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Three-level SVR Method 

A Support Vector Regression Approach for 
Three–Level Longitudinal Data 

ABSTRACT 

Background: Longitudinal data structure is frequently observed in health science. This introduces correlation to the 
data that needs to be handled in modelling process. Recently, machine learning approaches have been introduced 
in the context of longitudinal data for prediction of the response variable purpose. In this paper a mixed-effects least 
squares support vector regression model is presented for three-level longitudinal data. In the proposed model, multiple 
random-effect terms are used for considering the existing correlation structures in longitudinal data. The proposed 
model is flexible in modelling (non-)linear and complex relationships between predictors and response, while it takes 
into account the hierarchical structure of data and is computationally efficient.
Methods Both random intercept and random trend models with a special correlation structure of errors are illustrated. 
A real data example on human Brucellosis rate is analysed and two simulation studies are performed to illustrate the 
proposed model. The fitting and generalisation performance of the proposed model are investigated and compared 
with the ordinary least squares support vector regression and linear mixed-effects models.
Results: Based on the human Brucellosis rate example and two simulation studies, the proposed models had the best 
performance in generalisation. Also, the fitting performances of the proposed models were better than that of the 
classic models.
Conclusion: Our study revealed that in the presence of nonlinear relationship between covariates and outcome, the 
proposed MLS-SVR model has the best fitting and generalisation performance and can capture correlation of the data.
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INTRODUCTION

Longitudinal data analysis are found frequently in 
clinical research where a subject has multiple correlated 
observations over time and can be assumed as a two-level 
data set. This correlated structure needs to be accounted 
for in the analysis [1,2]. In some cases, the two-level 

longitudinal data may be nested in the centres or clusters 
which adds an additional level to the data and forms 
a three-level longitudinal data structure. The intracluster 
correlation is then introduced in the three-level longitudinal 
data, and ignoring this correlation in the analysis procedure 
can lead to incorrect estimations of the standard errors [2].

Variants of classical models have been developed 
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and introduced for modelling the two-level and three-level 
longitudinal data under a variety of names: hierarchical 
linear models, random-effects models, two-stage models 
and random regression models [1-3]. In most of these 
models, the random-effects terms have been considered to 
account for the existing correlations of the longitudinal data.

Linear mixed-effects models (LMM) [2], generalized 
linear mixed-models (GLMM) [2] and generalized estimating 
equations (GEE) [4] models are the most commonly used 
methods in the longitudinal data analysis. However, fitting 
these models is not possible in high-dimensional data sets 
(number of observations < number of variables) by taking 
into account all covariates in the model at the same time [5]. 
Also, the relationships between covariates and response 
variable are considered as linear or limited nonlinear forms 
and need to specify the functional form of covariates and 
response for the appropriate transformation of covariates 
[6]. Therefore, it is not possible to capture unspecific 
complex nonlinear relationships between variables using 
these parametric methods.

In recent years, the use of machine learning methods 
has become very interesting. One promising and useful 
method of the machine learning is support vector machines 
(SVMs) introduced by Vapnik [7] for classification and 
function estimation problems. There are some properties 
which make the SVM interesting versus other machine 
learning techniques such as artificial neural network (ANN) 
and random forest (RF) methods. Unlike ANN, the SVM 
does not lead to local minima and is less prone to over-
fitting [8]. RF provides discrete models for prediction and 
the range of predictions are limited to the range of response 
variable over training set [9,10]. Also the RF technique 
tends to underestimate and overestimate higher and lower 
values, respectively. Moreover, theoretical analysis of the 
RF is difficult [9]. ANN and RF require long training time 
[11]. The SVMs can be fitted in high-dimensional data sets 
and can consider complex nonlinear relations between 
covariates and outcome by using kernel functions [12,13]. 
Suykens [18] presented an extended model of the SVM 
called least-squares support vector machine (LS-SVM) 
which uses the least-squares loss function. The optimisation 
problem in LS-SVM is solved linearly with a unique solution 
which makes it computationally time-saving [19]. The 
regression or function estimation form of LS-SVM is called 
least-squares support vector regression (LS-SVR) [19].

Kernel technique and SVM methods have been used 
in various studies for both classification and regression 
problems in longitudinal data. Luts [20] and Chen [21] 
used LS-SVM and kernel methods for classification of the 
longitudinal data. Also, a mixed-effects LS-SVR model 
was proposed by Seok [22] for continuous longitudinal 
outcomes and developed by Shim[23] for time-varying 
coefficients. There have been some studies which have 
used other machine learning techniques in longitudinal or 
clustered data [24-27]. All these studies have been done 
in two-level longitudinal data.

In this study, we propose a novel mixed-effects LS-SVR 
(MLS-SVR) model for predicting continuous outcomes in 
three-level longitudinal data which can be considered by 
a random intercept for level-3, both random intercept and 
trend for level-2, and a correlation structure for errors. Also 
our proposed method can capture the unspecific non-linear 
relationships between features and outcome by using a 
kernel function. To the best of our knowledge, this is the 
first SVM or kernel method study that considers the centre 
or cluster (third level) effect in three-level longitudinal data 
setting. In a recently published study, Moqaddasi et al. 
developed the LS-SVR method into the three-level setting. 
However, they considered only the random intercept 
term in each level [28]. We compare the generalisation 
performance of the proposed model with that of the 
ordinary LS-SVR and LMM in a real life data example and 
two simulation studies with various scenarios.

The rest of this paper is structured as follows. In 
materials and methods section, we describe the ordinary 
LS-SVR and present the proposed model with estimation 
procedure. Also, the numerical studies through a real 
data analysis and two simulation studies are described in 
this section. Then we provide the results of the real data 
example and simulation studies. Finally, discussion and 
conclusion sections are presented, respectively.

MATERIALS AND METHODS

The special property of the SVM is the nonlinear fitting 
using the kernel approach. In kernel–based techniques, 
a nonlinear problem are solved linearly by mapping the 
feature space into a higher dimension space [14,15]. 
Nevertheless, the SVM is computationally intensive because 
of using numerical optimisation algorithms and solving a 
quadratic optimisation problem. Hinge and ε-insensitive 
loss functions are two common losses used in the SVM 
in classification and regression problems, respectively 
[16,17]. Because of the expensive computation of the 
SVM we used LS-SVR with least squares loss function. In this 
section, we introduce the ordinary LS-SVR with the estimation 
procedure. Then, we propose the three-level random 
intercept and trend, i.e. MLS-SVR, with an estimation 
technique for three-level longitudinal data. A generalized 
cross-validation (GCV) function presented in [23] is used to 
obtain the optimal regularization parameters.

Least-squares support vector regression

In this section, we explain the ordinary LS-SVR. 
Suppose the training data set is denoted by  
with feature vector  and the response . The 
relation of the response and feature variables is shown in 
regression setting as follows 
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where b is the bias term. φ(.) is the feature mapping 
function which maps the input space into a higher 
dimensional feature space and ω  is a weight vector of the 
same dimension as φ(.). The optimisation equation (J) of 
the nonlinear LS-SVR is as follows

subject to the equality constraints of

here λ>0 is a regularization parameter,  is the  
w e i g h t vector  and is the error vector.

The primal Lagrange function can be constructed as

 

where αi≥0  are the Lagrange multipliers.The optimality 
conditions are given by

After eliminating ei  and ω  , the optimal values of αi  
and bare obtained b y solving a linear equation 
as follows:

where , , In  is the identity matrix 
of dimension n and K  is the n×n matrix with elements, 

 is the vector of ones of dimension n.
After solving the linear equation, we can find the 

optimal values of the bias ˆ,b, and Lagrange multipliers αî. 
Then the optimal regression function for the given 0x  is 
obtained as:

Three-level random intercept and trend LS-SVR

Now, we propose the MLS-SVR with random intercept 
and trend for a three-level longitudinal data. Let the training 
data set be , where ijky is the k-th observation 
of the response variable of the j-thcentre of the level-2 in 
i-thcentre of the level-3 corresponding to p×1 fixed-effects 
covariates ijkx . We assume that ijky is related to in ijkx  a 
nonlinear regression form as

where φ(Xijk) is a nonlinear feature mapping function, 
b is the bias term, ijkz  is q×1random effect covariate vector 
with the random effect parameter Ꮩij

 for level-2 from ,
 is a random effect parameter for level-3 from  

and nij×1 error vector .

For known ∑ and Rij the optimisation problem of the 
nonlinear three-level mixed effects LS-SVR can be define as

subject to equality constraints 

Here  are tuning or regularization parameters 
and  is the (k,l)th element of the inverse matrix of Rij, 

 .The Lagrange function can be 
written as

where αijk are Lagrange multipliers. The conditions for 
optimality are given by

After eliminating  , , ω, ijke , we can obtain the 
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optimal values of αijk and b by solving the following linear 
system equation as

where K is the kernel function in the form of, 
,0  and 1

t tN N  are the (Nt×1) vector of zeros 
and ones respectively,  where iG  is a square 
matrix of one by ni dimension,  is the 
Nt×Nq block diagonal matrix with  , 

 where  and  ,  
where  and .

The optimal regression function for the given (x0,z0) 
is as follows

The solution of the linear system equation depends on 
the S  and Rij. For this problem, we use an iterative 
procedure presented in [23] for the estimation of (α,b) and 

 for given regularization parameters as follows:

1. Start with the initial values ˆ
qIS =  and ˆ

ijij nR I= .

2. Calculate  based on equation (13) using the Ŝ  
and ˆ

ijR  obtained in the previous step.

3. Calculate the estimates Ŝ  and ˆ
ijR  using the 

obtained in the previous step as follows:

 and 

where  and  

with  .

4. Iterate steps until  

where k is the kth iteration and ε denotes the tolerance 
level. We consider ε=0.1 in this paper.

Regularization parameters

The functional structure of the MLS-SVR is characterised 
by tuning parameters, the regularization parameters  
and parameters of the kernel function. To obtain optimal 
values of these tuning parameters, we use the GCV 
function. The inverse of the leftmost matrix in (13) can be 
partitioned into follow submatrices as

where 11S  is a scalar, 12S  is a (1×Nt) vector, 21S  is a 
(Nt×1) vector and 22S  is a (Nt×Nt) matrix.

Then, ŷ can be expressed as y Sy=ˆ , where   
The GCV function can be obtained by applying the leave-
one-out method and the first order Taylor expansion as follows

where  is a set of tuning parameters. The optimal 
values of the tuning parameters are those that minimise the 
GCV function.

Human Brucellosis Rate Example

The Brucellosis data contains monthly frequency of 
subjects diagnosed with human Brucellosis. The data 
was related to cities of five provinces in the west of Iran 
(Hamadan, Kordestan, Ilam, Lorestan and Kermanshah) in 
2016-2017. We transformed the monthly frequency of 
Brucellosis (a count variable) to the logarithm of the rate (a 
continuous response variable) as follows

The constant 0.04 was added to brucellosis count in 
equation (15) for obtaining the non-zero rates. The box-
plot of the logarithm of brucellosis rate in each month was 
plotted in figure 1.

The ratio of rural to urban population, livestock (sheep, 
cattle, and goat) population (frequency), area of croplands, 
forest, and grassland (hectare) and some climatic variables 
such as monthly average of temperature, monthly sum of 
sunshine hours, rainfall, humidity and wind speed were 
considered as covariates. These covariates had extracted 
from Statistical Yearbook of Iran in 2016-2017 and Iran 
Meteorological Organisation website [29,30].

There were five provinces (level-3), 54 cities nested in 
these provinces (level-2) and 12 observations in each city 
(level-1). So, we had 648 observations in total. We used 
the first 10 observations of each city as the training and 
the last two observations as the testing data sets. So, the 
sizes of the training and testing data sets were 540 and 
108 for this example respectively. We fitted MLS-SVR with 
random intercept and trend (MLS-SVR.it), MLS-SVR with 
random intercept (MLS-SVR.i), ordinary LS-SVR, LMM with 
random intercept and trend (LMM.it), LMM with random 
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intercept (LMM.i) on training data set. The testing data set 
was used to assess the generalisation performance of each 
model. Mean square error (MSE) and mean absolute error 
(MAE) were considered for comparison of fitted models 
generalisation capabilities.

Simulation study1

We performed a Monte Carlo simulation study 
to investigate the performance of different methods in 
prediction of observations.

Let ijky  be the response of k  th subject within j  
thcentre of the level-2 within ith centre of the level-3 related 
to covariates ijk

( p )x  . We generated data from the regression 
equation as

where 
,  is the time variable (month=1,…,12), b= -11, 
Be ta=(0.08,0.18,0.26,0.02,0.14,0.61,0.1, -
0.16,0.65,-0.18,0.12,-0.1,-0.08), the covariates ijk

( p )x  
 generated from normal distribution with zero mean 

and unit variance. The coefficients obtained from the 
real data example. The correlation between the first five 
covariates was 

.

We considered two different values (5 and 10) 
for the number of centres at level-2 and level-3. 
The sample size of level-1 was 12 (number of the 
month) for each centreof level-2 in all scenarios. 
The distribution of the random effect was considered 
as normal with zero mean and standard deviation 
equal1.2 for level-3. The random effect of level-
2 simulated from  where  . We 
considered two levels for ρ as (-0.15, 0.7). Also the 
standard deviation of the error variable with standard 
normal distribution was considered in two levels (1.3, 
0.3).There were 16 settings in this simulation study. 
In all conditions, we used the first ten observations 
of each centre of the second level as training data 
set and the last two observations were placed in the 
testing data set. We fitted the MLS-SVR.it, M LS-SVR.i, 
ordinary LS-SVR, LMM.it, and LMM.i on the training 
data and estimated the parameters of each model. 
In the MLS-SVR and LS-SVR methods, the radial basis 
function (RBF) was used as the kernel function. The 
fitting and generalisation performance of each model 
were evaluated using two measures of MSE and 
MAE in training and testing data sets, respectively. 
This procedure was repeated 1000 times in each 
scenario.

Simulation Study2

Another simulation study was performed to assess the 
performance of the proposed MLS-SVR in the presence of 
a correlation structure in the error variables. We compared 
our proposed model with the LS-SVR and the LMM. The 
data generated from

FIGURE 1. Box-plot of the Brucellosis rate for each month in logarithmic scale (red points are the mean of the logarithm of 
brucellosis rate)
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Here the Beta, τijk, b,γ0i, and the number of centres 
in each level are the same as simulation example 1. Also 

, simulated from,   and  
with  for k,l=1,2,…12. Also,   were the same 
as those of simulation study 1. In this simulation study, the 
number of observations in each centre of the level-2 was 
12 which the first ten observations were used as the 
training data and the last two observations were considered 
as the testing data. We fitted MLS-SVR with random 
intercept using an autoregressive structure for the errors 
(MLS-SVR.i.cor), MLS-SVR with random intercept (MLS-
SVR.i), ordinary LS-SVR, LMM with random intercept and 
autoregressive structure for the errors (LMM.i.cor), LMM 
with random intercept (LMM.i) on the training data set. 
Then we investigated the generalisation performance of 
each model using the testing data set. Like the simulation 
study 1, we used the RBF as the kernel function in the 
LS-SVR methods. Each scenario of this simulation study was 
repeated 1000 times. After dividing the generated data 
sets into training and testing sets, we had 1000 training 
data set and 1000 testing data set for each scenario.

Computational Support

We used the R software version 3.5.1 [31]. The 
package “nlme” [32] was used for fitting LMMs. Also 
some packages such as “kernlab” [33], “Matrix” [34], 
and “MASS” [35] were used for coding ordinary LS-SVR 
and proposed MLS-SVR methods in simulation studies and 
real data example. The R codes of MLS-SVR are available 
upon the request from the first author.

RESULTS

Human Brucellosis rate example results

There were five provinces which Kermanshah had 
more cities than the others (14 cities). Lorestan and 
Ilam had the most and the least rate of brucellosis (per 
100,000) with 80.7 and 18.8, respectively. The most 
livestock and lands belonged to Lorestan province with 
1,899,697 people and 2,829,591 hectare, respectively. 
The descriptive statistics of the used variables in the human 
brucellosis data were shown in Table 1.

The results of fitting various models (MLS-SVR.it, MLS-
SVR.i, LS-SVR, LMM.it, and LMM.i) in human Brucellosis 
rate example were presented in Table 2. According to 
the Table 2, the ordinary LS-SVR had smallest MSE (0.97) 
and MAE (0.72) in training data, but the generalisation 
performance of the proposed MLS-SVR.it model was 
better than the others based on both MSE (1.59) and 

MAE(0,98) in testing set. The MSE and MAE criteria for 
MLS-SVR.it and MLS-SVR.i were smaller than their classical 
counterparts (LMM.it and LMM.i) for both training and 
testing sets. Also, the generalisation performances of 
the three LS-SVR methods in Table 2 were better than 
the LMMs. Furthermore, by fitting the ordinary LS-SVR 
and ignoring the random effect terms, the generalisation 
performance criteria got worse in testing set. Also, the 
fitting and generalisation performances of the models with 
random intercept and trend (MLS-SVR.it and LMM.it) were 
better than those of the methods which only considered the 
random intercept term (MLS-SVR.i and LMM.i).

We plotted the observed values of training and testing 
sets versus the prediction values obtained by the MLS-SVR.it 
and LMM.it in Figure 2. Based on Figure 2, the MLS-SVR.
it had a better performance than the LMM.it in prediction 
of response variable over both training and testing sets (the 
points were closer to the bisector line). 

Simulation study 1 results

In this simulation study, both random intercept and 
trend effects were considered in data generation process. 
The results of the simulation study 1 were given in Table 
3, 4 (MSE and MAE along with their standard errors (SE) 
over 1000 replications) for the training and testing data, 
respectively. These tables describe the performance of the 
proposed MLS-SVR.it along with that of the MLS-SVR.i, 
LS-SVR, LMM.it, and LMM.i. According to the results, the 
proposed method outperformed other models in terms of 
the used criteria. In this regard, the MLS-SVR.it yielded 
the smallest mean of MSEs and MAEs in both fitting 
and generalisation performance. The results of Table 3 
and Table 4 showed that the fitting and generalisation 
performance of the MLS-SVR.it and MLS-SVR.i were better 
than their LMM counterparts (LMM.it and LMM.i) based 
on MSE and MAE criteria for all scenarios. Also, ignoring 
the random effect terms had a great influence on the 
prediction performance over both training and testing sets 
(see the columns for LS-SVR method in Table 3 and Table 
4). Moreover, the prediction performance of the models 
which considered both random intercept and random 
trend (MLS-SVR.it, LMM.it) were better than those which 
only considered the random intercept (MLS-SVR.i, LMM.i) 
(Table 3 and Table 4). 

Simulation study 2 results

We considered the random intercept effect and an 
autoregressive correlation structure for the error term in the 
data generating process of this simulation study. Table 5 
shows the results of the simulation study 2 (MSE and MAE 
along with their standard errors (SE) over 1000 replications) 
for the training and testing data sets, respectively. The 
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TABLE 1. Description of the Brucellosis data variables in each provience (Mean, Min and Max are based on the monthly 
observations in all cities of each province)

*standard deviation; **minimum; ***maximum; # celcius scale; ## millimetre; ### metre per second

Province Ilam Kordestan Kermanshah Lorestan Hamedan

Population

Number of Cities 10 10 14 11 9

Brucellosis count 109 972 841 1420 882

Urban (people) 395,263 1,134,229 1,468,615 1,134,908 1,097,217

Rural (people) 184,444 468,768 478,444 623,896 639,005

Brucellosis rate
(per 100,000) 18.8 60.6 43.2 80.7 50.8

Livestock

Cattle (heads) 27,679 93,609 73,600 102,585 85514

Sheep (heads) 559,033 811,423 979,895 1,316,334 1,023,724

Goat (heads) 252,886 129,729 171,577 480,778 57,548

Lands

Croplands (hectare) 336,365 1,173,280 949,000 727,922 708,409

Forest (hectare) 641,667 374,084 527,000 1,217,314 40,617

Grassland (hectare) 784,694 1,414,000 1,193,000 884,355 822,000

Temperature 
(°C)#

Mean (SD*) 22.4 (10.4) 12.2 (9.8) 16.5 (9.8) 15.6 (9.4) 12.6 (9.4)

Min** 3.4 -5.7 -1.3 -1.8 -7

Max*** 41 28.6 35.9 37.2 28.8

Rainfall 
(mm)##

Mean (SD) 45.5 (69.8) 38.9 (51.4) 43.9 (58.0) 45.2 (62.1) 34.8 (45.6)

Min 0 0 0 0 0

Max 339.1 227.3 288.8 244 212.5

Humidity (%)

Mean (SD) 36.7 (16.8) 48.2 (18.8) 43.1 (18.1) 43.0 (16.8) 45.4 (16.7)

Min 1 17 13.9 15 19

Max 68 83 76.7 77 76.1

Wind Speed 
(m/s)###

Mean (SD) 2.7 (0.9) 2.5 (0.5) 2.6 (0.9) 2.6 (0.8) 2.6 (0.9)

Min 1 1.5 0.1 1 1

Max 5.2 4.4 6.2 5.4 6

Sunshine 
(hours)

Mean (SD) 260.8 (66.4) 256.2 (79.7) 255.2 (68.2) 263.6 (71.5) 263.5 (70.7)

Min 141.7 81.3 129.6 98 143.7

Max 372.8 382.5 367 384.8 374.1
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Data Type Measure MLS-SVR.it MLS-SVR.i LS-SVR LMM.it LMM.i

Training Data
MSE* 1.24 1.44 0.97 1.42 1.45

MAE** 0.81 0.87 0.72 0.87 0.87

Testing Data

MSE 1.59 1.80 2.51 3.22 3.42

MAE 0.98 1.05 1.24 1.44 1.48

TABLE 2. Performance comparison of the proposed MLS-SVRs, ordinary LS-SVR, and LMMs for Brucellosis rate example

*mean squares error; **mean absolute error

FIGURE 2. Comparison of MLS-SVR.it and LMM.it methods in prediction of the training and testing sets of brucellosis rate example. 
Top panel (a) presents observed versus prediction values of the training set. Bottom panel (b) presents observed versus prediction 
values of the testing set.
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prediction performance of various models (MLS-SVR.i.cor, 
MLS-SVR.i, LS-SVR, LMM.i.cor, and LMM.i) had been 
provided in this table. According to the MES and MAE 
measures reported in Table 5, the proposed MLS-SVR 
models had the best fitting performance among the 
fitted models. Also, the generalisation performance of the 
proposed MLS-SVR.i.cor was better than that of the other 
methods based on criteria shown in Table 5. The prediction 
performances of the MLS-SVR.i.cor and MLS.SVR.i were 
better than their LMM counterparts based on the MSE and 
MAE in both training and testing data sets. Furthermore, 
the MSE and MAE measures increased after eliminating 
the random effect term and the autoregressive structure of 
the error terms (see the columns for LS-SVR method in table 
5). Although, the fitting performance of the LMM.i.cor was 
better than the LMM.i in training set, but its generalisation 
performance was worse over testing set. Nevertheless, both 
fitting and generalisation performances of the MLS-SVR.i.cor 
were better compared to the MLS-SVR.i.

Computational time

Using a computer with CPU: corei3 and 2.13 GHz, 
RAM: 4.00 GB, for known regularization parameters of 
machine learning techniques, the computation times of 
fitting different methods in Brucellosis rate data were 1.87, 
1.20, 0.39, 2.53, and 0.26 seconds for the MLS-SVR.it, 
MLS-SVR.i, LS-SVR, LMM.it, and LMM.i, respectively. The 
computational time of the machine learning methods were 
different when the regularization parameters were unknown. 
The GCV function was used in this case which changed the 
computation time of the MLS-SVR.it, MLS-SVR.i, and LS-SVR 
to 88.00, 41.22, and 37.14 seconds, respectively.

DISCUSSION

A novel multi-level LS-SVR model was proposed in 
this paper for three-level longitudinal data. The proposed 
model used multiple random-effect terms to account for 
the correlated structures of the levels in the longitudinal 
data. Our proposed model considered both random 
intercept and random trends. Also, a correlation structure 
can be considered in the proposed MLS-SVR model for 
the error terms. Like the LS-SVR, the proposed MLS-SVR is 
computationally efficient due to a need to solve a linear 
system and it is useful for modelling the highly unbalanced 
data sets (non-fixed time points and unequal number 
of observations) with (non-)linear complex relationships 
between covariates and response.

In the real data example related to the human 
Brucellosis rate, the performance of the proposed MLS-
SVR.it and ordinary LS-SVR were the best in terms of 
generalisation and fitting, respectively. Moreover, the 
MSE and MAE of the MLS-SVR.it were smaller than those 

of the LMM.it. The performances of the proposed models 
(MLS-SVR.it and MLS-SVR.i) were better compared with 
the LMMs in both training and testing data sets of this 
example. There might be nonlinear relationships between 
covariates and response which the classical approaches 
(LMM.it and LMM.i) could not capture them well as 
machine learning techniques (MLS-SVR.it and MLS-SVR.i). 
Also, the generalisation performance decreased after 
eliminating the random effect terms and fitting the ordinary 
LS-SVR showing the influence of random effect terms in 
prediction performance. Both MLS-SVR.it and LMM.it, 
which considered the random intercept and trend, had 
a better performance in prediction than the MLS-SVR.i 
and LMM.i, that considered only the random intercept, in 
training and testing data sets. It shows the importance of 
taking into account the random trend term which should be 
considered in the models for a better predictions.

Based on the simulation study 1, the generalisation 
and fitting performance of the proposed MLS-SVR models 
were the best among the fitted methods in all scenarios. 
According to the results of the first simulation study, the 
MSE and MAE measures of the MLS-SVR.it and MLS-
SVR.i models were smaller than their LMM counterparts 
in both training and testing sets. The reason of the better 
performance of the MLS-SVR method might be due to the 
created nonlinear relationships (using the sine function 
in data generation process) between the features and 
outcome. Also, it seems that the random intercept and 
random trend effects have important roles in prediction 
performance in the first simulation study and must be 
considered in the modelling.

The proposed MLS-SVR models had the best 
performance in fitting and generalisation among the fitted 
models in the simulation study 2.The best generalisation 
performance belonged to the MLS-SVR.i.cor in all scenarios. 
Also, the prediction performances of the MLS-SVR.i.cor and 
MLS-SVR.i were better than their LMM counterparts in 
training and testing sets. Like the first simulation study, the 
created nonlinear relationships between covariates and 
outcome might be the reason of this better performance. 
Therefore, in presence of nonlinear or complex relationships 
between covariates and response, the proposed MLS-SVR 
method could be a better choice for prediction problems. 
The random intercept term and autoregressive structure of 
the error terms were influential in prediction performance 
and ignoring them (fitting ordinary LS-SVR) increased the 
MSE and MAE of the models. Therefore, they should be 
considered in the modelling process. Moreover, although 
the performance of the LMM.it was better than that of 
the LMM.i in the training set, but the LMM.i had a better 
prediction performance than LMM.it in the testing set. 
Also, by increasing the sample size, the MSE and MAE 
measures of the MLS-SVR.i.cor, MLS-SVR.i, LMM.i.cor, and 
LMM.i tended to be decreased.

Several studies have been done which used the 
LS-SVR technique in longitudinal or clustered data. Seok 
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et al. proposed a mixed-effects LS-SVR and used it 
for pharmacokinetic (PK) and pharmacodynamic (PD) 
longitudinal data sets. The performance of their proposed 
LS-SVR method was better than that of the standard 
method for the analysis of population PK and PD data 
in both training and testing data [22]. In another study, 
the prediction performance of the proposed mixed-effects 
LS-SVR was better compared to the LMM in the two real 
data examples and two simulation studies for both training 
and testing sets [23]. The LS-SVR methods in the above 
two studies were proposed for two-level longitudinal 
data. Moqaddsi et al. extended the LS-SVR technique 
and proposed three-level mixed-effects LS-SVR for count 
data. The prediction performance of their proposed model 
was better compared to the ordinary LS-SVR, LMM, (zero-
inflated) poisson mixed-effects model, and (zero-inflated) 
negative binomial mixed-effects model in a simulation 
study. Also, they used their proposed model in a real data 

example which outperformed other techniques [28]. 
We used the RBF in MLS-SSVR and LS-SVR models as 

the kernel function. Other kernels like polynomial can be 
used in the proposed model. Although the numerical studies 
were performed on the balanced data sets, the proposed 
MLS-SVR can be used for the very unbalanced data sets 
with high-dimensionality. An autoregressive structure for the 
error term was used in simulation study1. Other correlation 
structures for error terms can be considered in the proposed 
MLS-SVR method.

CONCLUSIONS

It seems that, in presence of unspecific nonlinear 
relationships between covariates and outcome, the 
proposed MLS-SVR model can be more useful. Also, the 

Correlation 
of Month 

and level-2 

number 
of Level-3 
clusters

number 
of Level-2 
clusters

SD* 
of 

error
MLS-SVR.it MLS-SVR.i LS-SVR LMM.it LMM.i

MSE# MAE## MSE MAE MSE MAE MSE MAE MSE MAE

-0.15

5 5
1.3 1.22

(0.017)
0.86

(0.007)
1.98

(0.038)
1.08

(0.009)
4.28

(0.065)
1.60

(0.013)
3.08

(0.010)
1.40

(0.002)
3.58

(0.010)
1.51

(0.002)

0.3 0.25
(0.006)

0.37
(0.005)

1.02
(0.029)

0.74
(0.009)

2.87
(0.050)

1.30
(0.012)

1.73
(0.006)

1.06
(0.002)

2.18
(0.007)

1.19
(0.002)

10 5
1.3 1.36

(0.012)
0.92

(0.005)
3.12

(0.191)
1.25

(0.021)
4.76

(0.048)
1.71

(0.009)
3.17

(0.008)
1.43

(0.002)
3.69

(0.008)
1.54

(0.002)

0.3 0.19
(0.004)

0.33
(0.003)

1.18
(0.031)

0.80
(0.010)

3.21
(0.037)

1.40
(0.008)

1.77
(0.004)

1.08
(0.001)

2.25
(0.005)

1.21
(0.002)

5 10
1.3 1.38

(0.012)
0.93

(0.004)
3.01

(0.147)
1.25

(0.019)
4.59

(0.051)
1.68

(0.010)
3.19

(0.008)
1.43

(0.002)
3.70

(0.008)
1.54

(0.002)

0.3 0.19
(0.004)

0.33
(0.003)

1.20
(0.031)

0.80
(0.010)

3.20
(0.041)

1.39
(0.009)

1.77
(0.004)

1.08
(0.001)

2.26
(0.005)

1.21
(0.001)

10 10
1.3 1.26

(0.007)
0.89

(0.002)
2.27

(0.159)
1.14

(0.011)
5.15

(0.035)
1.79

(0.007)
3.22

(0.006)
1.44

(0.001)
3.74

(0.006)
1.55

(0.001)

0.3 0.13
(0.001)

0.29
(0.001)

0.70
(0.013)

0.62
(0.005)

3.44
(0.033)

1.45
(0.007)

1.79
(0.003)

1.08
(0.001)

2.28
(0.004)

1.21
(0.001)

0.7

5 5
1.3 1.20

(0.017)
0.85

(0.007)
2.12

(0.047)
1.12

(0.010)
5.79

(0.080)
1.86

(0.014)
3.07

(0.010)
1.40

(0.002)
3.55

(0.011)
1.51

(0.003)

0.3 0.26
(0.006)

0.38
(0.005)

1.22
(0.037)

0.80
(0.010)

4.44
(0.071)

1.62
(0.013)

1.72
(0.005)

1.06
(0.002)

2.17
(0.007)

1.18
(0.002)

10 5
1.3 1.34

(0.012)
0.91

(0.004)
2.92

(0.130)
1.26

(0.016)
6.42

(0.063)
1.98

(0.010)
3.16

(0.007)
1.42

(0.002)
3.65

(0.008)
1.53

(0.002)

0.3 0.20
(0.004)

0.34
(0.003)

1.22
(0.029)

0.81
(0.009)

4.87
(0.055)

1.71
(0.010)

1.79
(0.004)

1.08
(0.001)

2.24
(0.005)

1.20
(0.001)

5 10
1.3 1.35

(0.012)
0.91

(0.004)
3.39

(0.206)
1.31

(0.021)
6.29

(0.065)
1.96

(0.011)
3.17

(0.007)
1.43

(0.002)
3.65

(0.008)
1.53

(0.002)

0.3 0.20
(0.004)

0.34
(0.003)

1.28
(0.037)

0.83
(0.010)

4.65
(0.057)

1.67
(0.011)

1.80
(0.004)

1.08
(0.001)

2.24
(0.005)

1.20
(0.001)

10 10
1.3 1.25

(0.006)
0.89

(0.002)
2.24

(0.029)
1.17

(0.006)
6.85

(0.042)
2.06

(0.007)
3.23

(0.005)
1.44

(0.001)
3.72

(0.006)
1.54

(0.001)

0.3 0.13
(0.001)

0.29
(0.001)

0.82
(0.017)

0.67
(0.006)

5.22
(0.041)

1.78
(0.007)

1.83
(0.003)

1.09
(0.001)

2.28
(0.004)

1.21
(0.001)

*standard deviation; #meaan squares error; ## mean absolute error

TABLE 3. Fitting performance comparison of the proposed MLS-SVRs, ordinary LS-SVR and LMMs on training data set for 
simulation study 1 (standard error in parenthesis)
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Correlation 
of Month 
and level-

2 

Number 
of Level-3 
clusters

number 
of Level 2 
clusters

SD* of 
error MLS-SVR.it MLS-SVR.i LS-SVR LMM.it LMM.i

MSE# MAE## MSE MAE MSE MAE MSE MAE MSE MAE

-0.15

5 5
1.3 5.10

(0.037)
1.80

(0.007)
6.45

(0.047)
2.03

(0.008)
11.76
(0.099)

2.73
(0.012)

5.30
(0.035)

1.84
(0.006)

6.64
(0.044)

2.06
(0.007)

0.3 2.79
(0.020)

1.34
(0.005)

4.43
(0.034)

1.68
(0.007)

9.92
(0.087)

2.51
(0.011)

3.14
(0.020)

1.42
(0.005)

4.55
(0.031)

1.71
(0.006)

10 5
1.3 4.91

(0.024)
1.77

(0.005)
6.23

(0.032)
1.99

(0.005)
11.82
(0.068)

2.75
(0.008)

5.07
(0.022)

1.80
(0.004)

6.41
(0.030)

2.03
(0.005)

0.3 2.51
(0.013)

1.27
(0.003)

4.19
(0.023)

1.63
(0.005)

10.19
(0.062)

2.55
(0.008)

2.96
(0.013)

1.39
(0.003)

4.46
(0.022)

1.69
(0.004)

5 10
1.3 4.86

(0.023)
1.76

(0.004)
6.20

(0.031)
1.99

(0.005)
11.73
(0.068)

2.73
(0.008)

5.02
(0.022)

1.79
(0.004)

6.41
(0.030)

2.02
(0.005)

0.3 2.49
(0.013)

1.27
(0.003)

4.21
(0.024)

1.64
(0.005)

10.05
(0.063)

2.53
(0.008)

2.98
(0.013)

1.39
(0.003)

4.48
(0.022)

1.70
(0.004)

10 10
1.3 4.64

(0.016)
1.72

(0.003)
5.99

(0.021)
1.96

(0.004)
11.76
(0.048)

2.73
(0.006)

4.96
(0.016)

1.78
(0.003)

6.39
(0.021)

2.02
(0.004)

0.3 2.24
(0.008)

1.20
(0.002)

4.01
(0.017)

1.60
(0.003)

9.94
(0.047)

2.51
(0.006)

2.90
(0.009)

1.37
(0.002)

4.44
(0.016)

1.69
(0.003)

0.7

5 5
1.3 4.96

(0.035)
1.78

(0.007)
6.58

(0.046)
2.05

(0.007)
15.35
(0.122)

3.12
(0.013)

5.11
(0.034)

1.81
(0.006)

6.61
(0.044)

2.06
(0.007)

0.3 2.68
(0.019)

1.31
(0.005)

4.52
(0.035)

1.70
(0.007)

13.73
(0.125)

2.95
(0.014)

2.95
(0.018)

1.38
(0.005)

4.55
(0.032)

1.71
(0.006)

10 5
1.3 4.76

(0.023)
1.75

(0.004)
6.37

(0.032)
2.02

(0.005)
15.48
(0.090)

3.14
(0.010)

4.87
(0.021)

1.77
(0.004)

6.39
(0.029)

2.02
(0.005)

0.3 2.39
(0.013)

1.24
(0.003)

4.19
(0.023)

1.63
(0.005)

14.04
(0.085)

2.98
(0.010)

2.81
(0.013)

1.35
(0.003)

4.44
(0.021)

1.69
(0.004)

5 10
1.3 4.74

(0.024)
1.74

(0.005)
6.42

(0.033)
2.02

(0.006)
15.25
(0.089)

3.12
(0.010)

4.84
(0.022)

1.76
(0.004)

6.43
(0.029)

2.03
(0.005)

0.3 2.40
(0.013)

1.24
(0.004)

4.18
(0.023)

1.63
(0.005)

13.56
(0.085)

2.94
(0.010)

2.82
(0.012)

1.35
(0.003)

4.44
(0.021)

1.69
(0.004)

10 10
1.3 4.53

(0.016)
1.70

(0.003)
6.20

(0.022)
1.99

(0.004)
15.43
(0.064)

3.13
(0.007)

4.76
(0.015)

1.75
(0.003)

6.38
(0.021)

2.02
(0.003)

0.3 2.19
(0.008)

1.19
(0.002)

4.08
(0.017)

1.61
(0.004)

13.76
(0.062)

2.96
(0.007)

2.76
(0.009)

1.34
(0.002)

4.44
(0.015)

1.69
(0.003)

TABLE 4. Generalization performance comparison of the proposed MLS-SVRs, ordinary LS-SVR and LMMs on testing data set for 
simulation study 1 (standard error in parenthesis)

*standard deviation of the error term; #meaan squares error; ## mean absolute error

number 
of Level-3 
clusters

number 
of Level-2 
clusters

MLS-SVR.i.cor MLS-SVR.i LS-SVR LMM.i.cor LMM.i

MSE # MAE 
## MSE MAE MSE MAE MSE MAE MSE MAE

Training
Set

5 5 0.73
(0.014)

0.64
(0.008)

1.09
(0.053)

0.75
(0.012)

1.97
(0.034)

1.09
(0.009)

2.43
(0.009)

1.25
(0.003)

2.49
(0.008)

1.27
(0.002)

10 5 0.82
(0.012)

0.70
(0.006)

2.24
(0.128)

1.20
(0.007)

2.31
(0.027)

1.20
(0.007)

2.51
(0.007)

1.27
(0.002)

2.56
(0.006)

1.29
(0.002)

5 10 0.82
(0.012)

0.70
(0.006)

2.33
(0.130)

0.98
(0.022)

2.15
(0.029)

1.15
(0.008)

2.54
(0.007)

1.28
(0.002)

2.58
(0.006)

1.29
(0.002)

10 10 0.94
(0.006)

0.77
(0.003)

1.17
(0.044)

0.81
(0.010)

2.35
(0.025)

1.21
(0.006)

2.58
(0.005)

1.29
(0.001)

2.61
(0.004)

1.30
(0.001)

Testing
Set

5 5 3.30
(0.023)

1.46
(0.006)

3.33
(0.024)

1.46
(0.006)

4.62
(0.040)

1.72
(0.008)

3.47
(0.024)

1.50
(0.005)

3.41
(0.022)

1.48
(0.005)

10 5 3.11
(0.016)

1.41
(0.004)

3.16
(0.017)

1.42
(0.004)

4.62
(0.030)

1.72
(0.006)

3.31
(0.015)

1.46
(0.004)

3.29
(0.014)

1.46
(0.003)

5 10 3.06
(0.015)

1.40
(0.004)

3.10
(0.016)

1.41
(0.004)

4.38
(0.033)

1.67
(0.006)

3.27
(0.014)

1.45
(0.003)

3.24
(0.014)

1.45
(0.003)

10 10 2.88
(0.011)

1.36
(0.003)

2.92
(0.011)

1.37
(0.003)

4.36
(0.025)

1.67
(0.005)

 3.19
(0.011)

1.44
(0.002)

3.20
(0.010)

1.44
(0.002)

TABLE 5. Prediction performance comparison of the proposed MLS-SVRs, ordinary LS-SVR, and LMMs for simulation study 2 on 
training and testing data sets (standard error in parenthesis)

#meaan squares error; ## mean absolute error
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prediction performance decreases by ignoring the random 
effect terms in longitudinal or clustered data sets. So the 
multilevel structure must be considered in the analysis of 
these types of data.
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