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Longitudinal Joint Modelling of Binary and 
Continuous Outcomes: A Comparison of 
Bridge and Normal Distributions

ABSTRACT 

Background: Longitudinal joint models consider the variation caused by repeated measurements over time as well as 
the association between the response variables. In the case of combining binary and continuous response variables 
using generalized linear mixed models, integrating over a normally distributed random intercept in the binary logistic 
regression sub-model does not yield a closed form. In this paper, we assessed the impact of assuming a Bridge 
distribution for the random intercept in the binary logistic regression submodel and compared the results to that of a 
normal distribution.
Method: The response variables are combined through correlated random intercepts. The random intercept in the 
continuous outcome submodel follows a normal distribution. The random intercept in the binary outcome submodel 
follows a normal or Bridge distribution. The estimations were carried out using a likelihood-based approach in direct 
and conditional joint modelling approaches. To illustrate the performance of the models, a simulation study was 
conducted.
Results: Based on the simulation results and regardless of the joint modelling approach, the models with a Bridge 
distribution for the random intercept of the binary outcome resulted in a slightly more accurate estimation and better 
performance. 
Conclusion: Our study revealed that even if the random intercept of binary logistic regression is normally distributed, 
assuming a Bridge distribution in the model leads to in more accurate results. 
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INTRODUCTION

Multivariate response variables are widely recorded 
longitudinally in many medical areas. Longitudinal joint 
models assess the effect of covariates on two or more 
correlated responses while it considers the association 
between the various response variables as well. Generalized 
linear mixed-effects models (GLMM) are probably the most 
widely used methods for analyzing longitudinal data. 
These models are composed of generalized linear models 
(GLM) and mixed effect regression models (MRM). A 
variety of responses (such as continuous, binary, count and 
etc.) can be analyzed using the GLM model. The variation 
caused by repeated measurements is taken into account by 
the MRM component [1]. 

Joint modelling response variables is more complex 
compared to that of univariate. The selection of joint 
modellingapproach depends on the nature of the outcomes. 
The most common responses in many medical studies are 
continuous and binary. To jointly model such responses, 
there are two main approaches. The first one, which was 
proposed by Tate [2] and utilized by many others [3-7], 
is based on the product of marginal model for one of 
the response variables and a conditional model for the 
other outcome (conditioned on the former outcome) The 
second approach builds a joint model for the two response 
variables directly [8, 9]. Hereafter, the first and second 
approaches are expressed as conditional and direct 
approaches in this article. 

Catalano [10] and Fitzmaurice [11] used the 
marginal generalized linear model to combine continuous 
and discrete responses. A covariance pattern model 
with a special correlation coefficient for each outcome 
was used to allow the variation caused by the repeated 
measurements over time. The model was then extended by 
Catalano and Ryan. Regan and Catalano [12] proposed 
a widespread survey of longitudinal joint modelling 
of continuous and discrete outcomes such as bivariate 
GLMMs [13]. The random effects in GLMMs usually follow 
normal distributions with a zero mean. In joint modelling 
of longitudinal responses, the random effects of several 
sub-models follow a multivariate normal distribution with 
a variance-covariance matrix which accounts for the 
between-response associations. 

Wang and Louis showed that, assuming a Bridge 
distribution for the random intercept in a logistic mixed 
model forces the fixed effects to have the same odds 
ratio interpretation in marginal (i.e., integrated over the 
random intercepts) and conditional forms (conditional 
on the random intercepts) [14]. However, assuming 
distributions other than normal for random trends can result 
in complexities complexities [14]. This idea was then 
applied by Lin et al. for evaluating the association between 
binary and continuous clustered data [15].

The current study does not compare the direct and 
conditional approaches, but aims to find if considering 

a Bridge distribution for the random intercept of binary 
outcome can benefit the performance of the direct and 
conditional joint modelling approaches. We restrict our 
study to random intercepts models only. A simulation study 
was conducted to assess the accuracy of the estimations. 
The models were also applied to a real dataset from a 
clinical trial investigating the effect of coriander fruit syrup 
on the duration (as continuous response) and the severity 
(as binary response) of migraine attacks. 

Migraine are described as a chronic and debilitating 
neurological disorder. They result in adverse consequences 
for patients and society and causes lots of adverse 
consequences for the patients and society [16]. The World 
Health Organization recommends the use of traditional 
medicine in unresolved diseases such as migraines [17]. 
Coriander fruit is a commonly used in alternative medical 
treatments. It is believed to heal headaches, anxiety and 
depression and to potentially affect the frequency, duration 
and severity of migraine attacks [18, 19]. This fruit is one 
of the most commonly prescribed herbs in Persian medicine 
[20]. According to the strong association between the 
characteristics of migraine attacks such as severity and 
duration [18], the longitudinal joint models were fitted.

METHODS

Joint models for longitudinal binary and continuous 
outcomes

Notation

Let  and  represent the continuous and binary 
responses respectively, for a subject i at the occasion j. 
The binary response can take the values 0 and 1 while the 
continuous can take all the values between -∞ and +∞. 
The two associated response variables follow a general 
form as follows:

	         	           (1)

In this formula,  is the expected outcome, “h” is 
a proper link function according to the type of response 
variable (e.g. identity for continuous response) and the 
expected response is assumed to differ from the systematic 
component ( ) by a subject-specific effect ( ). 

Associations and distributions

Bridge and normal distributions are assumed for the 
random intercept in the binary outcome sub-model with a 
logit link function. A normally distributed random intercept 
for the continuous outcome sub-model is postulated. The 
random intercepts follow a bivariate normal distribution 
while a copula approach is used in the case of 
different distributions. A correlation parameter ρ takes 
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the association between the random intercepts and 
hence the response variables into account. The bivariate 
responses, a continuous and a binary, are assumed to 
follow normal and binomial distributions respectively. The 
continuous response variable is linked to a linear function 
of covariates and a normally distributed random intercept 
(mean zero and variance ) via an identity function. The 
binary response is also linked to the covariates through a 
logit link, assuming a Bridge or a normal distribution for 
the random intercept (mean zero and variance ). It was 
mentioned before that the Bridge distribution proposed by 
Wang and Louis [14] allows both the conditional and 
marginal probabilities of the binary response to follow a 
logistic structure.

Model specification and Likelihood

The two associated response variables can be 
predicted by different covariates (not necessarily the 
same covariates). To combine the associated response 
variables, direct and conditional approaches can be 
applied based on the nature of the association between the 
responses. The conditional approach is appropriate when 
the specification of a joint distribution can be factorized 
by a product of a marginal and a conditional density. 
This approach reduces the modelling tasks of separate 
specification of models. The conditional approach requires 
a reliable type of association between the response 
variables such that one of the variables plays the role 
of a time-varying covariate for the other one. In addition 
to some complexities for marginalizing one response by 
integrating over the conditional density, problems such as 
the asymmetric behavior of the responses lead to more 
difficulties in modelling [9]. 

The model and the likelihood function for the direct 
approach can be specified as follow: 

	          (2)

    (3)
The model and the likelihood function for the 

conditional approach can be written as follow: 

       (4)

	

	           (5)

Regarding that  and  are continuous and binary 
variables respectively,  and  are forms of normal 
and binomial density functions. In the current study, two 
different assumptions about the distribution of the binary 

outcome random intercepts has been compared. Thus, 
 is a multivariate normal or a normal copula function 

of the random intercepts. In other words, in the case 
of different distributional assumptions for the random 
intercepts, a normal copula distribution was used to 
combine the random intercepts. 

In the conditional approach, in addition to the 
correlation of response variables for the same subject, the 
association at the same time was induced. In other words, 
a dependence parameter ( ) performs the association at 
the same time point by conditioning one response on the 
residual of the latter (equations 4, 5) [15]. The maximum 
likelihood estimation was carried out by taking the 
expectation with respect to the joint density of the random 
intercepts. Non-adaptive Gaussian quadrature techniques 
were utilized to perform the integrals and Newton–
Raphson technique was implemented for the optimization. 

Bridge distribution

Let G(.) be an inverse link function with the 
characteristics of being monotone, increasing and twice 
differentiable and also let  be the Bridge distribution 
for the subject specific random effect u. This distribution 
carries the feature that the marginal and conditional 
link functions have the same form as (6) where  and c 
are the attenuation and unknown constant parameters, 
respectively.

	       	           (6)

After differentiating and applying the Fourier 
transformation of (6), one can determine the density 
function of Bridge distribution as (7) where F is the Fourier 
transformation as (8) and .

	           (7)

		            (8)

The density and cumulative distribution function of 
the random effect (u) can be derived as in (9) and (10) 
respectively. Finally, after integrating the conditional 
binary logistic model based on the random effect, one 
can observe that the logit interpretation can be satisfied 
carrying an additional parameter ( ). The mean and 
variance of the Bridge distribution are zero and  
, respectively. The intraclass correlation (ICC) can be 
determined by 1- . 

    (9)

   (10)

The variance matrix of two response variables for 
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the ith subject at the jth occasion can be derived using 
following matrixes:

	          (11)

where  is the diagonal overdispersion matrix,  
is the diagonal variance matrix of response variables 
assuming zero random effects, and  (here an identity 
matrix) is the matrix denoting the correlation between 
residual errors. Moreover, let .

        	(12)

			   (13)

 		  (14)

		  (15)

, here  = 0.
To compare the proposed models, we used the 

Akaike Information criterion (AIC).

Computational Support

The R software version 3.3.1 packages such as 
“copula”, “bridgedist”, and “MASS” as well as the SAS 
program version 9.2 “nlmixed” procedure were utilized 
to simulate and assess the data preparation and to the 
proposed joint models. The SAS codes are available in 
the Appendix. 

Simulation study

A simulation study was conducted to assess the impact 
of a Bridge random intercept on the estimations. To do 
this, following settings were considered. At each step, a 
continuous variable (time) in 10 different occasions and a 
binary variable (group) were generated from uniform and 
binomial distributions respectively. The continuous response 
variable was generated from a normal distribution with 
the mean equal to its systematic component. The binary 
response was generated from a binomial distribution using 
the probabilities associated with logit link function. The 
two random intercepts were generated from a bivariate 
normal distribution. The correlations between the random 
intercepts were chosen as zero, 0.4 and 0.8. The model 
was fitted on three different sample sizes 50, 200 and 
500. Two different approaches of joint modeling (direct 
and conditional) were utilized. The 18 scenarios were 
modeled using two different assumptions for the distribution 

of the binary logistic regression random intercept (normal, 
Bridge). The models were specified as follow:
The direct approach:

The conditional approach:

The true values:

	
Migraine Data

We analyzed data of a prospective, two-arm, 
randomized, triple-blind, placebo-controlled trial in the 
neurology clinic of Shohadaye-Tajrish hospital, Tehran, 
Iran [18]. The patients were randomly divided into two 
equal groups, a control group and a group that received 
the treatment. In addition to 500 mg of sodium valproate 
per day, the patients received either 15 mL of coriander 
fruit syrup or 15 mL of placebo syrup, three times a day, for 
a month. This distribution was organized according to the 
code provided by the department of traditional pharmacy 
in the Tehran University of Medical Sciences, Tehran, Iran. 
The subjects were followed at weeks 1, 2, 3 and 4. The 
mean severity of pain was evaluated, by a ten-point visual 
analog scale (VAS). Moreover, the patients were requested 
to write down the duration (hour) of their migraine attacks. 
At the end of each week, patients were referred to the 
neurology clinic to report the requested items. Severity was 
categorized into two levels (0-0.40 and 0.41-1) as the 
binary response [21]. Moreover, the duration of migraine 
attacks was assumed as the continuous response. 

RESULTS

A Real Data Example (Migraine Data)

Descriptive statistics of continuous and categorical 
characteristics of the two groups are described in details 
elsewhere [18]. Table 1 exposes the distribution of 
migraine attacks severity and duration during the 4 weeks 
in the intervention and control groups. The two response 
variables were strongly associated within different points 
of time.
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The results of the models are shown in Table 2. Although 
the results were almost the same for the four performed models, 
the lowest AIC was seen in models with the assumption of a 
Bridge distribution for the random intercept of severity in both 
the direct and conditional approaches. Significant variances 
of the random intercepts for the duration and the severity of 

migraine attacks showed a high level of heterogeneity among 
patients at the baseline. The duration and severity of migraine 
attacks decreased significantly during the intervention over 
the time. According to the results from the direct approach 
with the assumption of a Bridge distribution, the intervention 
of coriander fruit syrup decreased the duration of migraine 

TABLE 1. Mean (SD) and frequency (percentage) of severity (Continuous response) and Pain (Binary Response) along with 4 time points

Time
Severity n (%) Duration (hour)

Control Intervention
Control Intervention

0-0.4 0.4-1 0-0.4 0.4-1
Baseline 6 (18.2) 27(81.8) 0(0) 33(100) 14.93(±14.11) 23.93(±20.18)

week 1 7(21.2) 26(78.8) 9(27.3) 24(72.7) 10.71(±7.87) 8.02(±5.85)

week 2 10(30.3) 23(69.7) 29(87.9) 4(12.1) 8.39(±5.23) 3.56(±2.52)

week 3 18(54.5) 15(45.5) 33(100) 0(0) 6.84(±4.81) 0.98(±1.27)

week 4 20(60.6) 13(39.4) 33(0) 0(0) 4.16(±3.74) 0.15(±0.34)

TABLE 2. The results of Direct and MC approaches 

Approach Response Variables
Normal-Normal Normal-Bridge

Estimate SE## p-value Estimate SE p-value

Direct

Duration

Intercept 22.44 2.97 <0.001 22.41 2.96 <0.001

Group 4.17 1.87 0.025 4.15 1.87 0.027

Week -8.38 0.98 <0.001 -8.38 0.985 <0.001

Group*Week -2.92 0.62 <0.001 -2.92 0.623 <0.001

RI SD# 4.44 0.65 4.43 0.65

Severity

Intercept 5.23 1.54 <0.001 5.78 1.82 <0.001

Group 0.69 0.34 0.042 0.19 0.09 0.034

Week -1.46 0.48 0.002 -1.05 0.45 0.019

Group*Week -1.52 0.40 <0.001 -1.58 0.44 <0.001

RI SD 3.63 0.77 1.22 0.26

correlation 0.36 0.019 <0.001 0.39 0.018 <0.001

AIC 2363.3 2362.4

Normal-Normal Normal-Bridge

Conditional

Duration

Intercept 22.49 2.65 <0.001 22.42 2.36 <0.001

Group 3.47 1.39 0.012 3.52 1.64 0.032

Week -6.84 1.23 <0.001 -5.49 0.91 <0.001

Group*Week -1.47 0.98 0.133 -1.67 0.84 0.047

RI SD 2.89 0.55 3.27 0.49

Severity

Intercept 6.07 2.56 <0.001 6.13 1.88 <0.001

Group 0.92 0.37 0.012 0.82 0.39 0.035

Week -1.63 0.52 0.001 -1.38 0.47 0.003

Group*Week -1.95 0.44 <0.001 -1.61 0.39 <0.001

RI SD 3.74 0.92 2.12 0.86

Conditional parameter 0.31 0.06 <0.001 0.29 0.07 <0.001

correlation 0.09 0.01 <0.001 0.07 0.01 <0.001

AIC 2365.3 2364.3
#: Random intercept standard deviation; ##: Standard error
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attacks. The slope of decrease in migraine attack duration 
was 2.92 more than in the control group. In contrast to the 
baseline, the duration of the attacks reduces significantly 
for the intervention group over the time. One week longer 
intervention of coriander fruit syrup was associated with a 
0.93% reduction of severe migraine attacks as compared 

to the placebo (OR=exp (-2.63) =0.07). Regarding the 
application of a Bridge distribution for the random intercept of 
the binary outcome, the same interpretation of the odds ratios 
is possible for both of population average and subject-specific 
frameworks. As well as the direct approach, almost the same 
results was found the conditional joint modelling approach.

TABLE 3. Simulation study with zero correlation between the random intercepts

Pa
ra

m
et

er

Tr
ue n*

Conditional Direct

Normal-Normal Normal-Bridge Normal-Normal Normal-Bridge

Mean AVB** MSE*** Mean AVB MSE Mean AVB MSE Mean AVB MSE

0.1

50 0.1566 0.0566 0.0239 0.0998 0.0002 0.0234 0.0798 0.0202 0.0240 0.0975 0.0025 0.0148

200 0.1954 0.0954 0.0198 0.1227 0.0227 0.0116 0.2012 0.1012 0.0388 0.1039 0.0039 0.0111

500 0.1041 0.0041 0.0100 0.1021 0.0021 0.0099 0.0982 0.0018 0.0235 0.1003 0.0003 0.0101

0.2

50 0.2084 0.0084 0.0001 0.1969 0.0031 0.0001 0.1840 0.0160 0.0003 0.2119 0.0119 0.0002

200 0.2025 0.0025 <0.0001 0.2002 0.0002 <0.0001 0.1976 0.0024 <0.0001 0.2039 0.0039 <0.0001

500 0.2089 0.0089 0.0001 0.2010 0.0010 <0.0001 0.2013 0.0013 <0.0001 0.2003 0.0003 <0.0001

0.3

50 0.2583 0.0417 0.0063 0.2990 0.0010 0.0009 0.1637 0.1363 0.0211 0.3003 0.0003 0.0010

200 0.2508 0.0492 0.0036 0.2950 0.0050 0.0001 0.2705 0.0295 0.0030 0.2950 0.0050 <0.0001

500 0.3321 0.0321 0.0016 0.2813 0.0187 0.0004 0.3117 0.0117 0.0011 0.2999 0.0001 <0.0001

0.1

50 0.1896 0.0896 0.0084 0.0964 0.0036 0.0008 0.0807 0.0193 0.0481 0.0861 0.0139 0.0003

200 0.0805 0.0805 0.0087 0.1183 0.0183 0.0033 0.0961 0.0039 0.1416 0.1080 0.0080 0.0002

500 0.1474 0.0474 0.0035 0.1182 0.0182 0.0003 0.1000 0.0001 0.0989 0.1003 0.0003 <0.0001

0.2

50 0.3048 0.1048 0.0111 0.2388 0.0388 0.0016 0.2294 0.0294 0.0010 0.1980 0.0020 0.0003

200 0.2616 0.0616 0.0072 0.2042 0.0042 0.0002 0.2737 0.0737 0.0057 0.2039 0.0039 <0.0001

500 0.2517 0.0517 0.0040 0.2225 0.0225 0.0015 0.2002 0.0002 0.0001 0.2003 0.0003 <0.0001

0.3

50 0.2882 0.0118 0.0006 0.2803 0.0197 0.0007 0.2599 0.0401 0.0035 0.3052 0.0052 0.0011

200 0.2374 0.0626 0.0159 0.3229 0.0229 0.0007 0.3777 0.0777 0.0117 0.2994 0.0006 <0.0001

500 0.3203 0.0203 0.0053 0.3036 0.0036 <0.0001 0.3430 0.0430 0.0058 0.2999 0.0001 <0.0001

0.1

50 0.1164 0.0164 0.0003 0.0932 0.0068 0.0002

200 0.1147 0.0147 0.0002 0.0998 0.0002 <0.0001

500 0.0924 0.0076 0.0001 0.0998 0.0002 <0.0001

0

50 0.0015 0.0015 0.0073 0.0101 0.0101 0.0052 0.0078 0.0078 0.0001 0.0060 0.0060 0.0006

200 0.0032 0.0032 0.0065 0.0012 0.0012 0.0003 0.0091 0.0091 0.0068 0.0016 0.0016 <0.0001

500 0.0011 0.0011 0.0060 0.0063 0.0063 0.0002 0.0024 0.0024 0.0074 0.0003 0.0003 <0.0001

1

50 1.1679 0.1679 0.0289 1.0753 0.0753 0.0062 1.0519 0.0519 0.0027 0.9624 0.0376 0.0022

200 1.1545 0.1545 0.0240 1.0230 0.0230 0.0011 0.9012 0.0988 0.0099 0.9693 0.0307 0.0016

500 1.1656 0.1656 0.0275 0.9983 0.0017 0.0009 0.9057 0.0943 0.0089 0.9369 0.0631 0.0042

0.4

50 0.5450 0.1450 0.0211 0.5100 0.1100 0.0122 0.5401 0.1401 0.0197 0.3810 0.0190 0.0008

200 0.4648 0.0648 0.0042 0.4121 0.0121 0.0005 0.4849 0.0849 0.0072 0.4862 0.0862 0.0075

500 0.5590 0.1590 0.0253 0.4110 0.0110 0.0007 0.4998 0.0998 0.0100 0.4043 0.0043 <0.0001

AIC

50 1638.3980 1486.2780 1663.8750 1489.2320

200 6637.2460 59874.8120 6512.5690 5819.6990

500 16588.2350 15246.3580 16874.5470 14378.5580

*sample size;**the absolute value of biases; ***Mean square error
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Simulation results
 

Tables 3 to 5 show the simulation results. Using the 
absolute value of biases (AVB=|E ( )|), one can find that 
the estimated values are almost close to the true values. 
Comparing the mean AICs as well as the AVB in both 
of the direct and conditional approaches, the models 
with a Bridge distribution for the random intercept of the 

binary outcome resulted in better performances. The larger 
the sample size, the better the estimations. Based on the 
lowest AIC, this simulation study showed that regardless of 
the amount of association between the random intercepts 
as well as the sample size, assuming a Bridge distribution 
benefits the models and makes the same population 
average and subject-specific interpretations possible in 
terms of odds ratios. 

TABLE 4. Simulation study with 0.4 correlation between the random intercepts

Pa
ra

m
et

er
s

Tr
ue n*

Conditional Direct

Normal-Normal Normal-Bridge Normal-Normal Normal-Bridge

Mean AVB** MSE*** Mean AVB MSE Mean AVB MSE Mean AVB MSE

0.1

50 0.0741 0.0259 0.1280 0.0886 0.0114 0.0383 0.1562 0.0562 0.0372 0.1337 0.0337 0.0061

200 0.0852 0.0148 0.0347 0.0984 0.0016 0.0002 0.1520 0.0520 0.0422 0.1226 0.0226 0.0006

500 0.0937 0.0063 0.0147 0.1074 0.0074 0.0001 0.1061 0.0061 0.0227 0.0992 0.0008 0.0002

0.2

50 0.1815 0.0185 0.0004 0.2006 0.0006 0.0001 0.2101 0.0101 0.0001 0.2013 0.0013 <0.0001

200 0.1757 0.0243 0.0006 0.2015 0.0015 <0.0001 0.2280 0.0280 0.0008 0.2007 0.0007 <0.0001

500 0.1956 0.0044 <0.0001 0.2008 0.0008 <0.0001 0.2151 0.0151 0.0002 0.1965 0.0035 0.0001

0.3

50 0.2890 0.0110 0.0052 0.3067 0.0067 0.0006 0.2848 0.0152 0.0016 0.1061 0.0061 0.0002

200 0.3177 0.0177 0.0017 0.3070 0.0070 0.0001 0.2897 0.0103 0.0017 0.2912 0.0088 0.0001

500 0.3114 0.0114 0.0007 0.2991 0.0009 0.0006 0.3321 0.0321 0.0019 0.2965 0.0035 <0.0001

0.1

50 0.1800 0.0800 1.0949 0.0966 0.0034 0.0808 0.0913 0.0087 0.0761 0.1843 0.0843 0.0231

200 0.1440 0.0440 0.3018 0.1099 0.0099 0.0014 0.1351 0.0351 0.2009 0.1405 0.0405 0.0021

500 0.1252 0.0252 0.1444 0.1073 0.0073 0.0001 0.1210 0.0210 0.1010 0.1208 0.0208 0.0007

0.2

50 0.2771 0.0771 0.0196 0.2171 0.0171 0.0045 0.1897 0.0103 0.0004 0.2116 0.0116 0.0004

200 0.2108 0.0108 0.0033 0.2105 0.0105 0.0009 0.1764 0.0236 0.0008 0.2096 0.0096 0.0004

500 0.2154 0.0154 0.0013 0.2032 0.0032 <0.0001 0.1825 0.0175 0.0004 0.2003 0.0003 0.0003

0.3

50 0.3428 0.0428 0.0454 0.3045 0.0045 0.0032 0.2668 0.0332 0.0042 0.2755 0.0245 0.0012

200 0.2598 0.0402 0.0136 0.2739 0.0261 0.0020 0.2748 0.0252 0.0086 0.2891 0.0109 0.0002

500 0.3320 0.0320 0.0068 0.3176 0.0176 0.0004 0.2858 0.0142 0.0042 0.2942 0.0058 0.0001

0.1

50 0.1380 0.0380 0.0015 0.0923 0.0077 0.0002

200 0.1055 0.0055 0.0001 0.0950 0.0050 0.0005

500 0.0981 0.0019 <0.0001 0.0987 0.0013 <0.0001

0.4

50 0.4645 0.0645 0.0070 0.4649 0.0649 0.0063 0.4722 0.0722 0.0089 0.4784 0.0784 0.0068

200 0.4358 0.0358 0.0036 0.4348 0.0348 0.0021 0.4209 0.0209 0.0022 0.4412 0.0412 0.0018

500 0.4665 0.0665 0.0073 0.4047 0.0047 <0.0001 0.4643 0.0643 0.0062 0.4206 0.0206 0.0005

1

50 0.9391 0.0609 0.0044 0.9887 0.0113 0.0006 1.1128 0.1128 0.0128 1.0229 0.0229 0.0012

200 1.0562 0.0562 0.0033 1.0547 0.0547 0.0127 1.1844 0.1844 0.0341 0.9345 0.0655 0.0045

500 1.0517 0.0517 0.0028 0.9785 0.0215 0.0013 1.0943 0.0943 0.0089 0.9754 0.0246 0.0008

0.4

50 0.4310 0.0310 0.0010 0.4242 0.0242 0.0014 0.4456 0.0456 0.0023 0.3755 0.0245 0.0010

200 0.4329 0.0329 0.0011 0.3959 0.0041 0.0004 0.4410 0.0410 0.0017 0.3844 0.0156 0.0004

500 0.4133 0.0133 0.0002 0.3986 0.0014 0.0016 0.4238 0.0238 0.0006 0.3936 0.0064 0.0003

AIC

50 1638.3980 1486.2780 1663.8750 1489.2320

200 6637.2460 59874.8120 6512.5690 5819.6990

500 16588.2350 15246.3580 16874.5470 14378.5580
*sample size;**the absolute value of biases; ***Mean square error

e12755-7



BIOSTATISTICSEpidemiology Biostatistics and Public Health - 2018, Volume 15, Number 1

Longitudinal Joint Modelling 

DISCUSSION

To model two associated longitudinal response 
variables jointly, several approaches have been introduced 
[9, 11, 13, 15, 22] in the area of GLMMs in which 
subject-specific interpretation is allowed. 

In this paper, we performed and compared joint 
models for longitudinal continuous and binary responses 
in which the random intercepts follow normal and Bridge 
(or normal) distributions, respectively. Previously, several 
approaches have been introduced to analyze bivariate 
responses. The studies performed by Tate [2] and other 

TABLE 5. Simulation study with 0.8 correlation between the random intercepts

Pa
ra

m
et

er
s

Tr
ue n*

Conditional Direct

Normal-Normal Normal-Bridge Normal-Normal Normal-Bridge

Mean AVB** MSE*** Mean AVB MSE Mean AVB MSE Mean AVB MSE

0.1

50 0.1081 0.0081 0.0553 0.0938 0.0062 0.0689 0.1157 0.0157 0.0543 0.0936 0.0064 0.0521

200 0.0987 0.0013 0.0278 0.0991 0.0009 <0.0001 0.1114 0.0114 0.0381 0.0950 0.0050 0.0002

500 0.0940 0.0060 0.0123 0.1043 0.0043 0.0003 0.0933 0.0067 0.0223 0.1028 0.0028 0.0001

0.2

50 0.1974 0.0026 0.0001 0.2148 0.0148 0.0003 0.1882 0.0118 0.0002 0.2264 0.0264 0.0007

200 0.1758 0.0242 0.0006 0.1977 0.0023 0.0001 0.2259 0.0259 0.0007 0.2013 0.0013 0.0001

500 0.1978 0.0022 <0.0001 0.2003 0.0003 <0.0001 0.2168 0.0168 0.0003 0.2003 0.0003 <0.0001

0.3

50 0.2762 0.0238 0.0055 0.3204 0.0204 0.0007 0.2893 0.0107 0.0043 0.2950 0.0050 0.0002

200 0.3198 0.0198 0.0019 0.3161 0.0161 0.0003 0.2831 0.0169 0.0018 0.2902 0.0098 0.0001

500 0.3054 0.0054 0.0005 0.3012 0.0012 0.0009 0.3113 0.0113 0.0010 0.2943 0.0057 <0.0001

0.1

50 0.1309 0.0309 1.3227 0.1210 0.0210 0.2948 0.1190 0.0190 0.7256 0.1138 0.0138 0.0153

200 0.1287 0.0287 0.3166 0.1180 0.0180 0.0019 0.1167 0.0167 0.1810 0.1097 0.0097 0.0008

500 0.1139 0.0139 0.1471 0.1074 0.0074 0.0001 0.1064 0.0064 0.0942 0.1090 0.0090 0.0003

0.2

50 0.2377 0.0377 0.0152 0.2041 0.0041 0.0115 0.1895 0.0105 0.0012 0.2179 0.0179 0.0006

200 0.2321 0.0321 0.0042 0.1928 0.0072 0.0007 0.1892 0.0108 0.0004 0.2170 0.0170 0.0007

500 0.2286 0.0286 0.0018 0.1917 0.0083 0.0001 0.1903 0.0097 0.0002 0.2045 0.0045 0.0003

0.3

50 0.3153 0.0153 0.0527 0.2879 0.0121 0.0118 0.3171 0.0171 0.0291 0.3107 0.0107 0.0007

200 0.3181 0.0181 0.0129 0.3085 0.0085 0.0007 0.3121 0.0121 0.0074 0.3054 0.0054 0.0001

500 0.3088 0.0088 0.0060 0.3045 0.0045 0.0001 0.3091 0.0091 0.0038 0.3021 0.0021 <0.0001

0.1

50 0.0930 0.0070 0.0001 0.0937 0.0063 0.0002

200 0.0992 0.0008 <0.0001 0.0947 0.0053 0.0009

500 0.0976 0.0024 <0.0001 0.0962 0.0038 0.0001

0.8

50 0.7533 0.0467 0.0036 0.7035 0.0965 0.0038 0.8270 0.0270 0.0023 0.7931 0.0069 0.0006

200 0.7474 0.0526 0.0041 0.7508 0.0492 0.0045 0.7279 0.0721 0.0066 0.8320 0.0320 0.0012

500 0.7919 0.0081 0.0015 0.8071 0.0071 0.0001 0.7953 0.0047 0.0014 0.8089 0.0089 0.0001

1

50 1.0642 0.0642 0.0047 1.0934 0.0934 0.0043 1.0698 0.0698 0.0052 0.9526 0.0474 0.0029

200 1.0551 0.0551 0.0031 1.0410 0.0410 0.0037 1.0799 0.0799 0.0065 0.9867 0.0133 0.0003

500 1.0543 0.0543 0.0030 1.0555 0.0555 0.0038 0.9941 0.0059 0.0001 1.0036 0.0036 0.0002

0.4

50 0.4946 0.0946 0.0090 0.4162 0.0162 0.0006 0.3920 0.0080 0.0002 0.4052 0.0052 0.0003

200 0.3699 0.0301 0.0009 0.4147 0.0147 0.0008 0.3944 0.0056 0.0001 0.4049 0.0049 0.0002

500 0.4151 0.0151 0.0003 0.3904 0.0096 0.0004 0.4069 0.0069 0.0001 0.3988 0.0012 0.0002

AIC

50 1638.3980 1486.2780 1663.8750 1489.2320

200 6637.2460 59874.8120 6512.5690 5819.6990

500 16588.2350 15246.3580 16874.5470 14378.5580

*sample size;**the absolute value of biases; ***Mean square error
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researchers have well discussed the conditional models 
as a major approach toward joint methods. The second 
approach combines the responses directly and was 
extended by Catalano [10] and Molenberghs et al. 
[23]. In addition to GLMMs, the probit-normal approach 
and Placket-Dale model have been proposed in the 
literature as well. The extension of Placket-Dale model 
to other mixed responses is straightforward and it is well 
described by Faes et al. [22]. In contrast to the direct 
model, the conditional approach adds a parameter to 
the likelihood function, assessing the direct association 
between the binary and continuous outcomes at the 
same time. However, using either of the joint modelling 
approaches needs an almost full understanding of the 
association between the response variables.

The generalizability of GLMM makes the extensions 
possible to other settings of combined discrete and continuous 
outcomes. According to the special characteristics of 
GLMMs, more complex models have been presented for 
dealing with special aspects of problems. For example, 
a logit link function is frequently used in binary logistic 
regression according to its ease of interpretation. However, 
integrating over a normally distributed random intercept 
does not result in a closed form [14, 15]. To make similar 
subject specific and population average interpretations in 
terms of odds ratios, Bridge distribution was introduced by 
Wang and Louis [14]. 

Previous studies have shown that regression effects 
in the random intercept logistic models are estimated 
almost the same for different distributional assumptions 
for the random effect [24, 25]. Our simulation study 
assessed the impact of assuming a Bridge distribution 
in direct and conditional joint modelling approaches 
on the performance of the models and the accuracy of 
estimations. Correlated random intercepts were used to 
combine the response variables. The random intercepts 
were generated from a bivariate normal distribution. In 
the models, we assumed that the random intercept of the 
binary logistic regression follows a Bridge and a normal 
distribution. Based on the results of the simulation study, it 
was shown that the models in which a Bridge distribution 
is considered performs better than that of a normal 
distribution. Although the accuracy of the estimations 
was the same for both of the assumptions, those with 
the Bridge assumed random intercepts had a smaller 
absolute value of biases. 

In the current study, we used coriander fruit syrup 
data in which the duration and pain severity of the attacks 
were combined and assessed among migraine patients. 
We showed that the intervention significantly reduces the 
adverse outcomes of migraine. It has been demonstrated 
that Linalool is the main component of coriander [26, 
27]. The results of univariate analysis have shown that the 
duration and frequency of migraine attacks as well as pain 
degree decrease over the time with use of coriander[18].

CONCLUSION

Assuming a bridge distribution for the random intercept 
of binary outcome provides the same interpretation of 
parameter estimates in both cases of integrating and not 
integrating over the random effects. In addition, our study 
revealed that even if the random intercept of binary logistic 
regression followed a normal distribution, assuming a 
Bridge distribution for this random effect in the model leads 
to slightly more accurate results. This result was observed in 
both of direct and conditional joint modelling approaches.
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APPENDIX

Joint modelling code using proc nlmixed

#Direct approach; k: the number of datasets, pair: 
indicator of the two responses for the same subject
proc sort data=simDATA;
by k pair;
run;
PROC NLMIXED gconv=0 data=simDATA qpoints=10;
by k;
PARMS beta0=0.1 beta1=0.2 beta2=0.3 alpha0=0.1 
alpha1=0.2 alpha2=0.3 rho=0 utau=1 btau=0.4;
if var=”continuous” then do;
m1=beta0+beta1*group+beta2*time+z2*btau;
LL1=((-0.5)*log(2*pi*signor*signor)-((response-m1)**2)/
(2*signor*signor));
END;
if var=”binary” then do;
pi=constant(“pi”);
uo=probnorm(z1);
phi=1.0/sqrt(1+utau*utau*(3/pi*pi));
U=(1/phi)*log(sin(pi*uo*phi)/sin(phi*pi*(1-uo)));
Z = alpha0+alpha1*group+alpha2*time + U;
p=exp(Z)/(1+exp(Z));
LL2 = response*log(p) + (1-response)*log(1-p);
END;
LL=LL1+LL2;
MODEL response ~ GENERAL(LL);
RANDOM z1 z2 ~ NORMAL([0,0],[1,rho,1]) SUBJECT=id;
ods output ParameterEstimates=pars;
ods output FitStatistics=aic;
RUN;

#Conditional approach
proc sort data=simDATA;
by k pair;
run;
PROC NLMIXED gconv=0 data=simDATA qpoints=10;
by k;
PARMS beta0=0.1 beta1=0.2 beta2=0.3 alpha0=0.1 
alpha1=0.2 alpha2=0.3 omega=1 rho=0 utau=1 
btau=0.4;
if var=”continuous” then do;
m1=beta0+beta1*group+beta2*time+z2*btau;
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LL1=((-0.5)*log(2*pi*signor*signor)-((response-m1)**2)/
(2*signor*signor));
END;
if var=”binary” then do;
pi=constant(“pi”);
uo=probnorm(z1);
phi=1.0/sqrt(1+utau*utau*(3/pi*pi));
U= (1/phi)*log (sin (pi*uo*phi)/sin (phi*pi*(1-uo)));
Z = alpha0+alpha1*group+alpha2*time + 
omega*(response-m1) + U;

p=exp(Z)/(1+exp(Z));
LL2 = response*log (p) + (1-response)*log (1-p);
END;
LL=LL1+LL2;
MODEL response ~ GENERAL (LL);
RANDOM z1 z2 ~ NORMAL ([0, 0], [1, rho, 1]) 
SUBJECT=id;
ods output ParameterEstimates=pars;
ods output FitStatistics=aic;
RUN;
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