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Misinterpretations of the p value

Inferential misconceptions and  
replication crisis

ABSTRACT 

Misinterpretations of the p value and the introduction of bias through arbitrary analytical choices have been 
discussed in the literature for decades. Nonetheless, they seem to have persisted in empirical research, and 
criticisms of p value misuses have increased in the recent past due to the non-replicability of many studies. 
Unfortunately, the critical concerns that have been raised in the literature are scattered over many disciplines, 
often linguistically confusing, and differing in their main reasons for criticisms. Misuses and misinterpretations of 
the p value are currently intensely discussed under the label “replication crisis” in many academic disciplines and 
journals, ranging from specialised scientific journals to Nature and Science. In a drastic response to the crisis, the 
editors of the journal Basic and Applied Social Psychology even decided to ban the use of p values from future 
publications at the beginning of 2015, a fact that has added fuel to the discussions in the relevant scientific forums. 
Finally, in March 2016, the American Statistical Association released a brief statement on p values that explicitly 
addressed misuses and misinterpretations. In this context, we systematise the most serious flaws related to the p 
value and discuss suggestions of how to prevent mistakes and reduce the rate of false discoveries in the future.
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INTRODUCTION

The reliability of statistically identified relationships 
is generally evaluated on the basis of p  values. Using 
p  value thresholds is commonly seen as an adequate 
approach to limit type I errors. A type I error is the (wrong) 
conclusion that there is an effect where in fact there is 

none. In statistical analysis, the established convention is 
to refer to findings with p values up to 0.05 as “statistically 
significant” results. Frequently the p value is also referred 
to as “(type  I) error probability". Both terms are highly 
problematic as they invite serious misunderstandings.

First, a semantic misinterpretation may arise due to 
colloquial associations that equate the term “significant” 
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with “large/strong,” or “important". Second, a logical 
fallacy may be caused if results that are not statistically 
significant are described with wordings that ignore the 
“law of the excluded middle” (lat. tertium non datur) and 
suggest a confirmation of the null hypothesis (no effect). 
Third, researchers who are keen on obtaining low p values 
may introduce biases because they selectively search 
for and use analytical approaches that “work” in terms 
of producing statistical significance (p-hacking). Fourth, 
the term “error probability” may semantically suggest the 
interpretation that the p value indicates the false discovery 
rate, i.e., the probability of making an error when rejecting 
the null hypothesis1. This is not correct. The p  value is 
nothing more than the conditional probability to observe 
an effect (or even a larger effect) in a random sample if, as 
a thought experiment, we assume that the null hypothesis 
(no effect) is true. Per definition, the p value can thus not 
convey information on the probability of the null hypothesis 
and therefore the false discovery rate. 

Problems related to the interpretation and use of 
p  values have been discussed in the scientific literature 
for decades, in particular within the field of medicine 
and psychology2. Nonetheless, errors seem to 
have persisted in empirical research, and criticisms 
of inappropriate interpretations and manipulations 
of the p  value have increased in the recent past3 
 – mainly due to the non-replicability of many studies 
(replication crisis). In a drastic response to the crisis, the 
editors of the journal Basic and Applied Social Psychology 
even decided to ban the use of p  values from future 
publications at the beginning of 2015 (Trafimow and 
Marks [19]), a fact that has added fuel to the discussions 
in the relevant scientific forums. In early March 2016, 
the visibility of the discussion appears to have reached a 
preliminary climax with the American Statistical Association 
releasing a statement on the proper use and interpretation 
of the p value (Wasserstein and Lazar [20]). Unfortunately, 
the critical concerns that have been raised in the literature 
are not only scattered over many academic disciplines 
but often are linguistically confusing and differing in 

their main reasons for criticisms. It also seems that, so 
far, the perception of and participation in the scientific 
debate regarding the p  value problem has remained 
rather limited in some disciplines such as economics4. 
 Failures to sufficiently address the issue in academic teaching 
in general have been lamented long ago, however5. 
 Against this background, our methodological 
comment systematises and specifies the most serious 
flaws and discusses suggestions of how best to prevent 
misinterpretations and misuses in the future and, in 
particular, of how to reduce the rate of false discoveries.

Problem 1: Semantic equation of “significant” with 
“large/strong”

Generally, the term “statistically significant” is attached 
to small p values – a practice that gives rise to a serious 
misinterpretation if “significant” is interpreted in a colloquial 
way and associated with a “large/strong” or an “important” 
effect. The risk of this misinterpretation is especially high 
when authors drop the adjective “statistically” and describe 
study results simply as “significant” or “not significant". 
What often follows is a verbalisation that compares a 
significant result with a not significant result by using 
the adjective “stronger” or “more”. This is not correct. A 
statement that a variable X has a “significant” effect on a 
variable Y provides no information whatsoever on the size 
of the effect. It only means that we have a low probability 
of finding the observed (or even a larger) effect by chance 
in a random sample if there is no effect in the parent 
population. Since the flawed equation of “significant” with 
“large/strong” is widespread and almost invited from a 
linguistic point of view, we briefly illustrate the issue with 
two stylised examples. 

Example  1: We look at two pig-fattening groups. 
One hundred pigs are fattened with the conventional 
feed (CF) while another 100 pigs are fattened with an 
enhanced feed (EF). The pigs in fattening group CF show 
an average daily weight gain of 700  g. The pigs in 

1 Following Colquhoun [1] and Motulsky [2, 3] and many others, we refer to the “false discovery rate,” which has been introduced (as an instrument to 
multiple testing) by Benjamini and Hochberg [4], to denote the a posteriori probability of making an error when rejecting the null hypothesis. For an overview 
of the notional links with the problem of multiple hypothesis testing, see Efron [5] and Storey [6].
2 Selected examples are Sedlmeier and Gigerenzer [7], Kirk [8], Sterne and Smith [9], Ioannidis [10], and Colquhoun [1]. Besides the didactically well-
designed and comprehensible textbooks of Cumming [11], Kline [12], and Motulsky [3], it is especially worth pointing to Nickerson [13]. In an extensive 
and systematic review titled “Null hypothesis significance testing: A review of an old and continuing controversy,” Nickerson provides comprehensive 
insights into the p value issue.
3 Under the heading “A Dirty Dozen” Goodman [14] describes the most widespread semantic and logical misinterpretations of the p value. Colquhoun [1] 
focuses on the confusion of the p value with the “false discovery rate” that is caused by the semantically misleading term “error probability”. Ioannidis [10] 
and Simmons et al. [15] stress that many researchers, because of their fixation on the p value, produce biases and find results that are not reproducible. 
Halsey et al. [16] stress that the sample-to-sample variation of the p value impairs its informative value. Siegfried [17] laments in a ScienceNews article 
the numerous flaws of statistical tests for hypothesis testing. Motulsky [2] gives an overview of various kinds of misuses and misconceptions. The same goes 
for the publication of Nuzzo [18] in Nature that popularizes the term “p-hacking” in a high-ranked journal and questions whether the p value is rightly 
considered the “gold standard” in inferential statistics. 
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fattening group  EF show an average daily weight gain 
of 702  g. The standard deviation amounts to 2  g in 
both groups. The fattening-enhancing effect is obviously 
small and of little economic importance. According to 
conventional statistical wording, we would say, however, 
that the effect is highly (statistically) significant (p = 10−12; 
one-sided t-test). 

Example  2: While fattening group CF still has an 
average daily weight gain of 700 g, group EF has now 
an average daily weight gain of 750 g. Both groups count 
only 40 pigs now and the standard deviation is 200 g in 
both groups. The size of the fattening-enhancing effect of 
feed EF is higher by a factor 25 in example 2 compared 
to example  1. While the effect in example  2 is large 
and economically relevant, it is not statistically significant 
(p  =  0.135; one-sided t-test). In other words, given the 
usually required significance level of 0.05, a researcher 
would not dare to exclude that the effect observed in the 
sample is a chance effect (random sampling error). 

Large samples are rightfully considered to increase the 
reliability of statistically identified relationships. It should 
be noted, however, that the flawed equation of (statistical) 
“significance” and “importance” may produce especially 
severe and frequent misinterpretations in the analysis of 
very large samples. This is because the p value decreases 
ceteris paribus (i.e., holding both variability and effect size 
constant) with increasing sample size. In example 2, for 
instance, the p value would ceteris paribus fall to 0.05 if 
the size of each fattening group grew to 88. While the size 
of the effect in this example was large, we are facing a 
general mechanism. That is, any effect, no matter how small 
or meaningless it may be, will eventually show statistical 
significance if we increase sample size. A completely 
meaningless mini-effect will never become relevant, 
however, no matter how much sample size is increased6. 

Problem 2: False interpretations of p values above the 
significance level 

In the course of a regression Y = f(X1, X2, …, Xn), it 
is common practice to test the coefficients 1, 2, …, n of 
the regressors X1, X2, …, Xn for significance. With a view 
to our pig-fattening example, we could think of Y as the 
daily weight gain and of X1 as a dummy that specifies the 
fattening group CF as opposed to fattening group EF. In 
this case, the p  value of the coefficient 1 would express 
the probability that the observed difference in daily weight 
gains (or an even larger difference) were realised as a 
random event if the null hypothesis (no difference) were true.

The decision to reject the null hypothesis (no effect) is 
usually based on the commonly accepted criterion whether 
the significance threshold of p = 0.05 is met7. In following 
this practice, the question arises of how to interpret 
p  values above 0.05 (not statistically significant results). 
Here again, errors in reasoning are invited by misleading 
but frequently used wordings. A correct and linguistically 
unambiguous formulation for a result with a p value above 
the usual significance level of 0.05 reads as follows: 

The null hypothesis that the regressor X1 has no 
effect on Y cannot be rejected with the usually required 
significance level of 0.05.

This accurate though somewhat cumbersome wording 
complies with the “law of the excluded middle” (lat. tertium 
non datur), according to which a statement has to be 
formulated such that either the statement itself holds or its 
negation8. The statement “Jack is either blond or not blond” 
is a correct statement. However, the statement “Jack is 
either blond or black-haired” (or analogously: “If Jack is 
not blond, then he is black-haired”) is a violation of the 
law of the excluded middle. In this case, a false dichotomy 
is established, a dichotomy which disregards that there 
might be a third possibility, namely that Jack’s hair colour 

4 To our knowledge, two important exceptions in the past are McCloskey and Ziliak [21] and Ziliak and McCloskey [22], who especially criticised the 
disregard of effect size (“sizeless economics”). With the 2015 Special Issue of the Journal of Management on “Bayesian Probability and Statistics in 
Management Research,” parts of the present discussion on the p value were finally covered by a prominent economic journal.
5 Kline ([12] p.10), referring to Hubbard and Armstrong [23], speaks of a “major educational failure". Back in the early 2000s, Sellke et al. ([24] p.71) 
diagnosed in The American Statistician a severe problem in the academic teaching of statistics: “The standard approach in teaching–of stressing the formal 
definition of a p value while warning against its misinterpretation–has simply been an abysmal failure". Dunn et al. [25] provide evidence that the problems 
in teaching are not limited to academics. According to the authors, teachers at school level have shortcomings defining even simple statistical terms.
6 The flawed equation of “significance” and “importance” appears to be not only widespread but also persistent. Analysing all 182 econometric papers 
in the American Economic Review in the 1980s, McCloskey and Ziliak ([21] p.106-107) found that “70 percent of the empirical papers in the "American 
Economic Review" papers did not distinguish statistical significance from economic, policy, or scientific significance. […] 59 percent used the word 
‘significance’ in ambiguous ways, at one point meaning ‘statistically significantly different from the null’, at another ‘practically important’ or ‘greatly 
changing our scientific opinions’, with no distinction". Nuzzo ([18] p.151) calls this “muddled thinking“ and Motulsky ([2] p.204) states: “The word 
‘significant’ is often misunderstood. The problem is that ‘significant’ has two distinct meanings in science […]. One meaning is that a p value is less than a 
preset threshold (usually 0.05). The other meaning of ‘significant’ is that an effect is large enough to have a substantial […] impact. These two meanings 
are completely different, but are often confused".
7 In this section, we limit our discussion to the logical fallacy that lurks when interpreting p values above the significance level. In this discussion, we follow 
the convention to consider p ≤ 0.05 as a sufficient condition for rejecting the null hypothesis. An extensive discussion of why a preset p value threshold 
and the term “error probability” are misleading as such follows in the section dealing with problem 4.
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is neither blond nor black but of a different colour. A similar 
false dichotomy lurks when interpreting p  values above 
0.05, especially if errors of reasoning are invited by lax 
linguistic formulations such as the following:

The hypothesis that X1 has an effect on Y cannot be 
accepted at the significance level of 0.05.

The hypothesis that X1 has a statistically significant 
effect on Y must be rejected.

While these formulations might be considered as 
being still acceptable by some researcher, they are 
definitely at the origin of wordings that become more and 
more misleading because they inappropriately shorten the 
statement or inadvertently swap the sequence of words 
– not dissimilar to the game of Chinese whispers. The 
resulting wordings often read as follows: 

The effect of X1 on Y is not statistically significant.  
[n-s-s]
The effect of X1 on Y is statistically not significant. 
[s-n-s]
The effect of X1 on Y is not significant. [n-s] 
The effect of X1 on Y is nonsignificant. [n-s]

From the last formulation [n-s], which already insinuates 
that a study has found an indication of little to no effect, 
the false dichotomy is only a step further; and when 
the adjective “significant” is dropped or replaced, the 
definitely false conclusion follows immediately: 

Our results indicate that there is no (relevant) effect of 
X1 on Y. [n]
With p > 0.05, it would have been correct to state that 
one cannot reject the hypothesis that X1 has no effect on 
Y using the usual significance level. The conclusion that 
one has found an indication of no (relevant) effect would 
be wrong, however. The false conclusion is triggered by 
wordings which suggest the false dichotomy that one can 
either reject the null hypothesis (if p  ≤  0.05) or accept 
the null hypothesis (if p  >  0.05). The only thing that 
would have been correct to say in the case of p > 0.05 
is that we simply cannot conclude whether X1 has an 
effect on Y or not9. Let us look back to our exemplary 
study that finds, with reference to a p  value of 0.135, 
that “the new pig feed has no (statistically) significant 
effect on the daily weight gains". This result can by no 
means be interpreted as an indication that there is little 

or no effect. The only allowable interpretation is that 
we have not yet found conclusive evidence and that we 
need further research. The false dichotomy fallacy in the 
interpretation of p  values is also found in wordings in 
which it is not apparent at first sight. Results that are not 
statistically significant are occasionally commented on, for 
example, as being contrary to theoretical expectations or 
earlier findings that suggested that there is an effect. This 
is an inadmissible conclusion that could be only drawn 
if we could interpret p  > 0.05 as a confirmation of the 
null hypothesis (no effect). This is not correct, however10. 
 

Problem 3: p-hacking

To understand the p-hacking problem, we need to have 
in mind that the p value is calculated from, and only from, 
the data of a random sample. Low p  values can hence 
indicate two very different cases: first, the effect observed in 
the data is so extreme that it is very improbable that it would 
be observed in a random sample drawn from a population 
in which there is no effect. Second, the effect is observed in 
the data because the sample is biased. Which of the two 
cases applies is not revealed by the p value. Instead, we 
have to impartially scrutinise both the data material and the 
analytical procedures. A precise interpretation of p ≤ 0.05 
would thus be the following conditional statement: If both 
the data and the analysis are unbiased, then the hypothesis 
“X1 has an effect on Y” can be accepted with the usually 
required significance level of 0.05. 

For illustration sake, let us look at an extreme case of 
a biased sample. If, in our example 2, we considered, for 
some obscure and illegitimate reason, only the upper 75% 
of the pigs in fattening group EF, we would find an even 
larger difference in average daily weight gains compared 
to group CF. We would also find a smaller p value. If we 
focused exclusively on the computed p  value, we might 
thus be tempted to conclude that the “enhanced” feed EF 
causes a strong and statistically significant increase of 
daily weight gains. It is obvious, however, that such a 
conclusion would be completely flawed. Of course, one 
only runs the risk to succumb to such a flaw if one forgets 
that the p value merely indicates how (im)probable it is that 

8 The reasoning associated with “the law of the excluded middle” is not a new one. It can be traced to the Greek philosopher Aristotle (384-322 BC) who 
has already described this “law” in his famous work Metaphysics IV 7 (for a translation see, e.g., Lawson-Tancred [26]).
9 In this context McCloskey and Ziliak ([21] p.102) write: “Failing to reject [the null hypothesis] does not of course imply that the null is therefore true".
10 Goodman ([14] p.137) explicitly takes up this problem and describes the assumption that “studies with p values on opposite sides of 0.05 are 
conflicting” as a central misunderstanding in the interpretation of the p value. Greenland et al. ([27] p.4) make the following succinct statement: “A 
large P-value only suggests that the data are not unusual if all the assumptions used to compute the P-value (including the test hypothesis) were correct. 
[…] P > 0.05 only means that a discrepancy from the hypothesis prediction (e.g., no difference between treatment groups) would be as large or larger 
than that observed more than 5% of the time if only chance were creating the discrepancy".
11 Ioannidis ([10] p.0696) takes up this problem under the provocative heading “Why Most Published Research Findings are False” and considers biases as 
a crucial problem in research: “[…], for many current scientific fields, claimed research findings may often be simply accurate measures of the prevailing bias".
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the observed (or even a larger) effect would be randomly 
realised in a sample if in fact it were zero. Admittedly, 
there is a non-random inter-group difference after the 
data manipulation; yet this difference – no matter what 
the computed p value amounts to – fails to say anything 
meaningful about the effect of the “enhanced” feed EF. 

At first sight, the issue may seem trivial since the 
sample above was blatantly manipulated and distorted. 
However, there is ample scope in the process of research 
to explore and selectively use analytical alternatives that, 
while producing serious biases and finally leading to false 
discoveries, “work” in terms of producing low p  values11. 
The term p-hacking has been coined to describe the 
behaviour of researchers who, driven by their self-interested 
desire to find statistically significant (and presumably 
publishable) results, make such selective choices12. 
Since the choices between analytical alternatives rarely 
represent unambiguous decisions, it is difficult to find 
out from the outside whether a researcher’s choice is 
scientifically sound or the result of arbitrary p-hacking. 
A diligently balanced and substantiated selection of an 
analytical approach from the set of available alternatives is 
not p-hacking. However, we face p-hacking that leads to an 
increased risk of a false discovery if researchers selectively 
hunt for and report only those analytical variants that “work” 
and produce lower p values than other variants13.

In brief, we may state that it is difficult to see whether 
a certain approach is appropriate (i.e., reduces flaws) 
or whether it is inappropriate (i.e., produces flaws). It 
is reasonable, for example, to eliminate a data set that 
contains obviously absurd outlier values such as a yield 
of 87  t of wheat per hectare from the analysis. In some 
cases, it may also be justifiable to correct such data using 
common sense (in our example changing to 8.7  t of 
wheat per hectare). Of course, both manipulations would 
have to be clearly reported. Researchers are engaging 
in p-hacking, however, when they selectively manipulate 
data – for example by removing the lowest and the highest 
10% of observations (or all observations outside the range 
of plus/minus two standard deviations from the mean) – to 
check whether they can thus obtain low p values. The fact 

that popular statistical software packages offer convenient 
routines to “improve” significance exacerbates the problem14. 
 At least for beginners, such routines may foster the erroneous 
belief that selectively exploring different data sets until one 
finds one that produces “significance” is an acceptable 
standard procedure.

The fact that it is so easy to check out a variety of 
different data sets and methods with the usual statistical 
software packages has increased the scope of p-hacking15. 
 Unfortunately, this development has not been paralleled by 
an increasing awareness of its fatal consequences. Rather, 
all too many researchers have adopted the self-serving 
belief that the selective choice of an analytical alternative 
that produces the desired “statistical significance” is 
justifiable. In other words, many researchers do not even 
consider significance-pursuing behaviour as p-hacking that 
produces biases and increases the risk of false discoveries16. 
What makes things worse is that some researchers, when 
in a reviewer position, even encourage or request such 
exploratory behaviours. However, things are changing. 
Due to the non-replicability of many studies (replication 
crisis), the scientific community has become very sensitive 
to the p value issue and the increased problem awareness 
is reflected in an intensive debate and corresponding 
methodological publications in high-ranked journals17.

Figure  1 provides a brief overview of the manifold 
p-hacking possibilities, i.e., the versatile choices and 
interventions that a significance-pursuing researcher might 
be tempted to adopt even though they are not justified in 
regards to content18.
a.	 Exploratory reduction of sample size: Significance-

pursuing researchers might be tempted to adopt 
one of the following interventions: first, they might 
explore in a trial-and-error process how p values can 
be reduced by removing data from the analysis on 
the seemingly justifiable grounds of being “outliers“. 
Second, in particular when disposing of large 
samples, researchers might be tempted to explore 
which p values they can obtain in a repeated analysis 
of data subsets. Imagine, for illustration, that a sample 
of 3,600 pigs is divided into 20 subgroups of 180 

12 The term p-hacking is ascribed to Simmons et al. ([15] p.1359) who state: “[…] it is unacceptably easy to publish ‘statistically significant’ evidence 
consistent with any hypothesis. The culprit is a construct we refer to as researcher degrees of freedom. In the course of collecting and analyzing data, 
researchers have many decisions to make: Should more data be collected? Should some observations be excluded? […] it is common (and accepted 
practice) for researchers to explore various analytic alternatives, to search for a combination that yields ‘statistical significance’, and to then report only what 
‘worked’. The problem, of course, is that the likelihood of at least one (of many) analyses producing a falsely positive finding at the 5% level is necessarily 
greater than 5%".
13 Besides p-hacking (“significance pursuing behaviour”) and a poor understanding of p values, every research process is threatened with a variety of 
other errors (measurement errors, inappropriate distributional assumptions, inadequate model selection, ill-founded equation of correlations with cause-effect 
relationships, etc.) that might lead to false conclusions. While they can cause serious problems in many analyses, the discussion of these latter types of 
errors is not this paper’s concern. 
14 In the SPSS menu “Automatic linear modelling,” for example, users can chose the item “Automatically prepare data". This item includes several 
automated steps for data manipulation that “improve” p values through the selection of a “successful” method of outlier handling and/or measurement level 
manipulation.
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pigs each. In every subgroup, a first partition of 
90 pigs is fattened with the conventional feed CF; the 
other 90 pigs in each subgroup are also fattened with 
the conventional feed. The feed given to the second 
partition in each subgroup is marked, however, with 
one of 20 different food colourings that have no effect 
on fattening result. Nonetheless, the researcher is quite 
likely to find that, in at least one of the 20 subgroups, 
the coloured feed – for example, the one with the feed 
marked green – has a “statistically significant” effect. 
If the researcher then selectively reports this “result” 
under the heading “Pigs grow better with green feed,” 
then we have a serious case of self-serving p-hacking 
and a false discovery19.

b.	 Exploratory transformation of data: Even if sample 
size is not manipulated, data-related options of 
p-hacking remain. Researchers might be tempted, 
for example, to check whether certain data 
transformations produce lower p  values than the 

original data. Three common points of attack exist: 
the first one is to downgrade the measurements 
scales. An example would be to use ordered age 
classes rather than measuring an individual’s age 
in years. A second approach is to transform data 
to logarithms. A third one is to generate “new” 
variables from the original data. For example, if a 
researcher wants to analyse the influence of death 
penalty on murder there may be several modelling 
choices including not only the number of executions 
but also ratios such as executions per death sentence 
or executions per capita. Of course, any of these 
manipulations may be appropriate and justified by 
reasons related to the research question and the data 
structure. However, we are facing an overestimation 
of the validity of empirical evidence caused by 
p-hacking if these data manipulations are driven by 
significance-pursuing behaviour. 

c.	 Exploratory inclusion/removal of variables: Even 

15 As early as 30 years ago, Brandes pointed out that growing computing capacities and the increasing availability of sophisticated estimation procedures 
generate a problematic room for manoeuvre in the design and choice of analytical alternatives: “The manifold possibilities of error compensation, on the one 
hand, and of model design, on the other, cause a dilemma that is difficult to resolve: The empirical econometrician who is a virtuoso of his methodological 
tool kit will frequently be able to confirm exactly those hypotheses that he is predetermined to confirm” (Brandes [28] p.78; non-authorised translation).
16 Simmons et al. ([15] p.1359-1360) comment on this as follows: “This exploratory behavior [i.e., p-hacking] is not the by-product of malicious intent, but 
rather the result of two factors: (a) ambiguity in how best to make these decisions and (b) the researcher’s desire to find a statistically significant result. A 
large body of literature documents that people are self-serving in their interpretation of ambiguous information and remarkably adept at reaching justifiable 
conclusions that mesh with their desires […]. This literature suggests that when we as researchers face ambiguous analytic decisions, we will tend to 
conclude, with convincing self-justification, that the appropriate decisions are those that result in statistical significance (p ≤ .05)".

FIGURE 1. The manifold possibilities of p-hacking.

Source: Own representation based on Motulsky ([2]: Fig. 1).
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if original sample size and data are left unaltered, 
there is still scope for p-hacking because the choice 
of variables to be included into a regression model 
is also often ambiguous. This applies to control 
variables as well as to the manifest variables that 
are used to measure the latent constructs of the 
analysis. Significance pursuing researchers might be 
tempted to mine for and exclusively report the variable 
combination that yields low p  values20. Imagine, 
for example, that a researcher wants to study how 
people’s attitudes towards organic farming affect their 
willingness to pay for organic products and that the 
information on attitude (=  latent variable) is collected 
via several Likert-scaled survey items (=  manifest 
variables). We are undoubtedly facing a distortion 
and an overestimation of the empirical evidence if 
the researcher mines for an item for “attitude” until 
he finds one that produces a “significant” result. The 
fact is not brought to light, however, if the researcher, 
for “marketing reasons,” reports only the convenient 
analysis that produced a “significant” result. 

d.	 Exploratory use of tests/estimation models: 
Beyond the manipulation of data and variables, 
the ambiguities in the selection of appropriate 
statistical tests and fitting econometric models offer 
ample scope for self-serving decisions that yield 
“statistical significance”. Imagine, for example, that 
we are facing the ambiguous choice of whether 
to use a simple OLS estimation or rather a panel 
data model. We frequently have to make such 
decisions to the best of our knowledge, and it is often 
scientifically advisable to triangulate methods and 
openly compare the results of different approaches. 
However, the rules of good scientific practice are 
occasionally broken in this respect as well. That is, 
the data analysis is not performed as planned in a 
prior study design but ad hoc adjusted according 
to the criterion of which analytical model yields low 
p values. Transparency, which is the prerequisite of 
meaningful scientific communication, is completely 
lost when the results of competing models that have 
been used in the analysis are neither explicitly 

reported nor comparatively discussed. In other 
words, just as other significance-pursuing behaviours, 
p-hacking regarding the selection of estimation 
models introduces biases that, in turn, lead to an 
inflation of the empirical evidence. 

e.	 Exploratory increase of sample size: Last but not 
least, we have to deal with the “post-design” increase 
of sample size. Little awareness seems to exist that it is 
p-hacking if researchers ad hoc increase sample size 
when the original sample has yielded “disappointing” 
p  values21. A general feeling that larger samples 
are better anyway may contribute to this lacking 
awareness. As other self-serving manipulations, the 
increase of sample size depending on “significance” 
introduces bias and inflates empirical evidence. The 
bias follows from the fact that the decision to collect 
more data is taken only if the original sample failed to 
produce low p values. If the follow-up data collection 
were carried out irrespective of whether significant 
results had been found or not, no bias would be 
produced because we would also have cases in 
which formerly significant results turn out not significant 
after the follow-up data collection. In other words, one 
would produce exactly the same (unbiased) results as 
in a study design with an a priori larger sample size.
To avoid misunderstandings one should note that 

exploration is not per se a problem. The question is whether 
we are dealing with an exploratory data analysis aimed 
at identifying correlations and generating hypotheses or a 
confirmatory data analysis aimed at testing hypotheses. 
An exploration of interesting correlations that might 
induce the generation of new hypotheses is an important 
primary step of the research process. We can thence 
understand “p-hacking” as a problem that arises when 
the two subsequent steps “exploratory data analysis” and 
“confirmatory data analysis” are conceptually confused 
and eventually even conducted with the same data. After 
an exploratory analysis, the resulting hypotheses have to 
be tested with a new set of data22. The term “hypothesis 
testing” must be avoided altogether in exploratory analysis 
since an exploratory study can only provide indications for 
the generation of hypotheses. Using the term “statistically 

17 Nuzzo ([18] p.152), for example, writes in Nature: “Perhaps the worst fallacy is the kind of self-deception for which psychologist Uri Simonsohn of 
the University of Pennsylvania and his colleagues have popularized the term P-hacking; it is also known as data-dredging, snooping, fishing, significance-
chasing, and double-dipping. ‘P-hacking’, says Simonsohn, ‘is trying multiple things until you get the desired result’ – even unconsciously".
18 Motulsky ([2] p.200) summarizes the p-hacking problem as follows: “[…] analyses are often performed as shown in Fig. 1. Collect and analyze some 
data. If the results are not statistically significant but show a difference or trend in the direction you expected, collect some more data and reanalyze. Or 
try a different way to analyze the data: remove a few outliers; transform to logarithms; try a nonparametric test; redefine the outcome by normalizing (say, 
dividing by each animal’s weight); […]; the list of possibilities is endless. Keep trying until you obtain a statistically significant result […]. The results from 
data collected this way cannot be interpreted at face value. Even if there really is no difference (or no effect), the chance of finding a ‘statistically significant’ 
result exceeds 5%. The problem is that you introduce bias when you choose to collect more data (or analyze the data differently) only when the p value 
is greater than 0.05. If the p value was less than 0.05 in the first analyses, it might be larger than 0.05 after collecting more data or using an alternative 
analysis. But you would never see this if you only collected more data or tried different data analysis strategies when the first p value was greater than 0.05".
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significant” can also be misleading in exploratory studies 
where we do not yet have hypotheses. If it is nonetheless 
used in exploratory research, we would have to interpret 
it in line with Fisher’s dictum according to which low 
p values signify “worthy a second look” (see, Nuzzo 18 
p.151) in terms of conducting further studies. 

Problem 4: Semantic equation of the “error probability” 
with the “false discovery rate”

In addition to improper p-hacking activities in 
the research process, imaginary discoveries and the 
present replication crisis have been associated with the 
fundamental misunderstanding that the p  value indicates 
the probability of the null hypothesis23. That is, besides 
the confusion about “significant” and “important,” we are 
facing another semantically induced misunderstanding – 
a misunderstanding that is invited by the convention to 
denote the p  value as “error probability” (or “probability 
of type  I error”). Despite this unfortunate labelling, the 
p  value does not denote the probability of the null 
hypothesis (no effect) being true; it consequently does 
not indicate either the actually interesting false discovery 
rate, i.e., the (a posteriori) probability of making a type I 
error when rejecting the null24. As already mentioned, 
the p value is only the conditional probability to observe 
a certain effect (or even a larger effect) in a random 
sample contingent on the hypothetical assumption that the 
null hypothesis (no effect) was true. It is important to be 
very clear about the fact that it is not possible to draw a 
“backward” conclusion about the probability of the null 
hypothesis within the frequentist p value framework25. For 
this reason, the understanding that p values can be used 
for testing hypotheses is not quite correct either; we cannot 
test hypotheses with p  values (in terms of assessing their 
probability) because p values indicate only how probable 
a random realisation or more extreme ones are – based on 
the assumption that a certain hypothesis is true26.

To demonstrate this fact, imagine that we randomly 
draw one coin from a box of coins. The probability to 
draw an unfair coin is 1% and the probability to draw a 
fair coin is 99%. We a priori know that all unfair coins 

have been manipulated [P(Head) = 0.75; P(Tail) = 0.25] 
and that all fair coins have equal probabilities [P(Head) 
= P(Tail) = 0.5] when being tossed. We now generate 
experimental data and toss our coin five times. Let us 
assume that we obtain five times Head. We know that, if 
the coin were fair (= no manipulation effect), the probability 
of obtaining “five times Head” is 3.125% (=  0.55) in 
frequent repetitions of the experiment “tossing the coin 
five times". This conditional probability is exactly what is 
expressed by the p value. It is not the probability of the null 
hypothesis, however, to have a fair coin (= no effect); and 
it consequently contains no information either about the 
probability of making an error when rejecting the null. To 
obtain this probability of interest, we need the additional 
information of how probable it is to obtain “five times 
Head” in frequent repetitions of the experiment “tossing 
the coin five times” if the coin were unfair. This probability 
is 23.73% (=  0.755). We also need to consider the a 
priori probabilities (also called “priors”) of 1% and 99%, 
respectively, to have drawn an unfair or a fair coin from the 
box in the first place. According to “Bayes’ Theorem”, the 
probability of wrongly rejecting the null hypothesis to have 
a fair coin (i.e., the false discovery rate or probability to 
make a fool of oneself) is 92.88% [= 0.03125 ∙ 0.99/
(0.03125 ∙ 0.99 + 0.2373 ∙ 0.01)]. It is noteworthy that, 
despite the low p  value of 3.125%, the null hypothesis 
should not be rejected. This is due to the fact that, besides 
the information from the experiment, we have valuable a 
priori information that it is highly probable to have drawn 
a fair coin. The additional piece of information provided 
by the experimental data would only make us update the 
probability of having a fair coin in our hands from the prior 
99% to now 92.88%. 

Figure 2 illustrates Bayes’ Theorem for our familiar pig-
fattening example 2 where we have observed a difference 
in average daily weight gains of 50 g between the two 
feeding groups. We now assume that we have a group 
size of N  = 88 pigs. In this case, the p  value would 
be exactly 0.05. Following the notation in Figure 2, 
Ᾱ represents the null hypothesis “no increase in daily 
weight gains in the second group”, and A the alternative 
hypothesis “50  g increase in daily weight gains". The 
p value is the conditional probability P(B|Ᾱ) of observing 

19 Kerr [29] terms this problem HARKing (Hypothesizing after the Result is Known) and Motulsky ([2] p.201) states in this context: “This is when you analyze 
the data many different ways (say different subgroups), discover an intriguing relationship, and then publish the data so it appears that the hypothesis was 
stated before the data were collected […]. This is a form of multiple comparisons (Berry, 2007). Kriegeskorte and colleagues (2009) call this double 
dipping, as you are using the same data both to generate a hypothesis and to test it". 
20 Many statistical software packages contain routines that facilitate a significance-oriented selection of variables (e.g., “Forward and backward effect 
selection” in SAS). While such routines should not be used in confirmatory data analysis, their easy availability may misleadingly convey the impression to 
the inexperienced user that significance seeking trial-and-error procedures represent a sound standard. Using the easy routine might even seem so “normal” 
that users lose their ability to self-critically question their choice of variables. 
21 Motulsky ([2] p.201) calls this form of p-hacking “Ad-Hoc Sample Size Selection” and explains: “This is when you did not choose a sample size in 
advance, but just kept going until you liked the results".
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the random realisation B “increased weight gain of 50 g 
or more” simply due to random sampling if there were no 
fattening enhancing effect. In our example, the computed 
p  value (also called “false-positive rate”) equals , a 
symbol that is commonly used to denote an ex-ante defined 
maximum significance level (usually: 0.05). Our exemplary 
result of  P(B|Ᾱ) = 0.05 = p =   means that we have a 
5% probability of finding a difference of 50  g or more 
due to random sampling error (i.e., by pure chance) when 
frequently repeating the feeding experiment with 88 pigs 
in each group if the null hypothesis Ᾱ “no increase in daily 
weight gains” were true. 

If, in contrast, we assumed that the alternative 
hypothesis A were true, a random realisation B in the 
form of an increased weight gain of less than 50 g would 
be observed in 50% of cases when frequently repeating 
the feeding experiment with 88  pigs in each group. In 
these cases, we would find a p value of over 0.05 and 
thus wrongly not reject the null. That is, the conditional 
probability P(B|A) = , which is also called “false-negative 
rate,” amounts to 50%. Consequently, the true-positive rate 
P(B|A) =1 - , which is also called “power” and which 

denotes the probability of finding a fattening enhancing 
effect of 50 g or more in repeated experiments if the effect 
exists, amounts to 50% as well.

To determine the actual probability of interest, i.e., 
the probability of making an error when rejecting the null, 
we need not only the false-positive rate P(B|Ᾱ) and the 
true-positive rate P(B|A) but also the a priori probabilities 
(“priors”) P(A) and P(Ᾱ) = 1 - P(A). The priors represent the 
probabilities that can be attributed to the hypotheses A and 
Ᾱ due to prior knowledge. In our example in Figure 2, we 
assume that no prior information is available that allows 
us to discriminate one hypothesis as being more probable 
than the other one. In following Laplace, we therefore 
assume both priors to be equal P(A) = P(Ᾱ) = 0.5.

If we now assume that we repeat the feeding 
experiment 2,000 times (with two fattening groups of 
88  pigs, respectively), we have the following picture27: 
we can expect that a difference in group means of 50 g 
or more would be randomly realised in 50  repetitions            
(= P(Ᾱ) ∙ P(B|Ᾱ) ∙ 2,000 = 0.5 ∙ 0.05 ∙2,000) even if 
in fact there were no fattening enhancing effect. In other 
words, if the null were true, we would expect 50 false-

22 In this context, Motulsky ([2] p.201) states very clearly: “Exploring your data can be a very useful way to generate hypotheses and make preliminary 
conclusions, but all such analyses need to be clearly labeled [as preliminary or exploratory], and then retested with new data”. Gigerenzer and Marewski 
([30] p.434-435) criticize the absence of differentiation between generating and evaluating hypotheses under the keyword “Surrogate Science” with 
“Hypotheses Finding is Presented as Hypotheses Testing".
23 It seems that this misinterpretation is also both pervasive and persistent. Even back in the 1980s, Sedlmeier and Gigerenzer ([7] p.314) cited a study that 
had shown the widespread distribution of this misconception: “Oakes (1986) tested 70 academic psychologists and reported that 96% held the erroneous 
opinion that the level of significance specified the probability that either H0 or H1 was true". Cohen [31] coins this misconception “inverse probability 
error” and Nickerson ([13] p.251) writes: “The belief that p is the probability that the null hypothesis is true is unquestionably false. However, as Berger 
and Sellke (1987) have pointed out ‘like it or not, people do hypothesis testing to obtain evidence as to whether or not the hypotheses are true, and it 
is hard to fault the vast majority of nonspecialists […]. This is especially so since we know of no elementary textbooks that teach that p = 0.05 is at best 
very weak evidence against H0’ (p.114)”. In 2014, Motulsky ([2] p.204) still summarises the situation as follows: “The 5% significance threshold is often 
misunderstood. […] Many scientists mistakenly believe that the chance of making a false-positive conclusion is 5%. In fact, in many situations, the chance 
of making a type I false-positive conclusion is much higher than 5%".

FIGURE 2. True and false positives and negatives and the a posteriori probability of a type I error.

Source: Own representation
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positives in which we would mistakenly reject the null and 
conclude that there is a difference. In contrast, if in fact the 
difference were 50 g, we would expect 500 true-positives 
because we would correctly reject the null hypothesis 
500 times (= P(A) ∙ P(B|A) ∙ 2,000 = 0.5 ∙ 0.5 ∙ 2,000) 
and assume that there is an effect. In total, we would expect 
550 positives in which the null hypothesis is rejected. 
Given the 50 false-positives among this total, we have 
a probability of P(Ᾱ|B) = 0.091 (= 50/550) to make a 
false discovery when rejecting the null. This corresponds 
to Bayes’ Theorem according to which the a posteriori 
probability P(Ᾱ|B) of making an error when rejecting the 
null (false discovery rate) is to be calculated as follows:

It is noteworthy that, despite a p value of 0.05, we 
have a false discovery rate (i.e., a probability of wrongly 
discarding the null) of more than 9%28.

To avoid comprehensible misunderstandings that 
might be invited by the unfortunate convention to use 
the words “p  value” and “(type I) error probability” as 
interchangeable terms, two crucial facts need to be kept 
in mind:
1.	 Despite the confusing labelling, the so-called “error 

probability” does not give any information about the 
probability of committing an error when rejecting the 
null. In other words, the p value is not identical with the 
false discovery rate, i.e., the (a posteriori) probability 
of making a type I error when discarding the null 
hypothesis. 

2.	 To determine the false discovery rate, one needs – 
besides the false positive rate (p value) – two types of 
additional information: the true-positive rate (1- ) of a 
concrete alternative hypothesis, and the priors P(A) and 
P(Ᾱ) which represent the information that was known 
before the study in question was carried out29,30.

A correct understanding of what p  values tell us, 
and what not, is essential for adequately assessing the 
validity of statistical results. Despite the obvious limitations 
of the p  value, the call for a general use of Bayesian 
approaches to determining the false discovery rate is in 
dispute. While Bayesian approaches force researchers 
to explicitly specify the presumed a priori knowledge, the 
very fact of using priors leaves much room for introducing 
subjective judgements into the process of research31. This 
has serious consequences because researchers can “easily” 
obtain a low false discovery rate P(Ᾱ|B) by using a high 
prior P(A), and vice versa. In our example in Figure 2, we 
would ceteris paribus obtain a false discovery rate P(Ᾱ|B) 
= 0.47 (= 90/(90+100))  if we assumed priors P(Ᾱ) = 
0.9 = 1 - P(A). Against this background, the main criticism 
addressed at Bayesian approaches can be summarised as 
follows: while the request to keep the false discovery rate 
below a maximum level is justified, one can bring about any 
conclusion, independent of the chosen level, by choosing 
arbitrary priors that govern whether the null is rejected or not. 

It is definitely true that choosing a smaller prior P(A) 
ceteris paribus increases the false discovery rate. However, 
such an “isolated” and arbitrary change of the prior P(A) 
is neither reasonable nor admissible. A prior is always to 
reflect at its best the a priori knowledge that is available 
with regard to the research hypothesis. Reducing the a 
priori probability P(A) will thus have to be accompanied 
by the choice of a less probable alternative hypothesis A. 
In our fattening experiment, the alternative hypothesis could 
read, for example, “70 g difference in daily weight gains". 
A less probable alternative hypothesis, in turn, increases 
the power 1- ; and an increased power reduces the 
false discovery rate. A consistent specification of both the 
hypothesis A and the associated prior P(A) thence tend to 
cancel each other out. 

While Bayesian approaches have their problems due 
to subjective priors, conventional approaches to analysing 
data exhibit outright inconsistencies. The convention to 
reject the null hypothesis of “no effect” based on the 
condition that a pre-set significance threshold (e.g., 
p = 0.05) is met, is not consistent with the request to keep 

24 To emphasise the poignancy of the problem, Colquhoun [1] calls the false discovery rate the “probability to make a fool of oneself” when rejecting the 
null hypothesis. 
25 Nuzzo ([18] p.151) stresses this fact by referring to a researcher who found a p value of 0.01: “Most scientists would look at his original P value of 
0.01 and say that there was just a 1% chance of his result being a false alarm. But they would be wrong. The p value cannot say this: all it can do is 
summarize the data assuming a specific null hypothesis. It cannot work backwards and make statements about the underlying reality. That requires another 
piece of information: the odds that a real effect was there in the first place".
26 Kline ([12] p.14) unambiguously remarks: “[…] p values merely estimate the conditional probability of the data under a statistical hypothesis–the null 
hypothesis–[…]. In fact, p values do not directly ‘test’ any hypothesis at all, but they are often misinterpreted as though they describe hypotheses instead 
of data".
27Contrary to the coin tossing example, the prior information here, as in many other cases, is not an objectively known probability of two possible events. 
Instead, it is a degree of belief (presumably encompassing all prior knowledge) regarding a real-world effect that is either true or not. We should therefore, 
in a strict sense, restrict ourselves to probabilistic calculations and refrain from displaying absolute numbers of “cases” that would occur in frequent 
repetitions. We nonetheless do so for the sake of an easier tractability compared to computations based exclusively on the laws of probability.
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the false discovery rate below a unique level32. Depending 
on prior and power, identical (and possibly small) p values 
may imply very different (and possibly unacceptably high) 
false discovery rates (cf., our coin tossing example). 
Although the p value is not the same as the false discovery 
rate, we can make the qualitative statement that the false 
discovery rate decreases ceteris paribus with a decreasing 
p value. We also know that the larger the sample size and 
the less a priori knowledge we have, the better the p value 
approximates the false discovery rate33.

It is interesting that external researchers (i.e., 
researchers who are not involved in a given study) rarely 
equate the p  value with the false discovery rate when 
other researchers find a “statistically significant” effect that 
contradicts the up-to-date knowledge. It is as if external 
researchers included the essentials of Bayes’ Theorem into 
a qualitative line of reasoning in such cases. Accordingly, 
they treat even very low p values with healthy scepticism 
and are not willing to discard their prior knowledge due 
to a single study – even if its analytical approach stands 
critical examination. In other words, they do not mistake 
the so called “error probability” for the probability of the 
null hypothesis and therefore the false discovery rate. 
Instead, leaving the frequentist p  value framework, they 
use the Bayesian rationale and only ask to what extent 
they must “update” their former knowledge in light of 
the findings from the new study. Slightly more formal, 
the argument runs as follows: if well-founded scientific 
knowledge indicates a prior P(Ᾱ) of almost 100%, then the 
a posteriori probability of the null hypothesis remains nearly 
100% [(P(Ᾱ|B) ≈ 1]  even if a low p value is found in a 
study. We would consequently have a false discovery rate 
of nearly 100% when rejecting the null, even though the 
effect was found to be “highly statistically significant". It is 
thus also formally correct not to reject the null hypothesis 
solely on the basis of a low p value.

Suggested solutions and outlook

In the recent past, criticisms of misinterpretations 
and manipulations of the p value have increasingly been 
voiced in the scientific community34, and there appears to 
be little contention that the status quo of scientific reporting 

is much less than perfect. Aiming to reduce the rate of 
false discoveries in the future, a plethora of suggestions 
have been made of how academic teachers and authors 
of textbooks, (junior) researchers and authors of scientific 
papers as well as journal reviewers and editors can 
contribute to the mitigation of the problem. In the following, 
we systematically describe the most relevant of these 
propositions in relation to the above-described problems. 

While mixing up “significant” and “large/strong” 
appears to be an obstinate problem especially in oral 
arguments (and even among experienced researchers), 
it is an easy-to-understand problem in principle. It is 
hence also easy to avoid and prevent, provided that the 
problem awareness regarding this “semantically seducing” 
misinterpretation can be increased. However, some of 
the suggestions made in the literature might have limited 
prospects of being accepted in the scientific community. 
Armstrong [35], Motulsky [2], and Colquhoun [1], for 
example, propose banning the word “significant” in 
scientific publications altogether. Given the long tradition 
and omnipresence of the term, it seems doubtful whether 
this proposal has a chance of being accepted in the 
scientific community. Explicitly addressing the semantically 
induced misunderstanding of the term “significant” in 
academic teaching might have a more realistic prospect 
of success. Students and junior researchers need to be 
systematically warned and requested not to colloquially 
equate “significant” with “large/strong” and to use the 
complete wording “statistically significant” whenever the 
omission of the adjective “statistically” causes the risk 
of confusion (cf., Mittag and Thompson [36]). On the 
level of scientific journals, reviewers should explicitly be 
required to pay attention to lacking semantic clarity and 
colloquial confusion connected to the word “significant". 
Journals could also use their guidelines to request authors 
to discuss the effect size whenever meaningful units of 
measurement are used. This would already be a definite 
step in the right direction, a step that could be made with 
little effort (Goodmann [14]). In addition, as recommended 
by the American Psychological Association [37], journal 
guidelines could require authors to report confidence 
intervals, thus forcing them to communicate information 
regarding the effect size in an easily comprehensible way 
without loss of information on significance. Using the label 

28 In hypothesis testing, predefined thresholds of 0.05 (for the significance level) and of 0.8 (for the power) are suggested in the literature (see, e.g., Sedlmeier 
and Gigerenzer [7]; List et al. [32]; Colquhoun [1]). This corresponds to the implicit requirement that the false-negative rate  should not exceed the false-
positive rate  by more than four times. If we inserted both threshold levels into the probability tree of Figure 2, we would find a false discovery rate of 5.9%. 
This illustrates that we are making only a small “inverse probability error” (cf., Cohen [31]) when erroneously equating the p value P(B|Ᾱ) with the false discovery 
rate P(Ᾱ|B) if Laplace priors represent the best assumption and if the usual thresholds for significance and power are met. This is why Nickerson ([13] p.289) 
regards the p value as a reasonable proxy for the false discovery rate: “Perhaps it is the case, as Rindskopf (1997) has argued, ‘that null hypothesis tests 
are still used because they are testing approximately the right thing under many real circumstances, even though most researchers do not know the rationale’ 
(p.321)". A further look at Figure 2 makes clear that the underestimation of the false discovery rate caused by the flawed interpretation of the p value decreases 
further – or even reverses to an overestimation – if a prior P(A) > 0.5 can be plausibly assumed (e.g., due to earlier studies).
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“statistical cognition”, Cumming ([11] p.11-13) points 
out that presenting information in a more intelligible form 
such as confidence intervals reduces misconceptions that 
are frequently caused even among researchers themselves 
when the less intelligible p values are reported. 

False interpretations of p  values above the 
significance level can also be easily counteracted in 
teaching. For this purpose, students and junior researchers 
must be acquainted with logical reasoning and the law 
of the excluded middle. Since it is easy to comprehend 
the problem from a logical point of view, it should be 
possible to successfully teach young scientists to avoid 
false dichotomies. One step further, on the journal level, 
reviewers should be explicitly asked to reject formulations 
that insinuate the false interpretation “if p > 0.05, then the 
null hypothesis is confirmed". Because this logical fallacy 
can easily be detected, it should be possible to ensure a 
stringent standard in the reviewing process. When it comes 
to the perception of research findings by the interested 
public, false dichotomies might be an obstinate problem 
that is more difficult to remediate. It is often very difficult 
to impart to diverse “users” of scientific findings such 
as specialised journalists or politicians that the scientific 
label “not significant” must by no means be interpreted 
as an indication of little or no effect. The problem can 
partly be attributed to the phenomenon that many actors 
who are involved in the struggle for public attention and 
recognition prefer an attention-grabbing, albeit wrong 
message “X has no effect on Y!” to a “bland” statement 
that we simply have found no conclusive evidence yet and 
need further research. Especially if research findings play 
an important role in public debates and political decisions, 
researchers face not only the great challenge but also the 
moral obligation to correct such misinterpretations, and 
repeatedly so if necessary. 

The p-hacking problem is more difficult to solve 
than the first two problems. This is because it does not 
represent semantic mix-ups or logical fallacies that can 
be easily identified, but a careless disregard of good 
scientific practice or even outright scientific misconduct 
in the very process of research. It is hence difficult to 
detect from the outside. Besides raising the awareness of 
students and junior researchers, the proposals put forth by 
various parties for mitigating the p-hacking problem hence 

mainly target the publishing practices of scientific journals. 
A first recommendation is to require authors to clearly 
state in each paper’s introductory section whether their 
study is exploratory in nature (i.e., aimed at generating 
hypotheses) or whether it is confirmatory (i.e., aimed at 
testing hypotheses). The two steps “exploratory analysis” 
and “confirmatory analysis” must not be mixed up. They 
are conceptually distinct, sequential in nature, and have to 
be carried out with different data (see e.g., Marino [38] or 
Motulsky[2])35. An even further-going proposal is to make 
researchers carry out at least one internal replication study 
with new data as a default before publishing. A second 
recommendation is to require authors to make all raw 
data and a detailed documentation of all analytical steps 
(including data transformations, etc.) publicly available 
(see e.g., Simmons et al. [15]). A still further-reaching 
proposal is to require researchers to register all studies 
and deposit both the complete data and the concrete 
study design on a public repository before starting the 
analysis. Obviously, such proposals raise the question 
of who is able and willing to take the time to examine 
all this material. The third recommendation is to oblige 
authors to underwrite – as with “no competing interests” 
statements – a formal “no p-hacking” declaration as a 
default (see e.g., Simmons et al. [39]). Such a formal 
self-commitment is believed to strengthen the normative 
power (“norm appeal”) of good scientific practice rules. 
The problem with such a declaration is seen in the difficulty 
to unambiguously define the practices that qualify as 
p-hacking without considering the specific context of each 
study. It is hence unclear which practices exactly should 
be outlawed on the grounds of clearly inflating the strength 
of empirical evidence. Furthermore, given the perverse 
but system-induced “publish or perish” conditions that 
most researchers face today, it is questionable whether 
this attempt to strengthen the norm appeal is sufficient to 
solve the problem. However, given the less than perfect 
status quo, we agree with Simmons et al. ([39] p.6) 
that “changes need not to be assessed in terms of their 
perfection, but merely in terms of their improvement“. A 
fourth recommendation takes up the general discussion 
about publication biases. Focusing on medical research, 
but certainly also true in other disciplines, Colquhoun ([1] 
p.11) comments on the situation as follows: “The reluctance 

29 Motulsky ([2] p.204) gets to the heart of the issue: “Statistical hypothesis testing [based on conventional practice] ‘does not tell us what we want to know, 
and we so much want to know what we want to know that, out of desperation, we nevertheless believe that it does’ (Cohen, 1994). […] The question we 
want to answer is: Given these data, how likely is the null hypothesis? The question that a p value answers is: Assuming the null hypothesis is true, how 
unlikely are these data? These two questions are distinct, and so have distinct answers".
30 Instead of focusing on the false discovery rate, researchers occasionally report the ratio of the two a-posteriori probabilities P(A|B)/P(Ᾱ|B). This ratio, 
which is also called posterior odds ratio, results from the product of two other ratios, namely the product of the likelihood ratio of the data P(B|A)/P(B|Ᾱ), 
which is also called “Bayes factor”, and the prior odds ratio P(A)/P(Ᾱ). In the special case of P(A) = P(Ᾱ) = 0.5, the posterior odds ratio exactly equals 
the likelihood ratio. In the example provided in Fig. 2, the likelihood ratio, and thus the posterior odds ratio, amounts to 10:1 in favour of the alternative 
hypothesis. 
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of many journals (and many authors) to publish negative 
results biases the whole literature in favour of positive 
results“. Against this background, parts of the scientific 
community call for a general change in attitude towards 
“negative” results and replication studies and demand that 
they should be given more scientific recognition and a 
higher chance of publication by editors and reviewers36,37. 

Mixing up the so called “error probability” (p value) 
and the “false discovery rate” is persevering and difficult 
to counteract because common language usage strongly 
invites this misunderstanding. What is more, the fact 
that both the  p  value and the false discovery rate are 
conditional probabilities may erect additional barriers 
to understanding. According to Gigerenzer [44], many 
people have troubles in grasping the very concept of 
probability and, in particular, the meaning of conditional 
probabilities. This is why they are so vulnerable to what 
Cohen [31] has called the “inverse probability error“. 
Again, better teaching is the prerequisite for improvement. 
Better teaching needs to be based on illustrative and 
intuitive examples that sharpen up awareness and ensure 
that students and young researchers acquire a deeply 
entrenched understanding of the distinct meanings of these 
two distinct conditional probabilities. However, even if 
such an understanding flourishes, the question remains 
of how researchers should “do” inferential statistics and 
evaluate their empirical evidence in the future. One 
argument for simply going on with displaying the p value 
is the “comfortable” nature of the seemingly clear guidance 
for assessing inferential validity that it offers to researchers 
and reviewers alike. However, an exclusive reliance on 
the p value that, as we know, solely results from the mean, 
variability, and size of a random sample, would not only 
mean to disregard the effect size in the evaluation, but 
also to discard the whole body of prior knowledge that 
exists with respect to the question under investigation. The 
advancement of science is inevitably based on (a usually 
large body of) preliminary work and prior knowledge 
that needs to be systematically contrasted and brought 
together with the incremental findings of new research – a 
fact that finds its succinct expression in the metaphor of the 
“dwarves standing on the shoulders of giants". Accordingly, 
most researchers will evaluate results that reproduce well-
established earlier findings – even if they are not quite 

statistically significant – as a small additional step towards 
confirming earlier findings. In contrast, they will consider 
statistically significant findings of a new study that come as 
a complete surprise with great suspicion even if they have 
no grounds to suspect biases in the data and the analytical 
design. This scepticism corresponds to the implicit thinking 
that a random sampling error of 5% is not so negligible 
after all, and that the null hypothesis therefore is probably 
true despite the surprising results of the new study. This 
scepticism can also be considered as a reasoning that 
goes beyond the frequentist p value framework and uses 
a qualitative argument along Bayes’ Theorem without 
formally computing the false discovery rate. This in mind, 
the following criticism of Leamer ([45] p.37) from over 30 
years ago may have to be seen in a new and favourable 
light: “Hardly anyone takes data analyses seriously. Or 
perhaps more accurately, hardly anyone takes anyone 
else’s data analyses seriously“38. Formalising this criticism 
would force scientists to specify their priors, which, in turn, 
would facilitate the computation of the false discovery 
rate instead of having to rely on qualitative reasoning. 
With a view of the commonly hesitant attitude towards 
change, suggestions have been made to introduce a 
stepwise approach that combines a quick p value based 
validation with a more comprehensive approach based 
on Bayes’ Theorem whenever useful or necessary (see 
Nickerson [13] p.290-291). This could be coined as 
the attempt to “do the new thing without neglecting the 
old one". Retaining the conventional procedure would 
certainly suit those researchers who feel uneasy about 
the inevitably subjective determination of priors. An 
incremental formal reasoning along Bayes’ Theorem would 
have the advantage to disclose implicit priors, thus laying 
open prior judgement based on prejudices and decrepit 
paradigms as well as an imprudent lack of scientific 
scepticism. In other words, we would see an increase of 
transparency in the intersubjective communication between 
scientists. This holds especially if systematic variant 
calculations with regard to priors are provided (see Zyphur 
and Oswald [34]) that clearly show what scientists should 
dispute over when it comes to inferential conclusions. In 
this context, Ioannidis ([10] p.0701) states: “Even though 
these assumptions would be considerably subjective, they 
would still be very useful in interpreting research claims 

31 Regarding this issue, Simmons et al. ([15] p.7) argue: “Although the Bayesian approach has many virtues, it actually increases researcher degrees of 
freedom. First, it offers a new set of analyses […] that authors could flexibly try out on their data. Second, Bayesian statistics require making additional 
judgments (e.g., the prior distribution) on a case-by-case basis, providing yet more researcher degrees of freedom".
32 As one of few economic papers, a recent contribution in the field of experimental economics (Maniadis et al. [33] p.278) comments on this as follows: 
“The common reliance on statistical significance as the sole criterion leads to an excessive number of false positives. […] the decision about whether to 
call a finding noteworthy, or deserving of great attention, should be based on the estimated probability that the finding represents a true association [i.e., 
the positive predictive value =1- false discovery rate], which follows directly from the observed p value, the power of the design, the prior probability of 
the hypothesis, and the tolerance for false positives".
33 Zyphur and Oswald [34] describe that, as sample sizes increases, the p value will approximate the false discovery rate according to Bayesian analysis 
when uninformative priors (“flat priors”) are used.
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and putting them in context“. However, besides the 
methodological challenges for researchers, the proposal to 
include Bayesian statistics into a paper raises the question 
of how a systematic representation of Bayesian analyses 
– e.g., in an extensive multiple regression – will fit into the 
reader’s patience and the space that is usually allocated 
to papers in scientific journals. 

Last but not least, it seems interesting to point to the fact 
that, although the flaws related to the p  value have been 
discussed for decades (and sometimes prominently so), little 
to no improvement has apparently been achieved in terms 
of preventing them in scientific studies and papers. We 
believe that this is mainly due to the patchy and disparate 
literature on the p  value issue that is furthermore scattered 
over many disciplines and often unsystematic and limited to 
isolated aspects of the problem. What makes things worse 
is that the problems associated with the p value represent 
a complex and non-trivial issue that requires much time and 
intellectual effort to comprehend fully. We hence still agree 
with the words of Nickerson ([13] p.290) who stated more 
than 15 years ago that “The situation is not simple–it is 
confused and confusing–and a no superficial understanding 
of the issues requires a considerable investment of time 
and effort“. Against this background, we hope that our 
methodological comment provides both a systematic and 
concise review of the most relevant aspects that will not 
only serve as a helpful guide for young researchers but 
also prove to be a timesaving tool for academic teachers 
and researchers in economics who want to systematically 
acquaint themselves with the essentials of the problem. 

Of course, we hope that this eventually contributes to the 
prevention of false discoveries in the future.
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but endorse the words of Nickerson (2000: 262) who 
stated: “I believe that much of the confusion […] about 
what p values mean derives from […] ambiguities in 
casual language, some of which can be quite subtle. 
Although I have tried not to make statements in this article 
that are ambiguous or that reflect the beliefs that I am 
claiming are incorrect, I am far from confident that I have 
been successful in this regard.” 

34 As early as 1996, the American Psychological Association established a “Task Force on Statistical Inference” which dealt with increasing calls for 
banning p values from psychological publications altogether. Despite the justified criticisms of the p value, this idea was eventually rejected on the grounds 
of being too extreme a measure (Kline [12] p.21).
35 In the case of exploratory analysis, Berry ([40] p.2) recommends using a “black-box warning” in the form of the following statement: “Our study is 
exploratory and we make no claims for generalizability. Statistical calculations such as p-values and confidence intervals are descriptive only and have 
no inferential content".
36 In the field of clinical research, Colquhoun ([1] p.11) reports that the bias in favour of positive results is so disastrous that a global initiative “All Trials 
Registered/All Results Reported” was launched in 2013 (www.alltrials.net). This initiative appears to be very successful. By the date of 05-October-2016, 
682 organizations and more than 89,000 individuals have signed the petition “All Trials Registered/All Results Reported". In scientific publishing, occasional 
attempts have been made to increase the standing of the fundamental scientific principle of replication. The Journal of Applied Econometrics, for example, 
requests its authors not only to make available the complete set of data but also specialised computer programs that have eventually be used in the analysis. 
It also features papers that explicitly re-evaluate previously published papers (see, e.g., Chakravarty [41]; Kulaksizoglu [42]). Another example is the journal 
Perspectives on Psychological Science that even dedicates a special article type (Registered Replication Report) exclusively for replications. However, 
institutionalised efforts in this direction have remained singular events over the disciplines and – to our knowledge – no widespread institutionalised efforts have 
been made so far in economics, for instance, to shift the emphasis towards a stronger consideration of replication and negative results (Duvendack [43]). 
37 In ecology and evolutionary biology, even a Journal of Negative Results (http://www.jnr-eeb.org/index.php/jnr) was established in the past. It ceased 
publication in 2013, however. In contrast, the Journal of Negative Results in BioMedicine (http://www.jnrbm.com/) proved to be more vigorous. This 
applies also for the All Results Journals (http://www.arjournals.com) and the PLOS ONE Journal (http://journals.plos.org/plosone/s/journal-information) 
that, over many scientific disciplines, explicitly pursue a policy of publishing positive and negative results (hence the name of the former) as well as 
replication studies. 
38 McCloskey and Ziliak ([21] p.111-112) analogously comment on the situation: “Essentially no one believes a finding of statistical significance or 
insignificance. […] Contrary to the decisive rhetoric of rejection in the mechanical test, statistical significance has not in fact changed the minds of economic 
scientists. In a way, the in-significance of significance tests in scientific debate is comforting. Economists have not been fooled, even by their own mistaken 
beliefs about statistical significance".
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