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Predictors of AIDS and AIDS-related death

Identifying predictors of progression to 
AIDS and mortality post-HIV infection using 
parametric multistate model

ABSTRACT 

Objectives: The human immunodeficiency virus (HIV) has already remained as a major public health problem all over 
the world. This study aimed to identify the prognostic factors influencing the disease progression in patients with human 
immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) in Iran, using parametric multi-state model to 
take into account the intermediate event in the analysis. 
Methods: The data of the present retrospective cohort study was extracted in Tehran from April 2004 to March 2014. 
The number of 2473 HIV-infected patients in Behavioral Diseases Counseling Centers was enrolled. The outcomes 
of interest were the transition times from HIV diagnosis to AIDS and AIDS to death. The effect of several prognostic 
factors on both transitions was investigated. 
Results: Parametric model indicated that AIDS progression was significantly associated with an increase in age (P = 
0.017), low education (P = 0.026), and a decreased CD4 cell count (P = 0.001). Furthermore, the AIDS-related death 
was significantly associated with male sex (P = 0.010), tuberculosis coinfection (P = 0.001), antiretroviral therapy (P = 
0.001) and a decreased CD4 cell count (P = 0.035). 
Conclusion: The results of this study indicated that CD4 cell count was one of the most important prognostic factors 
that affected and accelerated both HIV→AIDS and AIDS→DEATH transitions and antiretroviral treatment was found 
to be an effective measure in decelerating transition of the patients with AIDS to death state. The usual Cox Model 
was not able to identify some of these prognostic factors. 
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INTRODUCTION

The human immunodeficiency virus (HIV) has already 
remained as a major public health problem worldwide. 
The final  and the most serious  stage of HIV infection is 
acquired immunodeficiency syndrome (AIDS), which results 
in sever damages to the body immune system. Since the 
onset of the epidemic, about 78 million people have been 
infected with the HIV virus and about 35 million people 
have died because of AIDS-related diseases. As stated 
by the World Health Organization (WHO), there was an 
estimated 36.7 million people worldwide living with HIV/
AIDS at the end of 2015 [1]. 

Currently, no functional cure is available for HIV 
infection. Nevertheless, antiretroviral treatment (ART) can 
efficiently control the HIV virus progression and help 
patients to return to a relatively healthy and productive 
lives [2]. In addition, several prognostic factors including 
chronic pathologies associated with immunodeficiency, 
chronic viral and bacterial infections can complicate 
treatment. There are some evidences that show life span 
can be prolonged and quality of life can be improved 
significantly by suppressing the levels of HIV and 
remaining the CD4 count high (above 200) [3]. The risk 
of opportunistic infections, especially co-infection with 
tuberculosis (TB) is a life-threatening issue for HIV-infected 
patients. The possibility of developing TB, the major 
cause of HIV-related death, can be positively affected by 
ART as well [3]. 

Although the HIV-related mortality has declined in 

recent years, better understanding of the prognostic factors 
affecting the survival of the HIV-positive patients to improve 
their life expectancy is of great importance, especially 
in developing countries where limited studies regarding 
survival of these patients have been conducted [3-5]. 
To this end, utilizing appropriate and powerful statistical 
methods for data analyzing that take their structure into 
account plays an important role.

There are several clinical and epidemiological follow-
up studies that survival is the ultimate outcome while 
individuals may experience intermediate events during the 
study period [6]. In such cases, modeling the passage of 
subjects through states is often useful. However, this is usually 
conducted by utilizing multiple separate analyses for every 
single endpoint [6]. Nevertheless, this does not allow for 
uncovering relationships between different endpoints [7]. 
Multistate models provide a relevant modeling framework 
for this type of data [8] and constructing these models 
provides a comprehensive view of a disease process. 
Multistate models allow for estimation of proportions of 
individuals who will be in the various states at some time 
in the future and make more efficient use of incomplete 
information when only fairly short portions of individual’s 
disease histories are available [9]. In HIV disease, where 
survival of the patients is the outcome of interest, there is 
an intermediate event (AIDS) for the patients suggesting 
that the time from HIV to death process should be modeled 
by a progressive multi-state statistical model (Figure 1). 
This is an important issue that is not taken into account in 
most studies about HIV/AIDS. For example, there were 

FIGURE 1. A schematic view of multi-state models for HIV data; a) Progressive multi-state model, b) Illness-death multistate model.
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found two recently conducted study about HIV/AIDS that 
analyzed survival of the patients without considering the 
intermediate event [3, 4]. However, as mentioned it can 
affect dramatically the coefficients of the covariates and 
their standard errors as well as achieved results. This is 
because of the fact that they fail to show the relations 
between different types of events [10]. 

Modeling censored follow-up data and investigating 
prognostic factors affecting survival time focus on employing 
Cox proportional hazards (PH) model most of the time. 
However, the Cox model is not the only existed model to 
analyze censored time to event data. Alternative models for 
survival analysis are (semi) parametric and non-parametric 
models [11-13]. Parametric models are acceleration 
failure time models, since survival time is modeled directly 
as a function of predictors or risk factors [14]. Using 
parametric survival models leads to some benefits. For 
example, whenever the parametric models provide a 
good fit to data, they result in more precise estimates of 
the quantities of interest. In parametric models all parts of 
the model (the baseline hazard functional form and the 
effect of covariates) are specified and their estimates are 
based on fewer parameters [15]. A parametric model 
provides more flexibility because the associated hazard 
rates are not constant with respect to time [16]. Efron [17] 
and Oakes [18] showed that parametric models lead to 
more efficient estimates compared with the Cox model 
in some special situations. Moreover, several studies 
compared parametric survival models performance with 
Cox regression and confirmed that parametric models fit 
the data better than the Cox model [19-21]. Furthermore, 
the estimated coefficients are directly interpreted in terms 
of accelerating survival times [14]. The aim of the present 
study was to estimate the effect of potential risk factors 
on progression from HIV to AIDS and from AIDS to death 
based on a multi-state model to take into account the effect 
of the intermediate event within a parametric perspective. 
We also compared the performance of the parametric 
model with the Cox model. 

METHODS

Data set

The present study was a registry-based retrospective 
cohort study conducted in Tehran, Iran, from April 2004 
to March 2014, approved by the Research Council of 
Hamadan University of Medical Sciences. The study 
population consisted of HIV-positive people with a medical 
record in one of the two electronic registry based 
Behavioral Diseases Counseling Centers in Tehran (Imam 
Khomeini and Zamzam Centers). The data collected using 
a checklist of items, which was developed according to 
the information documented in the medical records. The 
collected information involved demographic information 

(age, sex, marital status, and educational level), behavioral 
information (drug/alcohol abuse, smoking, and being in 
prison), CD4 cell count, ART, coinfection with TB, and 
causes of death [3].

An individual who was infected with HIV, irrespective 
of clinical stage confirmed by laboratory criteria according 
to the country definitions and requirements, was an HIV-
positive case [3]. In the Islamic Republic of Iran, an individual 
whose two sequential enzyme-linked immunosorbent assay 
(ELISA) tests for HIV antibody followed and confirmed by 
a western blot test are positive is defined as an HIV case 
[22]. Also, a case of AIDS was defined as a presumptive 
or definitive diagnosis of stage 4 condition and/or CD4 
count less than 200 per mm3 of blood in an HIV-infected 
subject [3, 23]. The outcomes of interest included the 
duration of time (1) from the HIV diagnosis date to AIDS 
progression and (2) from AIDS to AIDS-related death. 
During data collection, a registry expert called patients (or 
their family members) to ask about their status (alive/dead) 
and the reason of death. The censoring included those 
patients who were lost to follow up or died due to reasons 
other than AIDS and those who were alive at the end of 
the study period [3].

Data Pre-processing and Dealing with Missing Values

Pre-processing of the data set was done in two steps: 
1) fields with spelling errors, additional tokens, other 
irregularities and irrelevancies like outliers were corrected 
or removed; 2) Little MCAR test [24] was performed 
to assess the missing completely at random (MCAR) 
mechanism for missingness (p  = 0.433), and since the 
MCAR assumption did not reject, persons with at least one 
missing variable were removed from analysis (the overall 
missing was about 24%). Table 1 shows the demographic 
and clinical characteristics of the patients.

Statistical methods

Multi-state model 

Multi-state models are a generalization of survival 
analysis where time to death is the ultimate outcome 
of interest but there are intermediate states [25]. In this 
case, subjects are allowed to move between some finite 
states. The states can be defined by some clinical states, 
biological markers, etc. A transition or an event is occurred 
when a subject’s state changes [26]. The progressive multi-
state model is a model with three states. Here in the used 
data set, the first (initial) state is being infected with HIV, 
the second state is AIDS and the third state is death from 
AIDS. So, AIDS is the intermediate state. Another possible 
state for the used data set is the illness-death model where 
some of the patients may have a transition directly from the 
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initial state of HIV to death state without experienceing the 
intermediate event of AIDS [10]. However, in the present 
study, there were no such transitions. 

Let S = {1,…,N} be a finite state space. Then a multi-
state process is a stochastic process (X (t), t ϵ T), with S 
and T = [0, τ], where τ < ∞. While the process evolves 
over time, Ht- (a history and σ- algebra) like the states 
previously visited and times of transitions are generated. 
Transition probabilities between two states of h and j 
states, are defined as

phj (s,t) = P (X(t) = j|X(s)=h,Hs-) (1)

for h,j ϵ S,s,t ϵ T,s ≤ t and transition intensities are 

defined as 

   (2)
In a multistate model, the insantaneous hazard of 

progression to state j conditionally on occupying state h, 
can describe and characterize the multi-state process [10]. 
“If αhj(t) only depends on the history via the state h=X(t) 
occupied at time t then the process is Markovian” [8].

Parametric survival model

In a parametric survival model, it is assumed that 
survival time or a function of it has a known statistical 
distribution. Some of the most widely used distributions 
are Exponential, Weibull, gamma, log normal, log logistic 
and normal. In a parametric regression model, an explicit 
relationship between survival time and the covariates is 
considered [27]. Survival time can be modeled by an 
accelerated failure time model like conventional regression 
model [27] where it is assumed that the logarithm of the 
survival time Y=ln(T) is related to the covariates (Z) linearly. 
This relationship is as follows: 

Y = Ln(T) = μ + ytZ + σW   (3)

where is the regression coefficients vector and W 
is the error distribution. Different distributions for W yield 
different regression models. A logistic distribution yields a 
log logistic regression model and estimation of covariates 
is performed via maximum likelihood methods [15]. In 
the present study, we used a parametric log logistic 
distribution to model the intermediate and final state in 
the progressive multi-state model. In this model the survival 
function is as follow: 

where b>0 determines the shape of hazard function 
[15]. In order to evaluate the performance of the model, 
we devided the dataset to train and test sets. So the train 
dataset was used to model fit and the test set was used 
to evaluate the performance of the model and to calculate 
performance criteria. We repeat this 100 times. The 
criteria of Brier score [28] and c-index [29] were utilized 
to compare the performance of log logistic and Cox PH 
models.  

Software

All statistical analyses were performed at a significance 
level of 0.05 using the mstate  library  [30, 31] from the 
R software, version 3.3.1 (The R Foundation for Statistical 
Computing, Vienna, Austria;  http://www.r-project.org). 

TABLE 1. Characteristics of the study population infected with 
the HIV virus (n=2249).

VARIABLES NUMBER PERCENT
Gender 
Female 505 22.45
Male 1744 77.55

Age group (year)
1-24 260 11.60

25-44 1639 73.10
45-74 343 15.29

Marital status
Single 874 40.37
Married 852 39.35
Divorced 330 15.24
Widow 109 5.03

Education level
High(academic) 147 7.34
Low (school) 1856 92.66

Being in prison
No 899 39.97
Yes 1350 60.03

Smoker
No 933 46.91
Yes 1056 53.09

Drug abuse
No 1119 49.75
Yes 1130 50.24

Tuberculosis infection
No 2012 89.46
Yes 237 10.54

Antiretroviral therapy
No 1315 58.47
Yes 934 41.53

Baseline CD4 count (cells/mm3)
500+ 417 21.55
351-500 296 15.30
201–350 415 21.45
0–200 807 41.70
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Brier score and c-index were calculated using “pec” 
package [32]. 

RESULTS

The number of 2519 patients was identified, of which 
25 patients were ineligible and 21 patients had a medical 
record in both centers. In order to fit progressive multi-state 
model, we prepared the data and use a subset of the 
original data. So, the analysis was based on data from the 
remaining 2249 patients (1744 men and 505 women). 
There were 130 patients whose HIV/AIDS had been 
diagnosed before April 2004, the establishment of the 
centers and their information was registered and included 
in the study. This led to the survival times to be longer than 
10 years (from 2004 to 2014). The mean (SD) age of 
the patients was 34.01 (10.43) years, with a range from 
infancy to 74 years. 

The characteristics of the study population are given 
in Table 1. Some of information of the patients was 
not registered (seen from Table 1). Of 2473 patients 
infected with the HIV virus (initial state), 1249 patients 
developed AIDS (transition from initial state to AIDS state; 
i.e. HIV→AIDS), 292 patients out of 1249 patients with 
AIDS died from AIDS-related causes (transition from AIDS 
state to death state; i.e. AIDS →Death) and the rest of them 
were censored (alive or lost to follow up) at the end of 
the study period. The majority of the HIV-infected patients 
aged 25–44 years, was male (77.55%), single (40.37%), 
low-educated (92.66%), smoker (53.09%), drug abuser 
(50.24%) and had a history of being in prison (60.30%). 

Figure 2, illustrates the cumulative hazards of transition 
from HIV to AIDS and AIDS to death for the patients, 
obtained from progressive multistate model. In addition, 
stacked transition probabilities (a convenient way to 
interpret transition probabilities) were plotted (Figure 3). 
The distance between two adjacent curves represents the 

probability of being in the corresponding state. As can be 
seen, the probability of transition from HIV to AIDS and 
the probability of transition from AIDS to death increase 
over time. 

Several parametric distributions were fitted to time 
of transition from HIV to AIDS and time of transition from 
AIDS to AIDS-related death. The Akaike information 
criterion  (AIC) for the models was shown in Table 2. As 
can be seen, the log logistic distribution had a better fit 
than the others (AIC = 9347.95 for HIV→AIDS and AIC 
= 3244.039 for AIDS →Death). The performance of the 
models was assessed using Brier score and c-index. The 
results over 100 replications showed smaller Brier score 
for log logistic model (0.22±0.08) compared with the 
Cox model (0.24±0.11). Moreover, the log logistic model 
had larger c-index (0.798±0.06) compared with the Cox 
model (0.773±0.09). 

The effect of several predictors on progression to 
AIDS and AIDS-related death is given in Tables 3. Based 
on the coefficient estimations, there was a significant 
association between an increase in age (P = 0.017), low 
educational levels (P = 0.026), using Antiretroviral therapy 
(P = 0.014) and a decreased level CD4 cell count (P 
= 0.003 and 0.001) and time to progression to AIDS 
(transition HIV→AIDS). In addition, there was a significant 

TABLE 2. Akaike information criterion value of different 
distributions for each transition.

Transition

HIV → AIDS AIDS → Death

Exponential 14201.4 3322.428

Weibull 10045.62 3245.898

Log-normal 10334.4 3272.165

Log-logistic 9347.95 3244.039

Gaussian 15992.41 3565.093

Logistic 15936.94 3602.228

FIGURE 2. Cumulative hazards from HIV to AIDS and AIDS to Death.
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association between male sex (P = 0.010), TB coinfection 
(P = 0.001), antiretroviral therapy (P = 0.001) and a 
decreased level CD4 cell count (P = 0.035) and time to 
AIDS-related deaths (transition AIDS →Death). 

DISCUSSION

There are many studies in medical fields with 
intermediate events playing an important role in the 
disease courses. The use of the multi-state models improves 

TABLE 3. Adjusted Regression coefficients (and standard errors) for the full model.

TRANSITION

HIV → AIDS AIDS → DEATH

Covariates β (SE) p-value β (SE) p-value

 Gender 

 Female Ref. Ref.

 Male 0.36 (0.19) 0.051 -1.19 (0.46) 0.010

Age group (year)

 1-24 Ref. Ref.

 25-44 -0.48 (0.20) 0.017 0.44 (0.46) 0.339

 45-74 -0.60 (0.25) 0.017 0.23 (0.53) 0.664

Marital status

 Single Ref. Ref.

 Married 0.04 (0.14) 0.797 0.09 (0.28) 0.758

 Divorced -0.08 (0.17) 0.644 -0.10 (0.33) 0.762

 Widow -0.16 (0.27) 0.567 0.96 (0.80) 0.230

Education level

 High(academic) Ref. Ref.

 Low (school) -0.52 (0.23) 0.026 -1.19 (0.68) 0.083

Being in prison

 No Ref. Ref.

 Yes -0.32 (0.20) 0.118 -0.29 (0.40) 0.471

Smoker

 No Ref. Ref.

 Yes -0.18 (0.19) 0.364 0.35 (0.37) 0.354

Drug abuse

 No Ref. Ref.

 Yes -0.03 (0.21) 0.882 -0.08 (0.43) 0.854

Tuberculosis infection

 No Ref. Ref.

 Yes 0.021 (0.18) 0.241 -1.03(0.28) 0.001

Antiretroviral therapy

 No Ref. Ref.

 Yes -0.29 (0.12) 0.014 2.39 (0.25) 0.001

Baseline CD4 count (cells/mm3)

 500+ Ref. Ref.

 351-500 -0.56 (0.19) 0.003 -0.81 (0.64) 0.207

 201–350 -1.71 (0.19) 0.001 -0.43 (0.57) 0.447

 0–200 -4.43 (0.16) 0.001 -1.10 (0.52) 0.035
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the understanding of variation in risk factors related to the 
evolution of diseases substantially [33]. By using these 
models, the probabilities and hazards of occurrence of 
different events could be obtained. Our study presented 
the effect of several predictors on the duration of time to 
two different states in HIV-infected patients (the duration 
of time from HIV diagnosis to AIDS progression and from 
AIDS initiation to AIDS-related death) using parametric 
multi-state model. The acceleration factor in the utilized 
Log-logistic models in both transitions allows us to readily 
interpret obtained coefficients in terms of either survival 
probabilities or times. We identified several risk factors 
strongly associated with survival times of transitions to both 
states (HIV→AIDS and AIDS →Death). 

Age was shown to have a strong association with 
progression to AIDS (transition HIV→AIDS). These results 
suggest that the time for transition from HIV to AIDS is 
accelerated for patients aged 45–74 years compared 
to those aged 1–24 years by an estimated factor of 
0.55 (exp(-0.60)). In terms of the survival functions 
estimated from this model, Ŝ1(t)= Ŝ2(0.55t) where 
Ŝ1(t) and Ŝ2(t) are the respective survival functions for 
patients with 1-24 and 45-74 years old, which means 
it needs about two fold more time for an HIV positive 
patient aged 1-24 year to progress AIDS compared to 
a patient aged 1-24 year. It has been indicated by the 
epidemiological studies that patients aged 50 years 
or more are at a higher risk of progression to AIDS 
compared to younger patients [3, 34-36].

According to our findings, a significant association 
between educational level and time to progression to AIDS 
(transition HIV→AIDS) was observed. These results suggest 
that the time for transition from HIV to AIDS is accelerated 
for patients with lower education compared to those with 
higher education by an estimated factor of 0.59 (exp(-
0.52)). Recent studies confirmed that lower educational 
level was related to late HIV diagnosis and late initiation 
of ART [3, 37]. 

A leading preventable cause of death among people 

living with HIV is TB [38]. The results indicated that 
time to transition to death for an HIV-infected patient 
who had developed AIDS and were co-infected with 
TB is accelerated by an estimated factor of 0.36 
(exp(-1.03)) compared to those who infected with HIV 
alone. This finding is in concordance with the results of 
other epidemiological studies [3, 4, 39]. Therefore, the 
importance of treatment of TB in HIV infected people is 
revealed by this evidence. 

According to the results, both time to progression to 
AIDS and time from AIDS initiation to AIDS related deaths 
were significantly associated with decreased levels of 
CD4 cell counts. These results suggest that the time for 
transitions HIV→AIDS and AIDS →Death are accelerated 
dramatically for patients that have a CD4 cell count less 
than 200 cells/mm3 compared to those with a CD4 
cell count over 500 cells/mm3 by an estimated factor of 
0.01 and 0.33, respectively (exp(-4.43) and exp(-1.10)). 
Moreover, it has been shown by several epidemiological 
studies that there is an increase in the risk of HIV/TB 
coinfection with decreasing the CD4 cell count [3, 40, 
41]. A CD4 cell count over 500 cells/mm3 reduced 
TB-related mortality among HIV-positive people akin to 
those are not co-infected with TB and therefore it plays an 
important role in the incidence of HIV/TB coinfection [42]. 

In the present study, we utilized a multistate model 
from a parametric modeling perspective to analyze 
different states of HIV disease. This data set was previously 
analyzed by [3] using Cox PH model. Although Cox 
PH model has several advantages like consistency of 
the regression coefficients, it suffers from a restrictive 
assumption of proportionality of hazards. When the 
PH assumption does not hold, the Cox model can give 
unreliable results. In contrast, parametric models provide 
the interpretation based on a specific distribution directly 
for times to events with no need to the PH assumptions. 
According to previous studies parametric models lead to 
more efficient estimates compared to the Cox model if the 
underlying distributional assumption holds [17, 18]. The 

FIGURE 3. Stacked transition probabilities.
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results over 100 replications of utilizing log logistic and 
Cox model showed that in this dataset the parametric 
model outperformed the Cox model. In the used parametric 
multistate model for the current data set, ART (known as 
a very important factor) was significant for HIV→AIDS 
transition while the Cox model could not reveal this 
relationship. Similar to this, in the parametric model CD4 
had a significant effect on the second transition (AIDS 
→Death) and again in the Cox model it was not significant 
statistically. Several studies were in concordance with our 
findings [43-45]. 

It should be noticed that reliable sources of data 
obtained from prospective designs were required for 
survival analysis and associated prognostic factors. 
However, in the present study a data set of a retrospective 
study recorded by registry centers was used and we were 
not able to verify the accuracy of the data. Information 
bias may be caused by this issue. Despite this limitation, 
the present study was conducted on a large data-set and 
the results can be generalized to the Iranian HIV-infected 
population. Furthermore, it was apparent the effect of 
several predictors on AIDS progression and AIDS-related 
deaths in a high–middle-income country. They may be 
useful information for institution of intervention measures to 
suppress the progression of HIV to AIDS and to reduce the 
risk of death among HIV-positive patients [3].

CONCLUSION

The focus of the present study was to identify more 
efficiently the important prognostic factors that affect 
the duration of time from HIV infection to AIDS and the 
duration of time from AIDS to death using parametric multi-
state models. The results showed that several modifiable 
and non-modifiable predictors including co-infection with 
TB and decreased level of CD4 cell count affect the 
progression of AIDS and HIV-related death and accelerate 
time to AIDS and death. In addition, using antiretroviral 
therapy decelerates time to death dramatically and 
improves the survival of patients living with AIDS. 
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