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Bayesian doubly inflated Poisson for correlated data

Bayesian Analysis of Doubly Inflated Poisson 
Regression for Correlated Count Data: 
Application to DMFT Data 

ABSTRACT

Outcome variables in clinical studies sometimes include count data with inflation in two points (usually zero and k 
(k>0)). Doubly inflated models can be adopted for modeling these types of data. In statistical modeling, the association 
among subjects due to longitudinal or cluster study designs is considered by random effects models. In this article, 
we proposed a doubly inflated random effects model using the Bayesian approach for correlated count data with 
inflation in two values, and compared this model with Bayesian zero-inflated Poisson and Bayesian Poisson models. 
The parameters’ estimates by these models were obtained by Markov Chain Monte Carlo method using OpenBUGS 
software. Bayesian models were compared using the deviance information criterion. To this end, we utilized the total 
number of decayed, missed, and filled teeth of 12-year-old children and also conducted a simulation study. 
Results of real data and the simulation study revealed that the proposed model is fitted better than previous models.
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INTRODUCTION

In clinical research, outcome variables include count 
data, such as the number of symptoms, number of seizures, 
post-surgical complications, number of hospitalizations, 

and number of decayed, missing, and filled teeth (DMFT). 
Generally, these kinds of data are not normally distributed 
but are mostly distributed in the Poisson, negative binomial, 
and binomial forms. In the Poisson distribution, unlike the 
normal distribution, the variance of the random variable 
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depends on the mean, and thus the mean is equal to the 
variance. Count data depart from Poisson distribution due 
to the large frequency of farthest observation, whereas 
the variance is greater than the mean, and this is referred 
to as over-dispersion. In this case, negative binomial, 
generalized Poisson distribution, and also zero-inflated 
models are employed to analyze the data [1]. 

Zero-inflated Poisson (ZIP) regression is the most 
common model for analyzing count data with excess 
zeros. This model was introduced by Lambert in 1992. 
He assumed that, with probability P, only 0 is observed, 
and with probability 1-P, there is a Poisson (λ) random 
variable. In this model, both probability P and mean λ 
depend on covariates with logit-link and log-link functions, 
respectively [2].

There may be samples in reality where the observation 
includes higher incidences of count zero as well as another 
count value, say k>0. We may call this case doubly 
inflated probability models. The doubly inflated Poisson 
(DIP) model simultaneously accommodates the count of 
zero, k, and other positive values. For instance, the DMFT-
index which includes a count of DMFT is a major indicator 
for the dental health status of a person. In the Iranian 
National Oral Health Survey, it has been observed that the 
DMFT-index in children of age 12 includes a large amount 
of 0 and 1 [3].

Chandra (2011) introduced DIP and related regression 
models. She considered two DIP models,  and 

. In these models, beside the inflated zeros, 
there is another inflated value, k>0. The motivating 
examples in this study were the DMFT index in 1013 
children and the patients’ length of stay (LOS). Frequencies 
of 0 and 1 were larger in the observed DMFT count than 
other counts.  , , and ZIP models have 
also been compared [4]. 

Bivariate DIP models were proposed by Pooja 
Sengupta et al. (2015). In this article, authors introduced a 
bivariate distribution for count data with the inflated count 
in both (0,0) and (k,k) cells for k>0. Data used in this article 
were taken from the Australian Health Survey. Bivariate 
responses included the joint count of , the number 
of physician visits, and , the number of medications 
prescribed for the patient. Cell frequencies were larger in 
(0,0) and (1,1) than all other cells [5]. Sumen sen et al. 
(2018) used Gaussian copula for modeling multivariate 
doubly inflated Poisson. A simulation study was used to 
investigate the proposed model [6]. Ishapathik Das et at. 
(2019) adjusted the multivariate distribution for the inflated 
frequencies. In the present study, the number of physician 
visits  and also the number of prescribed medicine were 
used as the data and were analyzed using multivariate 
doubly inflated Poisson regression [7]. Joseph Mathews et 
al. (2019) in the book titled “Modern statistical methods 
for spatial and multivariate data”, presented negative 
binomial distribution for multivariate doubly inflated count 
data and used Gaussian copula methods.

Assume that the count response  is 
independently distributed as One approach 
to model a doubly inflated count response is to let W be 
a random variable with the following probability mass 
function:

Where 

and

In this model, probabilities  and  can depend 
on covariates using the logit-link function and mean  
can relate to covariates with the log-link function [4].
In clinical research, it is frequently observed that data are 
correlated due to hierarchical, multilevel, longitudinal, 
repeated measure, and cluster study designs. Random 
effects models are adopted in order to calculate the 
association between subjects in these studies. So far, 
numerous scientists have conducted studies with random 
effects in zero-inflated models, such as zero-inflated count 
model for longitudinal data by [8], multilevel zero-inflated 
generalized Poisson by [9], a Bayesian approach of joint 
models for clustered zero-inflated count data by [10], and 
hierarchical Bayesian analysis of correlated zero-inflated 
count data by [11]. Classical statistical methods such as 
the maximum likelihood estimate (MLE), the likelihood 
ratio (LR) test, and the method of moments techniques 
have been used for ZIP regression in multivariate, 
multilevel, hierarchical, longitudinal, cross-section 
models [9, 11, 12].

In the DIP study by Chandra (2011), parameters’ 
estimates have been examined through maximum likelihood 
and the method of moments techniques. Moreover, in a 
study conducted by Sengupta et al (2015)., parameters’ 
estimate has been obtained using the maximum likelihood 
method [4, 5].

The Bayesian approach is chosen as it overpasses the 
limitations of classic approaches when using asymptotic 
results. Also, in the Bayesian approach, unobserved 
heterogeneities in the data indicate simplicity [13].

The MLE method is attractive due to several desirable 
asymptotic properties. For example, the MLE gains an 
unbiased and efficient estimator (if it exists) when data are 
distributed normally and the sample size increases to infinity. 
However, these asymptotic assumptions do not necessarily 
hold in small samples. When the asymptotic normality 
of the MLE is not satisfied and/or data are uncommon 
such as zero-inflated or doubly inflated ones, confidence 
intervals by classic statistics are often misinterpreted. The 
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Bayesian analysis presents an alternative approach to 
handle these deficiencies [14].

Unlike the classic method, in the Bayesian approach, 
parameters are considered to be random, and a joint mass 
function is formed for both data and parameters. This joint 
function refers to the posterior distribution. The point and 
interval estimates of the parameters are obtained from the 
posterior distribution through Markov Chain Monte Carlo 
(MCMC) as a simulation-based method [15].

In this article, we implemented a Bayesian approach 
for doubly inflated correlated count data with random 
effects, and the parameters’ estimate was achieved using 
the MCMC technique.

METHOD

Bayesian ZIP Model with a Random Effect

Let  be the response for the ith subject (i=1, 
2,…,n) at the jth occasion (j=1, 2, …, m), where n 
is the total number of subjects and m is the number 
of occasions. The mixture distribution of  is:

where  is the probability of observed zero and  is the 
mean of the Poisson distribution. The zero-inflated Poisson 
probability distribution with a random effect is equal to:

such that  &  

 and  are 

vectors of coefficients of  and , respectively, 

and ,  is the random subject 
effect. Therefore, the likelihood function,

 is:

The first and most important step in the Bayesian 
approach is choosing appropriate prior distributions. 
Let  be the set of parameters for the above-
mentioned model. We assume independent priors 
for these parameters. If the joint prior distribution of 
parameters is  and we assume 

a normal distribution for  and  as well as an inverse 
gamma for , then the joint prior distribution will be 

Where  and . 
Upon multiplying the likelihood function (3) by the 

joint prior [4], the posterior distribution is given by:

The Bayesian estimation of the parameters 
 requires that samples be taken from the full 

conditional distribution of each parameter. Unfortunately, it 
is not possible to directly sample from the full conditional 
distribution for . As a result, a Metropolis-
Hastings (M-H) algorithm in the MCMC method is utilized 
to generate samples within Gibbs iterations [14, 16, 
17]. For the ZIP regression model, we obtained the full 
conditional posterior distributions for the parameters based 
on Equation [5] (See Appendix A).

2.2 Bayesian DIP Model 

2.2.1 DIP Model with a Random Effect

There may come a time when the count response 
inflates in two points such as zero and another point (k>0). 
This has been introduced as the doubly inflated situation.

Suppose  is the count response for the ith 

subject  in the jth occasion 
 with a mixture distribution is equal to:

where 

Then, the DIP probability distribution, 
, with a random effect, will be as follows:

Probabilities depend on covariates via the 
logit-link function and mean  formulates to covariates 
with the log-link function as demonstrated below:

in which  are the matrix of covariates in 
multinomial logistic and log-linear models, respectively, 
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and . Thus, the likelihood function is:

where

[4, 5, 18].
Where  and when   

, then 

2.2.2. Bayesian DIP Model with a Random Effect

According to the Bayesian approach, we 
need to determine the prior distribution for unknown 
parameters in the logit and log models. For fixed 
effects , we choose the normal distribution 
and assume an inverse gamma prior for the variance 
of random effect b. If  and 

 and also if we assume the set of 
parameters for the DIP model  be distributed 
independently, then the joint prior distribution will be:

Regarding the likelihood function [7] and joint prior 
distribution (9), the posterior distribution will be as follows:

=  (10)
The mentioned posterior distribution is not computed 

directly. The MCMC algorithm is implemented to calculate 
parameters’ estimates. For this purpose, we need to 
generate samples from the full conditional posterior 
distribution for the parameters  separately 
[14, 18, 19]. For the DIP regression model, we 
obtained the full conditional posterior distributions for 
the aforementioned parameters based on Equation [10] 
(See Appendix B).

2.3 Bayesian Model Comparison

In this paper, we used the deviance information 
criterion (DIC) for determining the optimal Bayesian model. 
The DIC was proposed by Spiegelhalter et al. (2002) 
and is useful when parameters of Bayesian models have 
been obtained by the MCMC method. The general DIC 
formula is: 

where deviance is defined as -2 times the log-
likelihood, that is,  is some Bayesian 
estimate of  or posterior mean, median, or mode, and 
 is a fixed value [20]. For the Bayesian Poisson, ZIP, 

and DIP models, DIC is easily obtained by OpenBUGS 
where  is replaced with the likelihood in the 
mentioned models. 

SIMULATION STUDY 

To establish the validity of the proposed Bayesian 
model, this section presents the results of a simulation study. 
Six series of correlated data of DIP were generated with 
inflatation in zero and one as the response variable. The 
DIP model used here had three parts: first, the probability 
of zero; second, the probability of one; and third, the 
Poisson model. Probabilities 0.6 and 0.3 and also 0.3 
and 0.2 were adopted for zero and one, respectively. In 
the Poisson part of the DIP model, a binary, a discrete, and 
a time variable were considered in the log-linear model; 

( ).
In the logistic part of DIP model, only the intercept 

was taken into account to keep the model simpler in order 
to compare with allocated probabilities. In the log-linear, 
the first random variable  was generated from a binary 
distribution with 0.4 probability of success; the second 
random variable  was generated from integer values in 
the interval (0, 20), and the third variable was time with 
(1, 2, 3) values. The paired correlation for response in 
three times was considered to be 0.4.

Three simulation studies were performed with sample 
sizes of n=50, 100, and 200, and the procedure was 
repeated 1000 times. In each sample size the parameter 
values were fixed at  and 
probabilities of zero and one were used as mentioned 
above. A total of six data sets were generated; then, 
Poisson, ZIP, and DIP models in the Bayesian approach 
were fitted to these six generated data sets.

In the Bayesian DIP and Bayesian ZIP models, 
60,000 updates were taken with one chain. After initial 
20,000 burn-in iterations, every 15th sample was kept 
and finally 2666 samples were obtained. In the Bayesian 
Poisson model, one chain with 50,000 iterations and 
10,000 burn-in samples were considered, and then 
every 10th sample was kept and ultimately 4000 
samples were obtained. By checking the dynamic trace 
of Gibbs iterations and by calculating the Gelman-Rubin 
convergence statistic in every three models by the results 
of OpenBUGS software, those models were converged.

Three models were compared only based on 
estimation, relative bias, root mean square error (RMSE), 
and coverage probability of confidence interval (CP) 
measures of log-linear regression coefficients and
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POISSON ZIP DIP

real 
value ESa Re.Biasb RMSEc CPd DICe ES Re.Bias RMSE CP DIC ES Re.Bias RMSE CP DIC

-
-

-
-

-
-

-
-

586.5587

0.12
-

-0.5987
-

0.1797
-

18.2

566.622

0.24
0.16

-0.1917
-0.2103

0.0747
0.0668

-
-

570.9031

-0.06 -1.0605 1.0606 18.5 0.2 -0.7960 0.7987 41.9 0.77 -0.2307 0.3141 89.8

0.37 -0.0825 0.5415 96.5 0.41 0.0288 0.5056 97.0 0.42 0.0504 0.3418 93.5

-0.08 -0.1367 0.0470 97.5 -0.09 -0.0403 0.0424 97.3 -0.1 0.0541 0.0259 95.8

0.54 -0.0903 0.0800 76.1 0.56 -0.0590 0.0639 88.2 0.6 0.0092 0.0491 99.2

  

 

-
-

-
-

-
-

-
-

312.775

0.06
-

-0.8075
-

0.2423
-

22.1

304.5504

0.26
0.26 -0.1202

0.2952
0.1975
0.0944

-
-

289.3884

-1.77 -2.7726 2.7726 0 -1.58 -2.5838 2.5838 1.6 -3.02 -4.0211 4.0526 51.5

0.13 -0.6806 0.8918 94.7 0.15 -0.6236 0.9031 94.8 -0.49 -2.2444 3.9032 94.6

-0.03 -0.6561 0.0871 100 -0.04 -0.6089 0.0865 100 -0.15 0.5052 0.2085 99.1

0.38 -0.3719 0.2465 49.1 0.35 -0.4132 0.2606 53.6 0.63 0.0562 0.2338 93.5

a. Estimate, b. Relative Bias, c. Root Mean Square Error,  d. 95% posterior credible interval, e. Deviance Information Criteria

TABLE 1. Parameters estimate of DIP, ZIP and Poisson Bayesian models for correlated data from generated data of DIP 
distribution with 50 sample size

POISSON ZIP DIP

real value ESa Re.Biasb RMSEc CPd DICe ES Re.Bias RMSE CP DIC ES Re.Bias RMSE CP DIC

-
-

-
-

-
- 1159.9832

0.13
-

-0.5546
-

0.1665
-

5.4
- 1123.7188

0.28
0.18

-0.0529
-0.0754

0.0374
0.0338

-
- 1145.2265

-0.1 -1.1031 1.1032 1.4 0.18 -0.8154 0.8154 13.6 0.91 -0.0932 0.1645 92.9

0.33 -0.1701 0.3698 96.7 0.38 -0.0457 0.3396 96.5 0.41 0.0259 0.1949 93.4

-0.08 -0.1871 0.0330 99.2 -0.09 -0.08 0.0287 98.6 -0.1 0.0341 0.0148 95.8

0.56 -0.073 0.0636 73.1 0.57 -0.0474 0.0489 88.5 0.61 0.0176 0.0388 98.1

  
 

-
-

-
-

-
-

-
- 620.9793

0.07
-

-0.8802
-

0.5281
-

0
- 608.0262

0.33
0.26

-0.4477
-0.1183

0.2738
0.0523 584.8756

-1.68 -2.6774 2.6774 0 -1.49 -2.4936 2.4936 0 -1.71 -2.7145 2.7601 46.4

0.14 -0.6462 0.5943 94.8 0.16 -0.6044 0.6017 95.2 0.15 -0.6354 1.2981 94.2

-0.03 -0.6826 0.0750 100 -0.04 -0.6389 0.0725 100 -0.09 -0.1221 0.089 98.0

0.36 -0.4004 0.2439 26.3 0.34 -0.4338 0.2618 24.4 0.57 -0.0469 0.1188 96.3

a. Estimate, b. Relative Bias, c. Root Mean Square Error,  d. 95% posterior credible interval, e. Deviance Information Criteria

TABLE 2. Parameters estimate of DIP, ZIP and Poisson Bayesian models for correlated data from generated data of DIP
distribution with 100 sample size
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probabilities. These measures equal to: 

Where N is the number of repetitions θ is the real 
measure of parameter and  is parameter estimation in 
the kth repetition.

Among all the iterations, CP is the total number 
of times that the 2.5 percentile is smaller than the 
parameter estimate and the 97.5 percentile is larger 
than the parameter estimate; in other words, the 
number of times that Bayesian credible intervals 
include parameters’ estimate. Different values of DIC 
were obtained for every model in order to choose the 
best-fitted model.

The results of estimation, relative bias, RMSE, CP, 
and DIC related to the parameters of DIP, ZIP, and Poisson 
Bayesian models for the generated data of DIP model with 
two probabilities of zero and one in three sample size are 
presented in Tables 1, 2, and 3. The results presented 
in Table 1 with sample size equal to 50 indicate that 
when zero and one contain half of the generated data, 

, parameters’ estimates in the Poisson 
part of the Bayesian DIP model are closer to real values 
rather than in the Bayesian ZIP and Poisson models. 
Nevertheless, the DIC gained from all three models 
suggests that the Bayesian ZIP model is better fitted to these 

data. In the second part of Table 1, when zero and one  
contain 90% of the generated data, 
parameters’ estimate for some parameters in all three 
models are not near real values, but the value of DIC 
attained from the Bayesian DIP model is smaller than 
that of the other two models.

The results of DIP, ZIP, and Poisson Bayesian 
models for the data generated from the DIP model with 
100 samples and two sets of probabilities for zero and 
one are given in Table 2. When , the 
DIC in three models shows that the Bayesian ZIP model 
is better fitted to these data, while the parameters’ 
estimate in the DIP model are closer to real values 
than the other two models. When  
parameters’ estimate and DIC scale in three models 
show that the Bayesian DIP model is superior to the 
others; also, compared to its similar case in Table 1, 
the Bayesian DIP model is better fitted.

Table 3 includes the results of DIP, ZIP, and Poisson 
Bayesian models for data generated of the DIP model 
with 200 samples in two sets of probabilities for zero 
and one. Parameters’ estimate in the DIP model are 
closer to real values when  and also 

. Both relative bias and RMSE are 
smaller in the DIP model. In this model, the number 
of times that credible intervals include parameters’ 
estimate is larger than that of other models. The DIC 
measure is smaller than the DICs of other models 
when  for the DIP model.

POISSON ZIP DIP
real 
value

ESa Re.Biasb RMSEc CPd DICe ES Re.Bias RMSE CP DIC ES Re.Bias RMSE CP DIC

-
-

-
-

-
- 2270.808

0.13
-

-0.5601
-

0.1679
-

0.7
- 2210.525

0.29
0.19

-0.0287
-0.0578

0.0258
0.0236

-
- 2271.031

-0.08 -1.0782 1.0782 0.1 0.19 -0.8052 0.8052 2.3 0.94 -0.063 0.103 95.4

0.32 -0.2066 0.2504 94.8 0.36 -0.1 0.2286 94.8 0.41 0.0128 0.1124 94.3

-0.08 -0.1971 0.0269 99.7 -0.09 -0.095 0.0217 98.8 -0.1 0.0312 0.0092 96.5

0.55 -0.0812 0.0552 62.2 0.57 -0.0519 0.0401 83.6 0.61 0.0193 0.0275 97.6

  
 

-
-

-
- -

-
-
-

1224.81

0.08
-

-0.8542
-

0.5125
-

0
- 1204.5144

0.38
0.26

-0.3687
-0.1282

0.2296
0.0475

-
- 1174.4018

-1.64 -2.642 2.642 0 -1.45 -2.4453 2.4453 0 -1.12 -2.1246 2.1765 44.2

0.14 -0.6624 0.4111 93.7 0.16 -0.6036 0.4059 94.3 0.32 -0.1949 0.5299 96.2

-0.03 -0.6733 0.0692 100 -0.04 -0.6231 0.0651 100 -0.08 -0.1625 0.0495 97.5

0.37 -0.392 0.2354 8.3 0.34 -0.4279 0.2567 5.8 0.57 -0.0476 0.0871 94

a. Estimate, b. Relative Bias, c. Root Mean Square Error,  d. 95% posterior credible interval, e. Deviance Information Criteria

TABLE 3. Parameters estimate of DIP, ZIP and Poisson Bayesian models for correlated data from generated data of DIP distribution 
with 200 sample size
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APPLICATION TO REAL DATA

The basic oral health surveys supply an accurate 
basis for evaluating the present oral health status of any 
given population and its future oral health care needs. 
The WHO manual of oral health survey has encouraged 
countries to conduct standardized oral health surveys that 
are comparable internationally [21].

The last Iranian National Oral Health Survey was 
performed in 2012. In this survey, five age groups 
of 5-6, 12, 15, 34-54, and 65-74 years were 
considered. The examined indexes in children and 
adults were decayed teeth, gum disorders, dental 
trauma, and so on. A self-report questionnaire and 
oral examination were used for collecting information 
on demography, socioeconomic status, habits, and 
individual care level. Sample size was considered 
300 people of each age group in each province of 
Iran based on WHO proposal. One of the pieces of 
information gathered in this survey was the total number 

of DMFT. Information about this survey conducted in 
2012 showed that the DMFT index among 12-year-old 
children was inflated in zero and one. In other words, the 
DMFT index in 12-year-old children was doubly inflated. 
This feature is true in all populations investigated in Iran [3].

A part of the information from the National Oral 
Health Survey 2012 from Hamedan Province was utilized 
in this study. The purpose of this paper was to investigate 
the influence of different personal features such as the 
place of residence and eating habits, especially sugar, on 
the number of DMFT of 12-year-old children in Hamedan. 
After oral examination, the DMFT index was determined 
for all dentitions located in the right and left sides of the 
maxilla and mandible. Inflation was seen in zero and one 
in this data. The inflation of zero and one towards other 
counts can be observed in Figure 1. The frequency of zero 
is almost 60% and the frequency of one is nearly 30% in 
all dentitions. 

In Table 4, the posterior summary of DIP, ZIP, and 
Poisson model on Hamedan DMFT data is provided. 

FIGURE 1. Bar chart to display inflation in zero and one.
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These models include three independent variables of 
sex (male=1, female=0), place of residence (urban=1, 
rural=0) and sugar score. The number of subjects was 
300 children of 12 years of age. These variables were 
considered in the Poisson model, Poisson part, and zero 
part of the ZIP model and in the Poisson part, zero part, 
and one part of the DIP model. 

In the Bayesian DIP model, 160000 updates were 
taken with two parallel chains. A burn-in sample of 25000 
was used and then every 100th sample was kept, until 
2700 observations were obtained from two chains. In 
the Bayesian ZIP model we ran two chains of 60000 
iterations with the first 20000 discarded as burn-in, and 
then every 20th sample was kept. Ultimately, a total of 
4000 samples were obtained from the two chains. In the 
Poisson model we took 30000 updates with two parallel 
chains. After the initial 10000 burn-in iterations, 2000 
samples with thinning 10 were obtained from each chain; 
in total, 4000 samples were obtained. Using the output 
of OpenBUGS software, convergence was evaluated 
visually through monitoring the dynamic traces of 
Gibbs iterations and computing the Gelman-Rubin 
convergence statistic.

A summary of the posterior parameters of three 
Bayesian models is presented in Table 4. This table 
includes the posterior mean, standard deviation (SD), 
2.5 percentile, median, and 97.5 percentile. It should 
be noted that 2.5 and 97.5 percentiles provide equal 
tails for 95% posterior interval parameters’ estimate. 

As demonstrated in Table 4, the DIC for the Bayesian 
DIP model is smaller than that for the Bayesian ZIP 
and Poisson models. Since the model with the smallest 
DIC is the best-fitted model, the Bayesian DIP model 
was the best fitted to the present data. In the Poisson 
part of the ZIP model, the place of residence was 
statistically significant, which means that children 
living in urban areas tend to have lower DMFT 
compared to their rural-living counterparts. In the zero 
part of the Bayesian DIP model, the sugar score was 
significant, meaning that the children with a high 
sugar score had a very low chance for taking zero 
in DMFT. Parameters of the random effect in all three 
models were significant.

DISCUSSION

Doubly inflated models are useful for modeling the 
outcomes of count data with many zeros and many other 
counts such as k (k>0). Chandra (2011) introduced two 
DIP models for data analysis. She estimated parameters 
using two techniques, including maximum likelihood and 
the method of moments. Efficiency comparisons revealed 
that ML estimators can perform better than moment 
estimators for both models. [4].

Sengupta et al. (2015) developed two bivariate 
DIP models to develop paired count data with 
inflated frequencies. They demonstrated that maximum 
likelihood estimators were relatively more efficient than 

ZERO PART OF MODEL ONE PART OF MODEL POISSON PART OF MODEL

D
IC

mean SD 2.5%PC median 97.5%PC mean SD 2.5%PC median 97.5%PC mean SD 2.5%PC median 97.5%PC

Poisson
Intercept - - - - - - - - - - -1.34* 0.37 -2.11 -1.34 -0.63

1959

Sugar 
Score - - - - - - - - - - 0.08 0.07 -0.05 0.08 0.23

Sex - - - - - - - - - - -0.21 0.15 -0.5 -0.21 0.07

Resident - - - - - - - - - - -0.09 0.15 -0.39 -0.09 0.21

tau - - - - - - - - - - 1.09* 0.19 0.76 1.08 1.5

ZIP
Intercept -9.79 30.32 -69.65 -9.76 50.12 - - - - - -1.33* 0.37 -2.06 -1.32 -0.63

1958

Sugar 
Score -29.0 19.39 -72.56 -26.33 0.93 - - - - - 0.08 0.07 -0.06 0.08 0.22

Sex -5.7 30.01 -63.06 -5.42 53.06 - - - - - -0.22 0.15 -0.5 -0.22 0.076

Resident -6.42 28.22 -63.87 -6.27 47.58 - - - - - -0.09* 0.15 -0.38 -0.09 -0.2

tau - - - - - - - - - - 1.08* 0.19 0.76 1.07 1.51

DIP
Intercept -6.92 30.51 -65.44 -6.71 53.36 -2.39* 0.72 -3.89 -2.36 -1.08 -1.85* 0.58 -3.02 -1.83 -0.74

1893

Sugar 
Score -29.8* 19.9 -74.13 -27.26 -0.31 0.16 0.14 -0.11 0.16 0.44 0.08 0.11 -0.13 0.08 0.3

Sex -7.48 29.45 -66.91 -6.08 49.79 -0.23 0.32 -0.87 -0.23 0.39 -0.22 0.24 -0.69 -0.22 0.24

Resident -7.05 29.25 -66.27 -6.92 51.27 0.08 0.32 -0.58 0.09 0.69 -0.21 0.24 -0.71 -0.2 0.26

tau - - - - - - - - - - 0.55* 0.12 0.35 0.54 0.82

TABLE 4. Parameter estimation of Bayesian DIP, ZIP and Poisson model for DMFT
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moment estimators [5].
Sumen Sen et al. (2018) obtained efficiency and 

favourable outcome in the modeling of the doubly inflated 
Poisson count data [6]. Ishapathik Das et al. (2019) found 
that Poisson regression model considering multivariate 
doubly inflated, provides better fit than the model ignoring 
inflated data [7].

In this study, a Bayesian doubly inflated random 
effects model was proposed for correlated count data 
with inflated frequencies at both zero and one. The 
motivated data were the total number of DMFT. Three 
models of Bayesian Poisson, ZIP, and DIP with random 
effects were compared on DMFT data using DIC. This 
criterion showed that the Bayesian DIP was better fitted 
than the other two models.

 
 
A simulation was also performed to compare the three 
models. The correlated count data of DIP model were 
generated with inflation in zero and one, and Bayesian 
Poisson, Bayesian ZIP, and Bayesian DIP models were fitted 
to this data. The results of the simulation study with  
and  indicated that the parameters’ estimates of the 
DIP model in each of three sample sizes, 
, were closer to real values than the other two models. On 
the other hand, values of DIC showed that the ZIP model 
fitted these data better than the other models. Given that 
the probability of zero was 0.3 and the probability of 
one was 0.2, it could be possible that these data were 
inflated on zero only, and that is why the zero-inflated 
model performed better.

The data generated on the DIP model with 
 and  were fitted in three models. Thus, 

it can be stated that, by increasing the sample size, 
parameters’ estimates related to the zero and one 
probability in the doubly inflated model were closer 
to real values in comparison to that of the other 
two models. The value of DIC in the DIP model was 
smaller than the DICs of other models in each of 
the three sample sizes. As the probability of zero 
and one equaled 0.6 and 0.3, respectively, the 
generated data could be certainly doubly inflated. 
Since the proportion in other count data except for 
zero and one was 10%, the parameter estimate of 
the log-linear model (Poisson part) in Tables 1, 2, and 3 
was far from the real value.

CONCLUSION 

It can be concluded that, in count data which 
are doubly inflated in zero and k (k>0), if zero and k 
contain more than half of the frequency of data, then the 
DIP model better fits the data.

APPENDIX A

Full Conditional Posterior 
Distribution for the ZIP Regression Model

APPENDIX B

Full Conditional Posterior Distribution for the DIP 
Regression Model 

 = 
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