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ABSTRACT 

Purpose: The existence of unmeasured confounding can clearly undermine the validity of an observational study. 
Methods of conducting sensitivity analyses to evaluate the impact of unmeasured confounding are well established. 
However, application of such methods to survival data (“time-to-event” outcomes) have received little attention in the 
literature. The purpose of this study is to propose a novel Bayesian method to account for unmeasured confounding for 
survival data. 
Methods: The Bayesian method is proposed under an assumption that the supplementary information on unmeasured 
confounding in the form of internal validation data, external validation data or expert elicited prior distributions 
is available. The method for incorporating such information to Cox proportional hazard model is described. 
Simulation studies are performed based on the recently published instrumental variable method to assess the impact 
of unmeasured confounding and to illustrate the improvement of the proposed method over the naïve model which 
ignores unmeasured confounding. 
Results: Simulation studies illustrate the impact of ignoring the unmeasured confounding and the effectiveness of our 
Bayesian approach. The corrected model had significantly less bias and coverage of 95% intervals much closer to 
nominal.
Conclusion: The proposed Bayesian method provides a useful and flexible tool in incorporating different types of 
supplemental information on unmeasured confounding to adjust the treatment estimates when the outcome is survival 
data. It out-performed the naïve model in simulation studies based on a real world study. 
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INTRODUCTION

With the evolvement of electronic healthcare records, 
observational databases represent a rich source of routine 
clinical data which can potentially address a variety 
of medical questions. Due to lack of randomization, 
the use of such data for comparative effectiveness 
research is always challenged by selection bias [1-3]. 
In observational studies, it is critical to improve the study 
validity by using an appropriate comparator group to 
avoid potential bias or confounding in the study designs. 
Furthermore, some statistical methods, e.g. propensity 
score will help adjust for measured confounding factors, 
under an assumption of “no unmeasured confounding”. 
If the critical assumption is violated, then under the 
same study population and design, conclusions may 
vary significantly depending on the different analytical 
approaches. In a recent comparative cardiovascular 
study [4], both the inverse propensity score weighting 
(IPW) method and the instrumental variable (IV) method 
were used. As is known to all, IPW requires the 
“no unmeasured confounding assumption”, while IV 
method does not. Interestingly, the two well-established 
statistical methods provide inconsistent results. A possible 
explanation of these inconsistency is the existence of 
unmeasured confounding, as the authors pointed out “…. 
In the TRANSLATE-ACS study, 2 confounding factors that 
are potentially incompletely measured in the data are 
frailty and coronary disease severity…” In our opinion, 
this study exemplifies the significant impact unmeasured 
confounding can have on survival data and illustrates the 
need for conducting sensitivity analysis to address this 
problem.

Literature has reported methods for adjusting unmeasured 
confounding in parametric regression models. Frequentist 
approaches [2, 3, 5] adjust for unmeasured confounding 
by using fixed values for the bias parameters (the parameters 
associated with the unmeasured confounding). By contrast, 
the Bayesian approach we describe uses of validation 
data, expert opinion, or a combination of both to build 
prior probability distributions for these parameters. Monte 
Carlo sensitivity analysis [6] is possible with frequentist 
approaches, but the Bayesian paradigm provides an 
operational approach to combine the different sources of 
information. For instance, a Bayesian approach to adjust 
logistic regression for unmeasured confounding with mildly 
informative priors has been considered [7]. At the cost 
of inflated interval estimate widths, their use of relatively 
non-informative priors leads to only slight improvement in 
the bias of parameter estimates. This work was extended 
[8] by calibrating the priors for the regression parameters 
with internal validation data. That is, for a sub-sample of 
the data, the unmeasured confounder is ascertained. This 
allows for considerably better bias correction than the 
much less informative priors used in [7]. These publications 
focused on Bayesian methods utilizing extra information 

for parametric regression models when the outcome is 
continuous, binary or skewed (e.g., cost data). 

Unlike parametric regression models, semi-
parametric/non-parametric models with unmeasured 
confounding in comparative observational research have 
received little attention. In the frequentist paradigm, a 
simple adjustment using fixed values for the unmeasured 
confounding parameters in a Cox regression model has 
been considered [9]. The propensity score calibration 
approach [3] can also be applied to the Cox model. 
Here, we extend related work in Bayesian hierarchical 
modeling [8, 10, 11] by using informative priors and/or 
validation data to adjust for unmeasured confounding in 
Cox proportional hazard model. 

Our paper is organized as follows. In Section 2 we 
overview the model and prior distributions for analyzing 
survival data with an unmeasured confounder. We 
discuss three approaches to correct for unmeasured 
confounding: informative priors, internal validation data 
and external validation data. In Section 3 we report the 
results of simulation studies showing the effectiveness of the 
validation data approaches. A discussion along with the 
concluding remarks is given in Section 4.  

METHODS

In observational studies, propensity score [12] can be 
used as a summary scale to represent multiple confounders 
and directly adjusted as a regressor in the regression 
modeling. Theoretically, the Bayesian hierarchical model is 
able to adjust multiple unmeasured confounders. However, 
in our simulation studies, we found it would take extreme 
long to obtain the adjusted estimates if multiple unmeasured 
confounders existed. Therefore, in our development, we 
focus on the case of a continuous unmeasured confounder 
range from 0 to 1, as such single continuous unmeasured 
confounder could be also viewed as propensity score 
which summarized multiple unmeasured confounders. We 
denote the time to the event by Ti, the binary treatment 
indicator by xi, the p-dimensional vector of measured 
confounders by zi, and the unmeasured confounder by 
μi. Without loss of generality we assume μi ~ N(μi,σ). 
The mean of the continuous unmeasured confounder can 
be modeled as a function of both the treatment and the 
measured covariates, specifically,

μi= γ0+ γ1 xi+ ∑p
(j=1) γj+1zji. This model can be extended 

to incorporate multiple unmeasured confounders and 
multiple treatments in a fairly straightforward way.

Likelihood

We will focus on the simplified model μi= γ0+ γ1 xi in 
the discussion below. It has been shown that the simplified 
model is actually the worst case scenario. This is because 
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additional covariates may be related to unmeasured 
confounders, thereby reducing the latter’s impact [13].   

For the Cox proportional hazards model we follow the 
development in [14]. Packages such as OpenBUGS and 
JAGS can be used for posterior computation. We assume 
the survival times are divided into  intervals with end points 
a1<a2<...<aJ<a(J+1). The Cox proportional hazards mode is

h(t)= h0 (t)exp (βx+θz'+ημ)

for scalar β and η, and a px1 vector of coefficients 
θ. The baseline hazard function, h0 (t), is defined to be the 
step function

Where the λj' S are positive scalars and IA is the 
indicator function defined on the set A. If J is large, this 
parametric function nicely approximates an arbitrary 
baseline hazard function [14]. Simulation studies indicate 
J rarely needs to be larger than 10 for good performance. 
The likelihood for each subject is the joint distribution of 
the survival outcome and the distribution of the unmeasured 
confounder. The ith likelihood contribution is 

 
            (2)

where for the survival portion

and d(i,j) is Poisson φ(i,j) with a value of either 0 
or 1 depending on whether an event occurs or not. This 
is related to the so called “zeros trick” [15] to get non-
standard distributions. Note that the ui are being modeled 
but none are observed in the main study data of size n. 
The full likelihood is the product of the contributions in (2) 
across the sample size. Further discussion of the likelihood 
is provided in the appendix. 

The coefficient β, which relates the treatment effect 
to the survival time, is the primary parameter of interest. 
Without additional information on γ0,γ1 and η the model 
is not identified. This extra information may come in the 
form of informative priors or validation data. For the latter, 
the unmeasured confounder is observed for a subset of 
the main study data or from a data source external to the 
main study. We will discuss the various approaches in the 
following subsections.

Prior distributions

We assume all regression parameters have normal 
distributions: 

The steps, λj, in the baseline hazard function (1) are 
positive. Thus, we have selected gamma priors for them: 

λj ~ gamma(αj,κj ).
Finally, a prior is needed for the standard deviation 

of the unmeasured confounder, σμ. Here we assume 
a conjugate prior, σu

2 ~ inverse-gamma(α0,b0). If the 
parameters α0 and b0 are chosen to be too small then 
convergence problems may arise. In this situation, it has 
been suggested a uniform, half-normal, or half Cauchy 
prior for the standard deviation be used instead of the 
inverse-gamma on the variance [16]. For our model, if 
validation data is not available, informative priors for 
γ0,γ1, and σu are required while diffuse priors can be 
used for β,θk and λj. An informative prior for η can be 
helpful but does not appear to be required for model 
identifiability. Eliciting priors for regression parameters is 
a non-trivial task. It is known that it is much easier to elicit 
on observable quantities as opposed to unobservable 
parameters [12].  Combining the priors with the likelihood 
given in (1) yields the joint posterior. RJAGS code for this 
model is available in the online appendix.

Internal Validation

If the study researchers are able to ascertain the 
unmeasured confounder for a random subsample of the 
subjects, the resulting informative priors can help mitigate 
the problems of the unidentified model that results from 
such confounding. This type of data is called internal 
validation and has been used in numerous cases to correct 
for bias due to misclassification and measurement error 
[17] and for unmeasured confounding [8]. For our case, 
suppose the total sample size is n+m where n observations 
have the unmeasured confounder and m have it observed. 
In general n is much larger than m and m/n is referred to 
as the validation sample fraction. The resulting likelihood is 

            (3)
where, as previously defined, we have 
φ(i,j)=λj exp(βxi+θzi'+η(ũi ) ω(i,j).
For the n observations in the main study, the ũi are 

completely missing. Hence the “~” distinguishes them from 
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the values of u that are observed in the validation data. 
Since they are observed in the validation sample of size 
m, inference can proceed with either informative or diffuse 
priors. Combining the above likelihood with the priors of 
Section 2.1 yields the joint posterior. Sampling from this 
posterior can be accomplished with the RJAGS package in 
R and the code is available in the online appendix.

The advantage of internal validation data, as can 
be seen in the likelihood, is the data provides direct 
information on all parameters of interest using data from 
the target population. The main limitation is the feasibility 
of collecting additional data from study participants. The 
cost to obtain internal validation data may be too high. 
Contacting individuals whose data are routinely collected 
for administrative purposes may not be possible because 
of privacy concerns or laws. 

External Validation

Since internal validation may be impossible or 
too expensive to obtain, another approach is to use 
external validation data. Examples of external validation 
data include previous studies conducted by the same 
researchers where subject-level data is likely to be 
available. Alternatively, published studies might be used 
where, for instance, information may be available in the 
form of summary statistics. If subject-level data is available, 
then the approach for external validation data is identical 
to that of internal validation and the likelihood given in 
(3) is used. If summary statistics from previous literature 
are available, an informative prior can be constructed in 
the following way. Assume the summary statistics are as 
in Table 1. Note this is the sufficient statistics for a linear 
regression with normal errors and a binary covariate. Our 
informative prior is constructed by first assuming flat priors 
on all parameters and constructing posteriors with the data 
in Table 1. These posteriors are then used as priors in the 
subsequent analyses. In this case, the prior for σu is

Conditional on σu
2, we have γk | σu

2~ 
N(μγk ),σγk

2) where 
 and . 

These data-based priors are equivalent to the posteriors of 
the linear regression model with Jeffreys priors as derived 
in [18]. Using a conjugate, non-informative inverse-
gamma prior leads to the inverse gamma prior above, 
but as discussed earlier, if the validation sample size is 
small, a half-Cauchy prior is preferred. This loses some 
computational convenience, but is easily accommodated 
in standard software packages.

Finally, we note that in some cases, the external 
validation data may “swamp” the main study data, in 
which case it would be appropriate to down weight the 
data via a process such as found in [19].

RESULTS

We used simulated datasets to illustrate the 
performance of the proposed Bayesian model. The 
parameters of the simulation are based on the empirical 
data from [4]. The publication is a secondary analysis 
of data from the Treatment With Adenosine Diphosphate 
Receptor Inhibitors–Longitudinal Assessment of Treatment 
Patterns and Events After Acute Coronary Syndrome 
(TRANSLATE-ACS) study. Included in the study were 
patients undergoing percutaneous coronary intervention 
for myocardial infarction and the study dates were April 
4, 2010, to October 31, 2012. We used information 
on the key demographic variables age, gender and race, 
and the proportion of patients receiving different ADP 
inhibitors (Table 1, [4]) to inform our simulation setting. To 
be more specific, xi represents patients receiving different 
treatments, and z1,z2,z3 correspond to age, gender and 
race, respectively. The unmeasured confounder was 
scaled to range from 0 to 1 to represent either a single 
unmeasured confounder or a propensity score summarizing 
multiple confounders.

For every simulation configuration we generated 
100 data sets. We examined scenarios with internal and 
external validation data along with a situation that mimics 
informative priors. 

The model used for the unmeasured confounder for 
the simulations was

ui  ~ N (0.36+0.1x1i,0.2) 
Note that only the treatment is included in the 

unmeasured confounding model, which as previously 
mentioned, is the worst case scenario in terms of bias. For 
the Cox model we used

exp(-0.3xi+0.01z1i+0.013z2i+0.03z3i+1.06ui)
Such simulation parameters were chosen so that the 

unmeasured confounder had at least moderate impact on 
the outcome. If the unmeasured confounder only had mild 
impact on the outcome, then ignoring it may not lead to 
significant bias in the treatment effect estimate. We assumed 
a main study sample size of 1000 and sample sizes for 
validation data of 50, 100, and 200. We generated 
an internal validation data set with all variables including 
the unmeasured confounder and an external validation 
data set where only summary statistics for the unmeasured 
confounder and exposure variable were obtained. Thus, 
no information for  is provided for the external validation 
data. The informative priors were obtained by generating 

TABLE 1. Summary statistics for unmeasured confounder 
across binary exposure variable

x = 0 x = 1

Mean μx=0 μx=0

Standard Deviation Sx=0 Sx=0

Sample Size nx=0 nx=0
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a single data set for each of the validation sample sizes 
and using this data to inform independent normal priors 
for each of the regression parameters. These priors were 
then used for every data set in the simulation as opposed 
to the validation data methods where a new validation 
data set was used each time. This was done to allow 
comparison of the methods with basically the same sample 
size equivalence but the informative prior is the same every 
time. We considered censoring rates of 60%, and 90%. 
In the real data, the censoring was close to 90%. For the 
validation data scenarios we used fairly diffuse priors for 
all regression parameters, specifically, normal with mean 
0 and standard deviation of 10. Relatively diffuse priors 
were used for σu

2
 and the λj. For all analyses, we used 

the RJAGS package in R. Two chains were run with a 
burn-in of 7000 iterations which was followed by 20000 
iterations keeping every 10th for inference. Convergence 
was checked with Gelman-Rubin statistics and monitoring 
history plots. Sample plots are provided in the online 
appendix.

We provide results for the main parameter of 
interest, β, for 60% censoring in Table 2 and 90% 
censoring in Table 3. The results are the average bias 

along with empirical coverage and widths for 95% 
nominal intervals across the 100 simulated data sets for 
each different scenario. The bias was calculated as the 
absolute difference between the posterior mean and the 
true parameter value. Several interesting points are worth 
mentioning. The bias for each of the correction methods is 
smaller than the naïve model for all scenarios considered 
except one case with 90% censoring where the informative 
prior case is slightly larger. Coverage is close to nominal 
in most cases for the corrected models while the naïve 
model has coverage considerably below nominal for the 
60% censoring case. All confidence intervals are fairly 
wide due to the large censoring rate (60% and 90%). 
Internal validation has consistently narrower widths than the 
external and informative cases. In fact, when the internal 
validation sample size is 200 (which is 20% of the total 
sample) the widths of the 95% intervals are very close to 
those in the naïve case. While validation data of size 50, 
or informative priors based on an equivalent sample size 
of 50 do seem to correct the bias and provide intervals 
with nominal coverage, we found that using validation 
data samples of less than 50 resulted in considerable 
convergence problems, indicating that perhaps validation 

TABLE 2. Simulation results across 100 data sets with censoring rate of 60%. Empirical coverage is for 95% nominal intervals.

Validation Sample Size Validation Type Bias Coverage Probability Interval Width

50
Internal
External

Informative
Naive

0.015
0.076
0.098
0.124

0.93
0.92
0.90
0.80

0.75
0.95
0.78
0.46

100
Internal
External

Informative
Naive

0.039
0.069
0.095
0.124

0.96
0.94
0.89
0.80

0.54
0.83
0.78
0.46

200
Internal
External

Informative
Naive

0.045
0.079
0.082
0.124

0.98
0.85
0.95
0.80

0.48
0.69
0.72
0.46

Footnote: Naïve model ignores unmeasured confounders in the analyses.

TABLE 3. Simulation results across 100 data sets with censoring rate of 90%. Empirical coverage is for 95% nominal intervals.

Validation Sample Size Validation Type Bias Coverage Probability Interval Width

50 Internal
External

Informative
Naive

0.032
0.032
0.100
0.080

0.98
0.89
0.97
0.93

1.41
1.84
1.95
1.00

100 Internal
External

Informative
Naive

0.013
0.090
0.034
0.080

0.98
098
0.97
0.93

1.18
1.71
1.77
1.00

200 Internal
External

Informative
Naive

0.034
0.052
0.034
0.080

0.93
0.96
0.97
0.93

1.00
1.58
1.71
1.00

Footnote: Naïve model ignores unmeasured confounders in the analyses.
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fractions (ratio of validation sample size to main study 
sample size) much below 5% are not particularly useful.

Another interesting point about the 90% censoring is 
that even though the naïve model is the most biased, it has 
coverage that is fairly close to nominal. This is because 
with high censoring the uncertainty in estimation is fairly 
high for all the models thus the 95% intervals are all wide 
and cover the truth most of the time even with the bias. 
We considered other parameter configurations (motivated 
by another real world example where unmeasured 
confounder was weakly associated with treatment choice 
but strongly impact the outcome), along with the case of a 
binomial unmeasured confounder and these simulations are 
described in the online appendix. In general, the results of 
the simulations with different parameter setting yields very 
consistent results as the results we presented here.

DISCUSSION

Unmeasured confounding continues to be a major 
problem in observational studies. New methods that 
correct for bias due to unmeasured confounding for more 
complicated models than linear and logistic regression are 
important areas of research. Several advanced statistical 
methods – both from frequentist and Bayesian perspectives 
– have been developed during the past decades in 
addressing this challenge. However, only a few frequentist 
methods have been proposed for survival models, and 
none of them focus on time-to-event data specifically. Here, 
we have provided an overview of a Bayesian model-
based approach to account for unmeasured confounding 
when supplementary information is available in the form 
of internal or external validation data. Subjectively elicited 
informative prior distributions are another alternative. A 
flexible parametric approximation of the Cox proportional 
hazard model from [14] was implemented to construct 
the posterior likelihood estimation incorporating both 
main study and supplemental information. Also, we have 
conducted simulation studies under different scenarios 
based on empirical data from a published comparative 
cardiovascular study. We found that even when the 
unmeasured confounder is only mildly related to the 
exposure, as long as the unmeasured confounding at least 
moderately impact the outcome, non-ignorable bias still 
results in the naïve model. Further, we demonstrated that 
our Bayesian method can correct for such bias using rather 
modest amounts of validation data.  

There are several limitations of our methods that 
should be discussed to perhaps motivate further research. 
First we are assuming the unmeasured confounder is, in 
fact, measurable in either the current or a similar data 
set. If it is an unmeasurable latent trait, our methods will 
not apply. The use of external validation data requires 
several assumptions. First, the population that the validation 
data comes from is similar enough to the current data so 

that the parameters being estimated are approximately 
the same. Secondly, we require that the same variables 
be measured. Finally, we focus on relatively simple 
relationships with the unmeasured confounder. Indeed, we 
are assuming the information available (either validation 
data or expert opinion) will rarely be rich enough to model 
complex relationships.

In this paper we have focused on simulated data 
where the true value of the parameters is known and the 
extent of the bias due to the unmeasured confounding can 
be ascertained precisely. In future research we will provide 
a thorough analysis of real world data and provide further 
guidelines on how to address unmeasured confounding in 
time-to-event data.
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1. Convergence diagnostics

Below are representative convergence plots for the simulation studies illustrating convergence.  These are for 60% censoring 
for the informative prior case (no validation data).   

Supplementary material
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2. Additional Simulation Results

We now describe some results from additional simulations.  The data parameters chosen were motivated by the results in 
Connors (1996).  Note that there is only a very small relationship between the treatment and the unmeasured confounder.  
The exposure variable, x, and three measured covariates were all generated from binary distributions with probabilities 0.4, 
0.08, 0.24 and 0.11 respectively. The model used for the unmeasured confounder for the simulations was
ui  ~ N (0.6-04x1i,0.2)   .
For the Cox model we used

exp(0.3xi-1.2z1i+0.4z2+z3-3u)
We assumed a main study sample size of 1000 and validation sample size of 100.  We generated an internal validation data 
set with all variables including the unmeasured confounder and an external validation data set where only summary statistics 
for the unmeasured confounder and exposure variable were obtained.  We considered censoring rates of 30%, 60%, and 
90%. We used fairly diffuse priors for all regression parameters, specifically, normal with mean 0 and standard deviation of 
10.  We used a diffuse inverse gamma prior for   and diffuse gamma priors for the  .  The results in Supplemental Table 1 
yield similar relationships as the results discussed in the main manuscript.  Using validation data improves bias and coverage 
for lower censoring rates but only improves bias in higher censoring rate cases due to wide intervals for all methods.

TABLE 1. Simulation results for β.

Censoring Validation Type Bias Coverage Probability Interval Width

30%
Internal
External
Naive

0.00
0.01
0.17

0.975
0.95

0.825

0.34
0.34
0.31

90%
Internal
External
Naive

0.07
0.13
0.26

0.98
0.93
0.95

1.11
1.05
0.83
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We now also consider the case of a binary unmeasured confounder.  Specifically, we generate the data via the following:

ui  ~ Ber (pi)
logit (pi) = -1.3-1.6x
 
For the Cox model, we used

exp(0.3xli-1zli+0.3z2i+0.005z2i-1.4ui)

Again, the main study size was 1000 with 100 subjects for the validation samples.  The results for 30% and 90% censoring 
are provided in Supplemental Table 2.  For the binary unmeasured confounder case the naïve model does worse than it did 
with a continuous unmeasured confounder with more bias and lower coverage.  The internal and external validation models 
again reduce the bias and provide coverage at close to nominal but this is with the price of wider intervals.  As in previous 
simulation examples, the case of 90% censoring has extremely wide intervals.

TABLE 2. Simulation results for β with binary unmeasured confounder.

Censoring Validation Type Bias Coverage Probability Interval Width

30%
Internal
External
Naive

0.00
0.06
0.12

0.98
0.95
0.78

0.35
0.43
0.31

90%
Internal
External
Naive

0.01
0.13
0.35

0.93
0.97
0.65

1.37
2.09
0.95

4. JAGS Code

The JAGS code for the model with a continuous unmeasured confounder and subject level validation data (either internal or 
external) is provided below.

model
{

#loop for main study data

for(i in 1:n){
    for (k in 1:J){
    d[i,k]~dpois(mu[i,k])
    mu[i,k]<-(min(dur[i],a[k+1])-a[k])*step(dur[i]-a[k])*
    lam[k]*exp(beta*x1[i]+theta[1]*z1[i]+theta[2]*z2[i]+theta[3]*z3[i]+eta*u[i])
    }
     u[i]~dnorm(gamma[1]+gamma[2]*x1[i], sigu)
     
}

## loop for validation data

for(j in 1:n.tilde){
    for (m in 1:J){
    d.tilde[j,m]~dpois(mu.tilde[j,m])
    mu.tilde[j,m]<-(min(dur.tilde[j],a[m+1])-a[m])*step(dur.tilde[j]-a[m])*
    lam[m]*exp(beta*x1.tilde[j]+theta[2]*z1.tilde[j]+theta[3]*z2.tilde[j]+
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    theta[4]*z3.tilde[j]+eta*u.tilde[j])
    }
     u.tilde[j]~dnorm(gamma[1]+gamma[2]*x1.tilde[j], sigu)
    }

    # prior information
    beta~dnorm(0, 0.1)
    for(k in 1:J){lam[k]~dgamma(0.01,0.01)}
    for(l in 1:3){theta[l]~dnorm(0,0.1)}
    for(l in 1:2){gamma[l]~dnorm(0,0.1)} 
    sigu~dgamma(0.01, 0.01)
    eta~dnorm(0,0.1) ## non-informative prior
}

JAGS code for continuous unmeasured confounder using informative priors is given below.  Note normal priors are in terms 
of means and precisions, so standard deviations have to be transformed, precision = 1/variance.

model
{
for(i in 1:n){
    for (k in 1:J){
    d[i,k]~dpois(mu[i,k])
    mu[i,k]<-(min(dur[i],a[k+1])-a[k])*step(dur[i]-a[k])*
    lam[k]*exp(beta*x1[i]+theta[1]*z1[i]+theta[2]*z2[i]+theta[3]*z3[i]+eta*u[i])
    }
     u[i]~dnorm(gamma0+gamma1*x1[i], taum)
}

    # prior information
   for(k in 1:J){lam[k]~dgamma(0.01,0.01)}
    for(l in 1:3){theta[l]~dnorm(theta.mean[l], theta.prec[l])}
    gamma0~dnorm(gamma0.mean, gamma0.prec)
    gamma1~dnorm(gamma0.mean, gamma0. prec)
    taum~dgamma(tau.a, tau.b)
    beta~dnorm(beta.mean, beta. prec) ## non-informative prior
    eta~dnorm(eta.mean, eta prec) ## non-informative prior
}
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