2014;179(4):484-491.

7.  Bellavia A, Bottai M, Orsini N. Evaluating additive interaction using 
survival percentiles. Epidemiology 2016; 27(3): 360–364.

8.  Friedman LM, Furberg C, DeMets DL. Fundamentals of clinical trials. 
Springer 2010.

9.  Barrett JK, Farewell VT, Siannis F, Tierney J, Higgins J. Two-stage 
meta-analysis of survival data from individual participants using 
percentile ratios. Statistics in medicine 2012;31(30):4296-4308.

10.  Rothman KJ, Greenland S, Lash TL. Modern epidemiology: Lippincott 
Williams & Wilkins 2008.

11.  Bottai M, Zhang J. Laplace regression with censored data. Biom J 
2010;52(4):487-503.

12.  Peng L, Huang Y. Survival analysis with quantile regression models. 
Journal of the American statistical association 2008;103(482).

13.  Portnoy S. Censored regression quantiles. Journal of the American 
statistical association 2003;98(464):1001-1012.

14.  Powell JL. Censored regression quantiles. Journal of econometrics 
1986;32(1):143-155.

15.  Bellavia A, Discacciati A, Bottai M, Wolk A, Orsini N. Using Laplace 
Regression to model and predict percentiles of age at death when age 
is the primary time scale. Am J Epidemiol 2015; 182 (3): 271-277.

16.  Farcomeni A. Quantile regression for longitudinal data based on 
latent Markov subject-specific parameters. Statistics and Computing 
2012;22(1):141-152.

17.  Geraci M, Bottai M. Quantile regression for longitudinal data using 
the asymmetric Laplace distribution. Biostatistics 2007;8(1):140-154.

18.  Lee D, Neocleous T. Bayesian quantile regression for count data 
with application to environmental epidemiology. Journal of the Royal 
Statistical Society: Series C (Applied Statistics) 2010;59(5):905-920.

19.  Liu Y, Bottai M. Mixed-effects models for conditional quantiles with 
longitudinal data. The International Journal of Biostatistics 2009;5(1).

20. Yuan Y, Yin G. Bayesian quantile regression for longitudinal studies 
with nonignorable missing data. Biometrics 2010;66(1):105-114.

21.  Bottai M, Orsini N, Geraci M. A gradient search maximization 
algorithm for the asymmetric Laplace likelihood. Journal of Statistical 
Computation and Simulation 2014:1-7.

22.  Bottai M, Orsini N. A command for Laplace regression. Stata J 
2013;13(2):302-314.

23.  Bellavia A, Bottai M, Discacciati A, Orsini N. Adjusted Survival 
Curves with Multivariable Laplace Regression. Epidemiology 
2015;26(2):e17-e18.

24.  Koenker R, Bassett Jr G. Regression quantiles. Econometrica: journal 
of the Econometric Society 1978:33-50.

25.  Wei LJ. The accelerated failure time model: a useful alternative to the 
Cox regression model in survival analysis. Stat Med 1992;11(14-
15):1871-1879.

26.  VanderWeele TJ, Knol MJ. A tutorial on interaction. Epidemiologic 
Methods 2013. 

27.  Harris H, Håkansson N, Olofsson C, Julin B, Åkesson A, Wolk A. 
The Swedish mammography cohort and the cohort of Swedish men: 
Study design and characteristics of 2 population-based longitudinal 
cohorts. OA Epidemiology 2013;1 (2):16.

28.  Hernan MA. The hazards of hazard ratios. Epidemiology 
2010;21(1):13-15.

29.  Greenland S, Robins JM. Conceptual problems in the definition 
and interpretation of attributable fractions. American Journal of 
Epidemiology 1988;128(6):1185-1197.

30.  Bellavia A, Bottai M, Wolk A, Orsini N. Alcohol consumption and 
mortality: a dose-response analysis in terms of time. Ann Epidemiol 
2014;24(4):291-296.

31.  Carlsson AC, Riserus U, Arnlov J, et al. Prediction of cardiovascular 
disease by abdominal obesity measures is dependent on body 
weight and sex - Results from two community based cohort studies. 
Nutr Metab Cardiovasc Dis 2014.

32.  Johannessen A, Skorge TD, Bottai M, et al. Mortality by level of 
emphysema and airway wall thickness. Am J Respir Crit Care Med 
2013;187(6):602-608.

33. Vandenbroucke JP, von Elm E, Altman DG, et al. Strengthening 
the Reporting of Observational Studies in Epidemiology 
(STROBE): explanation and elaboration. Ann Intern Med 
2007;147(8):W163-194.

34.  Greenland S. Interactions in epidemiology: relevance, identification, 
and estimation. Epidemiology 2009;20(1):14-17.

35.  Knol MJ, VanderWeele TJ. Recommendations for presenting 
analyses of effect modification and interaction. Int J Epidemiol 
2012;41(2):514-520.

36.  von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, 
Vandenbroucke JP. The Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) statement: guidelines for reporting 
observational studies. Ann Intern Med 2007;147(8):573-577.

37.  Beyerlein A. Quantile regression-opportunities and challenges from 
a user’s perspective. Am J Epidemiol 2014;180(3):330-331

e11841-7


	_ENREF_8
	_ENREF_9
	_ENREF_11
	_ENREF_12
	_ENREF_13
	_ENREF_15
	_ENREF_16
	_ENREF_17
	_ENREF_18
	_ENREF_21
	_ENREF_23
	_ENREF_24
	_ENREF_25
	_ENREF_26
	_ENREF_27
	_ENREF_28

