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Abstract 

Food waste is a renewable resource that can be utilized as both energy and nutrients through anaerobic 

digestion to increase nutrient recycling and fertilizer self-sufficiency and promote the mitigation of 

greenhouse gas emissions. Anaerobic digestion of food wastes has, however, faced challenges due to 

the waste’s characteristics, e.g., high protein content, which is why the organic loading rates with food 

waste digestion are usually kept low to achieve a stable process. The digestate produced during 

digestion contains all of the nutrients from the food waste feedstock and can be used as a fertilizer in 

agriculture, where the availability of nutrients, the stability of organic matter, and biosecurity define 

its agronomic value. In this thesis, the aim was to analyze the potential of using anaerobic digestion 

for food waste utilization. The anaerobic digestion of food waste, feedstock pretreatment, and 

processing and utilization of the digestate for fertilizer use were studied. 

This study shows the potential of food waste as feedstock for anaerobic digestion without dilution, 

with a total solids content of 20–25%. A high organic loading rate of 6 kgVS/m
3
d (VS, volatile solids) 

was achieved with methane yields 400–430 m
3
/kgVS in continuous food waste digestion while the 

optimum loading rate was 3 kgVS/m
3
d, yielding around 480 m

3
/kgVS of methane. Trace element 

supplementation enabled a stable long-term operation and gradual increase of loading rates without the 

accumulation of acids. The autoclave pretreatment (160°C and 6.2 bars) of the food waste affected the 

characteristics – and subsequently, the anaerobic digestion performance, where the formation of 

protein-based hardly biodegradable compounds led to a 10% lower methane yield during digestion, 

decreased hydrogen sulfide content in the biogas, and 50% decreased ammonium nitrogen 

concentration within the digestate. The decreased availability of proteins and hydrogen sulfide 

formation due to the pretreatment reduce the risk of ammonia inhibition during anaerobic digestion 

and enable easier biogas cleaning and security. 

The food waste digestates shows potential as a nutrient source in crop fertilization independently and 

after post-treatment. The studied digestates were considered suitable for fertilizer use, as they showed 

good agronomic value in terms of nutrient content and usability, as well as biosecurity. Food waste 

digestates produced around 5 to 30% higher ryegrass yield compared with a mineral fertilizer in pot 

experiments, and the majority (50–70%) of the nitrogen and phosphorus were in the soluble and plant-

available forms. The integration of anaerobic digestion and digestate post-treatment technologies 

enabled the processing of the digestate liquid into concentrated nutrient products rich in nitrogen and 

potassium. With the combination different processing technologies such as evaporation, stripping, and 

reverse osmosis, nutrient products with optimal composition can be produced to correspond with the 

fertilizer demand. Overall, due to the high energy potential of the food waste, the integration of the 
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anaerobic digestion with heat-demanding digestate liquid post-treatment processes (e.g., stripping 

and/or evaporation) was possible. 

In conclusion, anaerobic digestion has high potential for the utilization of food waste, as food waste 

produces high methane yields in optimized conditions. The food waste digestate was also shown to be 

a suitable nutrient (especially nitrogen) source in crop fertilization independently and after post-

treatment. 
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Tiivistelmä 

Ruokajätteet ovat uusiutuva resurssi, joita voidaan hyödyntää biokaasuprosessissa tuottaen sekä 

energiaa että ravinteita, lisätä ravinteiden kierrätystä ja omavaraisuutta sekä vähentää 

kasvihuonekaasupäästöjä. Ruokajätteen käyttö biokaasuprosessin raaka-aineena voi kuitenkin olla 

haasteellista korkean proteiinipitoisuuden vuoksi, mikä on vaikuttanut siihen, että orgaanisen aineksen 

kuormitus pidetään reaktoreissa usein melko matalana stabiilin prosessin saavuttamiseksi. 

Biokaasuprosessissa syntyvä käsittelyjäännös sisältää kaikki ruokajätteen sisältämät ravinteet, jotka 

voidaan hyödyntää maataloudessa lannoitteena, jossa sekä ravinteiden saatavuus, orgaanisen aineksen 

stabiilisuus sekä turvallisuus määrittelevät käsittelyjäännöksen lannoitearvon. Tässä 

väitöstutkimuksessa tavoitteena oli analysoida biokaasuprosessin potentiaalia ruokajätteen käsittelyssä. 

Työssä tutkittiin sekä ruokajätteen biokaasuprosessia, syötemateriaalin esikäsittelyä sekä muodostuvan 

käsittelyjäännöksen prosessointia ja käsittelyä lannoitteeksi maatalouteen. 

Tuloksena tässä tutkimuksessa saatiin näyttöä ruokajätteen potentiaalista biokaasuprosessin raaka-

aineena sellaisenaan, ilman laimennusta, kun jätteen kuiva-ainepitoisuus oli 20–25 %. 

Laimentamattomalla ruokajätteellä oli mahdollista saavuutta korkea kuormitus (6 kgVS/m
3
d) ja 

metaanisaanto (400–430 m
3
/kgVS) jatkuvatoimisessa biokaasuprosessissa, jossa optimikuormitus oli 3 

kgVS/m
3
d metaanisaannolla 480 kgVS/m

3
d. Hivenaineiden lisäys prosessiin mahdollisti pitkäaikaisen 

stabiilin prosessin, sekä asteittaisen kuormituksen noston ilman happojen kertymistä prosessiin. 

Esikäsittelynä ruokajätteen autoklavointi (160 °C ja 6.2 bar) vaikutti jätteen koostumukseen ja sitä 

kautta myös biokaasuprosessiin, jossa heikosti biohajoavien proteiinipohjaisten yhdisteiden 

muodostuminen johti 10 % alhaisempaan metaanisaantoon biokaasuprosessissa, alentuneeseen 

rikkivedyn määrään biokaasussa sekä 50 % alhaisempaan ammoniumtyppikonsentraatioon 

käsittelyjäännöksessä. Esikäsittelyn aikaansaama alentunut proteiinien saatavuus biokaasuprosessin 

hajottajamikrobeille sekä alentunut rikkivetypitoisuus biokaasussa vähentävät riskiä 

ammoniumtypestä aiheutuvalle inhibitiolle ja mahdollistavat sekä helpomman että turvallisemman 

kaasunpuhdistuksen ja -käsittelyn. 

Ruokajäteperäiset käsittelyjäännökset osoittivat potentiaalia ravinteiden lähteenä viljelyskasvien 

lannoituksessa sekä sellaisenaan että jatkokäsittelyprosessien jälkeen. Tutkitut käsittelyjäännökset 

soveltuivat lannoitekäyttöön niiden hyvän lannoitearvon vuoksi, mikä perustui jäännösten 

ravinnepitoisuuksiin, ravinteiden käyttökelpoisuuteen sekä tuotteiden turvallisuuteen. 

Ruokajäteperäiset käsittelyjäännökset tuottivat mineraalilannoitetta 5–30 % korkeamman nurmisadon 

astiakokeissa, ja suurin osa (50 – 80 %) jäännösten sisältämästä typestä ja fosforista oli liukoisessa ja 

kasveille käyttökelpoisessa muodossa. Biokaasuprosessin ja käsittelyjäännöksen nestejakeen 

jatkokäsittelyteknologioiden integrointi mahdollisti nestejakeen prosessoinnin konsentroiduiksi, 
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runsaasti typpeä ja kaliumia sisältäviksi, ravinnetuotteiksi. Erilaisten käsittelyteknologioiden, 

esimerkiksi haihdutuksen, strippauksen ja käänteisosmoosin, yhdistelmillä voidaan tuottaa 

optimaalisen koostumuksen omaavia ravinnetuotteita vastaamaan lannoitteiden tarvetta. Yleisesti 

ottaen ruokajätteen korkea energiapotentiaalin vuoksi biokaasulaitoksen ja käsittelyjäännöksen 

nestejakeen jatkokäsittelyprosessien yhdistäminen on mahdollista myös silloin, kun kyseessä ovat 

paljon lämpöä kuluttavat käsittelyprosessit, kuten strippaus ja haihdutus. 

Johtopäätöksenä voidaan todeta, että biokaasuprosessilla on merkittävä potentiaali ruokajätteen 

käsittelyprosessina, koska ruokajäte optimoiduissa olosuhteissa tuottaa korkean metaanisaannon. 

Ruokajäteperäinen käsittelyjäännös soveltuu ravinteiden, etenkin typen, lähteeksi viljelyskasvien 

lannoitukseen sekä sellaisenaan että jäännöksen jatkokäsittelyn jälkeen.  
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1 Introduction 

The world’s population is ever increasing, and it has been estimated that the global population will 

exceed 9–11 billion by the end of this century (UNEP, 2015). The growing population increases the 

need for food and subsequently, energy and fertilizers for food production (Gustavsson et al., 2011). 

Energy is still mainly produced from fossil fuels, which account for 81% of the primary energy 

consumed globally (IEA, 2015). In total, the fertilizer industry consumes 1.2% of the world’s energy, 

and the majority of that is used in the production of ammonia (NH3) through Haber-Bosch synthesis 

(Swaminathan and Sukalac, 2004). Compared with nitrogen (N), the manufacturing of phosphorus (P) 

consumes less energy, but its availability in mineral deposits has been estimated to decrease over time, 

which will increase the P prize and open possibilities for recycled fertilizers (reviewed in Weikard, 

2016). Alternative and more sustainable sources for industrial fertilizers are biomasses, e.g., food 

waste (FW), into which the atmospheric N and mineral P are concentrated. Biomasses provide a more 

economical option for the world’s growing fertilizer need (Scholz and Wellmer, 2013, Weikard, 2016), 

as the use of the biomass nutrients increases nutrient recycling and fertilizer self-sufficiency and 

promotes the mitigation of greenhouse gas emissions. 

Globally, around 2 billion tons of municipal solid waste are formed annually, of which 34–53% is 

organic waste that consists mainly of FW (UNEP, 2015). The large quantities of FW produced need to 

be sustainably managed to prevent impact on human health and the environment. The uncontrolled 

degradation of FWs in landfills produces methane (CH4) and carbon dioxide (CO2) and promotes the 

leaching of nutrients, which may affect the eutrophication of water bodies. To prevent these impacts, 

actions and treatment options are studied and applied. FW management, including priorities for 

recycling and treatment, are addressed in the EU in the Waste Framework Directive (2008/98/EC, 

European Parliament and the Council, 2008), which aims to prevent the landfilling of the FW (further 

regulated in Landfill Directive, 99/31/EC, European Council, 1999) and obligates member states to 

carry out source separation and safe treatment of organic wastes. The European Commission aims to 

reduce the amount of FW by at least 30% by the year 2025, concentrating especially on the waste 

generation in households, manufacturing, retail, and food services sectors through national biowaste 
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prevention strategies (European Commission, 2014). A more ambitious goal has been set by the UN, 

which aims to halve the per capita global FW production at the retail and consumer levels and reduce 

food losses in production and supply chains, including post-harvest losses, by 2030 (UN, 2014).  

Actions for the treatment management of FWs are prioritized with the waste hierarchy (Figure 1, 

Waste Framework Directive (2008/98/EC, European Parliament and the Council, 2008). The first step 

in the process of reducing the effects of FW treatment is the reduction of FW volume, i.e., the direct 

prevention of waste generation. The next two steps are the use and processing of FW as new food 

products for people or animals. However, regional regulations may prevent the use of FW as animal 

feed, as is the situation in the EU, where the protection against e.g., bovine spongiform 

encephalopathy is ensured with legislation (European Commission, 2015b). FW is also encouraged to 

be processed into value-added chemicals for the production of, for example, products for the 

pharmaceutical industry (Mirabella et al., 2014) as well as bio-plastics through acidogenic 

fermentation and microbial polymer synthetization (Lee et al., 2014).  

 

Figure 1. The food waste management hierarchy, which defines the steps for FW treatment. The step 
including AD treatment is indicated with an arrow (modified from UNEP, 2015). 

If the above-mentioned waste hierarchy options are not possible, the FW can be processed, e.g., with 

anaerobic digestion (AD) or composting. The AD treatment of biodegradable wastes such as FW 

recovers renewable energy in the form of CH4 for use in combined heat and power plants (CHP), in 

vehicles, and for grid injection; it also allows the recycling of nutrients through application of 

digestion residues, i.e., digestates, in crop production. With composting, the FW is degraded in aerobic 

conditions, producing mainly CO2 and water. The residual composted material can be used as a soil 

amendment, but part of its nitrogen content is volatilized during the process and should be further 

captured to ensure recycling. In 2012, 90% of the FW treated in Europe (EU28) was processed 

biologically with both AD and composting according to the Eurostat waste treatment statistics. 

However, about 5% of FW was still landfilled, while around 5% was incinerated with energy recovery 

(Eurostat, 2015b). Of the biologically treated waste majority, around 95% (European Commission, 

2008) is still composted, while the use of AD as a treatment for FWs and other organic wastes has 

increased in Europe with a current reported capacity of around 8 Mt (De Baere and Mattheeuws, 2012).   

Anaerobic digestion

Direct prevention

Feed for animals

Industrial chemicals

Nutrients, organic matter, energy
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2 Background 

2.1 Food waste generation 

It is estimated that globally, one-third of the food produced for consumption becomes waste during its 

production, processing, distribution, and consumption (European Commission, 2014, Gustavsson et al., 

2011). Therefore, FW is generally categorized as part of the food that becomes wasted during its 

journey from the farm to the fork (Figure 2) (European Commission, 2010). In this study, the term FW 

is used to describe the organic waste generated in the consumption stage, e.g., in households and 

restaurants. FW from households can be classified as a part of biowaste, which also consists of 

biodegradable waste from gardens (European Commission, 2015a).  

 

Figure 2. Food waste generation during the food production chain (adapted from Papargyropoulou et al., 
2014). 

The generation of FW in different countries is dependent on the income level of the consumers, but the 

overall amount of FW generated is somewhat similar in both low- and high-income countries. In low-

income-level countries most of the FW (80%) is generated primarily during farming and transportation, 

while in high-income countries, consumers and retail sectors are responsible for around 80% of the 

FW generation (UNEP, 2015). The FW generation in developing countries is due to inadequate 

storage and transportation systems for food products, along with poor market situations, while 

developed economies have set high standards for food products (cosmetic standards, best before dates, 
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etc.), which, along with the relatively cheap price, increases FW amounts (Gustavsson et al., 2011, 

UNEP, 2015).  

The total FW quantity produced each year in Europe (EU27) has been estimated to be around 90 Mt 

(180 kg per capita), of which an estimated 38 Mt (76 kg per capita) is generated in households (based 

on data from the year 2006, European Commission, 2010). As a comparison, in the US, 36 Mt (120 kg 

per capita) of residential and commercial FW was produced in 2011 (US EPA, 2013). The EU 

estimates an increase in the FW amounts to 120 Mt by 2020 (European Commission, 2016), which is 

mainly due to increased FW generation in households (Figure 3). The amount of household FW has 

almost doubled from 2004 to 2012, and FW from food manufacturing and agriculture shows a 

decreasing trend (based on the Eurostat values of animal and mixed food waste and vegetal wastes in 

EU28, Eurostat, 2015a).  

 

Figure 3. Generation of food waste in different stages of production during 2004–2012 in EU28 countries 

(env_wasgen, W091-W092, Eurostat, 2015a). 

2.1.1 Composition  

FW usually consists of different raw and cooked food materials, beverages, and pet food that are 

generated and discarded during manufacturing, distribution, retail, and food services, as well as in 

households (European Commission, 2010, Lebersorger and Schneider, 2011). The FW produced in 

households can be divided into unavoidable and avoidable FW. Unavoidable FW consists of, e.g., fruit 

and vegetable peels, meat trimmings, bones, shells, coffee filters and grounds, and tea bags, which 

cannot be eaten. Conversely, avoidable FW is the part of waste that has been edible but is wasted due 

to, e.g., too-large quantities of food prepared and purchased, which leads to disposal of leftovers or as 

a result of food spoiling (Lebersorger and Schneider, 2011, WRAP, 2009). However, the ratio between 

unavoidable and avoidable FW is dependent on consumer habits and cultural differences where, e.g., 

bread crusts and potato/apple peels can be classified into either group depending on eating habits 

(Lebersorger and Schneider, 2011, Schott et al., 2013) or can be classified into the “possibly avoidable” 

group (WRAP, 2009). 
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In Europe, the FW generated in households is mostly avoidable waste. Around 45% of food is wasted 

as whole or only partly consumed products, mainly due to poor planning with grocery shopping, while 

around 10–15% is wasted as leftovers (Langley et al., 2010, Lebersorger and Schneider, 2011), which 

can be seen as avoidable FW. In the preparation stage, the unavoidable FW consisting of peels, 

trimmings, etc. has been reported to comprise 33% (Langley et al., 2010) or 44% (Lebersorger and 

Schneider, 2011) of the total FW in households. All in all, the total amount of avoidable FW has been 

reported to vary from 34% to over 60% of the total FW generated in households in Europe (Langley et 

al., 2010, Lebersorger and Schneider, 2011, Schott et al., 2013, WRAP, 2009). Depending on the 

classifications and study areas, avoidable FW shares of as high as 80% have been reported (Vanham et 

al., 2015, WRAP, 2009). For example, in Finland and Sweden, the avoidable FW amount in 

households has been estimated to be 20–30 kg (Silvennoinen et al., 2014) and 30 kg per capita per 

year (Schott et al., 2013), while the avoidable FW amount in households has also been reported to be 

as high as 97 kg per capita on average in Europe (Vanham et al., 2015). 

The composition of FW is dependent on the source of the waste (Zhang et al., 2007), e.g., the stage of 

the FW production chain. Composition of FW originating from households and restaurants is also 

affected by the eating habits and diets of consumers – varying both seasonally and geographically – as 

well as the consumer’s social status, income level, and environmental awareness (Hansen et al., 

2007a). The main constituents of FWs are carbohydrates, for example, fruits and vegetables (around 

50% of FW), with lower contents of protein and fat-containing dairy, meat, and fish, and other 

carbohydrates such as cereals (in total, 10–50% of FW, Table 1). However, prepared meals are 

reported to constitute 3 to 20% of FW, representing a fraction of waste that could be totally avoided by 

proper meal and shopping planning (Silvennoinen et al., 2014, WRAP, 2009). Over 90% of the 

produced FW could be also avoided in the categories of rice/cereal products, dairy, and other foods, 

while the fruit and vegetable, meat, and drink categories all include 20–50% of unavoidable material 

that cannot be consumed (Table 1). 

2.1.2 Collection and characteristics 

The collection of FW in Europe is usually executed regionally as separate collection (source separated 

FW) or as mixed with other municipal solid waste (MSW). The source separated FW in households 

and restaurants/canteens is collected into a separate fraction than the other municipal wastes. Usually 

in households, FW is collected into its own recycling bin, which is lined with either biodegradable 

plastic, plastic or paper, bags (Al Seadi et al., 2013, Bernstad et al., 2013). Depending on the local 

waste collection regulations, both pet litter and yard and garden waste can be included in FW 

collection (Lebersorger and Schneider, 2011, Saveyn and Eder, 2014), which affects the chemical 

characteristics, e.g., the TS content of the FW (Hansen et al., 2007a). If not separated at home, the FW 

can be mixed with other fractions as mixed-MSW, while fractions such as metals and glass are 

collected separately. 
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Table 1. Household food waste (FW) composition in selected European countries. Results are based on studies where FW composition was studied by either by hand-sorting 
the FW from household waste bins (hand-sorting) or by FW weighing by consumers when FW was formed (consumer diary). The results are percentages (%) of the total 
FW amount. The amount of avoidable FW is estimated and is presented as % of the FW type. 

Food waste 

class 

Detailed class Finland
a
 Portugal

a
 Italy

a
 UK

a
 Greece

b
 Austria

c,d
  Finland

e,d
 UK

f
 Average (% 

of FW 

generated) 

Avoidable (% 

of FW 

generated in 

each class)
g
 

Hand-sorting Consumer diary 

Fruits and 

vegetables  

Fruit and vegetable waste 25.2 - 29 48.2–53.8 54–71 - - - 

30–60  47–88 

Fruit and vegetables (whole) 6.4 - 1.8 7.1–12.2 - - - - 

Fruit - 17.8 - - - 8.6 - 30 

Vegetables - 31.2 - - - 17.7 19 23 

Fruits and berries -  - - - - 13 - 

Salads  - 0.6 - - - -  - - 

Pasta/rice, 

bread, 

bakery, 

cereals  

Pasta/rice, cereals 0.3 - 6.4  - 0 1.9 4 - 

5–20 >90 

Pasta, rice - - - 0.3–1.5 - - - - 

Cereals - - - 0.3–0.4 - - - - 

Bread and bakery 2.7 2.6 1.4 10.1–13.3 1.5–8.8 - 13 - 

Bread and cereals - - - - - - - 16 

Baking ingredients and cereals - - - - - 1.5 - - 

Confectionery and snacks 0.2 0.3 0 - - 0.9 - - 

Confectionery and desserts 1.9 - - - - 11.7 - - 

Cakes, desserts, confectionary, snacks             

- 

 - - 0.1–0.5 0–1.4       

Meat, fish, 

eggs  

Meat and fish 2.7 6.1 2.1 3.6–10.9 2.4–4.5 10.9 7  - 

2–10 50–65 

Meat - - - - - - - 2 

Fish - - - - - - - 1 

Bones 0.4 0 1.1 2.9–8.9 - - - - 

Eggs - - - 0.6–1.2 - 0.6 - - 

Egg shells 1 - 0.7  - -  - - - 

Dairy 

products 

Dairy, milk 0.4 0.6 0 0.3–0.6 - 7.5 17 - 

0.5–10 >90 Cheese - - - - - 4.6 - - 

Milk, cheese, eggs - - - - 0.3–1  - - 10 
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Drinks Drinks (coffee grounds, tea bags, 

etc.) 

19.5 0.1 0 6.2–10.4 0.3–0.4 1.6 - 9 
1–15 60 

Meals Mixed meals 4.4 24 0.7 - 0.2–1.5 - - - 

3–20 >90 
Prepared meals - - -  - - 2.9 18 - 

Convenience and take-out food                     - - - - - 2.6 6 - 

Sandwiches -  -  -  - - 1.9 -  - 

Other food Other food 5.7  - 3.6 0.3–2.3 - - - 10 

1–7 >90 

Dried food, powders - 0.2 - - - - - - 

Jam - - - - - 1.7 - - 

Sauces - - - - - 1.4 - - 

Spices and herbs - 0 0 - - 1.2 - - 

Spreads and similar delicatessen                        - - - - - 0.8 - - 

Pet food  -  -  - - - 0.5 - - 

Other 

biodegradable 

Other biowaste - - - 0.8–1.6 23–30 4.2 3 - 

1–30  - 
Biodegradable bags 1.6 - 3.7 1.9–3 - - - - 

Garden waste 7.2 0.8 15.2 - - - - - 

Paper and cards 17.5 6.4 13.8 - - - - - 

Other Undefined - - 12.8 - - - - - 

 -   - Stones, seeds, etc. - - 4.8 - - - - - 

Contaminants 2.8 9.3 3 0–0.4 - - - - 
a
Valorgas, 2010a,

 b
Malamis et al., 2015,

  c
Lebersorger and Schneider, 2011, 

 d
based on composition of avoidable food waste generated in households,

 e
Silvennoinen et al., 2014, 

 

f
Langley et al., 2010,

 g
according to WRAP, 2009 

-, not available 
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In waste treatment plants, the pretreatment methods for FW are, for example, the separation of 

unwanted waste fractions, e.g., plastic, glass, and metals, which are usually due to the negligence of 

the consumers (Jank et al., 2015). Contaminants in FW decrease the quality and potentially increase 

the heavy metal and organic contaminant concentrations. Source separated FW usually undergoes 

mechanical separation and homogenization processes prior to subsequent treatment, e.g., in AD 

(Bernstad et al., 2013, Davidsson et al., 2007, Hansen et al., 2007a, Hansen et al., 2007b). The 

treatment of source separated FW with different pretreatment methods (shredders, screens, and 

magnets) thus affects the chemical characteristics and amount of organic matter to be further utilized 

(Hansen et al., 2007b, Jank et al., 2015). However, the differences in the characteristics between FWs 

can also be minor, depending on the applied treatment processes (Davidsson et al., 2007). If the waste 

is collected as mixed-MSW, the organic fraction (organic fraction of municipal solid waste, OFMSW) 

is separated using mechanical separation (Al Seadi et al., 2013, Tchobanoglous et al., 1993). The 

separation produces mechanically recovered OFMSW whose characteristics, however, differ from 

source separated FW, e.g., with higher TS and VS content as well as C/N ratio (Table 2, Zhang et al., 

2012). Mechanically recovered OFMSW also contains more impurities and heavy metals, for example, 

than source separated FW (Zhang et al., 2012). The contamination of other waste fractions is likely 

(Al Seadi et al., 2013), which is why source separation of FW is more promoted and favored.  

Municipal FWs have been found to have rather uniform characteristics despite temporal or 

geographical differences, while different eating habits affect FW composition, (Davidsson et al., 2007, 

Hansen et al., 2007b, Valorgas, 2010a). In Table 2, FW characteristics from Europe, Asia, and North 

America are presented based on literature, where the overall characteristics of different FW samples 

are somewhat similar. Depending on the collection and possible separation treatments, the FW usually 

has a total solids (TS) content of around 20–30%, of which 90–95% is considered organic (VS, 

volatile solids, Table 2). Around 50% of the VS in FWs consist of carbohydrates (fruits, vegetables, 

bread, and cereals), while both proteins and fats contribute to 10–30% of the organic matter. 

Furthermore, the relatively high protein content affects the TKN (Total Kjeldahl nitrogen) content of 

the FW, which can vary from 3 to 14 g/kgFM (fresh matter) with an of average 5–7 g/kgFM (Table 2). 

The carbohydrates in FW consist of different sugars, e.g., starch, cellulose and hemicellulose (Alibardi 

and Cossu, 2015), as well as lignin, the building materials of plant cell walls (Hendriks and Zeeman, 

2009). In FW, the cellulose and hemicellulose content is around 4–10% of the organic matter content; 

thus, it is highly dependent on the FW composition, while the lignin content can vary from 1.6 to over 

25%VS (Tanimu et al., 2015, Vavouraki et al., 2014, Zhang et al., 2015b, Zhang et al., 2012). The 

high variation within the lignin content between FWs is mainly due to the heterogeneity of the FW 

(Papadimitriou, 2010) but is also a results of the complex nature of lignin and different analyzing 

methods, which increase the deviation (Hatfield and Fukushima, 2005).  
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 Table 2. Food waste characteristics in different studies from Europe, Asia, and North America.  

FW type Country 

of origin 

TS (%) VS (%) TKN 

(g/kgFM) 

P-tot 

(%TS) 

K-tot 

(%TS) 

N 

(%TS) 

C 

(%TS) 

H 

(%TS) 

O 

(%TS) 

Fats, 

lipids 

(%VS) 

Proteins 

(%VS) 

Carbo-

hydrates 

(%VS) 

Reference 

FW EU 23.7 21.6 4  -   -   -   -   -   -  17.2 10.6 71.5 Ariunbaatar et al., 2015 

FW EU 22.2 21.1 4.7  -   -   -   -   -   -  9.2 14.3 76.5 Ariunbaatar et al., 2014b 

FW Spain 86.8 78.5 12.8 0.3  -   -  45.1  -   -   -   -   -  Forster-Carneiro et al., 2008 

ss-FW Denmark

Sweden 

17-37 14-34  -  0.3-0.6 0.8-1.3 2.2-

3.1 

45-52 6.4-

7.8 

 -  8.1-

16.6 

8.1-

16.6 

29-55 Davidsson et al., 2007 

ss-FW UK 23.7-28.6 21.7-24 7.4-8.1 0.3-0.6 0.9-1.4 2.8-

3.4 

48.3-

51.3 

5.5-

6.7 

29.8-

34.7 

14.8-

15.7 

18.3-

23.5 

 -  Valorgas, 2010a 

ss-FW Finland 27.0 24.9 6.5 0.3 1 2.5 49.4  -   -  15.6 16.2  -  Valorgas, 2010a 

ss-FW Italy 24.4-27.5 20.2-23.6 7.0-7.2 0.3 1 2.6 47.2  -   -  20.2 18.6  -  Valorgas, 2010a 

ss-FW Portugal 6.3-6.3 5.0 2.7-4.4 0.4-0.9 2.9 5.7 54.8  -   -  31.4 55.4  -  Valorgas, 2010a 

ss-FW UK 23.7 21.7 8.1 0.5 1.4 3.4 47.6 7.0 33.3 15.1 23.5 45.3 Zhang et al., 2012 

ss-FW USA 30.9 26.4  -  0.5 0.9 3.2 46.8  -   -   -   -   -  Zhang et al., 2007 

h-FW UK 23.7 22 7.4  -   -  3 52.3 6.9  -   -   -   -  Yirong et al., 2015 

r-h-FW Malaysia  -   -   -  0.7 0.5 2 33.5  -   -  27.1  -   -  Tanimu et al., 2015 

r-FW Greece 18.5 17.4 5.0 0.7  -   -   -   -   -  7.6 9.1 51.8
a
 Vavouraki et al., 2014 

r-FW Spain 6.4 6  -   -   -  1.3  -   -   -  0.7 7.8  -  Cuetos et al., 2010 

r-FW USA 19.6 18.7  -   -   -   -   -   -   -   -   -   -  Grimberg et al., 2015 

r-FW USA 23.6 22.9  -   -   -   -   -   -   -   -   -   -  Grimberg et al., 2015 

r-FW China 23.8 21.2  -   -   -  2.7 50.3 7.1 29.1  -   -   -  Zhang et al., 2015a 

r-FW China 19.9 18.04  -   -   -  2.8 48.7 7.3 32.6 24.2 16.8 59.2 Liu et al., 2012 

r-FW Korea 18.1 17.1 5.4 0.8  3.5 46.7 6.4 36.4 13.6 19.2 65.3 Zhang et al., 2011 

OFMSW Spain 81 42.6 34 0.1  -   -  30.5  -   -   -   -   -  Forster-Carneiro et al., 2008 

sh-

OFMSW 

Spain 81.9 43.4 22 0.1  -   -  30.7  -   -   -   -   -  Forster-Carneiro et al., 2008 

mr-

OFMSW 

UK 52.8 33.6 14.4 0.2 0.4 1.3 33 4.8 22.2 6.9 13 34 Zhang et al., 2012 

Food waste (FW), organic fraction of municipal solid waste (OFMSW), source separated (ss), restaurant (r), household (h), mechanically recovered (mr), shredded (sh) 
a
Total sugars

 

-, not available 
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2.2 Anaerobic digestion  

2.2.1 Principles of anaerobic digestion 

Microbiology 

AD is a synergistic process carried out by micro-organism consortiums consisting of both bacteria and 

archaea, which function under the absence of oxygen. During AD, the complex biomolecules of the 

feedstock are degraded into low molecular weight compounds: CO2 and CH4. The four stages of the 

AD – hydrolysis, acidogenesis, acetogenesis and methanogensis – function in symbiosis, producing 

substrates for the subsequent process stages (Figure 4, Jain et al., 2015, Merlin Christy et al., 2014). In 

the first stage, hydrolysis, the insoluble macromolecules, proteins, long-chain carbohydrates, and fats 

are degraded into smaller compounds such as short-chain sugars, amino acids, and long-chain fatty 

acids (Angelidaki and Sanders, 2004). Hydrolytic micro-organisms produce extracellular enzymes, 

such as cellulase, cellobiase, xylanase, amylase, protease, and lipase, which hydrolyze compounds 

with high molecular weight (reviewed in Jain et al., 2015, Merlin Christy et al., 2014). In the second 

stage, acidogenesis, the hydrolyzed products are further broken down by fermentative bacteria into 

different organic acids (volatile fatty acids, VFAs), hydrogen (H2), CO2 and organic compounds, e.g., 

ethanol (Merlin Christy et al., 2014). During the degradation of amino acids, inorganic ammonia (NH3) 

is also formed, which converts into water-soluble ammonium nitrogen (NH4
+
, NH4-N) in pH- and 

temperature-dependent conditions (Kayhanian, 1999). In the third stage of the AD, acetogenesis, the 

VFAs and other intermediates from the previous stage are converted by bacteria to acetate, CO2 and 

H2, where the synergy between hydrogen-converting methanogens prevents the accumulation of 

intermediate compounds, such as VFAs (reviewed in Merlin Christy et al., 2014).  

During methanogenesis, methanogenic micro-organisms, i.e., archaea, transform intermediates 

(acetate and H2) into CH4 and CO2. Acetoclastic methanogens degrade the acetate to produce CO2 and 

CH4 while H2 is simultaneously converted by hydrogenotrophic methanogens by the reduction of CO2 

(Merlin Christy et al., 2014). Typically, 70% of the CH4 during AD is produced through acetoclastic 

methanogensis and around 30% through hydrogenotrophic methanogenesis (Jain et al., 2015). 

However, the process conditions, e.g., high ammonia concentrations during the digestion, have been 

reported to change this balance toward the hydrogenotrophic pathway, where the acetate is degraded 

by syntrophic acetate oxidizers (Banks et al., 2012, Karlsson et al., 2012). Additionally, sulfate-

reducing micro-organisms can compete with methanogens and form hydrogen sulfide (H2S) through 

the microbial reduction of sulfate (SO4
2-

) with H2 and acetate (Barrera et al., 2013). Another pathway 

to the formation of H2S is the degradation of proteins into amino acids and further to sulfides (Figure 4, 

Möller and Müller, 2012). 
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Figure 4. Schematic diagram of the degradation pathways of, e.g., food waste into biogas, hydrogen sulfide 
and ammonium nitrogen during AD (modified from Merlin Christy et al., 2014 according to Barrera et al., 
2013, Kayhanian, 1999).  

Theoretically, AD produces biogas consisting of 50% CO2 and 50% CH4; thus, the composition of the 

feedstock affects the ratio. Typically, biogas contains 50–70% CH4 and the highest yield can be 

achieved with materials with high fat and protein content – for example FW – due to the high amount 

of reduced carbon within these molecules (Table 3, Angelidaki and Sanders, 2004). Furthermore, other 

gas components can be formed during AD, e.g., H2S, H2, N2 and water vapor (Rasi et al., 2010, 

Tchobanoglous et al., 2013), which affect the biogas composition due to substrate composition, 

microbial consortia and digester conditions (Angelidaki and Sanders, 2004, Jain et al., 2015, Möller 

and Müller, 2012).  

Table 3. Theoretical methane yield and composition of organic substrates (Angelidaki and Sanders, 2004). 

Substrate Composition CH4 yield 

(dm
3
CH4/kgVS) 

CH4 (%) 

Carbohydrate (C6H10O5)n 415 50 

Protein C5H7NO2 496 50 

Fat C57H104O6 1014 70 

The theoretical methane production of, for example, food waste can be calculated based on i) the 

component composition of the substrate (as presented in Table 3), ii) the elemental composition using 

Buswell’s equation, or iii) the chemical oxygen demand (COD) of the substrate (Nielfa et al., 2015). 

Buswell’s equation is based on the elemental composition (C, H, O, N) (reviewed in e.g. Angelidaki 

and Sanders, 2004); therefore, it gives slightly different results than the component-based estimation. 

The COD estimation is also reported to give higher values compared to the other two methods (Nielfa 

et al., 2015). Furthermore, when the theoretical values are compared with the experimental values, the 

FatsCarbohydratesProteins

Amino acids, 

sugars
Fatty acids

Intermediary products

Propionate, butyrate etc.

CH4, CO2

Acetate H2, CO2

Hydrolysis

Acidogenesis
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methanogenesis

Hydrogenotrophic
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NH3

H2S
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HS-, S-



 

12 

 

theoretical values tend to overestimate the actual value achieved with lab experiments due to the 

composition of the studied material. The feedstock contains not only easily and readily degradable 

matter (sugars, proteins, fats) but also inert and non-biodegradable materials, e.g., lignin, an organic 

compound with a complex nature making it impossible (Angelidaki and Sanders, 2004) or difficult to 

be degraded anaerobically (Hatfield and Fukushima, 2005, Hendriks and Zeeman, 2009). The 

accessibility of the organic compounds is also essential, where the biodegradability of, for example, 

cellulose decreases if it is incorporated into lignocellulosic complexes (Hendriks and Zeeman, 2009).  

AD conditions (OLR, HRT, pH, temperature) 

The optimal conditions for AD are defined by the microbial requirements. As the growth rates of 

different micro-organisms in the different stages of AD vary, the balance between degradative 

reactions is essential. To maintain balanced and efficient digestion, the equilibrium between microbial 

populations is kept steady with substrate supply and accessibility through particle size, organic loading 

rate (OLR), hydraulic retention time (HRT), and other process parameters (e.g., pH and temperature) 

(Jain et al., 2015). The optimum pH for AD is between 6 and 8.5 – this is where the methanogens are 

considered most sensitive toward changes in pH (Ferrer et al., 2010, reviewed in Jain et al., 2015). The 

pH of the process is affected by the production of acids during acidogenesis and the conversion of 

acids during methanogenesis (Kayhanian, 1999, Qiao et al., 2013). Also, the buffering capacity, 

arising from the concentrations of, e.g., HCO3
-
 and NH4

+
, affects digester pH (Qiao et al., 2013). 

However, the instabilities in digestion can affect the microbial synergies and lead to excess production 

of acids, decreasing the pH.  

The process temperature affects the microbial activity directly, and it is therefore an important factor 

in successful AD (Jain et al., 2015); the applied temperatures are dependent on the requirements of the 

microbial consortia, especially methanogenic archaea (Ferrer et al., 2010). The two most significant 

temperature zones used for AD are mesophilic (25–40°C) and thermophilic (50–65°C) zones. Thus, 

psychrophilic digestion is also possible in temperatures under 20°C (Angelidaki and Sanders, 2004, 

Jain et al., 2015). Mesophilic micro-organisms have a slower growth rate compared to thermophiles, 

so they have been regarded as more resistant to changes in process parameters, e.g., temperature and 

pH, than thermophiles (reviewed in Ferrer et al., 2010). The growth rate also affects the applied HRT; 

in mesophilic digesters, HRT is kept in the minimum of 15 days, while thermophilic reactors operate 

at 55°C with HRT of 5 to 8 days in minimum (reviewed in Ferrer et al., 2010, Tchobanoglous et al., 

2013). The shorter HRT increases the rate of thermophilic digestion as well as loading capacity and 

decreases the volume of digesters improving the economics of the process. Additionally, higher CH4 

yields are possible due to an increase inthe biochemical reaction rates with the increasing temperature 

compared with the mesophilic process (Ferrer et al., 2010, Tchobanoglous et al., 2013).  
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Inhibition and trace element supplementation  

The inhibition of AD refers to a decrease in the growth and activity of the micro-organisms (reviewed 

in Rajagopal et al., 2013). The relatively high protein content within the substrate increases the 

potential of ammonia inhibition during AD, as the ammonia is released during hydrolysis through the 

deamination of nitrogenous compounds (proteins, phospholipids) (Kayhanian, 1999). High ammonia 

nitrogen concentrations have been reported to lead to process instability, and even failure, and 

decreased CH4 production due to the accumulation of VFAs. The inhibition has been reported to arise 

in varying concentrations depending on the substrate material and process conditions (reviewed in 

Rajagopal et al., 2013). The ammonia inhibition has also been proposed to be dependent on the pH 

buffer capacity within the reactor, which is dependent on the NH4-N concentrations (Prochazka et al., 

2012). However, the major part of ammonia inhibition is not considered to arise from the ionized form 

of ammonium (NH4
+
) but from unionized free ammonia nitrogen (FAN, NH3) (Chen et al., 2008, 

Rajagopal et al., 2013). The ratio between NH4
+
 and NH3 in digesters is dependent on both the 

temperature and pH, where the NH3 shows increasing concentrations and inhibition along with these 

process parameters. The permeability of the NH3 to the cell membrane is the foremost cause of 

inhibition for the methanogenic micro-organisms (Gallert and Winter, 1997), which decreases the 

intracellular pH and subsequently causes imbalance and inhibition within the cell homeostasis 

(reviewed in Prochazka et al., 2012, Rajagopal et al., 2013). Another explanation for the ammonia 

inhibition is the direct inhibition of specific methanogenic enzyme reactions (reviewed in Rajagopal et 

al., 2013).  

The diffusion of ammonia through the cell membrane is dependent on the physiology of the micro-

organisms, and the species most vulnerable to ammonia inhibition is methanogens, but resistance 

varies greatly between species (Rajagopal et al., 2013). In certain conditions (temperature 35, pH 7.7, 

FAN level 200 mg/l), acetogenic bacteria has also been proposed to be more sensitive to inhibition 

than methanogens (Kayhanian, 1999). From the methanogens, the acetoclastic micro-organisms are, 

however, more sensitive, and it is known that the high NH4-N concentration within digesters alters the 

CH4 formation pathway toward the hydrogenotrophic route, as the hydrogenotrophes are more 

resistant (Banks et al., 2012). Moreover, the acclimation of the microbial population toward the high 

NH4-N concentrations is possible; however, whether the acclimation time only allows new, more 

resistant micro-organisms to grow or truly acclimates the present populations is still unknown 

(Rajagopal et al., 2013). Besides acclimation, controlling the C/N ratio inside digesters and diluting 

feedstock can be used to decrease nitrogen, and subsequently, the NH4-N concentrations, and avoid 

inhibition (Kayhanian, 1999, Rajagopal et al., 2013). In AD, the suitable C/N ratio is proposed to be 

around 25 (Chen et al., 2008, Jain et al., 2015), as N is also needed as a nutrient for microbial growth 

(Prochazka et al., 2012). 
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The accumulation of VFAs in the digester is the result of an imbalance within the microbial 

relationships between H2 producing and converting micro-organisms or the VFA utilizing populations 

(Ferrer et al., 2010), which can be due to, e.g., ammonia inhibition. Also, insufficient retention times 

can affect the VFA degradation (Ferrer et al., 2010) of especially propionate degrading micro-

organisms due to their relatively long growth times (Qiao et al., 2013), which leads to the 

accumulation of propionate and lowers digester pH. Imbalanced VFA production has been connected 

with trace element (TE) deficiencies, affecting the process stability and lowering CH4 production 

(Banks et al., 2012, Zhang and Jahng, 2012). TEs play a role in the synthesis of the coenzymes and 

cofactors in the methanogenic pathway, where the shortage of TEs disturbs the enzymatic reactions in 

methanogenesis and decreases CH4 formation (Zhang et al., 2015a). Different TEs are required by 

different enzymes and coenzymes, and the CH4 formation pathway affects the need for certain TEs 

(Banks et al., 2012). However, too high concentrations of TEs can be inhibitory to methanogens 

(Zhang et al., 2015a). 

The TEs are not necessarily in bioavailable ionic form but can also occur as precipitates, which lowers 

the bioavailability of the elements (Zhang et al., 2015a) and increases the amount of supplemented 

TEs. The dosage of TEs should be properly managed to avoid environmental load during digestate 

fertilization, as many of the TEs are also classified as heavy metals. One proposed solution is to use, 

e.g., chelating agents, which increases the bioavailability of metals and simultaneously reduces the 

amount of TE supplementation needed (Zhang et al., 2015a). 

2.2.2 Feedstock pretreatment 

Different feedstock pretreatment methods based on either mechanical grinding or heat and pressure 

can be applied to improve the CH4 production of the AD by accelerating the hydrolysis and 

acidogenesis steps through solubilization (Izumi et al., 2010). Heat-based pretreatments enhance 

hydrolyzation, accelerate degradation and increase CH4 production, as the heat disintegrates molecules 

and chemical bonds that increase biodegradability. Additionally, thermal pretreatments are reviewed 

to enhance the digestate handling by improved dewatering and decreased viscosity (Liu et al., 2012, 

Zhou et al., 2013).  

Thermal and hydrothermal pretreatments have been widely studied as a means of hydrolyzing 

recalcitrant components, e.g., fibers, in a wide range of wastes to make them easier to degrade 

(Papadimitriou, 2010, Ren et al., 2006). One hydrothermal treatment is autoclaving, where water is 

used as a reagent at increased temperature and pressure, to hydrolyze and solubilize sugars, starches, 

proteins, and hemicellulose (Papadimitriou, 2010, Ren et al., 2006). Materials pretreated by 

autoclaving under various conditions have shown increased CH4 production in batch tests; digested 

swine slurry autoclaved at 120°C showed a 115% increase in CH4 yield (Menardo et al., 2011), and 

autoclaving of waste activated sludge (WAS) increased CH4 yield in continuous tests by 12% and 25% 

after autoclaving at 135°C and 190°C, respectively (Bougrier et al., 2007). However, the CH4 content 
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was lower than control when dewatered pig manure was thermally pretreated in 110–150°C (Rafique 

et al., 2010), as thermal treatments have been observed to decrease CH4 yields with high protein-

containing feedstocks (Bougrier et al., 2008, Cuetos et al., 2010). The decrease in the degradation 

capacity of micro-organisms has been proposed to be related to the formation of melanoidins or 

Maillard compounds, which are formed through reactions between sugars and amino acids (Bougrier 

et al., 2008, Liu et al., 2012, Monlau et al., 2013). These compounds are reported to be toxic (Cuetos 

et al., 2010) and difficult or even impossible to be degraded in AD (Bougrier et al., 2008). Maillard 

compounds start to form at temperatures above 100°C depending on the composition of proteins and 

carbohydrates in the feedstock and the retention time (reviewed in Ariunbaatar et al., 2014a). 

Additionally, other toxic and inhibitory compounds, such as furanic and phenolic compounds, are 

formed during the high-temperature pretreatment of lignin-containing materials (Monlau et al., 2014).  

2.2.3 Agricultural use of digestate 

Anaerobic digestate, i.e., the residue produced in AD, is a mixture of partially degraded organic matter 

from the digester feedstock, microbial biomass and inorganic compounds, i.e., nutrients (Alburquerque 

et al., 2012b). The organic compounds in the anaerobic digester degrade during the microbiological 

processes, but all the nutrients are conserved, which increases the agronomic value of the produced 

digestate (Tambone et al., 2010). In Europe, the total digestate production from all digested biomasses 

in 2010 was 56 Mt per year, of which 80–97% was used in agriculture (Saveyn and Eder, 2014). When 

used as fertilizer, the nutrients in FW digestate can be returned to agriculture to close the nutrient cycle 

and thereby reduce the need for mineral fertilizers. In several life cycle analyses, the use of digestate in 

agriculture has been acknowledged as an efficient way to mitigate greenhouse gas emissions through 

material recycling, avoidance of mineral fertilizers, and improvement of soil properties (Bernstad and 

la Cour Jansen, 2011, Boldrin et al., 2011, Evangelisti et al., 2014). However, proper digestate 

management, processing, and spreading techniques are needed to avoid potential acidification and 

eutrophication impacts due to increased nutrient leaching (Abdullahi et al., 2008, Alburquerque et al., 

2012a, Bernstad and la Cour Jansen, 2011, Boldrin et al., 2011, Haraldsen et al., 2011), which is 

dependent on the local soil quality (Rigby and Smith, 2013) and meteorological conditions, as well as 

digestate characteristics (Evangelisti et al., 2014).  

Agronomic value 

The digestate’s characteristics and quality define its effect on plant growth, soils, and environment. 

The agronomic value of the digestate is dependent on four main characteristics: i) nutritional value to 

plants and organic matter content, ii) the content of contaminants (plastic, glass, metals), iii) the 

content of toxic and inhibitory compounds, e.g., heavy metals, and iv) the hygienic quality (Abubaker 

et al., 2012, Nkoa, 2014, Teglia et al., 2011). AD converts most of the organic material of the 

feedstock into biogas, while the nutrients of the feedstock are conserved in the digestate (Odlare et al., 

2011) in more inorganic and soluble forms (Tambone et al., 2010). Organic N – bound to the proteins 
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within the FW – are degraded, and NH4-N is formed (Kayhanian, 1999), while P from the proteins and 

phospholipids degrades into its mineral form, phosphates (PO4
3-

). Plant availability of N and P is 

dependent on the amount of soluble nutrient forms within digestates (reviewed in Möller and Müller, 

2012).  

The N availability to plants after fertilization is dependent on the amount of mineral N within the 

digestate, where the balance between organic and inorganic forms is especially essential (e.g. NH4-N 

concentration and NH4-N/TKN ratio, Fouda et al., 2013, Teglia et al., 2011). NH4-N/TKN ratios over 

50% are usually considered indicative of good fertilizer effect, while digestates with lower NH4-

N/TKN ratios are more suitable for soil amendments (reviewed in Nkoa, 2014, Teglia et al., 2011). 

Soluble NH4-N increases the short-term effect of N in soils enhancing plant growth shortly after 

fertilization (Abubaker et al., 2012, Gutser et al., 2005), as the NH4-N is also considered as the 

limiting factor in plant growth (Odlare et al., 2011). Also, the C/N – more specifically, the C/Norg ratio 

– affects the release of N in the soil after fertilization, where a low C/Norg ratio promotes N release and 

availability (Gutser et al., 2005).  

The organic matter in the digestate increases the soil carbon balance, which leads to enhanced 

microbial processes (Abubaker et al., 2012, Odlare et al., 2008) and enzymatic activity (Galvez et al., 

2012). This further increases mineralization and long-term nutrient release in soils (Abubaker et al., 

2012, Galvez et al., 2012, Odlare et al., 2008, Odlare et al., 2011). As it follows, there is a minimum 

value for the organic matter content (VS 15% of TS) in digestates within the upcoming European 

regulations concerning digestate use as a fertilizer in agriculture (Saveyn and Eder, 2014). However, a 

VS content that is too high, depending on its composition, can lead to imbalanced microbial activity 

and immobilization of N (Alburquerque et al., 2012b, Gutser et al., 2005) as well as phytotoxicity due 

to organic acids (Abdullahi et al., 2008). Organic acids, e.g., VFAs, are also reported to act as a carbon 

source for soil micro-organisms and be rapidly degraded after digestate application (Kirchmann and 

Lundvall, 1993). In the EU proposal for digestate fertilization, the maximum value for the digestate 

VFA concentration is 1500 mg/l (Saveyn and Eder, 2014). Besides VFAs, other acids also constitute 

the soluble organic matter within digestates, e.g., humic acids. These acids are proposed to act as bio-

stimulants for plant growth (Scaglia et al., 2015) and are related to digestate stability (Zheng et al., 

2014) along with other stable molecules, e.g., lignin and long-chain proteins (Tambone et al., 2009). 

The organic acid concentrations within digestates are also related to digestate pH, which can decrease 

soil pH and enhance heavy metal mobilization in acidic conditions (Otabbong et al., 1997), while 

alkaline conditions induce the volatilization of NH4-N during and after digestate spreading (Nkoa, 

2014). However, the effect of the digestate pH on soils is highly dependent on the soil’s characteristics 

(Alvarenga et al., 2015). 

Excess application of digestate can lead to harmful effects on plants and soils due to, e.g., the quantity 

and quality of the organic matter or any impurities, including heavy metals, organic contaminants, or 
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pathogens (Alburquerque et al., 2012b, Govasmark et al., 2011). Feedstocks of urban biogas plants, 

e.g., FWs and other biowastes, may contain heavy metals (Kupper et al., 2014, Odlare et al., 2008), 

which are concentrated in the digestate due to the mass reduction during AD (Govasmark et al., 2011) 

and possibly accumulate in the soils or the food chain after digestate use (Otabbong et al., 1997, Zhu 

et al., 2014). In the EU, the heavy metal load in digestates/composts is regulated by national 

legislation, and a new quality standard proposal will set limits for heavy metals (Zn, Cu, Ni, Cd, Pb, 

Hg, Cr) and organic contaminants (polychlorinated biphenyls, polycyclic aromatic hydrocarbons, 

polychlorinated dibenzodioxins and –furans, and perfluorocarbons) (Saveyn and Eder, 2014). 

Digestate post-treatment 

The post-treatment of digestates may be used if the digestates have unbalanced nutrient ratios for plant 

growth (Camilleri-Rumbau et al., 2015), which leads to the need for additional mineral fertilizer 

supplementation (Svensson et al., 2004). Raw digestates, depending on the feedstock, digester type, 

and operational parameters, can be relatively diluted, which increases the spreading amounts to 

achieve the desired fertilization level. The transportation of large quantities of water is inefficient, and 

large digestate volumes increase the transportation costs, especially over longer distances (Rehl and 

Müller, 2011, Teglia et al., 2011). Different digestate processing methods can be applied to tackle the 

high moisture and uneven nutrient content. Digestate post-treatment can be divided into processes 

where i) the nutrient concentration of the material is increased in comparison with the original 

digestate, or where ii) the aim is to produce separate nutrient containing mineral fertilizer-like material. 

The nutrient concentration can be increased, e.g., by the solid-liquid separation of the digestate. 

Separation with either screw press, belt press, or decanter centrifuges transfers most of the digestate 

volume into the liquid fraction, along with the water-soluble nutrients N and potassium (K) (Table 4, 

Hjorth et al., 2010). The solid fraction contains most of the digestate TS and P bound to the solid 

particles, and the decreased volume makes the solid digestate easier to handle and transport. The solid 

fraction can be also further dried, pelletized (reviewed in Möller and Müller, 2012), or composted 

(Teglia et al., 2011) to increase transportability and marketing value. The efficiency of the solid-liquid 

separation processes and the separation of  P into the solid fraction is usually enhanced by adding 

chemicals or organic polymers to neutralize the particle charges, which affect the agglomeration 

capability of the particles (reviewed in Hjorth et al., 2010, Sheets et al., 2015). 

The liquid digestate containing the majority of digestate N and K (Table 4) has, however, high water 

content and volume, as well as low nutrient concentrations (Camilleri-Rumbau et al., 2015, Hjorth et 

al., 2010, Zarebska et al., 2015). This complicates its usability in agriculture (Camilleri-Rumbau et al., 

2015, Hjorth et al., 2010) by increasing application volumes and transportation costs (Chiumenti et al., 

2013). In liquid digestates, the N is reported to be mainly (45–80%) in the soluble NH4-N form 

(Möller and Müller, 2012), which is easily volatilized during liquid spreading (Nkoa, 2014). The 

digestate liquid can be further processed to remove water and simultaneously concentrate nutrients, 
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which have been reported to lower the environmental impact of digestate use and enable transportation 

to areas with nutrient deficits (Rehl and Müller, 2011). The combination of solid-liquid separation and 

digestate liquid treatment technologies is able to produce fertilizer products with optimal composition 

(Hjorth et al., 2010) to match the nutrient requirements of crops and achieve better control of the 

applied fertilizer.  

Table 4. Mass and nutrient separation efficiencies from solid-liquid separation with decanter centrifuge and 
digestate liquid treatment with ammonia stripping, evaporation, and reverse osmosis.  

Separation efficiency, % Material Scale Reference 

Mass TS N NH4-N P K 
 

  Solid-liquid separation with decanter centrifuge; mass and nutrient separation % in liquid fraction 

- 31–46 69–76  -  9–48  -  D full Møller et al., 2002 

91 36 72 89 10 99 DLpig full Ledda et al., 2013 

76 17 48 81 4 77 DLcow full Ledda et al., 2013 

22.5  -  87  -  19 33.5 Mpig full Melse and Verdoes, 2005 

 -  38–67 71–87  -  34–40  -  Mpig full Møller et al., 2002 

 -  35–45 51–73  -  18–22  -  Mcow full Møller et al., 2002 

75–95 5-66 46–99 72–92 9–52  -  Mpig, cow full reviewed in Hjorth et al., 

2010 

Stripping; nutrient separation % in ammonium sulfate 

- - - 97 - - D lab Liu et al., 2015 

- - - >96 - - D lab Bonmatı́ and Flotats, 2003a 

- - - >80 - - D, Mpig lab Laureni et al., 2013 

- - 65–80 80–92.2 - - DL pilot Guštin and Marinšek-Logar, 

2011 

- - 65–76 - - - DL full Morales et al., 2013 

- - 94 - - - U pilot Antonini et al., 2011 

- - - 92 - - U lab Basakcilardan-Kabakci et al., 

2007 

- - - 65–98.8 - - Mpig lab Bonmatı́ and Flotats, 2003a 

- - - 95 - - - - Flotats et al., 2011 

Evaporation; mass and nutrient separation % in concentrate 

- - 80–84 - 84–96 90–99 D lab Bonmatı́ and Flotats, 2003b 

20.2 - 99.2 - - - D pilot Chiumenti et al., 2013 

10 - - - - - U - Maurer et al., 2003 

- - 95 - 100 99 U lab Ek et al., 2006 

- - 95 - 100 100 S lab Ek et al., 2006 

15–20 - 98 - - - - - Flotats et al., 2011 

Reverse osmosis; mass and nutrient separation % in retentate 

28 86–100 99.7 99.6 72 99.5 DL full Ledda et al., 2013 

29 97–100 97 97 100 99 DL full Ledda et al., 2013 

- - 95 - 90 99 U lab Ek et al., 2006 

- - 90 - 92 97 S lab Ek et al., 2006 

- - - 99.5 - - - - Ek et al., 2006 

- 92.3 - 66 - - Mpig
a
 lab Mondor et al., 2008 

Digestates (D), digestate liquids (DL), manures (M), urine (U), and sewage reject water (S) 
a
after electrodialysis treatment 

-, not available 
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The techniques for the digestate liquid treatment are, e.g., ammonia stripping and evaporation, which 

are able to produce nitrogen-rich liquid fertilizers. These technologies are already in full-scale use in 

AD plants across Europe, concentrated mainly in plants treating sewage sludge (e.g. Boehler et al., 

2015, Flotats et al., 2011, Fuchs and Drosg, 2013). Additionally, with struvite precipitation, a solid 

fertilizer product can be produced from liquid streams (Ek et al., 2006, Mehta et al., 2015), and 

membrane technologies can be applied solely for digestate liquid treatment or as a combination with 

other treatments (reviewed in Zarebska et al., 2015). In ammonia stripping, the NH4-N-rich liquid 

stream is stripped in increased pH and temperature, where the NH4-N is transformed to NH3 and 

around 65–99% of the soluble N can be further recovered, e.g., with H2SO4 in the form of ammonium 

sulfate ((NH4)2SO4) during acid scrubbing (Table 4) (Fricke et al., 2007). The most used applications 

for ammonia stripping are packed-bed reactors, which provide a large contact area for air and liquid 

and ensure the rapid shift from liquid NH4-N to gaseous NH3 (reviewed in Guštin and Marinšek-Logar, 

2011, Sheets et al., 2015). The produced ammonium sulfate can be further processed and used as 

mineral N fertilizer (Sheets et al., 2015); thus, the residue fraction still contains the remaining nutrients 

– K, P, and organic forms of N, which are not stripped as ammonia.  

The evaporation process is based on the volume reduction of digestate liquid by heating (Fricke et al., 

2007), which can be done in vacuum conditions to decrease the need for heat energy (Bonmatı́ and 

Flotats, 2003b, Chiumenti et al., 2013). With this technology, 80–98% of the digestate liquid N and 

nearly 100% of K and P is collected within the nutrient-rich concentrate (Table 4), and the residual 

fraction is collected as condensed water. Evaporator applications with either falling films or horizontal 

spraying films have been implemented in biogas plants (Fricke et al., 2007), and the NH4-N 

volatilization is prevented with acid additions to conserve the N in the concentrate. Usually, the 

condensate water produced from evaporation (as well as the P and K containing stripping residue from 

stripping) are either discarded to wastewater treatment or post-treated (Bonmatı́ and Flotats, 2003b, 

Guštin and Marinšek-Logar, 2011, Ledda et al., 2013). Reverse osmosis in particular can be used to 

separate NH4-N from liquid streams, where the liquid must be pretreated to remove solids to prevent 

membrane fouling (Sheets et al., 2015). Reverse osmosis is a membrane treatment along with 

microfiltration, ultrafiltration and nanofiltration (Camilleri-Rumbau et al., 2015, Mehta et al., 2015, 

Zarebska et al., 2015). These technologies are based on selective separation, e.g., of nutrients in 

semipermeable membranes. The permeability of nutrients is based on molecule size, reactivity and 

pressure (Mehta et al., 2015), and pH, which can be controlled to maintain a suitable NH4
+
/NH3 ratio 

and increase the N recovery rate of the process (reviewed in Fricke et al., 2007, Sheets et al., 2015).  

The digestate liquid treatment processes are both energy (and especially heat) consuming processes 

and require some amounts of chemicals, e.g., H2SO4 and/or NaOH (Fricke et al., 2007, Sheets et al., 

2015), where for example, evaporation has been reported to consume300–350 kWh per ton of water 

evaporated (Fuchs and Drosg, 2013). The nutrient concentration methods, stripping, evaporation, and 

membrane technologies may also be able to concentrate unwanted heavy metals and salts, which 
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possibly hinder the use of these concentrated, nutrient-rich fractions in agriculture (reviewed in Mehta 

et al., 2015).  

2.3 Food waste as feedstock for AD and digestate production 

2.3.1 Anaerobic digestion of FW 

The AD of FW has been studied due to its composition and characteristics, which lead to high CH4 

yields. In batch tests, FW feedstocks have produced 300–570 dm
3
/kgVS of CH4, while theoretical 

BMP (biochemical methane potential) estimations show the BMP values to be as high as 800 

dm
3
/kgVS (Table 5). The characteristics of the FW affect the CH4 yields, where around 20–30% of the 

VS consist of fats and proteins, which yield higher amounts of CH4 than carbohydrates (see Table 3, 

Table 5). However, the decrease in the measured BMPs compared with the theoretical estimations is 

related to the composition of undegradable and inert material, e.g. lignin, which lowers CH4 

production (Angelidaki and Sanders, 2004, Hendriks and Zeeman, 2009).  

Table 5. The organic composition, measured methane yields in batch assays, and theoretical methane 
production of food wastes. 

FW type 

TS 

(%) 

VS 

(%TS) 

Fat 

(%VS) 

Protein 

(%VS) 

Carbo-

hydrate 

(%VS) 

BMPmeasured 

(dm
3
/kgVS) 

BMPtheoretical 

(dm
3
/kgVS) Reference 

Synthetic 

FW 

23.7 91.1 17.2 10.6 71.5 414 - Ariunbaatar et al., 

2015 

Synthetic 

FW 

22.2 95.0 9.2 14.3 76.5 426 - Ariunbaatar et al., 

2014b 

ss-FW 23.7 91.4 15.1 23.5 45.3 445–456 547
a
 

494
b
 

Zhang et al., 2012 

ss-FW 17–37 81–92 8.1–16.6 8.1–16.6 29–55 298–573 583–834
a
       

495–545
b
 

Davidsson et al., 

2007 

ss-FW 23–33 83–93 12–15 13–15 - 428–487 530
a
 Hansen et al., 2007b 

ss-FW 33 86.0 11.2 13.8 45.6 399 442
b
 Schott et al., 2013 

ss-FW 30.9 85.3 - - - 435 - Zhang et al., 2007 

r-FW 23.8 89.2 - - - 372 618
a
 Zhang et al., 2015a 

r-FW 18.1 94.5 13.6 19.2 65.3 480 - Zhang et al., 2011 

r-FW 19.9 90.5 24.2 16.8 59.1 538 - Liu et al., 2012 

Food waste (FW), source separated (ss), restaurant (r) 
a
theoretical BMP based on element composition (C, H, N, O) according to Buswell’s equation 

b
theoretical BMP based on component composition (fat, protein, carbohydrate) 

-, not available 
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In continuous meso- and thermophilic AD, FWs have yielded around 350–500 dm
3
/kgVS of CH4. In 

full-scale operation, high OLRs and shortened HRTs are pursued to decrease the AD plant size and to 

improve energy efficiency through increased CH4 production (Ferrer et al., 2010, Qiao et al., 2013). 

However, in the mesophilic digestion of FW, OLRs are usually maintained as relatively low, because 

the digestion of FW at higher OLRs has often proven unstable (Table 6). For example, after OLR 

increases to 2 and 3 kgVS/m
3
d, FW digesters have started to accumulate VFAs, which has led to 

ceased CH4 production (Banks et al., 2008, Zhang and Jahng, 2012). In some studies, inhibition has 

been observed at higher OLRs of around 5–6 kgVS/m
3
d (Nagao et al., 2012, Zhang et al., 2015a). The 

unstable operation has been attributed to ammonia inhibition resulting from high protein content 

(Gallert and Winter, 1997), which is often indicated by the accumulation of VFAs (Banks et al., 2012).  

Especially in FW digesters operating long-term, the imbalanced VFA production has been connected 

with TE deficiencies, which affect the process stability and lower CH4 production, (Banks et al., 2008, 

Banks et al., 2012, Facchin et al., 2013, Yirong et al., 2015, Zhang et al., 2011, Zhang and Jahng, 2012, 

Zhang et al., 2012). After the introduction of TE supplementation to the digesters, stable operation on 

higher OLRs (around 7 kgVS/m
3
d) has been possible (Table 6). At the beginning of the digestion, the 

background concentration of TEs from the inoculum provides sufficient TE levels for FW digestion 

(Facchin et al., 2013), but the effect of inoculum has been reported to decrease over time (Zhang et al., 

2015a) due to the washout of the TEs. The most widely studied TEs in FW digestion studies are iron 

(Fe), copper (Cu), zinc (Zn), manganese (Mn), cobalt (Co), molybdenum (Mo), nickel (Ni), selenium 

(Se), tungsten (W), and boron (B), of which especially Fe (Zhang and Jahng, 2012), Mo, W (Facchin 

et al., 2013), Co (Banks et al., 2012, Facchin et al., 2013) and Se (Banks et al., 2012, Zhang et al., 

2015b) have been reported to stabilize VFA concentrations and increase the CH4 production of 

mesophilic digesters treating FW. In addition, the combination of TEs has been reported to show 

synergistic effects on the digestion of FW (Banks et al., 2012, Facchin et al., 2013, Zhang et al., 2011, 

Zhang et al., 2015a).  
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Table 6. The operational parameters and possible inhibition and trace element (TE) additions in different laboratory food waste digesters.  

FW type 

OLR 

(kgVS/m
3
d) HRT (d) 

CH4 yield 

(dm
3
/kgVS) 

VS reduction 

(%) 

TAN in 

reactor (g/L)  

Inhibition 

observed TE additions Reference 

Mesophilic digestion  

r-FW 2.19 30 - 75–80 - yes, after 70 days no Zhang and Jahng, 2012 

r-FW 2.19–6.6  20–30 350–450 75–80 1.3–2.7 no Co, Mo, Ni, Fe Zhang and Jahng, 2012 

FW 3.7–5.5 8 420 85–89 n.a. yes, after day 50 

(OLR 5.5) 

no Nagao et al., 2012 

FW 3.7–12.9 16 420–450 84–93 - yes, after OLR 9.2  no Nagao et al., 2012 

r-FW 2–6 15–30 390–420 (OLR 2–4) 

360–0 (OLR 6) 

30–70 - yes, after day 45 

(OLR 6) 

no Zhang et al., 2015a 

r-FW 2–7 15–31 460–500  70–80 - no mixtures of Fe, Co, 

Mo, Ni + chelating 

agent 

Zhang et al., 2015a 

ss-FW 2–5 38–95 - - 5–6 yes, after OLR 3 no Banks et al., 2012 

ss-FW 2–5 38–95 - - 5 no mixtures of Al, B, 

Co, Cu, Fe, Mn, Ni, 

Zn, Mo, Se, W 

Banks et al., 2012 

FW 3.8 - 380 96 - no no Grimberg et al., 2015 

KW+DAS+VFR 10.3–12.9 8–10 500–800 60–64 - yes no Guo et al., 2014 

diluted FW 9.4 19 - 64 1 yes no Gallert and Winter, 1997 

Thermophilic digestion  

diluted FW 9.4 19 - 65 1.3 yes no Gallert and Winter, 1997 

ss-FW 1–4 - 430 - 2–6 yes, after day 70 no Yirong et al., 2015 

ss-FW 1–4 - 430 - 2–6 yes mixtures of Al, B, 

Co, Cu, Fe, Mn, Ni, 

Zn, Mo, Se, W 

Yirong et al., 2015 

KW  0.5–3
b
  18–36 - - - yes, after day 80 no Ma et al., 2011 

ss-FWs 2.8 - 275–410 81 - no no Davidsson et al., 2007 

Food waste (FW), source separated (ss), restaurant (r), kitchen waste (KW), vegetable/fruit residue (VFR), dewatered activated sludge (DAS), 
a
pilot experiment, 

b
gCOD/L d, 

c
biogas productivity (L/L/d)

 

-, not available 
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2.3.2 Pretreatment of food waste  

Prior to utilization, e.g., in AD plant FW undergoes pretreatment steps, which usually seek to improve 

the FW quality and digestion process through separation of unwanted materials, particle size reduction, 

and solubilization (Bernstad et al., 2013, Carlsson et al., 2012). The reduction of particle size increases 

the surface area available for microbial degradation (reviewed in Ariunbaatar et al., 2014a, Izumi et al., 

2010); thus, excess size reduction has been shown to negatively affect the AD of FW by decreasing 

solubility and by VFA accumulation, which subsequently led to decreased CH4 production (Izumi et 

al., 2010). Although the separation of unwanted materials, such as plastic, glass, and metals from FW 

is a common practice in full-scale digestion plants, the separation process can reduce some FW and its 

nutrients and organics, which reduces the potential CH4 yield of the FW (Bernstad et al., 2013, 

Davidsson et al., 2007).  

Heat-based pretreatments are recommended within national regulations for the hygienization of 

organic wastes, where the thermal treatment leads to pathogen removal. According to the EU’s Animal 

By-Products Regulation (1096/2009/EC, European Parliament and the Council, 2009), materials from 

category 3, such as FW, must be hygienized (70°C, 1 h), while category 2 materials (e.g., Salmonella-

contaminated slaughterhouse materials) must be pressure sterilized (>133°C, 20 min) before digestion 

to reduce the risk to public and animal health. Low-temperature hygienization is commonplace at AD 

plants to pretreat FW, but thermal and hydrothermal treatments have also been used as pretreatments 

before AD to enhance the solubilization and biodegradability of, e.g., FWs and mixed biowastes in 

higher temperatures (Lissens et al., 2004, Ren et al., 2006, Sawayama et al., 1997). Thermal treatments 

of FW with autoclaves in temperatures 120–200°C have been previously studied, where increased CH4 

yields are observed in the lower temperature range. Recently, pretreatment temperatures from 140 to 

175°C have been observed to lower the biodegradability and CH4 conversion of FW (Table 7). This 

decreased CH4 production is connected with the formation of Maillard compounds, as the FW includes 

a high proportion of amino acids containing proteins and easily biodegradable carbohydrates. 

Additionally, due to these characteristics, the formation of Maillard compounds in FW has been 

proposed to occur in lower temperatures compared with sludges (Guo et al., 2014, Liu et al., 2012), 

where the formation of Maillard-like compounds has been reported in higher temperatures (190°C, 

Bougrier et al., 2008).  
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Table 7. The effect of thermal and hydrothermal pretreatment on the AD of food wastes in temperatures 
120–200°C. 

Temper-

ature (°C) Material 

Pressu-

re (bar) 

Time 

(min) 

Change in CH4 

production (%) 

Apparatus/ 

technique 

AD 

type Reference 

120 sFW - 60 +13.5 oven batch Ariunbaatar et al., 2014b 

120 KW - 30 +10
a
 autoclave batch Ma et al., 2011 

140 sFW - 60 +1 oven batch Ariunbaatar et al., 2014b 

140 sFW - 30 +4 oven batch Ariunbaatar et al., 2014b 

150 sFW - 30 +3.6 oven batch Ariunbaatar et al., 2014b 

140–160 KW - 50–70 -0.2 thermal 

hydrolysis  

batch Li and Jin, 2015 

170–175 KW+ VFR 5 60 +3 thermal 

hydrolysis  

batch Zhou et al., 2013 

175 KW - 60 -7.9 oil bath batch Liu et al., 2012 

175 VFR - 60 -11.9 oil bath batch Liu et al., 2012 

175 KW+VFR 

+DAS 

- 60 -3.6
a
 thermal 

hydrolysis  

conti-

nuous 

Guo et al., 2014 

175 sFW 40 60 +30 autoclave batch Sawayama et al., 1997 

185 FW 12 10 +7 autoclave batch Lissens et al., 2004 

160–200 FW 40 60 +6 thermal 

hydrolysis  

batch Schieder et al., 2000 

Food waste (FW), kitchen waste (KW), vegetable/fruit residue (VFR), dewatered activated sludge (DAS),  

synthetic (s) 
a
biogas production 

-, not available 

 

2.3.3 Food waste digestate 

Agronomic value 

The agronomic value of FW digestate, like all digestates, can be divided into four components: i) 

nutritional value to plants and organic matter content, ii) content of contaminants, iii) content of, e.g.,  

heavy metals, and iv) hygienic quality (Abubaker et al., 2012, Nkoa, 2014, Teglia et al., 2011). The 

digestate nutrient content is dependent on the substrate (Abubaker et al., 2012, Haraldsen et al., 2011, 

Tambone et al., 2010), and with FW feedstock, the amount of plant nutrients is usually high due to the 

waste’s characteristics. Additionally, the digestate characteristics are also dependent on the AD 

process; the reactor type and process parameters (Trzcinski and Stuckey, 2011, Zirkler et al., 2014) 

affect the TS content, for example (Table 8). The TS content in FW digestates from wet-type AD 

reactors is usually around 6%, while in liquid-type digestates and solid digestates from different solid-

liquid separation processes, the TS content is around 2% and 25%, respectively (Table 8, Hjorth et al., 

2010). The TS content of the digestate affects the transportation needs and costs, especially over 

longer distances (Rehl and Müller, 2011, Teglia et al., 2011). With FWs, the AD plants are usually 

located far from agricultural lands where the nutrients could be utilized (Babson et al., 2013), which 

increases the transportation distance of the digestate nutrients.  
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The nutrient content in FW digestates varies depending on the FW type, digestion process, and TS 

content, where the TKN content is usually between 2 and 7 kg/kgFM, Ptot content ranges from 0.5–1 

g/kgFM, and Ktot is around 1 g/kgFM. The NH4-N/TKN ratio in FW digestates is over 50% in general, 

which indicates increased fertilizer potential (reviewed in Nkoa, 2014, Teglia et al., 2011). The FW 

digestate can also contain contaminants (e.g. glass and metals) that are correlated with FW quality and 

sorting processes (Bernstad and la Cour Jansen, 2012). The inorganic impurities in the digestate, such 

as heavy metals, can originate from food production, when soils, crops and animal feeds already 

contain certain levels of heavy metals. During household waste collection heavy metal-containing 

batteries, metal containers, etc. can end up in the food waste stream if they are not removed during 

waste pretreatment. Subsequently, the amount of heavy metals ending up in soils is dependent on the 

application volumes of digestates, which are dependent on the TS and nutrient concentrations.  

The hygienic quality of the FW digestates is dependent on the pathogens; the species usually found in 

the FW feedstock are, e.g., Salmonella, Listeria, Escherichia coli, Campylobacter, Mycobacteria, 

Clostridia and Yersinia (reviewed in Sahlström, 2003). The most abundant pathogens are usually 

enterococci and coliforms, whose concentration is around 10
4
–10

5 
cfu/g in FW (Sahlström et al., 2008). 

The inactivation pathogen in thermophilic processes (50–55°C) is calculated in hours but with 

mesophilic temperatures (30–38°C) in days (reviewed Sahlström, 2003). Thus, according to the 

European Animal By-Products Regulation, when food waste is used as a digester feedstock, pre- or 

post-hygienization is required to prevent risk against human and animal health (1069/2009/EC, 

European Parliament and the Council, 2009). Within the legislation, the threshold value for E. coli or 

Enterococcaceae is 1000 cfu/g and no Salmonella in a 25 g sample.  
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Table 8. Food waste digestate characteristics reported in the literature. 

Feedstock pH TS VS C/N TKN NH4-N 

NH4-N 

/TKN  Ptot Ktot Reference 

    (%) (%TS)   (g/kgFM) (g/kgFM) (%) (g/kgFM) (g/kgFM)   

Whole digestates  

  

 

  

 

   FW 7.9–8.2 4.8–5.4 66.4–69.3 2.3–2.7 7.6–8.1 4.4–4.7 54–62  -   -  Pezzolla et al., 2012 

FW 8.3 18.4 75 15.5 28 2.0 7 0.2  -  Forster-Carneiro et al., 2008 

sh-OFMSW 8.9 7.8 47.4 6.1 45 1.9 4 0.005  -  Forster-Carneiro et al., 2008 

OFMSW 8.5 3.7 61.6 7.6 47 1.2 3 0.004  -  Forster-Carneiro et al., 2008 

60% ss-h-FW, 40% slaughterhouse 

waste 

7.9 6.1  -  7.1 7.9 5.3 67 0.9 1.6 Abubaker et al., 2012, 

Abubaker et al., 2015 

66% ss-h-FW, 24% silage, 10% 

grease tap sludge 

8.7 5.9  -  12.1 5.3 3.3 62 0.4 3.7 Abubaker et al., 2012, 

Abubaker et al., 2015 

24% ss-h-FW, 43% food processing 

waste, 33% slaughterhouse waste 

8 1.7  -  11 2.6 2.0 77 0.2 1.1 Abubaker et al., 2012, 

Abubaker et al., 2015 

Liquid digestates           

ss-h-FW 8.02 1.45  -   2.2 1.5 68 0.2 1.1 Haraldsen et al., 2011 

ss-h-FW  0.7  -   1.3 0.4 30 0.06 1.3 Haraldsen et al., 2011 

FW 4.4 17.1 86 14 6.0 0.5 8 0.7 0.9 Rigby and Smith, 2013 

FW+abattoir+farm waste 8.1–8.3 5.0–5.2 67.1–72.7  -  5.5–7.2 2.8–3.9 39–71 0.2–0.4 1.5–2.7 Rigby and Smith, 2014 

ss-FW  -  5.8 71.2  -  6.5 3.8 58 0.7 2.7 Zhang et al., 2012 

mr-OFMSW  -  6.6 49.9  -  3.2 1.5 47 0.3 1.1 Zhang et al., 2012 

Solid digestates           

OFMSW 8.8 28.9 42.3 11 6.7 1.0 15 1.3 1.5 Rigby and Smith, 2013 

OFMSW 7.3–7.6 34–37.2 52.3–56.6  -  5.1–6.3 0.7–1.2 11–24 1.0–1.5 1.1–1.8 Rigby and Smith, 2014 

ss-FW  -  14.7 82.6  -  8.0 3.5 44 1.5 2.6 Zhang et al., 2012 

mr-OFMSW  -  35 60.5  -  5.7 1.7 30 1.2 1.4 Zhang et al., 2012 

Food waste (FW), organic fraction of municipal solid waste (OFMSW), source separated (ss), household (h), mechanically recovered (mr)  

-, not available  
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Fertilizer use  

The application of the same amount of plant-available nutrients in FW-based digestates compared to 

mineral fertilizers has been found to produce similar and even up to 40% increased crop yields (Table 

9, Abubaker et al., 2012, Furukawa and Hasegawa, 2006, Haraldsen et al., 2011, Rigby and Smith, 

2014). These effects are due to both nutrient content –  especially the amount of mineralized N (Fouda 

et al., 2013, Teglia et al., 2011) – and the introduction of organic matter to soils, increasing the soil 

structure and microbiology (Odlare et al., 2008, Odlare et al., 2011). Some studies have, however, 

reported 10–25% lower crop yields with FW digestates compared to mineral fertilizers (Odlare et al., 

2008, Svensson et al., 2004), as the plant-available N concentrations have not been able to compete 

with the mineral fertilizers. However, the digestate produced from FW could be used with mineral 

fertilizer supplementation to match the crop nutrient demand (Nicoletto et al., 2014, Svensson et al., 

2004), or it could be post-treated to produce concentrated fertilizer products for agriculture with 

optimal nutrient ratios for plant growth (Hjorth et al., 2010). 

The results from various FW digestate fertilization experiments are, however, affected by the 

experiment conditions, e.g., soil quality, which can lead to different N mineralization in soils (Rigby 

and Smith, 2013), and further reduce the availability of nutrients. Digestate fertilization could have 

alternative effects on plants, e.g., the plant’s nutritional composition. Fertilization with fruit and 

distillery waste-based digestates has been reported to decrease the nitrate (NO3-N) content in 

vegetables, especially in lettuce (Nicoletto et al., 2014), where the predominant form of N in digestates 

is NH4-N, which does not accumulate into plants as the NO3-N form in the mineral fertilizers does.  
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Table 9. The effect of food waste digestate fertilization on crops in field- and pot-scale experiments.  

Digestate origin Plant/crop 

Type of 

experiment Effect of digestate fertilization Reference 

Slaughterhouse 

waste + FW  

Spring wheat Pot 

experiment 

1–40% higher biomass yield 

compared with mineral fertilizer, 

lower yield compared with pig 

slurry
b
 

Abubaker et al., 

2012 

FW+abattoir+ 

farm waste
a
  

Ryegrass 2-year field 

trial 

13–23% increased dry matter 

yield and plant N uptake 

compared with mineral control
c
, 

effective source of available N 

Rigby and Smith, 

2014 

FW
a
 Barley Pot 

experiment  

Equivalent grain yield with 

mineral NPK fertilizer
b
 

Haraldsen et al., 

2011 

FW Spinach and 

Komatsuna 

Field trial Comparable yield and N uptake 

compared with mineral fertilizer 

Furukawa and 

Hasegawa, 2006 

OFMSW Spinach Field trial 21% increased biomass yield and 

plant growth compared with 

control with no fertilization 

Islam et al., 2016 

FW Crop rotation, 

barley and 

oats 

4-year field 

trial 

7–26% lower N yields and 19% 

lower crop yields compared with 

mineral fertilizer control. Similar 

crop yields were achieved with 

digestate supplemented with 

mineral fertilizer
b
.
 
Digestates 

introduced more plant-available 

N and promoted soil microbial 

activity compared to mineral 

fertilizers and manure 

Odlare et al., 2008, 

Svensson et al., 

2004 

FW Crop rotation, 

barley and 

oats 

8-year field 

trial 

15% lower biomass yield 

compared with mineral 

fertilizers. Higher yield compared 

with unamended and compost- 

amended plots. Substrate induced 

respiration, potential ammonium 

oxidation, and N mineralization 

were improved
b
 

Odlare et al., 2011 

Food waste (FW), organic fraction of municipal solid waste (OFMSW) 
a 
Liquid digestate, 

 b
equal N in digestates and mineral fertilizer control,

 c
not equal N fertilization rate in 

digestates and control 
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3 Objectives 

The main aim of this study was to analyze the potential of using anaerobic digestion for FW utilization. 

To specify the aim, the anaerobic digestion of FW and the processing and utilization of digestate was 

studied using four sub-objectives (Figure 5): 

1. To increase the FW treatment rate in mesophilic AD and achieve stable AD performance at 

high OLRs (Paper I). 

 

2. To study the effect of autoclave pretreatment on the AD performance (Papers I and II), as well 

as the digestate quality and agronomic usability (Papers II and III). 

 

3. To evaluate the agricultural usability of different FW digestates (Papers II and III). 

 

4. To evaluate the mass and nutrient flows and energy balance of digestate liquid post-treatment 

in order to assess the feasibility of producing concentrated nutrient products (Paper IV).  
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Figure 5. The overview of the thesis objectives. 
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4 Materials and methods 

This study analyzed the utilization FW as a feedstock for AD, the pretreatment with autoclaving, and 

the quality and usability of the produced digestates. The AD of FW and autoclaved FW was studied 

with BMP assays in batch mode and continuous experiments in stirred tank reactors (STRs). The 

characteristics of the feedstocks and the digestate quality were examined with chemical analyses as 

well as hygiene indicator analyses. The usability of the digestate in agriculture was tested with growth 

experiments and N mineralization tests. On the whole, the mass, nutrient, and energy balances were 

calculated for a theoretical full-scale FW digester and the digestate post-treatment processes to assess 

the feasibility of producing concentrated nutrient products (Table 10). 

Table 10. The summary of the thesis objectives, experiments and analyses conducted in each corresponding 
paper. 

Objective Studied materials Experiments Main analyses Paper 

1. Increase of the FW treatment rate 

in mesophilic AD to achieve stable 

AD performance at high OLRs 

FW STRs, BMPs Chemical 

characteristics 

I, II 

2. Effect of autoclave pretreatment on 

the AD performance, digestate 

quality and agronomic usability 

FW STRs, BMPs, 

ammonification trials 

Chemical 

characteristics 

I, II 

3. Agricultural usability of different 

FW digestates 

FW, OFMSW, 

VWAS 

Growth experiments, 

N mineralization 

Chemical 

characteristics, 

nutrients, heavy 

metals, hygienic 

quality 

II, III 

4. Mass, nutrient, and energy balance 

of digestate liquid post-treatment in 

order to assess the feasibility of 

producing concentrated nutrient 

products 

FW digestate Theoretical mass, nutrient and energy 

balance calculations 

IV 

Food waste (FW), organic fraction of municipal solid waste (OFMSW), vegetable waste + waste activated sludge 

(VWAS), stirred tank reactor (STR), biochemical methane potential (BMP) 
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4.1 Materials 

4.1.1 Food wastes and digestates  

This study characterized three FWs (FW1–FW3) and one OFMSW, their representative digestates, as 

well as one digestate with a mixture of vegetable waste (VW) and WAS as feedstock (sample referred 

to as VWAS). These digestates originated from laboratory stirred tank reactors (Paper I and II) and 

sub-commercial, full-scale and pilot-scale reactors (Paper III). The studied digestates and their 

representative FWs/feedstocks are summarized in Table 11. The characteristics, including nutrient 

content (Papers II, III) and hygienic quality (Paper II), were analyzed from both feedstocks and 

digestates, while heavy metal content (Paper III) and plant growth and N mineralization (Paper III) 

were analyzed solely from the digestates. Additionally, digestates FW1 and FW2 were tested 

considering their residual methane potential (RMP) and the ammonification potential (Paper II). 

FW1 and FW2 were based on source separated domestic FW collected from the South Shropshire 

biowaste digestion plant in Ludlow, UK. Biodegradable bags (used for waste collection) were 

removed and the FW material was mixed and divided into two equal portions. One portion was left 

untreated (sample referred to as FW1), while the other portion was pretreated for 45 minutes at 160°C 

and 6.2 bars in a novel double-auger autoclave (AeroThermal Group Ltd, UK) (sample referred to as 

FW2). Both portions were then passed through a macerating grinder (S52/010 Waste Disposer, IMC 

Limited, UK), packed into 35-liter plastic boxes, frozen, and shipped at -20°C to the Natural 

Resources Institute, Finland, to be used in AD experiments to produce digestates FW1 and FW2. 

Before the experiments and analyses, the FWs were thawed and stored at 4°C (Papers I, II, and III), 

while the representative digestates FW1 and FW2 were stored at -20°C, then thawed and stored at 4°C 

before analyses and experiments. 

 

Figure 6. The untreated FW1 (A) and the autoclaved FW2 (B) characterized in this study. 



 

33 

 

The studied FW3 originated from Greenfinch, UK, and was source separated food waste. Its 

representative digestate was obtained from a sub-commercial-scale anaerobic digester (Greenfinch, 

UK). Source separated OFMSW from the Lisbon area, Portugal, was analyzed along with its digestate 

from a full-scale AD plant (Lisbon, Portugal). The OFMSW feedstock showed rather different 

composition compared to other FWs, and prior to analyses of water-soluble nutrients and carbon, the 

non-biodegradable material (plastic cups, plastic bags, etc.) were manually removed. Prior to analyses, 

all feedstock samples were macerated with a Retch Grindomix GM300 knife mill (Retch Gmbh, 

Germany). The fifth digestate, VWAS, was obtained from a pilot digester treating a mixture of VW 

and WAS from Treviso, Italy. The feedstock representative of this digestate was not available for 

characterization. All waste and digestate samples were sent in frozen form to a laboratory at the 

Natural Resources Institute, Finland, where the samples were thawed and stored approximately one 

week at 4°C (Paper III).  

Overall, the studied digestates originated from different phases and scales of the AD (Table 11). For 

FW1 and FW2 digestates, the characterization analyses were done from digestates from OLRs 2–6 

kgVS/m
3
d (Papers II and III), hygiene and RMP analyses from OLRs 4 and 6 kgVS/m

3
d (Paper II), 

and growth and mineralization experiments from OLR 4 kgVS/m
3
d (Paper III).  

Table 11. The feedstocks and digestates studied in this thesis from different AD reactors. 

Sample Feedstock Origin Digestion parameters Paper 

   Scale  Temperature Phase 
HRT 

(d) 

OLR 

(kgVS/m
3
d) 

 

FW1 ss-FW UK Laboratory Mesophilic 1 117 2.0 I,II 

      78 3.0 I,II 

      58 4.0 I, II, III 

      39 6.0 I,II 

FW2
a
 ss-FW UK Laboratory Mesophilic 1 94 2.0 I,II 

      63 3.0 I,II 

      47 4.0 I, II, III 

      31 6.0 I,II 

FW3 ss-FW UK 
Sub-

commercial 
Mesophilic 1 26 3.3 

III 

OFMSW OFMSW Portugal Full scale Thermophilic 2 24 3.7
c
 III 

VWAS VW+WAS
b
 Italy Pilot Thermophilic 1 16 3.8

c
 III 

Food waste (FW), organic fraction of municipal solid waste (OFMSW), vegetable waste + waste activated 

sludge (VWAS), vegetable waste (VW), waste activated sludge (WAS), source separated (ss)
 

a
Feedstock pretreated with autoclave (160°C, 6.2 bar) 

 

b
Feedstock was not characterized 

 

c
kgCOD/m

3
day 
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4.1.2 Inocula 

Different inocula were used in different experiments in this study (Table 12). The STRs were 

inoculated with digestate from a mesophilic AD digesting mechanically dewatered sewage sludge 

(Biovakka Suomi Ltd, Turku, Finland) (Paper I). In BMP and RMP assays, the inoculum was taken 

from an AD treating municipal and industrial biowastes (Envor Biotech Ltd, Forssa, Finland) (Paper I, 

II). The digestates obtained from the laboratory-scale STRs were used as inocula to test the BMP and 

RMP with these digestates (Paper II). 

Table 12. The characteristics of the mesophilic inocula used in this study in stirred tank reactor (STR), 
biochemical methane potential (BMP), and residual methane potential (RMP) experiments. 

 Inoculum 

TS 

(%) 

VS 

(%) 

VS/TS 

(%) 

TKN 

(g/kgFM) 

NH4-N 

(g/kgFM) 
Experiment Paper 

Full-scale sewage sludge digester 7.7 4.3 55.8 4.9 2.4 STR I 

Full-scale biowaste digester 4.5 2.9 63.2 - - BMP, RMP I,II 

Laboratory-scale reactor treating FW1 6.6 4.5 67.3 8.0 4.0 BMP, RMP II 

Laboratory-scale reactor treating FW2  8.2 6.7  81.2 7.3 1.2 BMP, RMP II 

-, not available        

4.2 Experimental set-up 

4.2.1 Anaerobic digestion 

Batch assays 

Two types of batch assays were executed in this study: BMP and RMP assays (Papers I and II). Batch 

assays were used to obtain the BMP values for FWs and digestates (Papers I and II), as well as to 

study the ammonification potential of FW digestates (Paper II). All assays were performed at 37°C 

using automated testing equipment (Bioprocess Control Ltd, Sweden) (Figure 7). The assays were 

mixed mechanically (84 rpm) for one minute per hour. From the biogas, CO2 was absorbed by NaOH 

before the automated CH4 gas volume measurement, which was based on liquid displacement. Assays 

were conducted in 500 ml glass bottles as duplicates or triplicates, each with a total liquid volume of 

400 ml (BMPs in Paper I, BMPs and RMPs in Paper II) or 200 ml (RMP assays in Paper I). The 

inoculum to substrate ratio in BMP assays was 1:1 on a VS basis (Papers I and II), except in the FW2 

sample, which was digested in a VS ratio of 1:2 (Paper II). The digestates in the RMP assays were 

incubated without inoculum. In all BMP assays, distilled water was added to obtain 400 ml liquid 

volume. If pH was lower than 7.5, it was adjusted to around 8 with 3 M NaOH. NaHCO3 (3 g/l) was 

used as a buffer in BMPs and RMPs (Paper I). Finally, the contents of all bottles were flushed with N2 

to obtain anaerobic conditions. 
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Continuous reactor experiments 

The continuous AD was studied with samples FW1 and FW2 in four 11-liter stainless steel STRs 

(Metener Ltd, Finland) (Figure 7), which operated at 37°C with semi-continuous stirring (32 rpm, 5 

seconds on and 60 seconds off). Two parallel reactors were fed with FW1 (R1, R2) and two reactors 

with FW2 (R3, R4). The reactors were manually fed five times a week through an inlet tube, which 

extended below the digestate surface and was also used for digestate sampling. Digestate overflowed 

from the reactors by gravity through a u-tube trap to prevent gas escape. The gas volume and CH4 

content were measured through two methods: i) using an automatic system where the produced biogas 

was collected into a small (~220 ml) gas storage vessel on top of the reactor, and ii)  by water 

displacement in a volume-calibrated cylindrical gas collector, after which the gas was collected in 

aluminum gas bags (Paper I).  

 

Figure 7. The laboratory stirred tank reactors (left) and BMP devices (right) used in this study. 

During the 473 days of experimentation, OLRs were gradually increased from 2 to 6 kgVS/m
3
day 

(Table 13). During days 179–193 reactors R1 and R3 were supplemented once a week with a trace 

element (TE) solution containing Se (0.2 mg/l) and Co (1.0 mg/l). From day 199 onward, all reactors 

(R1–R4) were given a weekly supplement of two TE solutions (Banks et al., 2012), one containing 

cation elements (mg/l) – Al 0.1 , B 0.1, Co 1.0, Cu 0.1, Fe 5.0, Mn 1.0, Ni 1.0, Zn 0.2 – and the other 

oxyanions (mg/l): Mo 0.2, Se 0.2, and W 0.2. For each kg of digestate removed from the reactors over 

the one-week period, 1 ml of each of these TE solutions was added. 

Table 13. The scheme of increasing OLRs and HRTs in continuous experiments (Paper I). 

  

  

OLR (kgVS/m
3
d) 2 3 4 6 

Days 19–150 151–255 256–417 418–473 

HRT (d) 

    FW1 (untreated FW) 117 78 58 39 

FW2 (autoclaved FW) 94 63 47 31 
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4.2.2 Digestate nitrogen usability in soil and plants 

The agricultural usability of the studied digestates was assessed with nitrogen mineralization in soil 

and plant growth tests. N mineralization tests were conducted to study the effect of digestate 

applications on soil inorganic N concentrations (Paper III). The 48-day mineralization was tested in 

triplicates at 20°C according to ISO 14238 (ISO, 2012) with digestates and control soil, where no 

fertilizer was added. Incubation soil (7% clay, 6% silt, and 87% sand; soil organic C 1.8% and pHw 5.1) 

was collected from the 0–15 cm top layer of a cultivated agricultural soil in Jokioinen, Finland. The 

digestates were added to the soil (2.2–8.6 gFM), resulting in N additions of 17–31 mgN/100g soil. Soil 

from individual pots was sampled after 0, 4, 20 and 48 days following the start of incubation and was 

then frozen (-20°C). After incubation, all soil samples were thawed, and 100 g moist soil was 

extracted with 250 ml 2 M KCl and analyzed for NH4-N and NO3-N. Soil inorganic N concentrations 

were compared against the incubated control soil.  

The plant availability of the N in the digestates was studied via a pot experiment using the same soil as 

in the mineralization test (Paper III). The growth of Italian ryegrass (cv. Fabio) was studied in 

triplicate treatments with each of the digestates and a control. The applied N addition varied from 

1280 to 2390 mgN/pot within the digestates. Control treatments were mineral fertilizer (NH4NO3) 

applications of 0 to 2000 mgN into the pot at 500 mg N intervals. Sufficient levels of P (500 mgP/pot), 

K (1500 mgK/pot) and other nutrients (Mg, S, B, Cu, Mn, Mo and Zn) were applied to each pot to 

maintain N as the only responsive nutrient. Eleven grams of limestone were mixed with the soil of 

each pot to control pH and add Ca. A half gram of ryegrass seeds was evenly placed on the surface of 

the experimental soil in each pot. The ryegrass was grown under a glass roof outdoors at ambient air 

temperature for the first 110 days and for days 110–160 in a greenhouse (14 hours of light at 16°C and 

10 hours of dark at 14°C). The grass was harvested at 30, 60, and 160 days after the start of the 

experiment. When harvested, the ryegrass was cut, leaving 2 cm-high stubble; the fresh weight was 

measured, and samples were dried at 60°C after which the dry weight (dry matter, DM) was 

determined. Samples were milled before analyzing the TKN concentrations. 

The apparent nitrogen utilization efficiency (NUE) of plants was calculated according to the following 

equation (Gunnarsson et al., 2010): 

NUE (%) = (Nuptake – Ncontrol) / Nadded x 100 

where Nuptake refers to the N uptake per pot (mgN/pot) with each studied digestate, Ncontrol to the N 

uptake per pot of the unfertilized control (mgN/pot), and Nadded to the amount of added N per pot 

(mgN/pot).  
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4.3 Mass, nutrient, and energy balances of a theoretical AD plant 

The mass, nutrient, and energy balance of a theoretical full-scale AD plant digesting FW was 

calculated to evaluate the digestate liquid post-treatment and assess the feasibility of producing 

concentrated nutrient products. The aim was also to compare the nutrient concentration and energy 

efficiency of digestate liquid treatment technologies (Paper IV). Figure 8 presents the applied AD 

plant system boundaries, including pretreatment, a digester, digestate treatment and biogas upgrading. 

The formed biogas was assumed to be upgraded in a CHP into heat and electricity to be used in the 

AD plant, and the excess electricity was to be fed to the power grid (Table 14). The digestate treatment 

was assumed to include the separation of the digestate into liquid and solid digestates, from which the 

liquid digestate would be further treated with one of the four treatment systems consisting 

combinations of ammonia stripping, evaporation and membrane (reverse osmosis, RO) technologies 

(Table 15).  

 

Figure 8. The system boundaries for the theoretical AD plant. Gray boxes represent feedstock/product and 
white boxes represent studied unit operations. 

4.3.1 Anaerobic digestion and digestate liquid treatment 

The AD feed was source separated FW with TS 25%, VS 23%, Ntot 7.5 kg/tFM, NH4-N 0.4 kg/tFM, 

Ptot 0.9 kg/tFM, and Ktot 2.8 kg/tFM (based on Papers I and II). The FW (60 kt/a) was assumed to be 

pretreated by shredding/maceration and then hygienized (1 h at 70°C). The amount of thermal energy 

needed for heating 60 kt of FW during hygienization was calculated with the specific heat capacity of 

water (4.18 kJ/kgºC). No additional heating was allocated for the heating of FW prior to the digester as 

the heat energy from the hygienization was assumed to be sufficient for the mesophilic (40°C) digester 
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(Berglund and Börjesson, 2006, Prapaspongsa et al., 2010). The heating of the dilution water was 

calculated using the specific heat capacity of water. The references for the calculation of the AD 

energy consumption are presented in Table 14 in addition to the heat losses from the hygienization and 

digester units. Pretreatment and hygienization were not considered to affect the FW mass and nutrient 

content as material was not removed during the pretreatment step. During the maceration step, 40 kt/a 

of dilution water was added to the FW to achieve a TS of 15%. 

Table 14. The literature values used in the calculations concerning the mass, nutrient and energy balance of 
a theoretical AD plant treating FW. 

Process Value/calculation Reference 

Hygienization & pretreatment  

Heat consumption FW (60 kt) temperature from 15 to 75°C to 

maintain the required temperature during 

hygienization 

- 

Electricity consumption 37.5 kWh/tFM for hygienization and pretreatment reviewed in Pöschl et al., 2010 

Digester   

Heat consumption The heat energy from the hygienization was 

assumed to be sufficient for the mesophilic 

(40°C) digester. The heating of the dilution water 

(40 kt/a) from 15 to 40°C was calculated with the 

specific heat capacity of water  

- 

Electricity consumption 18 kWh/tFM reviewed in Berglund and 

Börjesson, 2006, Pöschl et al., 

2010  

Heat loss 15% of the heat demand Rapport et al., 2011, Smyth et 

al., 2009 

CHP unit   

CHP efficiency 38% for electricity and 48% for heat Bacenetti et al., 2013, Poeschl 

et al., 2012 

Electricity consumption 5% of the energy produced in CHP Banks et al., 2011, 

Havukainen et al., 2014, 

Naegele et al., 2012, Pöschl et 

al., 2010 

Digestate separation   

Electricity consumption 3.5 kWh/tFM digestate Flotats et al., 2011, Hjorth et 

al., 2010, Ledda et al., 2013, 

Møller et al., 2000, Møller et 

al., 2002 

Nutrient separation 

efficiency 

In liquid digestate: 90% mass, 20% TS, 20% VS, 

70% Ntot, 81% NH4-N, 10%Ptot, 85% Ktot 

-, not applicable 

The energy content (MWh/a) of the produced biogas was calculated by multiplying the BMP of the 

FW (450 m
3
CH4/tVS, Papers I and II) with the amount of feedstock VS fed to the reactor. The 

conversion factor of 1 m
3
CH4=10 kWh was used. The mass of the produced digestate was calculated by 

subtracting the mass of the biogas from the feedstock (60 kt of FW + 40 kt of dilution water). The 

calculation of the biogas mass was based on biogas composition (60% CH4, 40% CO2) and component 

densities (CH4 0.72 kg/m
3
, CO2 1.96 kg/m

3
). In the digestate, the total nutrient concentrations (Ntot, Ptot, 

Ktot, kg/tFM) were assumed to be the same as in the feedstock, while the NH4-N in FW was assumed 

to increase from 0.4 kg/tFM to 4 kg/tFM after digestion (from Papers I and II).  
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After digestion, the FW digestate was assumed to be separated with a decanter centrifuge producing 

liquid and solid fractions. The liquid fraction was further treated to produce fertilizer products, while 

the solid fraction was assumed to be used as such in agriculture. Centrifuge separation efficiencies for 

mass, TS, VS, nutrients (Ntot, NH4-N, Ptot, Ktot), and electricity consumption were adopted from the 

literature (Table 14). Four systems (S1-S4) for the digestate liquid treatments along with a control 

system (S0) with no treatment were:  

S0: no treatment 

S1: stripping of digestate liquid 

S2: stripping and RO of digestate liquid 

S3: evaporation and RO of digestate liquid 

S4: stripping, evaporation and RO of digestate liquid 

It was assumed that the outputs from the different digestate liquid treatment systems were suitable for 

fertilizer use or processed water suitable for discharging or recirculation within the process. With each 

treatment system, the consumption of chemicals (NaOH, H2SO4, m
3
/a) was included in the calculation 

of the output mass and characteristics. The literature values of the consumption of energy and 

chemicals, as well as the nutrient recovery efficiencies for each technology, are presented in Table 15. 

In the treatment system with combined stripping, evaporation, and RO (S4) the heat energy was 

allocated solely on the stripping, as it was assumed to be sufficient for both treatments (Ervasti et al., 

2011). 

Ammonia stripping combined with H2SO4 scrubbing produces ammonium sulfate (for agricultural use) 

and stripping residue (for agricultural use/post-treatment). The stripping temperature was 80°C. In the 

mass and nutrient balance calculations the NH4-N recovery efficiency was 95% based on literature. 

(NH4)2SO4 was assumed to be a chemically pure product with no TS, VS, Ptot, or Ktot, while Ntot 

consisted solely of NH4-N. The stripping was assumed to be executed in atmospheric pressure; thus, 

no energy consumption for the production of a vacuum was allocated. Energy consumption values for 

both heat and electricity are presented in Table 15. Consumption of chemicals during stripping (50% 

NaOH) and scrubbing (93% H2SO4) were based on NaOH consumption during a pH increase in urine 

and the calculated H2SO4 consumption (Table 15). 

The evaporation of either digestate liquid or stripping residue produces concentrate (for agricultural 

use) and condensate (for post-treatment). During evaporation, the liquid was heated to 80°C and the 

pH of the digestate liquid was controlled with H2SO4 to prevent the volatilization of NH4
+
. The mass 

and nutrient balance calculations for the evaporation were based on literature values (Table 15), where 

the TS and VS separation efficiencies in the concentrate were assumed to be 100% and the NH4-N 

recovery rate the same as in Ntot (80%). The H2SO4 (93%) consumption was based on a pH decrease 

with manure and urine. The energy consumption of evaporation consisted of the heat energy needed to 
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increase the digestate liquid temperature and electricity consumption, which was based on typical 

literature values (Table 15).   

The RO treatment of the stripping residue from stripping or condensate from evaporation produces 

both retentate (for recirculation within the process) and treated water (used as AD diluting 

water/discharged). The mass and nutrient balances for the RO treatment were calculated based on the 

nutrient separation efficiencies and electricity consumption values from the literature (Table 15). The 

regeneration and/or change of RO membranes were not taken into consideration. 

Table 15. The literature values used in the calculations concerning the mass, nutrient, and energy balance of 
the digestate liquid treatment processes. 

Process Value/calculation Reference 

Stripping   

(NH4-N) recovery 95 % in the ammonium sulfate Basakcilardan-Kabakci et al., 2007, 

Bonmatı́ and Flotats, 2003a, Flotats et 

al., 2011, Guštin and Marinšek-Logar, 

2011, Laureni et al., 2013, Liu et al., 

2015 

NH4-N concentration  40 g/kgFM Laureni et al., 2013 

Heat consumption Temperature increase from the digester to 

the stripper (from 40 to 80°C) calculated 

using the specific heat capacity of water 

- 

Electricity 

consumption 

2 kWh/kgN reviewed in van Eekert et al., 2012 

NaOH (50%) 

consumption 

20 L/m
3
, pH from 9 to 10 Antonini et al., 2011 

H2SO4 (93%) 

consumption 

Calculated using the molar ratios of H2SO4 

and (NH4)2SO4 and the N concentration of 

40 kg/tFM in the ammonium sulfate 

- 

Evaporation   

Nutrient recovery In the concentrate: 20% mass, 90% Ntot, 

100% Ptot, 100% Ktot 

Bonmatı́ and Flotats, 2003b, Chiumenti 

et al., 2013, Ek et al., 2006, Flotats et 

al., 2011, Maurer et al., 2003 Electricity 

consumption 

5 kWh/t liquid digestate 

Heat demand Digestate liquid temperature from 40 to 

80°C calculated using the specific heat 

capacity of water 

- 

H2SO4 (93%) 

consumption 

0.005 m
3
/t, pH from 9 to 6, pH from 7.2 to 

5.5 

Ek et al., 2006, Sørensen and Eriksen, 

2009 

RO treatment   

Nutrient recovery In the retentate: 20% mass, 100% TS, 

100% VS, 95% NH4-N, 95% Ptot, 99% Ktot 

Carretier et al., 2015, Chiumenti et al., 

2013, Ek et al., 2006, Flotats et al., 

2011, Ledda et al., 2013, Mondor et al., 

2008 
Electricity 

consumption 

2.5 kWh/t stripping residue 

-, not applicable 
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4.4 Analyses  

The chemical analyses and methods used in this thesis are summarized in Table 16. The CH4 content 

from the biogas produced in STRs was determined automatically either by infrared analysis (ExTox 

Gasmess-Systeme GmbH, Germany) or using a portable Combimass GA-m gas analyzer (Binder 

Engineering GmbH, Germany) (Paper I). In BMP and RMP assays the volumetric measurement of 

CH4 was automated and based on liquid displacement. All CH4 yields were converted into the standard 

temperature and pressure conditions (0°C, 100 kPa) according to the ideal gas law using ambient 

temperature and air pressure (Papers I and II).  

Hygienic quality (Paper II) was analyzed using E. coli, other coliforms, total coliforms, Enterococcus, 

sulfite-reducing clostridia and Salmonella as indicator organisms. Analyses of different coliforms were 

performed using a Harlequin E. coli / coliform (LabM) culture medium with 24–48 h incubation times 

at 37°C (Baylis and Patrick, 1999). Enterococcus were determined with KF streptococcus agar 

(incubated for 48 h at 44.5°C) according to SFS-EN ISO 7899 (Finnish Standard Association, 2000) 

and sulfite-reducing clostridia with sulfite-iron agar (incubated anaerobically for 48 h at 37°C) 

according to SFS-EN 26461 (Finnish Standard Association, 1993). For the qualitative analyses of 

Salmonella, samples were pre-enriched in buffered peptone water (37°C, 16–20 h) and incubated in 

Rappaport-Vassiliadis broth (42°C, 24 h). Aliquots from the broth were cultured on Salmonella-

selective Rambach and xylose-lysine-decarboxylase agars and incubated at 42°C for 24 h. If growth 

was observed, colonies were confirmed with triple sugar iron agar, urea-agar, and lysine carboxylase 

broth (37°C, 24 h) (ISO, 2002). 
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Table 16. Summary of the chemical analyses and methods used in this thesis. 

Analysis Method and apparatus Paper 

Fresh samples   

pH VWR pH100 pH-analyzer (VWR International). I, II, III 

TS and VS SFS 3008 (Finnish Standard Association, 1990). I, II, III 

SCOD Samples were centrifuged and analyzed according to SFS 5504 (Finnish Standard 

Association, 2002). 

I, II, III 

COD Open reflux, titrimetric method used by the University of Southampton (modified 

from the Vienna standard method). 

III 

TVFA Concentrations of acetic, propionic, iso-butyric, n-butyric, iso-valeric, valeric and 

caproic acids were determined using an HP 6890 gas chromatograph with an HP 

7683 autosampler (Hewlett-Packard, Little Falls, USA) and GC ChemStation 

Rev. B.03.02 software.  

I, III 

TKN Standard method (AOAC 1990) using a Foss Kjeltec 2400 Analyzer Unit (Foss 

Tecator AB, Höganäs, Sweden), with Cu as a catalyst. 

I, II, III 

NH4-N According to McCullough, 1967). I, II, III 

Soluble-N  Measured as TKN after 1:15 dilution. II 

 Measured from 1:5 water extractions with a Lachat autoanalyzer (Quikchem 

8000, Zellweger Analytics, Inc., Milwaukee, WI, USA). 

III 

Soluble-P, 

soluble-K 

Measured from 1:5 water extractions with inductively coupled plasma emission 

spectrometry (ICP-OES) (Perkin Elmer Optima 8300, USA).  

II, III 

Soluble NH4-N, 

NO3-N and PO4-P 

Analyzed with a Lachat autoanalyzer from 2 M KCl extracts. III 

P fractionation Based on modified Hedley fractionation (Sharpley and Moyer, 2000, Ylivainio et 

al., 2008). The digestate was extracted sequentially with water, 0.5 M NaHCO3, 

0.1 M NaOH, and 1 M HCl at a ratio of 1:60. Inorganic P was determined from 

the extract, and the Ptot concentration was measured after digestion with 

peroxidase in an autoclave (Ylivainio et al., 2008). Organic P concentration was 

calculated as the difference between total and inorganic P. 

III 

Air dried (60°C) samples  

Crude protein Duma’s method with standard methods (AOAC, 1990) using a Leco FP 428 

nitrogen analyzer (Leco Corp., St Joseph, USA) and N% multiplying factor 6.25. 

II 

Crude fat Analyzed with a Soxcap-Soxtec-Analyzer (AOAC, 1990; Foss Tecator 

Application Note AN 390). 

II 

Soluble 

carbohydrates 

Samples were inverted with 1 N HCl and analyzed according to Somogyi, 1945). II 

NDF According to Van Soest et al., 1991) with a filtering apparatus. II 

ADF According to Robertson and Van Soest, 1981). II 

Cellulose Calculated as ADF-Lignin. II 

Hemicellulose Calculated as NDF-ADF. II 

Ctot Duma’s method according to manufacturer’s instructions with a Leco CN-2000 

Elemental Analyzer. 

II, III 

Ptot, Ktot Samples were digested with HNO3 (Huang and Schulte, 1985) and analyzed with 

ICP-OES according to manufacturer’s instructions. 

II 

Ni, Cu, Zn, Cr  Digested in aqua regia according to SFS ISO 11466 (Finnish Standard 

Association, 2007). After digestion, determined with ICP-OES (Thermo Jarrell 

Ash IRIS Advantage, Thermo Scientific, USA). 

III 

As, Cd, Pb Digested in aqua regia according to SFS ISO 11466 (Finnish Standard 

Association, 2007). After digestion, determined with graphite furnace atomic 

absorption spectrometry using a Varian AA280Z (Varian Inc., USA).  

III 

Hg Measured based on cold vapor atomic absorption spectrometry using Varian M-

6000A Mercury Analyzer (Varian Inc., USA).  

III 

Fe According to Huang and Schulte, 1985) with ICP-OES (Thermo Jarrel Ash Iris 

Advantage, Franklin, USA). 

I  
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5 Results and discussion 

5.1 Food waste characteristics 

The characteristics of the FW define its potential as biogas plant feedstock. The organic composition 

of the FW determines, e.g., the CH4 production potential, while the elemental content affects the AD 

process stability as well as the characteristics and fertilizer value of the produced digestate. The three 

studied FWs (FW1–FW3, Table 19, Papers I–III), showed rather similar characteristics, with high TS 

(20–25%), VS (20–23%), and TKN (7–8 g/kgFM) content, as has been previously reported with 

similar FWs from the Europe, Asia, and North America (Table 2). The studied FWs had similar 

organic content (proteins, fats, cellulose, hemicellulose), as has been reported previously for FWs 

from households and restaurants (Table 2, Tanimu et al., 2015, Vavouraki et al., 2014, Zhang et al., 

2015a, Zhang et al., 2012). The high content of proteins and fats (in total, around 35% of the VS 

content) also led to a relatively high BMP value for FW1 (500 m
3
CH4/kgVS). Previously reported 

BMP values for FWs have been lower, in the range of 300 to 480 m
3
CH4/kgVS (Table 5). The high 

BMP value obtained with FW1 is most likely due to the source separation of the waste, which (along 

with the manual separation of the biodegradable bags) increased the BMP. Additionally, the FW1 was 

macerated before analysis, which increases the contact area for the hydrolytic micro-organisms and 

increases CH4 production (Ariunbaatar et al., 2014a, Izumi et al., 2010). Overall, the OFMSW showed 

slightly different characteristics (Table 17), e.g., higher TS (29%) and fiber content (cellulose + 

hemicellulose 44% VS in OFMSW, 10–15% in FWs), which are due to the different treatment 

methods of this waste fraction, where, for example, the separation of contaminants (glass, metals) is 

applied. 
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Table 17. The characteristics of the studied materials.  

Parameter Unit FW1 FW2 FW3
b
 OFMSW

b
 Paper 

General characteristics (n=9–10) 
 

  
 

pH
a
  -  5.1 ± 0.2 5.0 ± 0.1 5.0 4.7 I,II, III 

TS g/kgFM 247.9 ± 4.8 208.5 ± 10.0 255.1 287.0 I,II, III 

VS g/kgFM 230.3 ± 4.5 192.0 ± 8.9 232.8 264.3 I,II, III 

VS/TS % 92.9 ± 0.2 92.1 ± 0.5 91.3 92.1 I,II, III 

SCOD g/kgFM 98.4 ± 11.6 116.4 ± 9.9 132.9 69.9 I,II, III 

COD
b
 g/kgFM 364.4 361.2 444.0 412.5 III 

TVFA g/kgFM 3.3 ± 0.4 2.2 ± 0.1 4.9 5.5 I,II, III 

TKN g/kgFM 7.5 ± 0.3 6.9 ± 0.3 8.2 5.7 I,II, III 

NH4-N g/kgFM 0.4 ± 0.1 0.4 ± 0.1 0.6 0.3 I,II, III 

NH4-N/TKN % 5.1 ± 1.6 6.0 ± 0.1 7.2 5.4 I,II, III 

Density
c
 kg/l 1.064 ± 0.0042 1.063 ± 0.0002 n.d. n.d. I  

Methane production in batch assays (n=2) 
 

  
 

BMP m
3
CH4 /kgVS 0.501 ± 0.020 0.445 ± 0.001 n.d. n.d. I  

Organic characteristics (n=3–4) 
 

  
 

Crude protein g/kgVS 203.5 ± 16.8 205.4 ± 3.6 209.7
d
 182.0

 d
 II 

Crude fat g/kgVS 131.7 ± 9.1 133.0 ± 7.0 n.d. n.d. II 

Soluble 

carbohydrate 
g/kgVS 114.1 ± 16.8  56.2 ± 5.4 101.6

d
 18.2

d
 II 

Cellulose g/kgVS 47.9 ± 6.6 57.8 ± 9.0 79.4
d
 342.0

d
 II 

Hemicellulose g/kgVS 52.2 ± 6.3 33.2 ± 7.4 58.1
d
 101.3

d
 II 

Lignin g/kgVS 6.2 ± 7.6 75.5 ± 9.9 5.6
d
 22.9

d
 II 

(cel+hemi)/lign  -  16.1 1.2 24.6 19.4 II 

Total nutrients (n=3–4) 
  

  
 

Ctot
b
 g/kgTS 469.1 486.6 n.d. n.d. II 

TKN g/kgTS 30.7 ± 1.7 32.1 ± 1.6 32.1 19.9 II 

C/N  -  15.3 15.2 n.d. n.d. II 

Ptot g/kgTS 3.8 ± 0.1 6.5 ± 1.3 n.d. n.d. II 

Ktot g/kgTS 11.4 ± 1.6 10.3 ± 0.4 n.d. n.d. II 

Soluble nutrients (n=3–4) 
  

  
 

Soluble-N g/kgTS 9.6 ± 0.5 16.3 ± 0.4 n.d. n.d. II 

Soluble-P g/kgTS 1.7 ± 0.8 1.7 ± 0.3 n.d. n.d. II 

Soluble-K
b
 g/kgTS 9.0 9.0 n.d. n.d. II 

Metals and heavy metals (n=2 for Fe, n=1) 

Fe g/kgTS 0.13 ± 0.01 22.73 ± 12.5 n.d. n.d. I 

Ni mg/kgTS 0.6 0.5 1.0 0.8 III 

Cu mg/kgTS 4.9 8.4 5.7 9.6 III 

Zn mg/kgTS 28.2 37.8 29.4 93.3 III 

Cr mg/kgTS 1.1 3.3 1.8 1.3 III 

Pb mg/kgTS 0.2 2.2 0.7 0.5 III 

Cd mg/kgTS 0.06 0.05 0.06 0.02 III 

Hg mg/kgTS 0.06 0.08 0.08 0.05 III 

As mg/kgTS 0.5 0.5 0.4 0.2 III 
a
n=26, 

b
n=1, 

c
n=3, 

d
Valorgas, 2010b  

FW2=autoclaved FW 

n.d., not determined       

The heavy metal concentration within the studied FWs (Table 17, Paper III) was generally similar, as 

reported before for source separated FWs in Europe, North America, and Asia (Malamis et al., 2015, 

Zhang et al., 2011, Zhang et al., 2007, Zhang et al., 2012). With FW1, FW2 and OFMSW, the Pb, Hg, 

and Cd contents were low (<1 mg/kgTS), and Cu (10 mg/kgTS) and Zn (30 mg/kgTS) contents were 
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comparable to those reported with European FWs (Malamis et al., 2015, Zhang et al., 2012). The 

content of both Ni (<1 mg/kgTS) and Cu (<2 mg/kgTS) in the studied FWs were in the lower range 

when compared with the results obtained from the literature (1–10 mgCu/kgTS, 1–30 mgCr/kgTS, 

Facchin et al., 2013, Malamis et al., 2015, Zhang et al., 2011, Zhang et al., 2007, Zhang et al., 2012).  

The hygienic quality of the studied FWs was analyzed with hygiene indicators (Figure 9, Paper II, 

Valorgas, 2010b). FWs showed similar concentrations of coliforms (0–1 logs), Enterococcus (4 logs) 

and clostridia (3 logs), while the OFMSW sample had a higher concentration of coliforms (3 logs) and 

Enterococcus (6 logs). In fresh FW, coliforms have usually been reported in higher concentrations (4–

5 logs) in biogas plants treating FW (Sahlström et al., 2008). The lower concentrations in the present 

study were most likely due to the storage time in a freezer before analysis. However, the 

concentrations of Enterococcus were similar to those in fresh FW (around 4 logs, Sahlström et al., 

2008), which is due to the high resistance of the spore-forming micro-organisms (both Enterococcus 

and clostridia) (Sahlström, 2003) to, e.g., freezing.  

 

Figure 9. The hygienic quality of studied food wastes. All samples were stored frozen, n=6 for FW1 and 
FW2 (Paper II), n=1 for FW3 and OFMSW (Valorgas, 2010b). 

5.1.1 Effect of autoclave pretreatment on FW characteristics 

The applied autoclave pretreatment conditions, 160°C, 6.2 bars, were based on previous studies and 

applications for the pretreatment of MSW with similar conditions and autoclaving equipment 

(Papadimitriou et al., 2008, Papadimitriou, 2010, Papageorgiou et al., 2009). The autoclaving of the 

FW affected the characteristics, especially the organic content and BMP value of the FW (Table 17, 

Paper I, II). Because the autoclave treatment applies both heat and pressure, the material starts to 

hydrolyze, which can be seen in increased SCOD (soluble chemical oxygen demand, per FM) and 

decreased concentrations of easily hydrolysable carbohydrates and hemicellulose (per VS, Table 17, 

Table 18). However, the TS, VS, and TKN concentrations (per FM) were observed decrease, because 

the autoclaving introduces steam to the FW and dilutes the material (Zhou et al., 2013). Conversely, 

both cellulose and lignin contents, Ptot, Fe, and some heavy metals increased in FW after autoclaving. 
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The increased content of P, Fe, Cu, Zn, Cr, and Pb (per TS) seemed to indicate contamination from the 

autoclaving apparatus, as these elements can also be found in steel, either as alloy or impurities. The 

autoclaved FW showed the absence of all indicator organisms, which was due to effective sterilization 

during the pretreatment (Figure 9, Paper II). 

Table 18. The effect of autoclaving pretreatment on the FW organic content. 

Studied 

material 

TS (%) VS 

(%) 

Treatment conditions Effect of treatment on organic 

matter 

Reference 

FW 16.6 15.5 Autoclave, 120°C,  

1 bar, 30 min 

SCOD increase 24% (per FM) Ma et al., 2011 

FW 20.0 18.0 Thermal hydrolysis, 

175°C, 60 min 

VSS decrease 40% 

SCOD increase 0–50% 

depending on molecular 

weight fraction 

Soluble sugars increase 50% 

Liu et al., 2012 

FW - 41
a
  High pressure 

autoclave, 185°C,  

12 bars , 10 min 

VSS decrease 10% Lissens et al., 2004 

FW 10.9 8.7 Thermal hydrolysis, 

170–175°C, 5 bars, 

60 min 

Suspended solid decrease 30% Zhou et al., 2013 

Commingled 

HW 

- - Autoclave 160°C, 6.2 

bars 

Hemicellulose decrease 10% Papadimitriou, 2010 

FW 20.8 19.2 Autoclave, 160°C, 

6.2 bars, 45 min 

SCOD increase 18%  

Soluble carbohydrates 

decrease 51% 

Hemicellulose decrease 36 % 

Present study 

Household waste (HW), volatile suspended solids (VSS) 
a
gVSS/L 

-, not available 

After autoclaving, the increased SCOD and lowered TVFA were due to the dilution and solubilization 

of the FW during treatment. Solubilization occurred as the heat and pressure of the treatment 

disintegrated the cell membranes, which is dependent on both the treatment time and conditions 

(reviewed in Ariunbaatar et al., 2014a, Carlsson et al., 2012). The reduction in hemicellulose content 

was most likely due to the branched structure of the hemicellulose, which enabled easier hydrolysis 

during autoclaving (Hendriks and Zeeman, 2009, Papadimitriou, 2010). The autoclave treatment also 

decreased the soluble carbohydrate content, which indicated the formation of Maillard-like compounds 

(Liu et al., 2012, Monlau et al., 2013) through reactions between sugars and amino acids (Bougrier et 

al., 2008, Liu et al., 2012, Monlau et al., 2013). The reactions have also been reported to change the 

color of the treated material to dark brown (Ariunbaatar et al., 2014b, Bougrier et al., 2008), and this 

phenomenon was also observed with the studied autoclaved FW (FW2, Figure 6). Maillard 

compounds are difficult to degrade during AD which decreased the CH4 yield in BMPs by 10% (Table 

17), as has been observed before with thermal treatment temperatures ranging from 140 to 175°C 

(Table 7).  
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5.2 Continuous anaerobic digestion of food waste 

The continuous AD of FW (FW1) and autoclaved FW (FW2) was studied in mesophilic laboratory 

STRs (Paper I). The reactor experiment lasted for 473 days, during which the OLR was increased from 

its initial 2 to 6 kgVS/m
3
d (HRTs from 117 and 94 to 39 and 31, Figure 10). The FWs – FW1 and 

FW2, with TS contents of 25% and 20% – were used as feed as is, without water/leachate circulation 

during digestion. The initial NH4-N concentration in the studied STRs was 2.4 g/kgFM, which was 

dependent on the ammonium concentration of the inoculum. During the reactor runs, the NH4-N 

concentration in the FW1 reactor increased to 4 kg/kgFM during OLR 3 kgVS/m
3
d, which was mainly 

due to the accumulation of solids (and subsequently the TKN) into the reactor. However, in reactors 

treating autoclaved FW2, the NH4-N remained steady (around 2 g/kgFM) decreasing to 1.2 g/kgFM at 

the end of the experiment.  

The long-term mesophilic AD of FWs with high OLRs has been observed to lead to VFA 

accumulation and subsequently to the inhibition of micro-organisms due to high NH4-N content, 

which has been linked to TE deficiencies (Banks et al., 2012, Yirong et al., 2015, Zhang and Jahng, 

2012, Zhang et al., 2015a). When supplemented with TEs, successful FW digestion has been reported 

at OLRs from 5 to 7 kgVS/m
3
d (Table 6). In the present study, the increase of the NH4-N 

concentration in the FW1 reactor led to increased TVFA concentrations; thus, the FW2 reactor also 

experienced a TVFA increase at the same time (Figure 10). After the OLR was increased to 3 

kgVS/m
3
d, both reactors were supplemented with a TE solution containing Se and Co, as Se in 

particular has been reported to be important in reducing VFA formation (Banks et al., 2012) when 

OLR is high (Zhang et al., 2015b). After a few weeks, full TE supplementation was started (Al, B, Co, 

Cu, Fe, Mn, Mo, Ni, Se, W, and Zn), which led to a decrease in VFA concentrations in both reactors, 

as has been reported in previous studies as well (Table 6). 

Overall, with TE additions, both FW1 and FW2 reactors were able to operate at high OLRs. During 

OLRs 2 and 3 kgVS/m
3
d, FW1 showed better performance (e.g. CH4 yield 0.44–0.48 m

3
/kgVS) 

compared with FW2 (CH4 yield 0.37–0.43 m
3
/kgVS) despite the high NH4-N concentration in the 

reactor. The maximum CH4 yield for FW1 was obtained at OLR 3 (0.48 m
3
/kgVS) and with FW2 at 

OLR 4 (0.44 m
3
/kgVS), which were in the same range as reported with FWs at different OLRs (Table 

6). The studied FW reactors showed stable performance at OLR 4 kgVS/m
3
d, after which the OLR 

was increased to 6 m
3
/kgVS, where some VFA peaks started to show in the FW1 reactor alongside the 

decrease in pH and NH4-N concentrations. However, FW2 reactors remained more stable in terms of 

VFA accumulation (Figure 10).  
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Figure 10. a) The methane yields, b) concentrations of total VFAs and pH value, and c) concentrations of 
TKN and NH4-N within STR reactors treating FW1 and FW2 (autoclaved). TE supplementation was started 
on day 179. (Paper I).  

The effect of autoclaving of FW to the performance of the continuous AD was observed with the 

nitrogen content, CH4 yield, and gas composition (Paper I, II). Decreased CH4 and NH4-N were both 

related to the formation of Maillard compounds during autoclaving, which decreased CH4 yield in 

BMP tests and indicated the inability of micro-organisms to fully degrade the autoclaved FW (Paper I, 

Table 17). The formation of the Maillard compounds also bound the amino acids to the recalcitrant 

molecules, which decreased the ammonification during STR (Paper I) and BMP tests (Paper I, II). 

Additionally, the biogas composition analyses showed, that the reactor fed with the autoclaved FW2 

had low H2S content (<75 ppm) throughout the experiment, while the H2S increased in the FW1 

reactor after OLR 4 kgVS/m
3
d (up to 480 ppm, Figure 11). The decreased H2S formation was mainly 

due to the autoclaving pretreatment, which decreased the availability of S in the proteins. Other 

explanations can be, e.g., the precipitation of S to iron sulfides along with the high Fe content (23 
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g/kgTS, Table 17) and lower pH (around 7.3), which would inhibit the H2S-forming micro-organisms 

(O'Flaherty et al., 1998). The microbial consortia within the FW2 reactor were also shown to be 

different from the FW1 reactor (Blasco et al., 2014), which supports the findings with the decreased 

CH4 formation, ammonification and H2S formation after autoclaving FW. 

 

Figure 11. The H2S concentration within STRs treating FW and autoclaved FW during days 166–314. 
(Paper I). 

5.3 Usability of FW digestate in agriculture 

5.3.1 Digestate characteristics 

Organic content and stability 

The digestate characteristics are dependent on the feedstock and AD performance. Overall, the 

substrate degradation during AD decreased the solids and organic content (e.g., TS content from 25% 

to 7% in FW1, Table 17, Table 19, Paper II). The C/N ratios were relatively low (from 1.5 to 4.4) in 

digestates due to the mineralization of carbon during AD. The fiber content (per VS) in the studied 

FWs decreased overall; thus, the increase in lignin content was due to the low biodegradability of the 

ligno-cellulosic complexes (Hendriks and Zeeman, 2009) and the reduction of TS during AD. The 

biodegradation of the fibers can be assessed with the ratio between cellulose, hemicellulose, and lignin 

(cel+hemi/lign), which was constant (1.2) in FW2 before and after digestion (Table 17, Table 19). 

This indicates the degradation of hemicellulose and cellulose already during autoclaving and not 

during AD. The higher content of hardly degradable cellulose, lignin, and proteins in the FW2 

digestate likely reduced the BMP during batch experiments compared to the FW digestate (Paper I, II).  
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Table 19. The characteristics of the studied digestates.  

Parameter Unit FW1
a
 FW2

a
 FW3

b
 OFMSW

b
 VWAS

b
 Paper 

General characteristics 
     

pH  -  8.0 ± 0.0 7.7 ± 0.1 8.3 8.3 7.6 II, III 

TS g/kgFM 67.4 ± 0.1 78.5 ± 5.1 19.9 32.2 34.2 II, III 

VS g/kgFM 45.6 ± 3.0 60.5 ± 6.5 12.3 18.9 23.9 II, III 

VS/TS % 67.7 ± 4.3 77.0 ± 3.7 61.7 58.7 69.9 II, III 

SCOD g/kgFM 13.1 ± 1.5 15.3 ± 1.3 11.2 7.3 8.4 II, III 

COD g/kgFM 77.1 100.3 21.8 30.6 26.7 III 

TVFA g/kgFM 0.3 ± 0.01 0.2 ± 0.03 4.1 0.3 3.4 II, III 

Organic characteristics 
     

Crude protein g/kgVS 211.4 ± 35.0 342.3 ± 43.5 213.9 158.5 244.5 II 

Crude fat g/kgVS 38.3 ± 0.2 35.5 ± 5.6 n.d. n.d. n.d. II 

Soluble carbohydrate g/kgVS 3.5 ± 0.2 4.0 ± 0.3 3.4 3.2 3.8 II 

Cellulose g/kgVS 44.6 ± 8.4 95.7 ± 22.0 32.5 30.4 25.1 II 

Hemicellulose g/kgVS 54.9 ± 4.9 83.5 ± 9.8 75.8 47.6 67.2 II 

Lignin g/kgVS 27.5 ± 0.1 148.4 ± 9.7 30.9 21.2 32.1 II 

(cel+hemi)/lign  -  3.6 1.2 3.5 3.7 2.9 II 

Total nutrients 
      

TKN g/kgFM 7.8 ± 0.6 7.3 ± 0.5 4.7 4.5 2.1 II, III 

NH4-N g/kgFM 4.1 ± 0.3 1.9 ± 0.4 3.9 3.2 1.7 II, III 

NH4-N/TKN % 52.2 ± 0.7 25.7 ± 7.2 82.1 71.1 78.6 II, III 

Ctot g/kgFM 26.5 ± 0.6 29.3 ± 4.7 6.8 10.3 13.5 II, III 

C/N  -  3.4 4.0 1.5 2.3 6.1 II, III 

Ptot g/kgFM 1.3 ± 0.2 1.3 ± 0.1 n.d. n.d. n.d. II 

Ktot g/kgFM 3.0 ± 0.6 2.4 ± 0.3 n.d. n.d. n.d. II 

Soluble nutrients (1:5 water extraction) 
    

Ntot g/kgFM 6.0 3.0 4.4 4.0 2.2 III 

NH4-N g/kgFM 4.4 1.9 3.3 2.8 1.6 III 

NO3-N g/kgFM 0.013 0.011 0.011 0.007 0.003 III 

PO4-P g/kgFM 0.27 0.14 0.06 0.13 0.35 III 

Ptot g/kgFM 0.33 0.19 0.11 0.15 0.35 III 

Ktot g/kgFM 3.2 2.5 1.9 1.9 0.6 III 

Heavy metals        

Ni mg/kgTS 17.8 16.6 42.4 6.7 22.3 III 

Cu mg/kgTS 25.6 22.4 21.7 58.7 626.5 III 

Zn mg/kgTS 116.0 94.6 175.0 401.0 1006.0 III 

Cr mg/kgTS 9.8 11.9 7.5 13.0 32.9 III 

Pb mg/kgTS 2.1 5.6 5.6 11.7 98.0 III 

Cd mg/kgTS 0.2 0.1 0.3 1.5 1.1 III 

Hg mg/kgTS 0.1 0.2 0.1 0.3 1.8 III 

As mg/kgTS 0.7 0.4 1.0 3.3 2.6 III 
a
n=2–3 (Paper II), 

b
n=1 (Valorgas, 2010b) 

n.d., not determined 

Considering the digestate characteristics from an agronomic viewpoint, the TS content and stability 

(pH, organic matter content and composition) are important measures, as they have a positive effect on 

the soil carbon balance and nutrient availability (Abubaker et al., 2012, Galvez et al., 2012, Odlare et 

al., 2008), but in too-large doses, they can inhibit soil micro-organisms (Alburquerque et al., 2012b, 

Gutser et al., 2005) and cause phytotoxicity (Abdullahi et al., 2008, Trzcinski and Stuckey, 2011). The 

TS and VS content of the studied digestates were within the range of other FW-based digestates from 
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the literature (TS 2–8%, Table 8, Table 19). The lower TS range (2–3%) was related to the internal 

water additions/recirculation in the biogas plants from which the digestates FW3, OFMSW, and 

VWAS originated (Paper III). Overall, the results support the fact that the digestate’s TS concentration 

is dependent on the reactor configuration (e.g., wet/dry process) and process parameters (OLR, HRT) 

(Teglia et al., 2011), i.e., the TS and VS reduction during AD, despite the uniform characteristics of 

the feedstocks.  

All studied digestates were neutral or slightly alkaline (pH 6.7–8.4), which is typical for FW-based 

digestates (Table 8, Table 19, Paper III). The neutral pH supports the use of digestates in agriculture, 

while the use of alkaline digestates could increase, e.g., NH4-N volatilization from soil during 

spreading depending on the temperature (Nkoa, 2014). The effect of digestate pH on soil is dependent 

on soil characteristics (Alvarenga et al., 2015). Hence, in a 4-year fertilization study, the soil initial pH 

of 5.4–5.7 was not affected after application of FW digestates (Odlare et al., 2008). The stability of the 

digestates is related to the composition of the organic content, e.g., organic acids, which affect the pH 

value. All studied FW digestates were characterized with higher SCOD concentrations (11–19 g/kgFM) 

compared with OFMSW and VWAS digestates (7–8.5 g/kgFM). However, in terms of TVFA 

concentration, only FW2 and OFMSW were considered stable, as the TVFA was under the limit of 

1500 mg/l (Table 19, Paper III), which is proposed for digestate fertilizers within the end-of-waste 

criteria (Saveyn and Eder, 2014). However, VFAs are reported to be quickly degraded in soils after 

digestate application by soil micro-organisms (Kirchmann and Lundvall, 1993). The non-VFA-SCOD 

found in digestates was most likely related to, for example, undegraded carbohydrates and other acids 

such as humic acids (Scaglia et al., 2015, Zheng et al., 2014). The stability of the digestate can also be 

assessed with RMP (BSI, 2010), which was low in the digestates FW1 and FW2: 60–130 m
3
/kgVS, 

depending on the OLR (Paper I, II). The RMP values obtained with FWs were similar and slightly 

lower than RMP values obtained with OFMSW (66–198 m
3
/kgVS, Trzcinski and Stuckey, 2011), 

where the different reactor configurations (wet/dry) and operation also affect the RMP values through 

VS reduction.  

Nutrient content and availability 

The characterization of the studied digestates (Papers II, III) showed the high fertilizer value of the 

FW- and OFMSW-based digestates compared with VWAS digestate, as the N availability is 

dependent on the plant available NH4-N concentration and the NH4-N/TKN ratio (Fouda et al., 2013, 

Teglia et al., 2011). Similarly high NH4-N (around 4 g/kgFM) concentrations and NH4-N/TKN (>50%) 

ratios have been obtained in FW digestates (Table 8). The high fertilizer value in the studied digestates 

was also supported by the high ratio between C and organic N (C/Norg around 8 in FW and OFMSW 

digestates), which indicates high N release in soils compared to VWAS digestate (C/Norg ratio of 29) 

(Gutser et al., 2005). Overall, the FW and OFMSW were characterized as being rich in N and 

relatively poor in P. The VWAS digestate had a relatively low concentration of both nutrients, which 
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leads to reduced fertilizer value and the need for additional mineral fertilizer supplements due to 

uneven and potentially deficient N and P ratios (Svensson et al., 2004). The low NH4-N in VWAS and 

FW2 digestates also supported their use as soil amendments rather than as a source of nutrients (Teglia 

et al., 2011).  

The availability of P for plant growth is dependent on its solubility, which was analyzed with Hedley 

fractionation (Paper III). The total P in the digestates was not fully plant-available, and in FW and 

VWAS digestates, 50–70% of the P was considered plant-available (water and NaHCO3 extractable, 

Figure 12). OFMSW digestate showed a lower P solubility of 30%, indicating a difference in the 

digestate composition compared with FW digestates. However, this was not detected in any other 

characterization analysis. Measuring P solubility is essential when evaluating the mineral fertilizer 

substitution capacity of the digestates to avoid the overestimation of P availability. Some life cycle 

analyses have overestimated the P substitution by assuming that 100% of mineral fertilizer P can be 

substituted with digestates (Bernstad and la Cour Jansen, 2011, Boldrin et al., 2011), while some 

studies applied a more accurate P substitution rate of 50% (Evangelisti et al., 2014).  

 

Figure 12. The Hedley fractionation of studied digestates. Water and NaHCO3 extractable P can be 
considered as plant available. (Paper III). 

Biosecurity 

The biosecurity issues related to digestate use arise from the characteristics related to, e.g., pathogens 

(Paper II, Valorgas, 2010b) and heavy metals contents (Paper III). According to the European Animal 

By-Products Regulation (1069/2009/EC, European Parliament and the Council, 2009) digestates must 

meet hygienic standards before use as fertilizers in agriculture, and the threshold values are 1000 cfu/g 

for E. coli or Enterococcaceae and no Salmonella detected in a 25 g sample. In the studied digestates, 

no Salmonella was detected when indicator organisms were analyzed from fresh FW1 and FW2 (Paper 

II) and after freezing from FW3, OFMSW, and VWAS digestates (Valorgas, 2010b). E. coli was 

detected in only one sample (FW3, 105 cfu/g), and the digestates were considered suitable for 
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agricultural use. Digestates FW1 and FW2 were not hygienized (FW2 autoclaved prior to AD), and 

these digestates showed high enterococcus concentrations (8 logs in the FW1 and FW2 digestate) but a 

lack of coliforms, which was connected with the freezing of the feedstock prior to AD (Figure 13, 

Paper II). The observed increase in enterococci and clostridia in the FW2 digestate indicates the 

potential of autoclaved material for microbial growth. Digestates FW3, OFMSW, and VWAS showed 

lower concentrations of enterococcus and clostridia, but it was uncertain whether or not these 

digestates were hygienized prior to AD. Coliforms and Salmonella are both vulnerable to the 

hygienization process (Bagge et al., 2005, reviewed in Sahlström, 2003), which is why their absence 

could refer to the use of hygienization with these digestates (FW3, OFMSW, VWAS). However, both 

enterococcus and sulfate-reducing clostridia are spore-forming bacteria and are known to survive the 

hygienization treatment (Bagge et al., 2005), which explains the detected indicators in all studied 

digestates. Additionally, the storage of the digestates may increase the concentration of the indicator 

organisms due to contamination and microbial growth (Bagge et al., 2005).  

 

Figure 13. The concentration of E. coli, enterococcus and sulfite reducing clostridia in the studied digestate 
samples. FW2= autoclaved FW digestate. For FW1 and FW2 digestates n=7 (fresh samples, Paper II), for 
FW3, OFMSW, and VWAS n=1 (frozen samples, Valorgas, 2010b).  

The heavy metal content (per TS) tends to increase and concentrate from feedstocks to digestates due 

to the reduction of solids content during AD. Overall, the heavy metals in the digestates was similar to 

those reported with different organic waste digestates originating from FW (Govasmark et al., 2011), a 

mixture of biowastes and industrial wastes (Kupper et al., 2014), and sewage sludge (Zirkler et al., 

2014, Paper III). FW and OFMSW digestates had fairly similar contents of heavy metals (Table 19), 

which reflected the content in the feedstocks (Table 17). According to the legislative heavy metal 

content limits for digestates in Finland (Ministry of Agriculture and Forestry, 2011) and the UK (BSI, 

2010), the studied FW- and OFMSW-based digestates were suitable for agricultural use. However, the 

VWAS digestate exceeded the legislative limits, most likely due to the feedstock characteristics.  
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5.3.2 Digestate fertilizer use 

The transformation of digestate organic N into its mineral forms in soil was studied via mineralization 

experiments with different digestate N application rates from 171 to 318 mgTKN/kg soil (Table 20, 

Paper III). Additionally, plant growth and N uptake in pot experiments were studied with Italian 

ryegrass (cv. Fabio) in order to compare the N fertilizer value of the digestates (Figure 14, Paper III). 

Overall, both tests showed potential for FWs to be used as such as fertilizer in agriculture. After 48 

days, the mineralization of organic N was of the same magnitude (around 30 mgN/kgFM) as in all 

other digestates except the FW3 digestate (mineralization of Norg 2 mgN/kgFM), which was due to the 

already mineralized N within digestate FW, where the application of the organic N was 25–60% lower 

than with other digestates. Digestates FW1, FW2, OFMSW, and VWAS had lower initial NH4-N 

concentrations, and 15–30% of their organic N mineralized during the test. 

In the ryegrass growth experiments, digestate applications produced ryegrass yields of 38–60 gDM/pot, 

depending on the applied N amount; these yields were 5–30% higher than the control with similar 

inorganic N concentration (Figure 14). Similar results have been obtained with other FW-based 

digestates in pot and field trials (see Table 9, Abubaker et al., 2012, Furukawa and Hasegawa, 2006, 

Haraldsen et al., 2011, Rigby and Smith, 2014). FW1 and FW2 digestates had 20–30% higher yields 

than the control, and high NH4-N utilization efficiencies (NUENH4-N >90%) were observed because 

soluble N was fully used for plant growth. However, with FW3, OFMSW, and VWAS digestates, the 

increase in the ryegrass yield was more moderate (5–10%) compared with the control, and NUEs were 

between 74 and 82%, indicating that the soluble N was not fully available for plant growth.  

Table 20. The applied and mineralized nitrogen during the 48-day mineralization test with the studied 
digestates (Paper III). 

Sample FW1 FW2 FW3 OFMSW VWAS 

Applied mg/kgFM         

TKN 205 171 235 244 318 

NH4-N 97 50 158 142 137 

NO3-N 0 0 1 0 0 

Norg 108 121 77 102 181 

Mineralization from applied N       

mg/kgFM 36 34 2 29 26 

% of Norg 33 28 2 28 14 

The low initial NH4-N in the FW2 digestate was due to the pretreatment of the feedstock, where the 

nitrogen-containing molecules were transformed into recalcitrant and hardly degradable Maillard 

compounds; therefore, low mineralization and growth responses were anticipated. However, the N 

mineralization with FW2 digestate was on the same level as in the other studied digestates, indicating 

that the soil micro-organisms were still to some extent able to transform the rather recalcitrant nitrogen, 

and the ryegrass was able to use the remaining NH4-N for plant growth. However, the relatively low 

NUETKN found (33%) with both FW2 and VWAS digestates indicated that the TKN consisted of 
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recalcitrant N, which was not plant-available and fully mineralizable (Gunnarsson et al., 2010). With 

VWAS digestate, the observed high C/Norg ratio and the low NUE during the growth experiment 

indicated low N release and availability, which were reflected by a 50% decrease in Norg 

mineralization compared to the other studied digestates. This difference was connected with the 

composition of the WAS feedstock, which led to a low TKN and NH4-N concentration in the VWAS 

digestate and lower fertilizer performance compared with FW and OFMSW digestates.  

 

Figure 14. Ryegrass yield in digestate samples compared with the control mineral fertilizer treatment. The 
dotted line represents the control and error bars the standard deviations within control samples. (Paper III). 

5.3.3 Digestate post-treatment 

The energy, mass, and nutrient balances of a theoretical AD plant treating FW were evaluated, 

focusing especially on the treatment of the digestate liquid fraction. The aim was to evaluate the 

digestate liquid post-treatment in order to assess the feasibility of producing concentrated nutrient 

products (Paper IV). Additionally, four treatment options for the digestate liquid were compared, 

consisting of combinations of ammonia stripping, evaporation and membrane filtration (reverse 

osmosis), which have been applied in the full-scale treatment of digestate and manure-based liquids 

(e.g., Boehler et al., 2015, Flotats et al., 2011, Fuchs and Drosg, 2013). The concentration of the 

digestate liquid into concentrated fertilizer products consumed around 7% of the produced energy 

from the FW (Table 21). In total AD, solid-liquid separation and digestate liquid treatment accounted 

for 26% of the primary energy, of which 19% was used in AD and digestate separation. The result was 

in the same range as previously reported for ADs treating 20–60 kt/a of OFMSW and a mixture of 

municipal and agricultural wastes (17% and 20% of the total energy production in Berglund and 

Börjesson, 2006, Pöschl et al., 2010, respectively).  

The energy consumption of the digestate liquid treatment processes consisted mainly of the heat 

demand, which in the all the studied digestate liquid treatments accounted for 80–90% of the total 

energy demand, as the process temperature for both stripping and evaporation was high (80°C) in 
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order to achieve efficient nutrient recovery (Mehta et al., 2015). However, the heat demand of 

stripping and evaporation can be rationalized by integration with AD, which enables the recovery of 

the plant’s excess heat (Bonmatı́ and Flotats, 2003a, Hjorth et al., 2010, Mehta et al., 2015), especially 

in situations where heat energy is not utilized, e.g., in district heating systems. Additional reduction in 

the energy consumption of the studied digestate liquid treatment technologies could be achieved 

through using lower process temperatures. For example, ammonia stripping (N recovery >80%) has 

been reported at temperatures from 35 to 50°C (Antonini et al., 2011, Laureni et al., 2013, Liu et al., 

2015), while the use of lower temperatures (35–40°C) with evaporation is possible with the increase of 

vacuum (pressure 5–7 bars, Bonmatı́ and Flotats, 2003b, Chiumenti et al., 2013). Additionally, the 

full-scale applications also reduce heat consumption using heat exchangers to recycle the process heat.  

Table 21. The energy balance of a theoretical full scale AD plant treating FW with four digestate liquid 
treatment options. (Paper IV). 

 Process 

Electricity 

(MWhel/a) 

Heat 

(MWhth/a) 

Total 

(MWh/a) 

Total  

(% of primary energy) 

Energy production     

Primary energy production in AD - - 62100 - 

Energy in CHP 23598 29187 52785 - 

Energy consumption     

AD  5293 6142 11435 18.4 

Solid-liquid separation 306 - 306 0.5 

Stripping (S1) 406 3727 4133 6.7 

Stripping + RO (S2) 590 3727 4317 7.0 

Evaporation + RO (S3) 551 3658 4209 6.8 

Stripping + evaporation + RO (S4) 922 3727 4649 7.5 

-, not applicable 

    

The studied digestate liquid treatment systems produced fertilizer products containing N (ammonium 

sulfate from stripping) or N, P, and K (concentrate from evaporation, stripping residue from stripping, 

retentate from RO) in different proportions, which affect their use as fertilizers in agriculture and 

affect the amount of fertilizers spread on agricultural lands. The evaporation treatment combined with 

RO (S3) produced the most concentrated nutrient product by concentrating the original FW mass of 60 

kt/a into 16 kt/a (Figure 15). The concentrate also showed high nutrient content (18 gN/kgFM, 12 

gNH4-N/kgFM, 0.3 gP/kgFM, 9 gK/kgFM), which, in terms of N and K, was in line with commercial 

liquid fertilizers intended for, e.g., vegetable fertilization (24 gN/kgFM, 55 gP/kgFM, 40 gK/kgFM, 

Yara, 2015). Also, the ammonium sulfate from stripping (S1, S2, S4) was a comparable nutrient 

product with mineral N fertilizers, and hence, the concentrate and ammonium sulfate could potentially 

replace liquid mineral fertilizers, especially in cases where P fertilization is not needed. With stripping 

treatment, the challenge is the management of the remaining stripping residue, which still contains P 

and K with a large liquid volume. One option could be further treatment of the stripping residue, e.g., 

with RO (as in S2), where the more concentrated retentate could be used in agriculture as NPK 

fertilizer (Ledda et al., 2013). 
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Figure 15. The mass and nutrient balance of the theoretical AD plant treating FW with four digestate liquid treatment options. The chemical additions are not included 
in mass/nutrient balance (% FW feedstock) but are included in nutrient concentrations (g/kgFM). Gray boxes represent feedstock/product and white boxes represent 
studied unit operations. (Paper IV).
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Conclusions 

This thesis showed the high potential of FW as feedstock for AD with its capability to produce high 

CH4 yields in optimized conditions. The produced digestate showed suitability to be utilized as 

nutrient, especially nitrogen, source in crop fertilization independently and after post-treatment. The 

results were supported by the previous studies with long-term continuous AD and digestate 

fertilization with FW digestates. Overall, the agronomic usability of the FW digestate is highly 

dependent on the feedstock characteristic and thus, the sustainable recycling of FW nutrients through 

the food chain requires understanding about the complexity between FW generation and 

characteristics, their effect on AD and further on soil and plant systems.  

In this thesis it was shown that the use of FW as AD feedstock without dilution is possible, with the 

TS contents of 20 and 25%. With the undiluted FW, a high OLR of 6 kgVS/m
3
d was achieved with 

relatively high CH4 yields (400–430 m
3
/kgVS) in continuous AD, while the optimum OLR was 3 

kgVS/m
3
d yielding around 480 m

3
/kgVS of CH4. The trace element supplementation enabled a stable 

long-term operation and gradual increase in OLRs with no VFA accumulation. The possibility to 

increase OLRs affects the retention time of the process enabling faster treatment and reduced reactor 

capacity in AD plants. However, there are still future work possibilities with the balancing of the trace 

element supplementation and in the finding of suitable co-feedstocks for AD, to provide the sufficient 

trace elements for the digestion.  

The autoclave pretreatment studied in this thesis, affected the FW characteristics and subsequently, the 

AD performance, where the formation of hardly biodegradable Maillard compounds, from the sugars 

and proteins, led to 10% lower CH4 yields during digestion and 50% decreased NH4-N concentration 

within the digestate. Due to the pretreatment, the decreased availability of proteins for ammonification 

could reduce the risk of ammonia inhibition during AD and NH4-N volatilization from the digestate, 

thus reducing the fertilizer value of the digestate. Additionally, the lowered H2S formation enables 

easier biogas cleaning and security. Along with the hygienization capacity of the autoclave 

pretreatment, these effects could contribute to the reduction of energy and running cost of the 

autoclave treatment, balancing the high energy consumption of the pretreatment in 160 °C and 6.2 bars, 

thus, this matter should be further studied. Further studies are also needed to find the most suitable 

autoclave pretreatment conditions for the FW, in terms of the total energy balance of the pretreatment 

and AD, optimized CH4 production and digestate and biogas quality. 

This thesis showed the suitability of FW digestate for fertilizer use in agriculture. The studied FW 

feedstocks were characterized to have rather similar nutrient and organic matter content, which was 

shown to produce digestates with increased agronomic value compared with VWAS digestate, in 

terms of nutrient content and usability as well as biosecurity, including hygienic quality and heavy 

metal content. In FW digestates, the majority (50–70%) of the N and P were in the soluble and plant 

available form, and the digestates produced around 5 to 30% higher ryegrass yield compared with a 
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mineral fertilizer in pot experiments. Overall, the nitrogen mineralization in soil was on the same level 

in the studied FW digestates, which indicates the availability of the digestate organic nitrogen for 

microbial degradation in soil. Further studies about the FW biosecurity, related e.g. to organic 

contaminants and plant pathogens, are still needed to ensure the safe use of FW digestates in 

agriculture. Additionally, there is a growing need for nutrients in industrial applications, to which FW 

digestates could provide possible nutrient feedstock, which requires further studies.  

In this study, the mass, nutrient and energy balance analysis showed that the integration of the AD of 

FW and the digestate liquid post-treatment technologies enables the production of concentrated 

nutrient products rich in N and K. With the combination of different digestate liquid processing 

technologies, such as evaporation, stripping and reverse osmosis, nutrient products with optimal 

composition can be produced to correspond the fertilizer demand. Overall, this study indicated the 

high energy potential of the FW during AD, which can be integrated with heat demanding digestate 

liquid post-treatment processes (e.g. stripping and/or evaporation) to utilize the heat energy from the 

CHP unit. This is appropriate especially in situations, where the CHP heat cannot be utilized in e.g. 

district heating systems. However, as this study evaluated concentration of the liquid digestate based 

on the theoretical mass and nutrient balances, the characteristics, quality, biosecurity aspects and the 

fertilizer effect of the nutrient products are still to be studied in practice. Energy and mass balance 

studies act as a tool for AD plant operators to recognize the process stages which could be improved, 

and it is thus important to understand the total energy, mass and nutrient balance of an AD plant, to 

manage the FW treatment and nutrient recycling in energy efficient and sustainable way.  
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a b s t r a c t

Anaerobic digestion of autoclaved (160 �C, 6.2 bar) and untreated source segregated food waste (FW) was
compared over 473 days in semi-continuously fed mesophilic reactors with trace elements supplemen-
tation, at organic loading rates (OLRs) of 2, 3, 4 and 6 kg volatile solids (VS)/m3 d. Methane yields at all
OLR were 5–10% higher for untreated FW (maximum 0.483 ± 0.013 m3 CH4/kg VS at 3 kg VS/m3 d) than
autoclaved FW (maximum 0.439 ± 0.020 m3 CH4/kg VS at 4 kg VS/m3 d). The residual methane potential
of both digestates at all OLRs was less than 0.110 m3 CH4/kg VS, indicating efficient methanation in all
cases. Use of acclimated inoculum allowed very rapid increases in OLR. Reactors fed on autoclaved FW
showed lower ammonium and hydrogen sulphide concentrations, probably due to reduced protein
hydrolysis as a result of formation of Maillard compounds. In the current study this reduced biodegrad-
ability appears to outweigh any benefit due to thermal hydrolysis of ligno-cellulosic components.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Anaerobic digestion is an efficient technique for the treatment
of source segregated biodegradable municipal wastes, e.g. biowas-
tes and food waste (FW), as it recovers energy in the form of biogas
for use in combined heat and power (CHP) plants, in vehicles and
for grid injection; and also allows recycling of nutrients through
application of digestion residues in crop production. Both the
Renewable Energy directive (2009/28/EC, EU, 2009) and the Land-
fill directive (99/31/EC, EU, 1999) have been strong drivers in pro-
moting the use of anaerobic digestion for this application in recent
years.

Although co-digestion of FW with sewage sludge and animal
manures has been common practice, treatment of FW alone has of-
ten proved difficult (Banks et al., 2008; Neiva Correia et al., 2008;
Zhang et al., 2012). These difficulties have been attributed to
ammonia inhibition resulting from high protein content (Gallert
et al., 1998), and are often indicated by accumulation of volatile
fatty acids (VFA) (Banks et al., 2012). To achieve stable anaerobic
digestion with FW alone, organic loading rates (OLR) are usually
maintained at low values: 2.25 kg VS/m3 d at a hydraulic retention
time (HRT) of 80 days in Banks et al. (2011) and from 1 to 4 kg VS/
m3 d (HRT 14–30 days) as reported in Cecci et al. (2003). VFA accu-
mulation at higher OLR has recently been linked to trace element

(TE) deficiencies (Banks et al., 2012). When supplemented with
TE successful FW digestion has been reported at OLRs of 5 kg VS/
m3 d (Banks et al., 2012) and 6.64 kg VS/m3 d (Zhang and Jahng,
2012).

Thermal and hydrothermal pre-treatments have been widely
studied as a means of hydrolyzing recalcitrant components in a
wide range of wastes to make them easier to degrade (Papadimitri-
ou, 2010; Ren et al., 2006; Takashima and Tanaka, 2008); these
techniques have also been used as pre-treatments before anaerobic
digestion of mixed biowastes (Lissens et al., 2004; Sawayama et al.,
1997). One such hydrothermal treatment is autoclaving, where
water is used as a reagent at increased temperature and pressure,
to hydrolyse and solubilise sugars, starch, proteins and hemicellu-
lose (Papadimitriou, 2010; Ren et al., 2006). Materials pre-treated
by autoclaving under various conditions have shown increased
methane production in batch tests: digested swine slurry auto-
claved at 120 �C showed an increase in CH4 yield of 115% (Menardo
et al., 2011) and autoclaving of mixed kitchen garbage (175 �C,
40 bar, 1 h) increased CH4 yield by 30% (Sawayama et al., 1997).
Improved methane production has also been observed in continu-
ously-stirred tank reactors (CSTRs) treating waste activated sludge
(WAS), with 12% and 25% increases after autoclaving at 135 �C and
190 �C, respectively (Bougrier et al., 2007).

In contrast, more aggressive thermal and hydrothermal
pre-treatments at higher temperatures (around 180 �C) have been
reported to decrease biodegradability and biogas production dur-
ing anaerobic digestion of WAS and sewage sludge (Bougrier
et al., 2008; Pinnekamp, 1989). This is believed to be related to
the formation of complex and inhibitory Maillard compounds,
produced by reactions between amino acids and carbohydrates
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(Bougrier et al., 2008; Takashima and Tanaka, 2008). Maillard com-
pounds start to form at temperatures above 100 �C depending on
the retention time (Müller, 2001; Nursten, 2005), while the forma-
tion of more complex compounds, such as acrylamides and other
vinylogous compounds, increases at higher temperatures (180 �C,
Stadler et al., 2004).

The aim of this study was to evaluate the anaerobic digestion of
untreated and autoclaved (160 �C, 6.2 bar) FW at a range of differ-
ent OLRs (2, 3, 4 and 6 kg VS/m3 day) in semi-continuously fed
intermittently-stirred mesophilic reactors. The biochemical meth-
ane potential (BMP) of the feedstocks and the residual methane po-
tential (RMP) of the digestates were also assessed in batch assays.

2. Materials and methods

2.1. Origin and characterization of FW and inocula

The source segregated domestic FW used in the study was col-
lected from the South Shropshire Biowaste digestion plant in Lud-
low, UK. Biodegradable bags used for waste collection were
removed and the FW material was mixed and divided into two
equal portions. One portion was pre-treated at 160 �C and 6.2 bars
in a novel double-auger autoclave (AeroThermal Group Ltd., UK)
that provides improved mixing and steam penetration; the other
portion was left untreated. Both portions were then passed
through a macerating grinder (S52/010 Waste Disposer, IMC Lim-
ited, UK), packed into 35-l plastic boxes (7 untreated and 8 auto-
claved), frozen and shipped at �20 �C to MTT Agrifood Research,
Finland.

At MTT the frozen material was chopped into smaller portions
corresponding to amounts required for weekly feeding of the
digesters, and these smaller portions were again stored at
�20 �C. Each week portions of the autoclaved and untreated FW
were thawed and stored at 4 �C and used as daily feed. The pH, to-
tal solids (TS), volatile solids (VS), ammonium nitrogen (NH4–N),
total Kjeldahl nitrogen (TKN), soluble chemical oxygen demand
(SCOD) and VFA content was determined for each new box of feed.

The reactors were inoculated with digestate from a mesophilic
CSTR digesting mechanically dewatered sewage sludge (Biovakka
Suomi Ltd., Turku, Finland) (Table 1). In the BMP assays inoculum
was taken from an anaerobic digester treating municipal and
industrial biowastes (Envor Biotech Ltd., Forssa, Finland).

2.2. Semi-continuous trials

Four 11–l stainless steel stirred tank reactors (STRs) (Metener
Ltd., Finland) were operated at 37 �C. Stirring (32 rpm) was

semi-continuous with 5 s on and 60 s off. The reactors were fed
manually five times a week through an inlet tube which extended
below the digestate surface, and which was also used for digestate
sampling. Digestate overflowed from the reactors by gravity
through a u-tube trap to prevent gas escape. Between days 1 and
195 hourly gas volume and methane content were measured using
an automatic system in which the produced biogas was collected
into a small (�220 ml) gas storage vessel on top of the reactor.
From day 195 onwards, due to break down of the automated sys-
tem, gas volume was measured by water displacement in a vol-
ume-calibrated cylindrical gas collector, after which the gas was
collected in aluminium gas bags.

Reactors were fed with untreated FW (R1) and autoclaved FW
(R3). After 18 days acclimation period with reduced feeding the
experiments started at an OLR of 2 kg VS/m3 day, corresponding
to HRT of 117 and 94 days for R1 and R3 respectively. On day
151, after 1.1 (R1) and 1.4 (R3) HRTs, the OLR was raised to
3 kg VS/m3 day and after 1.3 (R1) and 1.7 (R3) HRTs to 4 kg VS/
m3 day on day 256 (HRT 78 d and 58 d for untreated, 63 d and
47 d for autoclaved FW, respectively).

On day 327 parallel reactors fed on untreated (R2) and auto-
claved FW (R4) were started at an OLR of 3 kg VS/m3 day, using
5.7 l of digestate from R1 and R3 respectively as inoculum. After
2.8 and 3.4 HRTs in reactors R1 and R3 and 1.2 and 1.4 HRTs in
reactors R2 and R4, the OLR in all four reactors was further in-
creased to 6 kg VS/m3 day on day 418, with a corresponding de-
crease in HRT to 39 d and 31 d in the untreated and autoclaved
FW reactors. Most of the data presented below are taken from reac-
tors R1 and R3 due to the longer running period. During days 179–
193 reactors R1 and R3 were once a week supplemented with
11 ml of a trace element (TE) solution containing Se (0.2 mg/l)
and Co (1.0 mg/l). From day 199 onwards all reactors were given
a weekly supplement of two TE solutions, one containing cation
elements (mg/l): Al 0.1, B 0.1, Co 1.0, Cu 0.1, Fe 5.0, Mn 1.0, Ni
1.0, Zn 0.2; and the other oxyanions (mg/l): Mo 0.2, Se 0.2 and W
0.2 (Banks et al., 2012). 1 ml of each of these TE solutions was
added for each kg of digestate removed from the reactors over
the one-week period.

Grab samples of digestate (about 250 g) were taken every two
weeks for analysis of TS, VS, SCOD, NH4–N, TKN, and samples for
VFA analysis (about 50 g) were taken once a week. Digestate pH
was measured weekly. Larger volumes of digestate were collected
on days 130 (2 l), 214 (1 l), 287 (1 l) and 321 (1 l). After removal of
these larger samples, daily feeding of the reactors was adjusted to
compensate for the reduced volume until the normal operating le-
vel was restored.

2.3. Biochemical and residual methane potential assays

BMP and RMP assays were performed at 37 �C using automated
testing equipment (Bioprocess Control Ltd., Sweden). The assays
were mixed mechanically (84 rpm) for one minute per hour. Carbon
dioxide was absorbed by NaOH before the automated gas volume
measurement, which was based on liquid displacement. Assays
were conducted in duplicate or triplicate, each with a total liquid
volume of 400 ml (BMP) or 200 ml (RMP assays). The inoculum to
substrate ratio in BMP assays was 1:1 on a VS basis. NaHCO3 (3 g/
l) was used as a buffer and if the pH was lower than 7.5 it was ad-
justed to around 8 with 3 M NaOH. In RMP assays digestates from
the STR reactors were incubated without inoculum. The results
are given as average values of the triplicate or duplicate assays.

2.4. Analyses and calculations

TS and VS were determined according to SFS 3008 (Finnish
Standard Association, 1990) and NH4–N according to McCullough

Table 1
Characteristics of untreated food waste (FW), autoclaved FW and inoculum.

Control FW Autoclaved FW Inoculum

pH 4.96 ± 0.16 5.01 ± 0.12 N/A
TS (g/kg) 247.5 ± 4.7 210.9 ± 18.6 77.3
VS (g/kg) 229.9 ± 4.5 194.6 ± 17.6 43.1
VS/TS (%) 92.9 92.3 55.8
SCOD (g/l) 98.2 ± 6.5 117.5 ± 10.3 11.9
TVFA (g/l) 3.1 ± 0.6 2.2 ± 0.2 2.4
TKN (g/kg) 7.4 ± 0.3 6.8 ± 0.3 4.9
NH4–N (g/kg) 0.32 ± 0.12 0.41 ± 0.10 2.4
Fe (g/kgTS) 0.13 ± 0.01 22.73 ± 12.54 N/A
SMP (m3 CH4/kgvs) 0.501 ± 0.020 0.445 ± 0.001 N/A
SMP (m3 CH4/kgTS) 0.462 ± 0.019 0.408 ± 0.001 N/A
SMP (m3 CH4/kgFM) 0.112 ± 0.005 0.084 ± 0.0001 N/A
Density (kg/l) 1.064 ± 0.0042 1.063 ± 0.0002 N/A

N = 24 for pH, N = 8 for TS, VS, SCOD, TVFA, TKN, NH4–N, N = 2 for specific methane
potentials (SMPs) and Fe, N = 3 for density.
N/A, not available.
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(1967). TKN was analysed by a standard method (AOAC, 1990)
using a Foss Kjeltec 2400 Analyzer Unit (Foss Tecator AB, Höganäs,
Sweden), with Cu as a catalyst. For soluble COD analysis FW sam-
ples were diluted 1:10 with distilled water, and agitated for 1 h. Di-
luted FW and raw digestate samples were centrifuged (2493� g,
15 min) after which the supernatant was further centrifuged
(16168� g, 10 min) and stored in a freezer, then thawed before
analysis according to SFS 5504 (Finnish Standard Association,
2002). pH was determined using a VWR pH100 pH-analyzer
(VWR International). Iron concentration was analysed according
to Luh Huang and Schulte (1985) using inductively coupled plasma
emission spectrometry (ICP-OES) (Thermo Jarrel Ash Iris Advan-
tage, Franklin, USA).

Samples for VFA analysis were centrifuged (1831� g, 10 min)
and filtered with Chromafil GF/PET-20/25 filters. Concentrations
of acetic, propionic, iso-butyric, n-butyric, iso-valeric, valeric and
caproic acids were determined using a HP 6890 gas chromatograph
with an HP 7683 autosampler (Hewlett-Packard, Little Falls, USA)
and GC ChemStation Rev. B.03.02 software. The GC was fitted with
a 10 m � 0.53 mm � 1 lm HP-FFAP capillary column (Agilent
Technologies, USA) and a flame ionisation detector with helium
as a carrier gas (9 ml/min). Oven temperatures were 60–78 �C
(25 �C/min), isothermal 1 min, 150 �C (7.5 �C/min) and 25 �C/min
to 180 �C with 3 min final time. The injector and detector temper-
atures were 220 �C and 280 �C, respectively.

From day 1 to 195 methane composition was determined auto-
matically during emptying of the gas storage vessel by infrared
analysis (ExTox Gasmess-Systeme GmbH, Germany). From day
195 to 314, gas composition was analysed using a portable Combi-
mass GA-m gas analyzer (Binder Engineering GmbH, Germany),
and during days 315–446 the infrared measuring equipment was
used.

The reactor was fed for 5 days a week, but the OLR in kg VS/
m3 day is expressed as the average daily weight of substrate fed
to the reactor over a one-week period. HRT was calculated based
on feedstock densities. All biogas and methane yields were con-
verted to STP conditions (0 �C, 100 kPa) according to the ideal gas
law. Methane yields in the RMP assays were calculated in two
ways; by dividing the cumulative methane production by the (1)
VS of the added digestate and (2) by the ratio of VS of the added
digestate and the VS of the feed of the semi-continuous reactors
at the time of digestate sampling. The latter enables direct compar-
ison of the methane yield in the RMP with that in the reactors. Free
ammonia (NH3–N) concentrations were calculated according to
Anthonisen et al. (1976):

NH3—N ¼ ðNH4—N� 10pHÞ=ððKb=KwÞ þ 10pHÞ; ð1Þ

where Kb is the ammonia ionisation constant and Kw the ionisation
constant of water at 37 �C.

3. Results and discussion

3.1. Material characterization

The autoclaved FW appeared much darker than the untreated
FW and had a pleasant caramel odor. TS and VS in the autoclaved
FW were both about 15% lower than in the untreated FW due to
dilution by steam condensation during the autoclave treatment
(Table 1). TKN on fresh matter basis was lower in the autoclaved
FW (6.8 ± 0.3 g N/kg) than in untreated FW (7.4 ± 0.3 g N/kg). The
autoclaved FW had about 22% higher NH4–N and 16% higher SCOD,
indicating that autoclaving had solubilised some organic nitrogen
and carbon components. Total VFA concentrations were lower in
the autoclaved material (2.2 ± 0.2 g/l) than in the untreated FW
(3.1 ± 0.6 g/l) suggesting either that some VFA had volatilised

during or after autoclaving, or that some acidification of the un-
treated material had occurred.

Changes in the chemical composition of materials during auto-
clave treatment are dependent on the temperature as well as the
materials used. In this study autoclaving conditions of 6.2 bars
and 160 �C were used. Increased concentrations of NH4–N and sol-
ubilisation of carbohydrates have previously been reported after
autoclave treatment of dewatered sewage sludge (175 �C, 20 bar),
with an increase from 2.6 to 3.2 g NH4–N/l (Inoue et al., 1996);
temperatures above 90 �C have also been reported to increase
ammonia concentrations from 0.35 gN/l to 0.7 gN/l in WAS (Bou-
grier et al., 2008).

3.2. BMP assay

The 35-day BMP value for untreated FW was 0.501 ± 0.020 m3

CH4/kg VS, while that for autoclaved FW was 0.445 ± 0.001 m3

CH4/kg VS (Fig. 1, Table 1). The lower methane yield of the auto-
claved FW could be explained by Maillard reactions. Support for
the occurrence of these is given by the darkening in colour of the
autoclaved FW and the caramelised odor, while the increase in
SCOD provides evidence of increased solubilisation of carbon com-
pounds. Similar phenomena have also been observed with auto-
claved WAS (Bougrier et al., 2008) and municipal solid waste
(Takashima and Tanaka, 2008). In other studies higher methane
yields have been reported after similar thermal treatments (Lissens
et al., 2004), but this can be attributed to the improved availability
of the ligno-cellulosic materials; and when these form a large pro-
portion of the waste the resulting increase may far exceed any de-
crease due to Maillard compounds. In contrast where ligno-
cellulosic content is low, as in this type of food waste (Zhang
et al., 2012) reductions in methane yield may result.

3.3. Semi-continuous operation

3.3.1. Effect of loading rate on methane yields
Process parameters from the whole experimental period (days

1–473) are shown in Fig. 2 and detailed results from the last four
weeks of stable operation at each OLR are presented in Table 2.
Operation was considered stable when variations were <0.2 units
in pH, <90 mg/l in VFA and <1.8% in CH4.

Throughout the experimental period specific methane yields
were 5–10% higher for untreated FW than for autoclaved FW.
The methane yields at OLR 2 kg VS/m3 day were on average
0.443 ± 0.038 and 0.373 ± 0.037 m3 CH4/kg VS for untreated (R1)
and autoclaved FW (R3), respectively. The highest yield for un-
treated FW was observed at OLR 3 kg VS/m3 day
(0.483 ± 0.013 m3 CH4/kg VS) while autoclaved FW produced the
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Fig. 1. Biochemical methane potential (BMP) and standard deviation of untreated
and autoclaved food waste (FW) in 35-day assays.
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highest yield at OLR 4 kg VS/m3 day (0.439 ± 0.020 m3 CH4/kg VS).
When the OLR was further increased to 6 kg VS/m3 day methane
yields decreased by 12% and 11% in untreated FW and autoclaved
FW, respectively. The specific methane yield for autoclaved FW
was lower at OLR 2 kg VS/m3 day than at higher OLRs, which could
possibly indicate some acclimatisation. This was not seen in the
untreated FW where the lowest specific methane yield occurred
at OLR 6 kg VS/m3 day, which could indicate retarded hydrolysis
as no increased SCOD nor VFA was detected. At OLR 6 kg VS/
m3 day the difference in methane yields between the parallel (R2
and R4) and original (R1 and R3) reactors was <7% (Table 2).

In reactors R1 and R3 relatively long operating times were ap-
plied, to allow the process to stabilise between incremental in-
creases in OLR. Using this approach, stable digestion of both
autoclaved and untreated FW was achieved at the relatively high
OLR of 6 kg VS/m3 day. It was also shown, however, that when an
inoculum acclimated to the feedstocks was used in R2 and R4,
the OLR could be rapidly increased without operational distur-
bances such as VFA accumulation. The maximum loading rates ap-
plied were similar to the 6.64 kg VS/m3 day achieved by Zhang and
Jahng (2012) and higher than the 5 kg VS/m3 day of Banks et al.
(2012). Both of these long-term digestion studies used trace ele-
ments supplementation, as did the present study.

As far as is known, this is the first study to report anaerobic
digestion of autoclaved food waste in a semi-continuously fed

system. Methane yields of 0.483 ± 0.013 and 0.423 ± 0.002 m3

CH4/kg VS for the untreated and autoclaved FW at OLR 3 kg VS/
m3 day are in good agreement with previous studies, where a
full-scale digester fed on the same type of source-segregated
household food waste at an average OLR of 2.5 kg VS/m3 day
yielded 0.402 m3 CH4/kg VS (Banks et al., 2011). Earlier pilot-scale
studies gave an average of 0.390 m3 CH4/kg VS, but using a differ-
ent source of source-segregated domestic food waste at higher
OLR (3.5 to 4 kg VS/m3 day), and without TE supplementation
(Banks et al., 2008). Laboratory-scale FW digestion with TE supple-
mentation was reported to yield 0.352-0.439 m3 CH4/kg VS at an
OLR of 6.64 kg VS/m3 day by Zhang and Jahng (2012); while in
the study by Banks et al. (2012) the methane yield for TE supple-
mented FW was 0.435 m3 CH4/kg VS.

The maximum methane yields for untreated and autoclaved FW
in the semi-continuous trials were 0.483 ± 0.013 and
0.439 ± 0.020 m3 CH4/kg VS respectively. These were slightly lower
than the BMP values in each case. The results therefore strongly
indicate that even after long periods of operation no significant
acclimatisation that could improve the biodegradability of com-
pounds produced in the autoclaving process had taken place.

With mixed biowastes, the benefits of increased biogas produc-
tion due to improved degradation of ligno-cellulosic materials may
outweigh any losses in biodegradability as a result of formation of
recalcitrant compounds during thermal treatment. FW, however,
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Fig. 2. Methane yields and contents in reactors treating untreated food waste (FW) and autoclaved FW during the semi-continuous operation with OLRs (organic loading rate)
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Table 2
Reactor characteristics during the last 4 weeks of each organic loading rate (OLR, kg VS/m3 d) periods.

OLR Reactor HRT
(d)

Specific CH4 yield (m3/
kg VS)

TS (g/kg) VS (g/kg) VS removal
(%)

pH TVFA (mg/l) TKN (g/
kg)

NH4–N (g/
kg)

SCOD (g/l)

2 R1 117 0.443 ± 0.038 69.2 ± 1.7 44.5 ± 0.9 80.6 7.8 ± 0.13 267.5 ± 53.2 7.2 ± 0.1 3.8 ± 0.14 16.0 ± 2.9
R3 94 0.373 ± 0.037 76.6 ± 2.3 55.6 ± 1.9 71.4 7.6 ± 0.04 132.5 ± 17.1 7.0 ± 0.3 2.1 ± 0.06 14.8 ± 0.1

3 R1 78 0.483 ± 0.013 71.1 ± 2.6 51.4 ± 2.5 77.7 7.8 ± 0.03 188.0 ± 71.9 8.4 ± 0.4 4.2 ± 0.15 15.6 ± 3.1
R2 0.478 ± 0.009 69.8 ± 2.2 56.1 ± 9.1 75.6 7.8 ± 0.08 108.0 ± 17.9 8.9 ± 0.1 4.1 ± 0.14 23.0 ± 4.3
R3 63 0.423 ± 0.002 84.0 ± 5.3 66.3 ± 4.4 65.9 7.5 ± 0.02 136.0 ± 26.1 8.2 ± 0.6 2.0 ± 0.05 17.6 ± 2.3
R4 0.433 ± 0.009 76.4 ± 1.0 63.0 ± 1.1 67.6 7.5 ± 0.03 92.0 ± 23.9 7.9 ± 0.3 1.7 ± 0.03 19.7 ± 0.5

4 R1 58 0.465 ± 0.023 85.2 ± 5.6 64.2 ± 3.7 72.1 7.8 ± 0.07 112.0 ± 25.9 9.0 ± 0.1 3.5 ± 0.03 36.2 ± 0.6
R3 47 0.439 ± 0.020 86.1 ± 2.6 69.9 ± 2.7 64.1 7.4 ± 0.06 90.0 ± 24.5 8.3 ± 0.5 1.3 ± 0.01 20.3 ± 0.5

6 R1 39 0.405 ± 0.006 102.1 ± 7.3 72.8 ± 4.1 68.3 7.7 ± 0.06 165.0 ± 42.0 9.4 ± 0.2 3.2 ± 0.08 28.3 ± 11.6
R2 0.435 ± 0.008 90.3 ± 2.8 68.7 ± 2.8 70.1 7.7 ± 0.05 140.0 ± 54.8 9.4 ± 0.1 3.3 ± 0.05 25.9 ± 10.5
R3 31 0.393 ± 0.044 85.7 ± 1.7 69.1 ± 1.4 64.5 7.2 ± 0.05 108.0 ± 35.6 7.8 ± 0.1 1.2 ± 0.07 18.2 ± 2.0
R4 0.383 ± 0.013 88.3 ± 5.4 72.0 ± 3.1 63.0 7.3 ± 0.06 110.0 ± 21.6 8.2 ± 0.3 1.2 ± 0.13 18.7 ± 3.0

N/A, not available.
N = 2–5, for pH N = 15.
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has a relatively low ligno-cellulosic fibre content compared to
other municipal biowaste components (e.g. garden or yard waste,
paper and card), and in the present study the net effect of treat-
ment was a reduction in specific methane yield. This balance
may however change with different autoclaving conditions, and
in particular a lowering of temperature may produce more favour-
able results.

3.3.2. Digestion parameters
Results for pH, VFA, TS, VS, SCOD, NH4–N, TKN are presented in

Table 2 and Fig. 3. pH in the untreated FW reactor remained around
7.8 throughout the experimental period, while with autoclaved FW
the pH decreased from pH 7.6 at OLR 2 kg VS/m3 day to 7.3 at OLR
6 kg VS/m3 day.

At an OLR of 2 kg VS/m3 day, total VFA concentration in both
reactors remained under 250 mg/l. When the OLR was increased
to 3 kg VS/m3 day, VFA in the untreated FW reactor increased to
2400 mg/l by day 153, and consisted mainly of acetic (about 85%)
and propionic acids (about 10%). In the autoclaved FW reactor
VFA concentration showed smaller increases with peaks of
1500 mg/l on day 139 (consisting 98% of acetic acid) and 910 mg/
l on day 160 (27% acetic acid and 65% propionic acid). The rela-
tively large samples (2 l) taken from the reactors on day 130 could

have contributed to these increases in VFA concentration, but sim-
ilar removals of digestate at later stages in the experimental run
did not have this effect. VFA concentrations reduced to under
200 mg/l in both reactors by day 214, shortly after the introduction
of trace element additions of selenium and cobalt on day 179 and
full TE supplementation on day 199. This behaviour is consistent
with previous reports of responses to TE supplementation where
the VFA increase was linked with the loss of electron transfer inter-
species during digestion (Banks et al., 2012).

TS, VS and TKN contents in both reactors gradually increased
during the experimental period, with TS increasing from under
70 to over 80 g/kg. Despite the lower feedstock solids concentra-
tion, the solids content in the autoclaved FW reactor was slightly
higher than in the untreated FW up to the end of OLR 4 kg VS/
m3 day. After OLR was increased to 6 kg VS/m3 day there was an in-
crease in solids concentrations in the untreated FW reactor, which
was not apparent with the autoclaved FW. The initial TKN concen-
tration in both reactors was 4.9 g N/kg and showed a similar in-
crease to �8 g N/kg by around day 200. TKN in the untreated FW
reactor continued to increase until around day 300 at which point
it stabilised at �9 g N/kg, whereas for the autoclaved FW it re-
mained at �8 g N/kg. The differences in TKN reflected the differ-
ences in feedstock concentrations. The increases in solids content
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were most likely associated with the increase in loading, although
it is possible that some accumulation was due to stratification de-
spite the intermittent mixing, as surplus digestate was discharged
from an overflow at the top of the reactor. Mass balance calcula-
tions affirmed, in the beginning of OLR 4 kg VS/m3 day, that accu-
mulation of TKN was taking place.

The SCOD concentration in both reactors increased from around
10 g/l to over 20 g/l during the first 300 days of operation, then sta-
bilised in the autoclaved FW reactor. In the untreated FW reactor
the SCOD increased sharply to �36 g/l for over 50 days then de-
creased equally sharply in the end of the run: these variations
did not correspond to changes in OLR and were not accomplished
with changes in methane yield nor digestate VFA. Total VFA con-
centrations accounted for only 0.5–2% of the SCOD. A probable
explanation for the general increase in SCOD in both reactors is
an increase in the quantity of soluble microbial products present
in the digestate; this phenomenon has previously been observed
with solid substrates and at long retention times (Kuo et al.,
1996; Rinćon et al., 2012).

3.3.3. Ammonium and ammonia
NH4–N concentration in the untreated FW reactor increased

during the first �170 days from 2.4 (inoculum) to 4 g/kg and then
showed a very gradual decrease to around 3 g/kg by the end of the
experimental run. This decrease could be associated with the in-
crease in microbial biomass (Lindorfer et al., 2011) or in soluble
microbial products caused by the increasing OLR. In the autoclaved
FW reactor, however, NH4–N decreased from 2.4 to about 1.2 g/kg
by the end of the experimental period. The low NH4–N concentra-
tions in the autoclaved FW reactor were probably mainly due to
the effect of autoclaving and the formation of Maillard compounds
from the reaction of proteins with carbohydrates (Bougrier et al.,
2007, 2008). Free ammonia concentrations in the reactors were
calculated, but NH3 remained below 0.30 g/kg in untreated FW
and below 0.10 g/kg in the autoclaved FW reactor.

The pH value in the untreated FW reactor rose to around 7.8 by
day 55 and remained relatively stable until the OLR was raised to

6 kg VS/m3 day, at which point it fell very slightly. In the auto-
claved reactor after a slight initial rise pH decreased during the
experimental run to a final value of around 7.3. These pH values re-
flect the relative NH4–N concentrations in each case, as NH4–N
provides buffering capacity (Procházka et al., 2012). High NH4–N
concentration can also inhibit the digestion process, but this is
greatly dependent on the feedstock materials and acclimation
times (Chen et al., 2008; Procházka et al., 2012). In the present
study, after TE supplementation was introduced, there was no evi-
dence of the VFA accumulation that is often associated with
ammonia toxicity, and the free ammonia concentrations were sim-
ilar to those previously observed in FW digestion (Zhang et al.,
2012).

3.3.4. Gas composition
The biogas methane content in both autoclaved and untreated

FW digesters was similar and ranged between 55 and 63% during
the experiment, with an average of around 58% (Table 2, Fig. 2).
It did not appear to be affected by changes in applied OLR. In con-
trast, in a study by Zhang and Jahng (2012) on FW digestion the
methane content was found to decrease from 53% to 48% as the
OLR was gradually increased from 2.19 to 6.64 kg VS/m3 day.

Hydrogen sulphide concentration was monitored between days
166 and 313 while the reactors were operated at OLR 3 and
4 kg VS/m3 day (Fig. 4). H2S concentrations at OLR 3 kg VS/m3 day
were <100 ppm in the untreated FW reactor and <75 ppm in the
autoclaved FW reactor. Shortly before the OLR was increased to
4 kg VS/m3 day the H2S concentration in the untreated FW reactor
began to increase, and reached 480 ppm by day 314 at which point
monitoring ceased; while in the autoclaved FW reactor H2S content
remained <60 ppm. H2S was also monitored at the OLR of 6 kg VS/
m3 day (days 448–473) and concentrations were 751 ± 182 ppm in
the untreated FW reactors (R1 and 2) compared to 63 ± 4 ppm in
the autoclaved FW reactors (R3, R4).

In the autoclaved FW reactors H2S concentrations remained
low, probably due to the effect of autoclaving on proteins in the
food waste, which may have reduced the availability of sulphur.
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Fig. 4. H2S contents in reactors treating untreated food waste (FW) and autoclaved FW during days 166–314.

Table 3
Residual methane potentials (RMPs), total methane yield and VS removals of food waste digestates after organic loading rates (OLRs, kg VS/m3 day) 2, 4 and 6 in the stirred tank
reactors (STRs).

OLR Reactor RMP (m3/kg VS) RMPoriginal (m3/kg VSfeed)a Total CH4 yield in STR + RMP (m3/kg VSfeed)a VS removal in STR + RMP (%)

2 R1 0.069 ± 0.005 0.013 ± 0.0009 0.456 85.1
R3 0.063 ± 0.002 0.017 ± 0.0006 0.390 75.3

4 R1 0.065 ± 0.001 0.017 ± 0.0004 0.482 80.9
R3 0.057 ± 0.002 0.020 ± 0.0006 0.459 67.4

6 R1 0.105 ± 0.002 0.032 ± 0.0005 0.437 76.9
R3 0.095 ± 0.012 0.034 ± 0.0045 0.427 69.3

N = 2�3.
a Results calculated according to VS fed to STRs.
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The low H2S concentration could also be due in part to precipita-
tion through the formation of iron sulphides. The iron content in
the autoclaved FW was 170 times higher than in the untreated
FW (Table 1), possibly due to metal contamination from the auto-
claving apparatus. O’Flaherty et al. (1998) showed that sulphate-
reducing bacteria (SRBs) have an optimum pH slightly higher than
that of methanogenic archaea, and hence the higher pH in the un-
treated FW reactors may have favoured the growth of SRBs causing
increased H2S concentrations. Decreasing HRT will also give SRB an
additional competitive advantage.

3.4. Residual methane potential assays

50-day RMP values were determined at the end of each period
of reactor operation at OLRs 2, 4 and 6 kg VS/m3 day (Table 3). The
RMPs increased with the increasing OLRs and decreasing HRTs
from 0.069 ± 0.005 m3 CH4/kg VS to 0.105 ± 0.002 m3 CH4/kg VS
with the untreated FW and from 0.063 ± 0.002 m3 CH4/kg VS to
0.095 ± 0.012 m3 CH4/kg VS with the autoclaved FW (OLR 2 to
6 kg VS/m3 day). However, RMPs after operation with OLR
4 kg VS/m3 day were 6 and 10% lower in untreated and autoclaved
FW compared to OLR 2 kg VS/m3 day reflecting the highest CH4

yields obtained with OLRs 3 and 4 kg VS/m3 day in STRs. Also few
days longer storage time might have affected the RMPs after OLR
4 kg VS/m3 day allowing materials to slightly degrade before the
RMP start.

Overall, when results were calculated per VS of FWs fed to the
STRs, RMPoriginal increased total methane yield of the semi-contin-
uous reactors by 2.9–4.7% with the untreated FW and by 4.3–5.2%
with the autoclaved FW (Table 3). The calculated total methane
yield with the untreated FW was, after OLRs 2, 4 and 6 kg VS/
m3 day, 3.6–12.6% lower than the BMP value (0.501 m3 CH4/kg VS)
being closest after OLR 4 kg VS/m3 day and thus reflecting the spe-
cific yields in STRs. Autoclaved FW showed similar STR reflecting
behavior but after OLR 4 kg VS/m3 day the calculated total meth-
ane yield was 3.1% higher than the BMP value (0.445 m3 CH4/
kg VS). The VS removals were not cohesive with the calculated to-
tal methane yields, which could partly be explained with devia-
tions between samples. The results suggest that in both materials
there was still a small part of biodegradable material after semi-
continuous reactors and the amount increased with the increasing
OLRs and decreasing HRTs.

4. Conclusions

Stable digestion of untreated and autoclaved FW was possible
in TE-supplemented mesophilic reactors at OLRs up to 6 kg VS/
m3 d, with yields of 0.435 and 0.393 m3 CH4/kg VS, respectively.
Using an acclimated inoculum allowed rapid increases in OLR
without process disturbance. Untreated FW showed a higher spe-
cific methane yield than autoclaved FW at all OLRs and in batch as-
says. This difference may be due to the formation of Maillard
compounds, with the resulting reduction in biodegradability
apparently outweighing any benefits from thermal hydrolysis of
ligno-cellulosic components under the autoclaving conditions
used. Biogas H2S concentrations were much lower in reactors
treating autoclaved FW.
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a b s t r a c t

Digestate characteristics such as organic and nutrient content, hygienic quality and stability are valuable
measures when evaluating the use of food waste (FW) digestate as organic fertiliser. This study compared
the characteristics of FW and autoclaved (160 �C, 6.2 bar) FW and their digestates from laboratory-scale
reactors. Decreased ammonification and low ammonium nitrogen content were observed in the diges-
tate from an autoclaved FW reactor due to autoclave treatment of FW, which affected the nitrogen-
containing molecules by formation of Maillard compounds. The methane potential of autoclaved FW
and its digestate was decreased by 40% due to reduced microbial activity as microbes were not able to
adapt to the conditions within a reactor fed with autoclaved FW. Both studied materials were suitable for
agricultural use in terms of their nutrient content, hygienic quality and stability, and thus the decrease in
ammonium nitrogen in digestate from an autoclaved FW reactor supported the use of digestate as soil
amendment rather than fertiliser.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It is estimated that globally one third of the food produced for
consumption becomes food waste (FW) during production, pro-
cessing, distribution and consumption (Gustavsson et al., 2011). In
Europe the total FW quantity produced each year is 90 million
tonnes (180 kg per capita), of which an estimated 38 million tons
(76 kg per capita) is generated in households (European
Commission, 2010), while in the USA 36 million tons (120 kg per
capita) of residential and commercial FWwas produced in 2011 (US
EPA, 2013). FW composition derived from households varies
seasonally and geographically. In a study from Finland, Italy,
Portugal, and the UK, the average household food waste consisted
mainly of fruit and vegetable waste (>50%) and to a lesser extent of
beverages (coffee filters and tea bags, 9%), meat and fish (6%), bread
and bakery (5%) and mixed meals (12%), and had relatively high
protein (16e55% of VS, volatile solids) and fat (15e30% of VS)
contents (Valorgas, 2011).

In Europe anaerobic digestion (AD) together with composting
are increasingly used as treatment methods for organic wastes such

as FW due to the EU Waste Framework Directive (2008/98/EC,
European Parliament and the Council, 2008), which obligates
member states to carry out source segregation and safe treatment
of biowastes. With AD, energy- and nutrient-rich organic com-
pounds can be digested to simultaneously produce fertilisers/soil
amendments, renewable energy and/or fuel for transport. When
used as fertiliser the nutrients in FW digestate can be returned to
agriculture to close the nutrient cycle, thereby reducing the need
for inorganic fertilisers, and their use as soil amendments improves
the physical, chemical and biological properties of the soil. In the
EU digestate use in agriculture is regulated by national legislations
deriving from EU regulations concerning animal by-products and
their digestion residues (European Council, 2011; European
Parliament and the Council, 2009). In addition to the hygienic
quality, the fertilising effect of the mineral and organic forms and
plant availability of nutrients are essential when considering the
usefulness of the digestate as soil fertiliser/amendment. Determi-
nation of the stability e e.g. residual methane potential of diges-
tates, emissions during digestate storage and use e can be
minimised and the energy production of AD optimised.

In biogas production, pretreatment of food waste affects the
characteristics of the FW digestate. The aim of pretreatment is to
enhance biodegradability and methane yields and to improve the
hygienic quality of the material. Thermal autoclave treatment* Corresponding author. Tel.: þ358 29 532 6573.
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(130e180 �C) has been observed to lower the methane conversion
of high protein-containing substrates (Cuetos et al., 2010;
Pinnekamp, 1989) such as FW by 5e10% during semi-continuous
mesophilic AD (Tampio et al., 2014). At higher autoclaving tem-
peratures organic material hydrolyses and solubilises; however,
toxic (Cuetos et al., 2010) or hardly biodegradable compounds such
as Maillard compounds can also be formed through reactions be-
tween sugars and amino acids (Bougrier et al., 2008; Monlau et al.,
2013), which further affects the AD process and the digestate
quality, e.g. decreasing the ammonium nitrogen content of the
digestate (Tampio et al., 2014). However, more detailed research
about the effects of these compounds and nitrogen transformation
during AD of pretreated FW is needed to evaluate the end-use value
of the digestate.

The aim of this study was to compare the characteristics, quality
and agronomic usefulness of FW and autoclaved FW (AFW) diges-
tates. For that purpose digestates from laboratory semi-
continuously stirred tank reactors were characterised for hygienic
quality, nutrient content as well as residual methane and ammo-
nification potentials. Furthermore, as reference the ammonification
and residual methane potentials were compared with digestate
from a full-scale AD plant.

2. Materials and methods

2.1. Origin of food waste and digestates

The FW used in this study was source-segregated domestic FW
collected from the South Shropshire Biowaste digestion plant in
Ludlow, UK. FW was divided into two portions and subsequently
one portion was pre-treated with a novel double-auger autoclave
(AeroThermal Group Ltd, UK) at 160 �C and 6.2 bars (referred to as
AFW) while the other portion was left untreated (referred to as
FW). FW portions were then passed through a macerating grinder
(S52/010 Waste Disposer, IMC Limited, UK), frozen and shipped to
Natural Resources Institute Finland where the FW samples were
melted and stored at 4 �C before use as described in more detail in
Tampio et al. (2014).

Three different digestates were used in this study. Two diges-
tates were collected from laboratory stirred tank reactors fed with
FW (digestate referred to as FW digestate) and AFW (digestate
referred to as AFW digestate). The reactors were fed through a
feeding inlet tube extended below the digestate surface, and
digestate overflowed by gravity through a u-tube trap to prevent
gas escape. For this study the digestates were sampled both from
the overflow digestate and through the inlet tube from the reactor.
The reactors were operated up to 473 days. Organic loading rates
were gradually increased from 2 to 6 kg VS/m3d, decreasing the
hydraulic retention times from 117 and 94 to 39 and 31 days in
reactors treating FW and AFW, respectively (Table 1). Starting from
runs with organic loading rate of 3 kg VS/m3d the reactors were
supplemented with trace elements according to Banks et al. (2012)
with element concentrations of Al (0.1 mg/l), B (0.1 mg/l), Co
(1.0 mg/l), Cu (0.1 mg/l), Fe (5.0 mg/l), Mn (1.0 mg/l), Ni (1.0 mg/l),
Zn (0.2 mg/l), Mo (0.2 mg/l), Se (0.2 mg/l) andW (0.2 mg/l). Reactor
configuration and feeding practices are described in more detail in
Tampio et al. (2014).

Digestates were stored at 4 �C for a maximum of one week
(characterisation and hygiene analysis) or up to 4 weeks (batch
assays) before use. Digestates used in characterisation studies were
from organic loading rates of 2, 3 and 6 kg VS/m3d (total organic
carbon was analysed during organic loading rate 4 kg VS/m3d)
while digestate samples for the hygiene analyses were collected
during organic loading rates of 4 kg VS/m3d (4 samples) and
6 kg VS/m3d (3 samples) (Table 1). The food waste samples were

collected simultaneously with the digestates (6e7 samples) and
thawed and stored in a freezer (4 �C) for 1e5 days prior to analyses.

The third digestate (referred to as reference digestate) used in
this study originated from a full-scale mesophilic anaerobic
digester treating municipal and industrial biowastes (Envor Biotech
Ltd, Forssa, Finland).

2.2. Batch assays

The batch assays for biochemical methane potentials and for
residual methane and ammonification potentials were performed
in duplicate or triplicate 0.5 l bottles with a total liquid volume of
400ml using automated testing equipment (Bioprocess Control Ltd,
Sweden) at 37 �C. The contents were mechanically mixed (84 rpm)
for 1 min per hour, and CO2 from the produced biogas was fixed by
NaOH prior to automated, liquid displacement-based gas volume
measurement.

Batch assays were performedwith the digestates alone (residual
methane potential) and using the digestates as inocula and FW and
AFW as substrates (biochemical methane potential, Table 1). In all
assays with FW and reference digestates the volume of inoculum
was 300 g and the substrate to inoculum ratios on a VS basis 1:1.
With AFW digestate assays 340 g of inoculum was used with a VS/
VS ratio of 1:2. In all assays distilled water was added to obtain
400ml liquid volume. pH (if lower than 7.3) was adjusted to around
8 with 3 M NaOH and in the case of the reference digestate inoc-
ulum NaHCO3 (3 g/l) was added as a buffer. Finally, the contents of
all bottles were flushed with N2 to obtain anaerobic conditions.

2.3. Analyses and calculations

From fresh samples, total and volatile solids (TS and VS) were
determined according to SFS 3008 (Finnish Standard Association,
1990) and ammonium nitrogen (NH4eN) according to
McCullough (1967). Total Kjeldahl nitrogen (TKN)was analysed by a
standard method (AOAC, 1990) using a Foss Kjeltec 2400 Analyser
Unit (Foss Tecator AB, H€ogan€as, Sweden), with Cu as a catalyst. For
soluble chemical oxygen demand analysis FW samples were diluted
1:10 with distilled water, and agitated for 1 h. Diluted FW and
digestate samples were centrifuged (2493 � g, 15 min) after which
the supernatant was further centrifuged (16,168 � g, 10 min) and
stored in a freezer, then thawed before analysis according to SFS
5504 (Finnish Standard Association, 2002). pH was determined
using a VWR pH100 pH-analyser (VWR International). Soluble-N
was analysed as TKN after 1:15 dilution with distilled water and
soluble-P and soluble-K were measured from 1:5 dilutionwith ICP-
OES (inductively coupled plasma optical emission spectrometry).

Table 1
Source of digestates used for characterisation, hygiene analyses and batch assays.
Organic loading rate (OLR) and hydraulic retention time (HRT) of the reactors and
supplementation of trace elements (TEs) are shown for time of sampling as well as
the sampling procedures. FW ¼ food waste, AFW ¼ autoclaved food waste.

Digestate OLR HRT TE Sampling feeding inlet Sampling overflow

FW 2 117 e Characterisation e

AFW 94 e Characterisation e

FW 3 78 þ Characterisation e

AFW 58 þ Characterisation e

FW 4 63 þ Hygiene Batch assays
AFW 47 þ Hygiene e

FW 6 39 þ Hygiene e

AFW 31 þ Characterisation, hygiene Batch assays
Reference N/A N/A e e Batch assays

e, no trace elements addition or sampling.
þ, trace element addition.
N/A, not available.
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From dried (60 �C) samples, crude protein by Duma's method
was analysed with standard methods (AOAC, 1990) using a Leco FP
428 nitrogen analyser (Leco Corp., St Joseph, USA) and by multi-
plying the N% by a factor of 6.25. Crude fat was analysed with a
Soxcap-Soxtec-Analyser (AOAC, 1990; Foss Tecator Application
Note AN 390). For soluble carbohydrate analyses, samples were
inverted with 1 N HCl (50 �C, 12 h) and analysed according to
Somogyi (1945). NDF (neutral detergent fibre) was analysed with a
filtering apparatus according to Van Soest et al. (1991) and both
ADF (acid detergent fibre) and lignin (permanganate-lignin) were
determined according to Robertson and Van Soest (1981). Hemi-
cellulose content was calculated from the difference between NDF
and ADF while cellulose content was calculated from the difference
between ADF and lignin. Total-C was analysed by Duma's method
according to manufacturer's instructions with a Leco CN-2000
Elemental Analyser (Leco Corp., St. Joseph, MI, USA). For the anal-
ysis of total-P and total-K, samples were digested with HNO3 (Luh
Huang and Schulte, 1985) and analysed with ICP-OES according to
manufacturer's instructions.

Hygienic quality was analysed using Escherichia coli, other co-
liforms, total coliforms, enterococci, sulphite-reducing clostridia
and Salmonella as indicator organisms. Analyses of different co-
liforms were performed according to Baylis and Patrick (1999) us-
ing Harlequin E. coli/coliform (LabM) culture mediumwith 24e48 h
incubation time at 37 �C. Enterococci were determined with KF
streptococcus agar (incubated 48 h at 44.5 �C) according to SFS-EN
ISO 7899 (Finnish Standard Association, 2000) and sulphite-
reducing clostridia with sulphite-iron agar (incubated anaerobi-
cally 48 h at 37 �C) according to SFS-EN 26461 (Finnish Standard
Association, 1993). For the qualitative analyses of Salmonella,
samples were pre-enriched in buffered peptone water (37 �C,
16e20 h) and incubated in RappaporteVassiliadis broth (42 �C,
24 h). Aliquots from the broth were cultured on Salmonella-
selective Rambach and xylose-lysine-decarboxylase agars and
incubated at 42 �C for 24 h. If growth was observed, colonies were
confirmed with triple sugar iron agar, urea-agar and lysine
carboxylase broth (37 �C, 24 h) (ISO, 2002).

All methane yields were converted into the standard tempera-
ture and pressure conditions (0 �C, 100 kPa) according to the ideal
gas law using ambient temperature and air pressure. In the
ammonification batch assays, the starting NH4eN, total Kjeldahl
nitrogen, TS and VS contents in the bottles were calculated ac-
cording to the mass balances from the original concentrations of
FWs and digestates and the amounts used in the assays.

3. Results and discussion

3.1. Food waste characteristics

The studied FW had TS of ca 230 g/kgFM, and VS/TS ratio of 93%
while AFW had about 10e15% lower TS and VS, likely due to dilu-
tion by condensed water during the autoclave treatment (Table 2).
The FW contained proteins up to 220 g/kgTS while fats and soluble
carbohydrates were ca 140 and 120 g/kgTS. Cellulose and hemi-
cellulose contents were around 50 g/kgTS and low lignin content,
6 g/kgTS, was observed. The autoclaving affected the organic
composition (per TS) by decreasing the soluble carbohydrates by
50% and hemicelluloses by 40% while increasing the lignin content
from 6.6 to 81.6 g/kgTS, whereas the effects on other components
were minor. AFW also had increased SCOD and lowered VFA, likely
due to solubilisation, volatilisation and acidification of material
during autoclave treatment.

The protein (220 g/kgTS) and fat (140 g/kgTS) content in the FW
corresponded well with previous studies with FWs from Europe
where protein and fat contents in FWs have varied between 100

and 260 g/kgTS (Table 3). Cellulose and hemicellulose contents
were similar in the source-sorted FW in Ludlow, UK, while the
present lignin content of 6 kg/kgTS was 60% lower (Table 3, Zhang
et al., 2012). The low lignin content of FW as well as the high
standard deviations in lignin observed with both FW samples were
probably due to the complex nature of lignin, different analysing
methods (Hatfield and Fukushima, 2005) and the heterogeneity of
the FW material (Papadimitriou, 2010). The autoclave treatment
decreased the soluble carbohydrate content, indicating the forma-
tion of Maillard compounds (Liu et al., 2012; Monlau et al., 2013)
through reactions between sugars and amino acids (Bougrier et al.,
2008; Monlau et al., 2013; Pinnekamp, 1989). The reduction in
hemicellulose content was most likely due to the branched struc-
ture of the hemicellulose, which enables easier hydrolysis during
pre-treatment (Papadimitriou, 2010; P�erez et al., 2002).

3.2. Digestate characteristics

The FW digestate had TS and VS of 67.4 and 45.6 g/kg, while the
values were slightly higher in the AFW digestate (78.5 and 50.5 g/
kg, respectively, Table 2). AD decreased TS, VS, fats and soluble
carbohydrates content and increased cellulose and hemicellulose
contents (g/kgTS) similarly with both substrates. However, the
lignin content increased nearly tenfold in the FW while in the
autoclaved digestate lignin content was doubled. Protein content
increased by 15% more with the autoclaved material during AD.

With AFW digestate the protein content and the hemicellulose,
cellulose and lignin contents (g/kgTS) were 25e80% higher than for
FW digestate while the NH4eN/TKN ratio was ~30% lower (Table 2).
The reduced NH4eN and NH4eN/TKN ratio and higher protein
contents in the AFW digestate resulted from formation of Maillard
compounds during autoclave treatment, which affected the diges-
tate by decreasing protein degradation and leading to reduced
fertiliser value.

The content of fibres (cellulose, hemicelluloses and lignin; g/
kgTS) increased 30e800% during AD partly due to low biodegrad-
ability of the lignoecellulosic complexes (P�erez et al., 2002), but
also indicating some solid material accumulation during the
digestion process. The ratio between cellulose (CEL), hemicellulose
(HEMI) and lignin (LIGN), CEL þ HEMI/LIGN (Eleazer et al., 1997),
was used to evaluate the biodegradation of these compounds
during autoclaving and AD. For FW, AFW, FW and AFW digestates,
the CEL þ HEMI/LIGN ratio was 16.3, 1.2, 3.0 and 1.2, respectively.
The stable CEL þ HEMI/LIGN ratio (1.2) of AFW after AD indicates
that the hemicellulose and cellulose had already degraded during
autoclaving and could not degrade further during AD. The higher
content of hardly degradable cellulose, lignin and proteins in the
AFW digestate compared to the FW digestate likely reduced
methane production during batch experiments, which supports the
results from Tampio et al. (2014) where themethane yield in stirred
tank reactors was 5e10% lower with AFW compared to FW.

3.3. Methane and ammonification potentials

First, the residual methane potentials of the FW, AFW and
reference digestates were assayed to evaluate the potential recov-
erable methane and possible emission risk during digestate
handling. The FW digestate produced methane more slowly than
the AFW and reference digestates; however, it and the reference
digestate had higher residual methane potential (around
0.135 m3CH4/kgVS) than the AFW digestate (~0.080 m3CH4/kgVS).
With the FWdigestate the cumulative methane potential curvewas
of a “sigmoid type”, indicating some inhibition (Vavilin et al., 2008).
During the assay, the NH4eN concentration in the AFW digestate
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increased by 0.95 g/kgFM while with the other two digestates
NH4eN increase was ca 0.3 g/kgFM (Fig. 1, Table 4).

Secondly, the three digestates were assayed as inocula to digest
both FW and AFW to assess the effect of long-term cultivation
(>300 days in stirred tank reactors) on micro-organisms’ capability
to degrade FW and AFW. Both FW and AFW digestate inocula
produced 0.451 m3CH4/kgVS from FW while from AFW the
biochemical methane potential was 10% less with FW digestate and
as much as 30% less with AFW digestate as inoculum. With the
reference digestate higher methane potentials were observed with
both FW and AFW. Both FW and reference digestate inocula
degraded ca 50% of VS with both FWswhile with the AFW digestate
the VS removals were around 37%. However, with the low VS
removal AFW digestate produced as much methane from FW using
FW digestate as inoculum (0.451 m3CH4/kgVS; Table 4). During the
assays with digestate inocula and FWs NH4eN concentration
increased (inoculum excluded) more with the FW digestate (0.68
and 0.34 g/kgFM) than with the AFW digestate (0.41 and 0.17 g/

kgFM) assayed with both FW and AFW, respectively, while the
highest NH4eN increases were obtained with reference inoculum
(0.73 and 0.51 g/kgFM with FW and AFW; Table 4).

The lower biochemical methane potentials, VS removals and
decreased NH4eN formation with AFW along with low NH4eN
starting concentration (~1 g/kg) with AFW digestate were con-
nected to the formation of hardly degradable Maillard compounds
during the autoclave treatment of FW, leading to reduced biode-
gradability of the material (Bougrier et al., 2008; Monlau et al.,
2013), which was previously reported to decrease NH4eN con-
centration in anaerobic digesters (Tampio et al., 2014). Combination
of AFW and AFW digestate most likely inhibited the growth of
certain microbes due to decreased protein degradation, leading to
ca 40% reduced biochemical methane potential. Also the higher
initial VS content in the AFW digestate assay bottles (22.6 gVS/
bottle versus 13.4 and 9.8 gVS/bottle with FW and reference
digestates) may have caused inhibition due to VFA accumulation
(Lesteur et al., 2010), decreasing the residual methane potential of

Table 2
Characteristics of food waste (FW) and autoclaved food waste (AFW) as well as FW and AFW digestates. Averages and standard deviations are shown, feed N ¼ 3e4, FW
digestate N ¼ 2, AFW digestate N ¼ 3, if not otherwise stated.

Parameter Unit Feed Digestate

FW AFW FW AFW

General characteristics
pH e 5.2 ± 0.22 5.2 ± 0.21 8.0 ± 0.02 7.7 ± 0.05
TS g/kgFM 248.6 ± 2.86 215.5 ± 8.66 67.4 ± 0.07 78.5 ± 5.12
VS g/kgFM 231.1 ± 1.93 198.8 ± 7.50 45.6 ± 2.96 60.5 ± 6.53
VS/TS % 92.6 ± 0.29 92.5 ± 0.29 67.7 ± 4.33 77.0 ± 3.72
TKN g/kgFM 7.62 ± 0.33 6.9 ± 0.27 7.8 ± 0.59 7.3 ± 0.52
NH4eN g/kgFM 0.4 ± 0.14 0.4 ± 0.03 4.07 ± 0.25 1.9 ± 0.41
NH4eN/TKN % 4.7 ± 1.71 5.3 ± 0.53 52.2 ± 0.66 25.7 ± 7.18
SCOD g/kgFM 101.7 ± 12.55 112.8 ± 16.19 13.1 ± 1.51 15.3 ± 1.28
VFA g/kgFM 3.5 ± 0.41 2.2 ± 0.21 0.3 ± 0.01 0.2 ± 0.03
Organic characteristics
Crude protein g/kgTS 218.9 ± 17.51 208.6 ± 26.96 311.2 ± 31.82 443.4 ± 36.08
Crude fat g/kgTS 141.7 ± 9.48 142.5 ± 6.22 56.7 ± 3.39 46.1 ± 6.75
Soluble carbohydrate g/kgTS 122.7 ± 17.94 59.7 ± 5.38 5.2 ± 0.00 5.2 ± 0.64
Cellulose g/kgTS 51.5 ± 6.94 62.5 ± 9.62 66.4 ± 16.69 123.5 ± 23.20
Hemicellulose g/kgTS 56.2 ± 6.97 35.9 ± 8.14 81.6 ± 12.37 108.2 ± 8.07
Lignin g/kgTS 6.6 ± 8.29 81.6 ± 10.72 40.8 ± 2.47 192.9 ± 12.15
(CEL þ HEMI)/LIGN e 16.32 1.21 3.63 1.20
Total nutrients
Total-Ca g/kgTS 469.1 486.6 386.1 415.4
TKN g/kgTS 30.7 ± 1.68 32.1 ± 1.62 115.6 ± 8.38 93.2 ± 3.23
C/N 15.3 15.2 3.3 4.5
Total-P g/kgTS 3.8 ± 0.06 6.5 ± 1.31 19.9 ± 3.63 16.2 ± 2.63
Total-K g/kgTS 11.4 ± 1.57 10.31 ± 0.41 44.1 ± 8.64 30.7 ± 1.73
Soluble nutrients
Soluble-N g/kgTS 9.6 ± 0.52 16.3 ± 0.44 74.9 ± 6.75 42.2 ± 4.33
Soluble-P g/kgTS 1.7 ± 0.75 1.7 ± 0.28 2.6 ± 1.09 1.4 ± 0.55
Soluble-Ka g/kgTS 9 9 22.6 26.3

a N ¼ 1.

Table 3
Characteristics of food wastes in various European countries. Organic fraction of municipal solid waste (OFMSW), restaurant waste (RW), household waste (HW), food waste
(FW), autoclaved food waste (AFW), source-sorted (ss), mechanically recovered (mr).

Waste Country Protein (g/kgTS) Fat (g/kgTS) Cellulose (g/kgTS) Hemicellulose (g/kgTS) Lignin (g/kgTS) Reference

ss-OFMSW Denmark 105e171 102e177 N/A N/A N/A Hansen et al., 2007
RW Spain 275 288 N/A N/A N/A Garcia et al., 2005
HW Spain 163 113 N/A N/A N/A Garcia et al., 2005
FW Finland 169 175 N/A N/A N/A Valorgas, 2011
FW Italy 233 215 N/A N/A N/A Valorgas, 2011
FW UK 161e172 194e257 N/A N/A N/A Valorgas, 2011
ss-FW UK 257 165 55 42 18 Zhang et al., 2012
mr-OFMSW UK 204 108 397 82 289 Zhang et al., 2012
FW UK 219 142 52 56 7 Present study
AFW UK 209 143 60 34 82 Present study

N/A, not available.
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the AFW digestate. However, the initial VS concentrations did not
correlatewith the biochemical methane potential results with FWs.

The FW digestate showed good gas production with both FWs
studied as did the reference digestate, indicating the capability of
microbes to degrade the feed material. However, the AFW digestate
showed lower methane productionwith both FWs, which indicates
that the adaptation of the microbial population towards the AFW
was not successful. Prior studies have shown that autoclaving of FW
changes the microbial populations, especially bacteria, during AD
(Blasco et al., 2014) due to the transformation of proteins, leading to
further decreases in methane yields during AD. With these batch
experiments it was confirmed that the autoclaving of FW affected
the ammonification capacity of the digestate, which led to reduced
methane formation.

3.4. Hygienic quality

The hygienic quality of the FW (7 samples) and digestate (6
samples) were tested with hygiene indicators E. coli, other co-
liforms, total coliforms, enterococci and sulphite-reducing clos-
tridia and Salmonella (Fig. 2). No Salmonella was detected in any of
the feed or digestate samples (data not shown). In one of the six FW
samples a few colonies of E. coli were discovered, while both
enterococci (average 2.79 � 104 ± 2.74 � 104 cfu/g) and clostridia
(2.24 � 103 ± 1.86 � 103 cfu/g) were also discovered. In AFW all
hygiene indicators were under the detection limit (5 cfu/g). In both
digestates, high enterococci concentrations (6.77 � 108 cfu/
g ± 7.40 � 108 and 3.71 � 108 ± 4.64 � 108 in the FW and AFW
digestate) were detected, while the clostridia concentration
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Fig. 1. Residual methane potentials (RMP) of food waste (FW, a), autoclaved FW (AFW, b) and reference (c) digestates. Biochemical methane potentials (BMPs) of FW and AFW
digested with FW digestate (d), AFW digestate (e) and reference digestate (f) (inoculum RMP subtracted). Error bars represent standard deviations and are plotted in five-day
intervals, N ¼ 2e3.

Table 4
Initial TS, VS and NH4eN (g/kgFM) during batch assays with different inocula (FW, AFW and reference digestates) and food waste (FW) and autoclaved food waste (AFW) as
substrates. Residual methane potentials (RMPs) and biochemical methane potentials (BMPs) are shown with standard deviations (N ¼ 2e3).

Inoculum FW digestate AFW digestate Reference digestate

Added substrate e FW AFW e FW AFW e FW AFW

Characteristics
TS initial (g/kg) 49.8 85.7 86.1 69.9 99.6 99.5 38.6 65.1 65.2
TS final (g/kg) 43.9 53.0 54.7 61.9 67.9 68.8 32.2 41.8 45.0
VS initial (g/kg) 33.4 66.8 66.8 56.6 84.1 84.1 24.4 48.9 48.9
VS final (g/kg) 27.5 33.6 35.4 48.3 52.5 53.4 19.1 24.03 26.3
VS removal (%) 17.6 49.8 47.1 14.6 37.5 36.6 21.9 50.8 46.2

TKN initial (g/kg)a 6.08 7.17 7.45 5.48 7.11 7.00 N/A N/A N/A
NH4eN initial (g/kg)a 3.02 3.09 3.11 1.03 1.05 1.07 1.31 1.35 1.35
NH4eN final (g/kg) 3.31 4.07 3.75 1.98 2.41 2.19 1.64 2.41 2.19
NH4eN increase (g/kg) 0.3 0.98 0.64 0.95 1.36 1.12 0.33 1.06 0.84
NH4eN increase,

inoculum
excluded (g/kg)

N/A 0.68 0.34 N/A 0.41 0.17 N/A 0.73 0.51

RMP or BMP measured
(m3CH4/kgVS)

0.132 ± 0.002 0.452 ± 0.001 0.411 ± 0.002 0.079 ± 0.003 0.451 ± 0.004 0.307 ± 0.003 0.139 ± 0.007 0.501 ± 0.020 0.445 ± 0.001

e, no FW added.
N/A, not available/applicable.

a Calculated value.
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remained lower (6.14 � 102 cfu/g ± 4.98 � 102 and
6.48 � 103 ± 6.29 � 103 cfu/g in the FW and AFW digestates,
respectively).

The absence of coliforms in the studied FWwas likely due to the
freezer storage time (before preparation as feed and analysis). In
fresh FW these indicators have usually been detected in concen-
trations of 104e105 cfu/g in biogas plants treating FW as such
(Sahlstr€om et al., 2008) and co-digesting FW with manures and
animal by-products (Bagge et al., 2005). The present concentration
of enterococci was similar to that reported for fresh FW (around
104 cfu/g) by Sahlstr€om et al. (2008) due to the resistance of
enterococci towards freezing (Geiges, 1996). Similarly high con-
centrations of sulphite-reducing clostridia were detected as these
spore-forming organisms are also resistant to freezing (Geiges,
1996).

The results show that the studied autoclave treatment effec-
tively reduced all the hygiene indicator concentrations in AFW due
to high temperature and pressure, which are widely used for ster-
ilisation. However, the observed increase in concentrations of
enterococci and clostridia (up to 8 logs) in the AFWdigestate clearly
indicates the potential of hygienised material for microbial growth.
The increase was apparently due to growth of indicator organisms
in the stirred tank reactors, originating from the sludge with which
the reactors were inoculated or possibly from contamination of the
AFW samples. Absence of coliforms in the studied digestates in-
dicates that either there were no coliforms in the original inoculum
or the microbes were not able to survive due to competition of
microbial communities while the conditions were favourable for
clostridia and enterococci.

Altogether, according to the EU's Animal By-Product regulations
(European Council, 2011; European Parliament and the Council,
2009) digested FW and digested autoclaved FW were both hy-
gienically suitable for land application as the concentration of E. coli
was under the threshold value 1000 cfu/g and no Salmonella was
detected.

3.5. Agronomic usefulness of digestates

The total and soluble nutrient composition of the FWs and
digestates was studied to evaluate the agronomic usefulness of the
digestates (Table 2). The total nutrient levels of nitrogen (31 gN/
kgTS), potassium (11 gK/kgTS) and carbon 470e487 (gC/kgTS) were
similar between the studied FWs, and thus the AFW had a higher
total-P content (~7 g/kgTS in AFW, 4 g/kgTS in FW). The soluble P
and K contents in both FWs were around 1.7 and 9 g/kgTS while the
soluble-N concentration increased from 10 to 16 g/kgTS after
autoclaving. When digestates were compared the AFW digestate
had 20% lower total Kjeldahl nitrogen and 44% lower soluble-N
levels compared to the FW digestate. The C/N ratios were rela-
tively lowwith both studied digestates (3.3e4.5), which was due to
the mineralisation of carbon during AD.

The total nutrient concentration in FWs correlated well with
different European (UK, Finland, Italy) food wastes, where total-N
concentrations varied between 24 and 34 g/kgTS, total-P between
2.7 and 6.4 and total-K between 8.6 and 14.3 g/kgTS (Valorgas,
2011). Only total-P was observed in slightly higher concentrations
in the AFW where some additional phosphorus could have dis-
solved from the autoclaving apparatus due to P impurities in steel.
Soluble N increase after autoclaving was probably due to solubili-
sation of nitrogen into other compounds than NH4eN, e.g. to sol-
uble Maillard compounds.

In the digestates the NPK-ratios (per TS) were 100:17:38 in the
FW digestate and 100:17:33 in the AFW digestate, which were
similar to the results obtained with source-sorted FW in the UK
(NPK 100:11:41; Zhang et al., 2012). Compared to available com-
mercial fertilisers (~20 %N) the N content in the FW digestate was
low but the proportion of K and P was higher, and thus it was
considered to be a suitable fertiliser for leguminous plants (Israel,
1987) and plants at reproductive state (Clemens and Morton,
1999). However, when considering the low NH4eN/TKN ratio of
the AFW digestate (26%) compared to the FW digestate (52%), the
AFW digestate was evaluated to be more suitable for use as soil
amendment than fertiliser (Nkoa, 2013). The 10e15% lower N-tot
and K-tot concentrations (per FM) would also increase the volume
of AFW digestate needed for fertilising in similar quantities. The TS
contents of the studied digestates were 67 g/kgFM (FW digestate)
and 79 g/kgFM (AFW digestate), which are similar to those of
manure used as fertiliser in agriculture (Amon et al., 2006),
enabling the spreading of digestates with similar machinery as
manure.

Calculated with the values obtained from this study the FW
produced in Europe (38 million tonnes; European Commission,
2010) accounts for approximately 296 000 tonnes of N, 46 200
tonnes of P and 108 000 tonnes of K. These calculated values
represent 2.8, 4.5 and 5.0% of the manufactured fertilisers
consumed in the EU (10.4 Mt of N, 1.0 Mt of P, 2.2 Mt of K; Eurostat,
2013). With European FW, approximately 1.74 million hectares of
field could be fertilised, using an assumed N fertilisation rate of
170 kg/ha.

4. Conclusions

Anaerobic digestion of high protein-containing FW produces
digestates with relatively high NH4eN (4 g/kgFM), which supports
its use as a fertiliser in agriculture. Also the hygienic quality,
nutrient concentrations (NH4eN, P, K), TS content and low residual
methane emission potential facilitate fertilisation use.

Anaerobic digestion of autoclaved FW results in digestate with
higher undegraded protein and lower ammonium content than
without autoclaving, leading to reduced microbial activity and
decreased methane yield in batch assays. This increases the vol-
umes needed to achieve the desired fertilising effect by
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Fig. 2. Hygienic quality of food waste (FW), autoclaved food waste (AFW) and FW and AFW digestates. Averages and positive standard deviations are shown, N ¼ 6e7.
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approximately 10e15% compared to FW; this, coupled with its low
ammonium content, supports the use of autoclaved FW digestate in
soil amendment practices.
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a b s t r a c t

The use of digestate in agriculture is an efficient way to recycle materials and to decrease the use of
mineral fertilizers. The agronomic characteristics of the digestates can promote plant growth and soil
properties after digestate fertilization but also harmful effects can arise due to digestate quality, e.g. pH,
organic matter and heavy metal content. The objective of this study was to evaluate the differences and
similarities in agronomic characteristics and the value of five urban waste digestates from different
biogas plants treating either food waste, organic fraction of organic solid waste or a mixture of waste-
activated sludge and vegetable waste. The digestate agronomic characteristics were studied with
chemical analyses and the availability of nutrients was also assessed with growth experiments and soil
mineralization tests. All studied urban digestates produced 5e30% higher ryegrass yields compared to a
control mineral fertilizer with a similar inorganic nitrogen concentration, while the feedstock source
affected the agronomic value. Food waste and organic fraction of municipal solid waste digestates were
characterized by high agronomic value due to the availability of nutrients and low heavy metal load.
Waste-activated sludge as part of the feedstock mixture, however, increased the heavy metal content and
reduced nitrogen availability to the plant, thus reducing the fertilizer value of the digestate.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Anaerobic digestion is a widely used technique for the treat-
ment of various organic waste materials to produce energy in the
form of biogas and nutrient-rich residue, digestate. In Europe the
total digestate production in 2010 was 56 Mtonnes per year of
which 80e97%was used in agriculture (Saveyn and Eder, 2014). The
use of digestate in agriculture has been acknowledged as an effi-
cient way to mitigate greenhouse gas emissions through material
recycling, avoidance of mineral fertilizers and improvement of soil
properties as reported in several life cycle analyses (Bernstad and la
Cour Jansen, 2011; Boldrin et al., 2011; Evangelisti et al., 2014).
However, proper digestate management, processing and spreading
techniques are needed to avoid potential acidification and eutro-
phication impacts due to increased nutrient leaching (Abdullahi
et al., 2008; Alburquerque et al., 2012a; Bernstad and la Cour
Jansen, 2011; Boldrin et al., 2011; Haraldsen et al., 2011) which is
dependent on the local soil quality and meteorological conditions

as well as digestate characteristics (Evangelisti et al., 2014).
The digestate agronomic characteristics, including organic

matter content and quality and plant-available nutrients as well as
possibly harmful properties, e.g. heavy metals and pathogens,
define the effect on soils and plants (Abubaker et al., 2012; Nkoa,
2014; Teglia et al., 2011), i.e. the agronomic value of the digestate.
Anaerobic digestion typically converts most of the feedstock's
organicmaterial into biogas while the nutrients of the feedstock are
conserved in the digestate (Odlare et al., 2011) in more inorganic
and soluble forms (Tambone et al., 2010). The soluble ammonium
nitrogen increases the short-term effect of nitrogen in soils
enhancing plant growth shortly after fertilization (Abubaker et al.,
2012; Gutser et al., 2005). The organic matter in the digestate in-
creases the soil carbon balance (Odlare et al., 2008, 2011) that leads
to enhanced microbial processes (Abubaker et al., 2012; Odlare
et al., 2008) and enzymatic activity (Galvez et al., 2012), which
further increases the long-term nutrient release in soils (Abubaker
et al., 2012; Odlare et al., 2008). In addition, digestate has also been
reported to increase germination and plant root growth
(Maunuksela et al., 2012) and soil quality by increasing water bal-
ance and soil structure (Abubaker et al., 2012). As a result, the
application of the same amount of plant-available nutrients in
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digestates compared to mineral fertilizers has been found to pro-
duce similar and even increased crop yields compared to mineral
fertilizers (Abubaker et al., 2012; Haraldsen et al., 2011; Svensson
et al., 2004; Walsh et al., 2012). The amount of digestate applied
to land in the EU is defined according to the national legislation
which outlines the limits for nitrogen and phosphorus use per
hectare. For example, in Finland the limits in cereal and grass
fertilization are 170 kg/ha for organic nitrogen, 130e250 kg/ha for
soluble nitrogen and 4e52 kg/ha for phosphorus depending on the
plant type, yield, geographical location, soil type and phosphorus
content of the soil (Government Decree No 1250/2014 on the
restriction of certain discharges from agriculture or horticulture,
MAVI, 2014).

Excess application of digestate can lead to harmful effects on
plants and soils due to, e.g., the quantity and quality of organic
matter or the impurities, including heavy metals, organic contam-
inants or pathogens (Alburquerque et al., 2012b; Govasmark et al.,
2011). High organic matter content, depending on its composition,
can lead to excess microbial activity and immobilization of nitrogen
(Alburquerque et al., 2012a; Gutser et al., 2005) as well as phyto-
toxicity (Abdullahi et al., 2008). Feedstocks of urban biogas plants,
e.g. sewage sludge and biowastes, may contain heavy metals
(Kupper et al., 2014; Odlare et al., 2008), which are concentrated in
the digestate due to the mass reduction during anaerobic digestion
(Govasmark et al., 2011), and possibly accumulated in the soils or in
the food chain after digestate use (Otabbong et al., 1997; Zhu et al.,
2014). Altogether, the characterization of the digestate organic
matter, nutrient and heavy metal contents and their effects on
plants and soils, i.e. the agronomic characteristics, are essential in
order to plan digestatemanagement and to control the positive and
negative environmental effects of digestate fertilization.

The recent research on the use of digestates in agriculture has
focused largely on digestates from agricultural feedstocks such as
manure, plant biomass and a mixture of agro-industrial products
and manure (e.g. Alburquerque et al., 2012a, 2012b; Fouda et al.,
2013; Galvez et al., 2012; Grigatti et al., 2011; Gunnarsson et al.,
2010). Furthermore, some studies have reported the effect of
digestates originating from urban feedstocks, e.g. of different food
and household wastes and sewage sludge, on the crop growth and
nitrogen uptake (Abubaker et al., 2012; Haraldsen et al., 2011;
Odlare et al., 2011; Rigby and Smith, 2014; Svensson et al., 2004)
and on soil quality (Abubaker et al., 2012; Odlare et al., 2008, 2011;
Rigby and Smith, 2013). As the focus of these studies is mainly on
the growth response of crops, the digestate heavy metal and
organic matter content are thoroughly reported only in a limited
amount of studies with urban waste digestates (Abubaker et al.,
2012; Tambone et al., 2010). Additionally, to the authors’ knowl-
edge there are only a few digestate fertilization/quality studies,
which take the feedstock composition and origin into consideration
when evaluating the fertilizer value (Tambone et al., 2009, 2010)
and where the digestion process parameters are considered
(Alburquerque et al., 2012b; Tambone et al., 2009). The digestate
characteristics are known to be affected by the characteristics of the
feedstock (Abubaker et al., 2012; Tambone et al., 2010) as well as
the anaerobic digestion process; the reactor type and process pa-
rameters (Zirkler et al., 2014). In addition, the feedstock composi-
tion can also vary depending on, e.g., waste collection regulations
(Saveyn and Eder, 2014) and pretreatment prior to anaerobic
digestion, which may significantly affect the digestate composition
(Tampio et al., 2014). However, urban feedstocks, especially food
waste and household waste, have been found to have rather uni-
form characteristics despite temporal or geographical differences
(Davidsson et al., 2007; Valorgas, 2011).

The objective of this study was to evaluate the differences and
similarities in the agronomic characteristics of different urban

waste digestates and to evaluate the agronomic value of these
digestates. The agronomic characteristics were studied by (I)
analyzing the digestate quality, including pH, organic and heavy
metal content of digestates, and reflecting on the results within the
context of the European digestate quality criteria and (II) analyzing
the fertilizer value with chemical analyses of nutrients, soil nitro-
gen mineralization test and short-term ryegrass growth experi-
ments. The aim was also to compare the effect of feedstock
composition and digestion processes on the digestate agronomic
characteristics by taking into consideration the pretreatment of the
feedstock. Studied materials originated from anaerobic digesters
from different European countries treating food waste (FW),
organic fraction of organic solid waste (OFMSW) and a mixture of
waste-activated sludge and vegetable waste (VWAS).

2. Materials and methods

2.1. Origin of materials

This study evaluated the agronomic characteristics of five
digestates of which three originated from digesters fed with a
source-segregated domestic food waste (FW), one from a digester
fed with an organic fraction of municipal solid waste (OFMSW) and
one from a digester fed with a mixture of waste-activated sludge
and vegetable waste (mixture referred as VWAS, Fig. 1, Table 1). The
respective feedstocks were characterized as well except VWAS,
which was not available.

Two food wastes and digestates originated from laboratory
stirred tank reactors. Reactors were fed with FW collected from
Ludlow, UK, where the FWs were either macerated with a S52/010
Waste Disposer (IMC Limited, UK) (feedstock and digestate referred
as FW1) or autoclaved with a double-auger autoclave (160 �C and
6.2 bars, AeroThermal Group Ltd, UK) and macerated (FW2). Both
Ludlow feedstocks were frozen (�20 �C) and sent to Natural Re-
sources Institute Finland, to produce the FW1 and FW2 digestates,
which were combined samples from two parallel reactors (a more
detailed description of both digestates is provided in Tampio et al.,
2014). Digestates were stored frozen (�20 �C), and were thawed
before analysis. The third FW feedstock and digestate (FW3) were
obtained from a sub-commercial-scale anaerobic digester from
Greenfinch, UK. OFMSW feedstock and digestate originated from an
anaerobic digestion plant in Lisbon, Portugal, treating source-
segregated OFMSW from the Lisbon area. The VWAS mixture,
which consisted of vegetable waste and waste-activated sludge,
was from a pilot digester treating wastes from Treviso, Italy
(Table 1).

The feedstocks and digestates from the UK, Portugal and Italy
(excluding FW1 and FW2) were sent in frozen form to a laboratory
at Natural Resources Institute Finland, where the samples were
thawed and stored approximately one week at 4 �C. Prior to ana-
lyses feedstock samples were macerated with a Retch Grindomix
GM300 knife mill (Retch Gmbh, Germany). From OFMSW feedstock
the non-biodegradable material (plastic cups, plastic bags, etc.) was
manually removed before analyses of the water soluble nutrients
and carbon.

2.2. Nitrogen mineralization

Nitrogen mineralization tests were run to study the effect of
digestate applications on soil inorganic nitrogen concentrations.
The 48-day mineralization was tested in triplicate at 20 �C ac-
cording to ISO 14238 (ISO, 2012) with digestates and control soil,
where no fertilizer was added. Incubation soil (7% clay, 6% silt and
87% sand; soil organic C 1.8% and pHw 5.1) was collected from the
0e15 cm top layer of a cultivated agricultural soil in Jokioinen,
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Finland. The aim was to add digestate to have 20 mg total Kjeldahl
nitrogen (TKN)/100 g soil, and thus based on pre-samples 2.2e8.6 g
fresh matter (FM) of different digestates were added resulting in
17e31 mg TKN/100 g soil based on analyzed samples. Soil from
individual pots was sampled after 0, 4, 20 and 48 days following the
start of incubation and was then frozen (�20 �C). After incubation
all soil samples were thawed and 100 g moist soil was extracted
with 250 ml 2 M KCl and analyzed for ammonium nitrogen
(NH4eN) and nitrate (NO3eN). Soil inorganic N concentrations
were compared against the incubated control soil.

2.3. Growth experiments

The plant availability of the nitrogen in digestates was studied
via a pot experiment using the same soil as in the mineralization
test. The growth of Italian ryegrass (cv. Fabio) was studied in trip-
licate treatments with each of the digestate and control applica-
tions. The aimed digestate addition was 1500 mg TKN/5 L sandy
soil, the amount of which was calculated according to the digestate
pre-samples (data not shown). However, the actual applied nitro-
gen addition varied from 1280 to 2390 mg/pot within digestates
when calculated using the nitrogen concentrations of digestates
used in the establishment of the pot experiment. Control treat-
ments were mineral fertilizer (NH4NO3) applications of
0e2000mg N into the pot at 500 mg N intervals. Sufficient levels of
P (500 mg P/pot), K (1500 mg K/pot) and other nutrients (Mg, S, B,
Cu, Mn, Mo and Zn) were applied to each pot to maintain N as the
only responsive nutrient. Eleven grams of limestonewasmixed into

the soil of each pot to control pH and add Ca. A half gram of ryegrass
seeds were evenly placed on the surface of the experimental soil in
each pot. Ryegrass was grown under a glass roof outdoors at
ambient air temperature for the first 110 days and for days 110e160
in a greenhouse (14 h light in 16 �C and 10 h dark in 14 �C). The grass
was harvested at 30, 60 and 160 days after the start of the exper-
iment. When harvested, ryegrass was cut leaving 2 cm-high stub-
ble, fresh weight was measured and samples were dried at 60 �C
after which dry weight (DW)was determined. Samples weremilled
before analyzing the TKN concentrations.

2.4. Chemical analyses

Total and volatile solids (TS and VS) were determined according
to SFS 3008 (Finnish Standard Association, 1990). pH was deter-
mined using a VWR pH100 pH-analyzer (VWR International). For
analysis of soluble chemical oxygen demand (SCOD) feedstock
samples were diluted to 1:10 with distilled water, and agitated for
1 h. Diluted feedstock and digestate samples were centrifuged
(2493 � g, 15 min) after which the supernatant was further
centrifuged (16168� g,10min) and stored in a freezer, then thawed
before analysis according to SFS 5504 (Finnish Standard
Association, 2002a). Total COD was measured by the open reflux,
titrimetric method used by the University of Southampton (modi-
fied slightly from the Vienna standard method). VFAs (volatile fatty
acids: acetic, propionic, iso-butyric, n-butyric, iso-valeric, valeric
and caproic acids) were analyzed using a HP 6890 gas chromato-
graph as described in Tampio et al. (2014). TKN was analyzed by a
standard method (AOAC, 1990) using a Foss Kjeltec 2400 Analyzer
Unit (Foss Tecator AB, Sweden), with Cu as a catalyst and NH4eN
determined according to McCullough (1967). After N mineraliza-
tion experiments NH4eN and NO3eN from 2 M KCl extracts were
analyzed with a Lachat autoanalyzer (Quikchem 8000, Zellweger
Analytics, Inc., Milwaukee, WI, USA). Total-C was analyzed using
Duma'smethod according to themanufacturer's instructionswith a
Leco CN-2000 Elemental Analyzer (Leco Corp., USA).

Soluble nutrients (Ntot, Ptot, Ktot) were analyzed from 1:5 water
extractions according to SFS-EN 13652 (Finnish Standard
Association, 2002b). Samples were shaken for 1 h and filtered
through a cellulose filter (pore size ~ 8 mm). The concentrations of
NH4eN, NO3eN and phosphate phosphorus (PO4eP) were analyzed
with a Lachat autoanalyzer. Soluble total N inwater extractions was
measured with a Lachat autoanalyzer after oxidation of organic N
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-2 Food wastes
-1 Pretreated food waste
-1 Organic fraction of municipal 
solid waste

5 DIGESTATES

-2 Food wastes
-1 Pretreated food waste
-1 Organic fraction of municipal         
solid wase
-1 mixture of vegetable waste 
and waste-activated sludge 
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Digestate quality
-pH
-Organic matter
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Fertilizer value
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-Nitrogen mineralization in soil
-Ryegrass growth and N uptake
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and value

Characteristics
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Fig. 1. The analyzed agronomic characteristics of the studied digestates and feedstocks.

Table 1
Origin and background information of the studied feedstocks and digestates.
FW ¼ Food waste, OFMSW ¼ organic fraction of municipal solid waste,
VWAS ¼ mixture of vegetable waste and waste-activated sludge, HRT ¼ hydraulic
retention time, OLR ¼ organic loading rate.

Feedstock/Digestate Scale Temperature Phase HRT (d) OLR

FW1 Laboratory Mesophilic 1 58 4.0b

FW2a Laboratory Mesophilic 1 47 4.0b

FW3 Sub-commercial Mesophilic 1 26 3.3b

OFMSW Full scale Thermophilic 2 24 3.7c

VWAS Pilot Thermophilic 1 16 3.8c

a Feedstock pretreated with autoclave (160 �C, 6.2 bar).
b kgVS/m3day.
c kgCOD/m3day.
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into NO3eN in an autoclave with peroxodisulfate. Soluble total P
and K fromwater extracts were measured with inductively coupled
plasma emission spectrometry (Perkin Elmer Optima 8300, USA).

The measurement of phosphorus availability was based on
modified Hedley fractionation (Sharpley and Moyer, 2000;
Ylivainio et al., 2008), where the fertilizer product was extracted
sequentially with water, 0.5 M NaHCO3, 0.1 M NaOH and 1 M HCl at
a ratio of 1:60. First inorganic P was determined from the extract
and then total P concentration was measured after digestion with
peroxidase in an autoclave as described in Ylivainio et al. (2008).
Organic P concentration was calculated as the difference between
total and inorganic P.

Samples for heavy metal (Pb, Ni, Cd, As, Cu, Zn and Cr) analyses
were first dried in 60 �C and then digested in aqua regia according
to SFS ISO 11466 (Finnish Standard Association, 2007). Approxi-
mately 1.0 g of sample was boiled in 9.35 ml of aqua regia for 2 h,
transferred into a 100 ml volumetric flask and filtered. After
digestion Cu, Cr, Zn and Ni were determined with inductively
coupled plasma emission spectrometry (Thermo Jarrell Ash IRIS
Advantage, Thermo Scientific, USA), and As, Cd, Pb, with graphite
furnace atomic absorption spectrometry using a Varian AA280Z
(Varian Inc., USA). Hg was measured based on cold vapor atomic
absorption spectrometry using Varian M-6000A Mercury Analyzer
(Varian Inc., USA).

2.5. Calculations

The organic N (Norg) in the digestates was calculated from the
difference between TKN and the sum of mineral nitrogen
(NH4eN þ NO3eN). The dissolved organic nitrogen (DON) was
calculated as the difference between 1/5 water extractable Ntot and
the sum of NH4eN and NO3eN.

The apparent nitrogen utilization efficiency (NUE) of plants was
calculated according to the following equation (Gunnarsson et al.,
2010):

NUE (%) ¼ (Nuptake e Ncontrol) / Nadded � 100

where Nuptake refers to the N uptake per pot (mgN/pot) with each
studied digestate, Ncontrol to the N uptake per pot of the unfertilized
control (mgN/pot) and Nadded to the amount of added N per pot as
tot-N (mgN/pot). The NUE was calculated for both NH4eN and TKN.

3. Results and discussion

3.1. Digestate quality

3.1.1. Digestate pH, solids and organic matter
The pH, solids and organic material concentrations of the

digestates and feedstocks were assessed to evaluate the effect of
digestate on soil quality and plant growth (Table 2). All digestates
were neutral or slightly alkaline (pH 6.7e8.4), which is typical for
food and green waste digestates (reviewed by Teglia et al., 2011).
The neutral pH supports the use of digestates in agriculture, while
the use of alkaline digestates could increase, e.g., NH4eN volatili-
zation from soil during spreading depending on the temperature
(Nkoa, 2014) and the acidic digestates can decrease soil pH and
enhance the heavy metal mobilization in soils (Otabbong et al.,
1997). Subsequently, the effect of digestate pH on soil is depen-
dent on soil characteristics (Alvarenga et al., 2015; Mak�adi et al.,
2012), thus, in a 4-year fertilization study the soil initial pH of
5.4e5.7 was not affected after application of household- and
restaurant waste-based urban digestate (Odlare et al., 2008).

The FW and OFMSW feedstocks had rather similar TS
(230e290 g/kg) and VS (210e260 g/kg), but these characteristics

were not reflected in the digestates (Table 2). The FW digestates
(FW1 and FW2) had solid (TS) and organic matter (VS) concen-
trations over 50e80 g/kgFM, which were higher than in the FW3-,
OFMSW- and VWAS-based digestates (10e30 g/kgFM), where the
lower TS concentrations were most likely related to internal water
additions/recirculation in the biogas plants from which the diges-
tates (FW3, OFMSW, VWAS) originated. The high TS and VS in FW1
and FW2 digestates could also be partly explained by the lower
degradation during anaerobic digestion (VS degradation 70e78% in
FW1 and FW2, over 90% in FW3 and OFMSW), probably due to the
lower hydraulic retention time and higher organic loading rate
(47e58 days, 4 kgVS/m3d) in reactors fed with FW1 and FW2 than
with FW3 (26 days, 3.3 kgVS/m3d) and OFMSW (24 days, 2.4 kgVS/
m3d) feedstocks. Overall, the results support the fact that the
digestate TS concentration is dependent on the reactor configura-
tion (e.g. wet/dry process) and process parameters (loading rate,
retention time) (Teglia et al., 2011) despite the uniform character-
istics of the feedstocks. It is also likely that the actual organic
composition of the digestate feedstocks was different, which was
not reflected in the TS and VS concentrations.

The studied digestates were considered suitable for agricultural
use as the VS concentrations fulfilled theminimum level for organic
matter content introduced in the European proposal for digestate
quality (15%TS, Saveyn and Eder, 2014). Digestates also had similar
concentration of solids (20e80 gTS/FM) and organic matter
(12e64 gVS/FM, Table 2) as has been studied with various diges-
tates in field- and laboratory-scale fertilization experiments, where
the plant growth or soil response were considered good (TS
17e120 g/kg, VS 9e66 g/kg) (Abubaker et al., 2012; Alburquerque
et al., 2012a, 2012b; Fouda et al., 2013; Rigby and Smith, 2013).
As digestate fertilization adds organic matter to soil, the microbi-
ological activity, mineralization and subsequently the availability of
nutrients are increased (Galvez et al., 2012, Gutser et al., 2005;
Odlare et al., 2008, 2011). Thus, excessive amounts of organic
matter can lead to imbalanced microbial function and nitrogen
immobilization (Alburquerque et al., 2012a; Gutser et al., 2005) and
to phytotoxicity due to organic acids (Abdullahi et al., 2008) i.e.
affect digestate stability (defined as the amount of easily degrad-
able organic matter).

The FW3, OFMSW and VWAS digestates were considered stable
due to the lower carbon concentration compared to FW1 and FW2
which had 50e80% higher COD, VS and Ctot concentrations
(Table 2). All three FW digestates were characterized with higher
SCOD concentrations (11e19 g/kg) compared to OFMSWand VWAS
digestates (7e8.5 g/kg). The VFAs accounted for 28 and 45% of SCOD
in FW1 and FW3, 52% in VWAS and the low share of 8% in FW2 and
5% in OFMSW digestates, suggesting that the share was not feed-
stock dependent. In terms of VFA concentration, only FW2 and
OFMSWwere considered stable, as the VFAtot was under the limit of
1500 mg/l, which is proposed for digestate fertilizer use within the
end-of-waste criteria (Saveyn and Eder, 2014). The limit value for
digestate VFAs in agricultural use in the UK (0.43 gCOD/gVS, BSI,
2010) was, however, not exceeded with any of the studied diges-
tates. Although a high concentration of fatty acids can contribute to
the phytotoxic effects (Abdullahi et al., 2008), the VFAs are also
reported to act as a carbon source for soil micro-organisms and to
degrade fast after application to soils (Kirchmann and Lundvall,
1993). The non-VFA-SCOD found in digestates was most likely
related to, e.g., undegraded carbohydrates and also for other acids
such as humic acids (Scaglia et al., 2015; Zheng et al., 2014), which
have been recently proposed to act as bio-stimulants enhancing
plant growth (Scaglia et al., 2015). Additionally, humic acids are
related to the stability of digestates (Zheng et al., 2014) along with
the other stable molecules, lignin and long-chain proteins
(Tambone et al., 2009).
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3.1.2. Heavy metal content
Digestate heavy metal contents (mg/kgTS) were studied from

dried samples and compared with the EU legislative limits for
digestate application (Table 3). VWAS digestate had the highest
content of heavy metals and was the only one to exceed the limits
within European legislation concerning Hg, Cu and Zn. VWAS
digestate most likely reflected the heavy metal content of the
feedstock mixture, especially the waste-activated sludge, as the
vegetable waste usually contains heavy metals in similar contents
as FW feedstocks (Table 3). Compared to VWAS, FW and OFMSW
digestates had a lower content of heavy metals reflecting the
content in the feedstocks. Heavy metal contents between FW and
OFMSW digestates were fairly similar in Hg (0.1e0.3 mg/kgTS) and
Cr (8e13 mg/kgTS), while OFMSW had a slightly increased content
of Pb, Cd, As, Cu, Zn, and low content of Ni (7 mg/kgTS in OFMSW,
16e42 mg/kgTS on FW digestates). Considering the feedstocks, the
content of Pb was over tenfold in the autoclaved FW2 feedstock
compared to the FW1 feedstock and 1.53 times higher with Cu, Zn
and Cr, apparently due to residues from the autoclaving apparatus
during the pre-treatment of the food waste, thus, the increases in
Cu and Zn were not reflected in FW2 digestate.

The heavy metal contents (mg/kgTS) increased and concen-
trated from feedstocks to digestates due to the reduction of solids
content during digestion. Overall, the contents of heavy metals in
the digestates were similar to those reported with different sewage
sludge and organic waste digestates (Table 3). However, due to the
feedstock characteristics VWAS digestate showed increased heavy
metal content exceeding the legislative limit and thereby pre-
venting its use in agriculture as such, as the heavy metals can cause
effects in soils and plants. For example, Cu and Zn are reported to
bind with organic compounds and immobilize in soils (Otabbong
et al., 1997; Zhu et al., 2014), and the fertilization with sewage
sludge has been reported to increase the accumulation of Cd, Zn, Pb
and Cu in plants (Otabbong et al., 1997), the effects of which are
dependent on the chemical properties, such as solubility of metals,
and by soil characteristics, such as pH.

The actual amount of heavy metals ending up in the soils de-
pends on the amounts of digestate used. For example, with

digestate fertilization at a rate of 170 kgTKN/ha/year themass of the
studied digestates varies from 20 to 80 tons per hectare depending
on the TS and nitrogen content. Subsequently, the volume of heavy
metals applied to the soil is dependent on the applied digestate
amounts. The calculated heavy metal volumes per hectare (g/ha/
year, Table 3) showed increased heavy metal loads with VWAS
digestate, which, due to low TKN content and TS, requires large
application volumes to meet the fertilization goal (170 kgTKN/ha).
With FW and OFMSW digestates the heavy metal loads were
remarkably lower, and FW digestates showed the least environ-
mental contamination of the studied urban digestates.

3.2. Fertilizer value

3.2.1. Digestate nutrient concentrations
The concentration of nutrients and the solubility of phosphorus

were analyzed to evaluate the fertilizer value of the digestates.
Overall, FW and OFMSW digestates had higher concentrations of
nitrogen and potassium and lower phosphorus concentrations and
C/N ratio when compared to the VWAS digestate. FW and OFMSW
digestates (except FW2 digestate) had total, mineral and soluble
nitrogen concentrations over 3 g/kgFM due to the high initial total
nitrogen concentrations in FW and OFMSW feedstocks (around
6e8 g/kgFM, Table 2). In FW1 digestate the NH4eN/TKN ratio was
low (50%) compared to FW3 and OFMSW (71e82%) digestates and
was caused by the decreased organic matter degradation, as was
observed during the material characterization. FW and OFMSW
digestates had the C/N ratios (1.5e3.3) and concentrations of total
nitrogen (4.5e8.7 g/kgFM) and potassium (2e3 g/kgFM) typical for
these types of digestates and similar to a mixture of 80%
OFMSW þ20% pig slurry (Gutser et al., 2005; Tambone et al., 2010).
However, phosphorus concentrations in FWand OFMSW digestates
were low (0.1e0.3 g/kgFM) compared to 0.8e1.1 g/kgFM in the
OFMSW þ pig slurry digestate in Tambone et al. (2010). The pre-
treated FW2 digestate showed remarkably low NH4eN and soluble
total nitrogen concentration (<3 g/kgFM) and NH4eN/TKN ratio
(20%) caused by the autoclaving treatment which has been shown
to decrease protein degradation during anaerobic digestion

Table 2
Feedstock and digestate characteristics.

Material Feedstocks Digestates

Sample FW1 FW2 FW3 OFMSW FW1 FW2 FW3 OFMSW VWAS

pH, solids and organic matter
pH 5.5 5.4 5.0 4.7 8.0 7.6 8.3 8.3 7.6
TS (g/kgFM) 247.0 226.4 255.1 287 68.1 78.8 19.9 32.2 34.2
VS (g/kgFM) 229.9 209 232.8 264.3 50.2 63.7 12.3 18.9 23.9
VS/TS (%) 93.1 92.3 91.3 92.1 73.6 80.9 61.7 58.7 69.9
SCOD (g/kgFM) 114.6 104.2 132.9 69.9 15.4 18.5 11.2 7.3 8.4
COD (g/kgFM) 364.4 361.2 444 412.5 77.1 100.3 21.8 30.6 26.7
SCOD/COD (%) 31.4 28.8 29.9 17.0 20.0 18.4 51.4 23.9 31.5
VFAtot (g/kgFM) 3.1 2.2 4.9 5.5 3.3 1.1 4.1 0.3 3.4
VFAtot (gCOD/kgFM) 3.5 2.3 5.4 5.9 4.3 1.5 5.0 0.4 4.4
Nutrients
Ctot (g/kgFM) N/A N/A N/A N/A 26.9 25.9 6.8 10.3 13.5
C/N N/A N/A N/A N/A 3.1 3.3 1.5 2.3 6.1
TKN (g/kgFM) 7.8 7.3 8.2 5.7 8.7 7.8 4.7 4.5 2.2
NH4eN (g/kgFM) 0.5 0.4 0.6 0.3 4.5 1.7 3.9 3.2 1.7
NH4eN/TKN (%) 6.7 5.0 7.2 5.4 52.0 21.3 82.1 71.1 78.6
1:5 water soluble nutrients
Ntot (g/kgFM) N/A N/A N/A N/A 6.0 3.0 4.4 4.0 2.2
NH4eN (g/kgFM) N/A N/A N/A N/A 4.4 1.9 3.3 2.8 1.6
NO3eN (g/kgFM) N/A N/A N/A N/A 0.013 0.011 0.011 0.007 0.003
PO4eP (g/kgFM) N/A N/A N/A N/A 0.27 0.14 0.06 0.13 0.35
Ptot (g/kgFM) N/A N/A N/A N/A 0.33 0.19 0.11 0.15 0.35
Ktot (g/kgFM) N/A N/A N/A N/A 3.2 2.5 1.9 1.9 0.6

N/A, not available.
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(Tampio et al., 2014).
VWAS digestate had low TKN and NH4eN (around 2 g/kgFM,

Table 2) due to the low nitrogen concentration in the feedstock
mixture, as both vegetable waste and waste-activated sludge have
low total nitrogen concentrations (1.5 gTKN/kgFM in Shen et al.,
2013 and 1.7 gTKN/kgFM in Cavinato et al., 2013, respectively).
The TKN, C/N ratio (around 6) and low potassium concentrations
(0.6 g/kgFM) in VWAS digestate were comparable with municipal
(Tambone et al., 2010) and industrial wastewater treatment sludge
digestates (Alburquerque et al., 2012a). VWAS digestate had the
soluble phosphorous content of 0.35 g/kgFM, where the phosphate
phosphorus (PO4eP) accounted for 100% of the Ptot in 1/5 water
extractions indicating good plant availability of P (Teglia et al., 2011)
and was most likely due to the high P content of the waste-
activated sludge, as reported by Odlare et al. (2008) and Zirkler
et al. (2014).

FW and OFMSW digestates were considered to have the highest
fertilizer value compared to VWAS digestate as the nitrogen avail-
ability in the soil after spreading is dependent on the plant available
NH4eN concentration and the NH4eN/TKN ratio (Fouda et al., 2013;
Teglia et al., 2011). The high fertilizer value was also supported by
the ratio between C and organic N (C/Norg), which was 8, indicating
high N release in soils (Gutser et al., 2005). The VWAS digestate had
a C/Norg ratio of 29 suggesting a lower N release.

The availability of phosphorus for plant growth is dependent on
the solubility whichwas analyzedwith Hedley fractionation, where
50e70% of the P in FW and VWAS digestates was considered as

plant available (water and NaHCO3 extractable, Fig. 2). OFMSW
digestate showed a lower P solubility of 30% indicating a difference
in the digestate composition compared to FW digestates, which
was however not detected in any other characterization analysis.
The P fractionation of OFMSW and waste water sludge-based
digestates were also studied by García-Albacete et al. (2012),

Table 3
Heavy metals in the studied digestates and their feedstocks, regulatory framework concerning heavy metal limits in European countries, literature data and heavy metal load
after digestate application.

Heavy metals Pb Ni Hg Cd As Cu Cr Zn

Feedstocks (mg/kgTS)
FW1 0.2 0.6 0.06 0.06 0.5 4.9 1.1 28.2
FW2 2.2 0.5 0.08 0.05 0.5 8.4 3.3 37.8
FW3 0.7 1 0.08 0.06 0.4 5.7 1.8 29.4
OFMSW 0.5 0.8 0.05 0.02 0.2 9.6 1.3 93.3
Digestates (mg/kgTS)
FW1 2.1 17.8 0.1 0.2 0.7 25.6 9.8 116
FW2 5.6 16.6 0.2 0.1 0.4 22.4 11.9 94.6
FW3 5.6 42.4 0.1 0.3 1 21.7 7.5 175
OFMSW 11.7 6.7 0.3 1.5 3.3 58.7 13 401
VWAS 98 22.3 1.8 1.1 2.6 626.5 32.9 1006
Regulatory limit values for digestate use (mg/kgTS)
Uka 200 50 1 1.5 e 200 100 400
Finlandb 100 100 1 1.5 25 600 300 1500
EU proposalc 120 50 1 1.5 e 200 100 600
Feedstock in the literature (mg/kgTS)
Vegetable wasted <1e22 <1e10 N/A <0.5e1 N/A <1e18 1e7 3e97
Sewage sludgee 40e144 N/A N/A 6e32 N/A 700e1570 N/A 321e487
Digestate in the literature (mg/kgTS)
Sewage sludgef 4e30 13e37 N/A 0.3e1.7 N/A 50e1000 N/A 200e1300
Biowaste, green waste, industrial wasteg 5e282 5e41 N/A 0e0.46 N/A 21e161 7.4e54 60e340
Household wasteh 4.1e6.1 5.5e7.9 0.05e0.13 0.4e0.6 N/A 44e67 6.7e15.4 227e381
Heavy metal load after digestate spreading (g/ha/year)i

FW1 2.8 23.8 0.2 0.3 0.9 34.3 155.1 13.1
FW2 9.6 28.6 0.3 0.2 0.8 38.4 162.5 20.4
FW3 4.1 30.6 0.1 0.2 0.7 15.6 126.2 5.4
OFMSW 14.2 8.2 0.4 1.8 4.0 71.6 488.9 15.8
VWAS 259.1 58.8 4.8 2.9 6.8 1655.7 2658.6 86.9

N/A, not available.
a BSI, 2010.
b Decree of the Ministry of Agriculture and Forestry No 24/11 on Fertiliser Products.
c Saveyn and Eder, 2014.
d Bo _zym et al., 2015.
e Otabbong et al., 1997.
f Zirkler et al., 2014.
g Kupper et al., 2014.
h Govasmark et al., 2011.
i Digestate spreading calculated according to TKN rate of 170 kgTKN/ha.
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Fig. 2. Solubility of phosphorus determined with Hedley fractionation.
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where the NaHCO3 extractable Olsen-P was similar (0.1e0.4%) as in
studied digestates (0.04e0.2%). Because not all of the total P in
digestates is considered to be plant available, the solubility of P
should be measured to avoid the overestimation of P availability
from the digestates. For example, previous life cycle analyses have
overestimated the P substitution by assuming that 100% of mineral
fertilizer P is able to be substituted with digestates (Boldrin et al.,
2011; Bernstad and la Cour Jansen, 2011). Thus, in some studies
the more accurate P substitution rate of 50% is applied (Evangelisti
et al., 2014).

As the FWand OFMSWwere characterized as being rich in N and
poor in P, and the VWAS digestate had a relatively low concentra-
tion of both nutrients, reduced fertilizer value and the need for
additional mineral fertilizer supplements can be expected due to
uneven and potentially deficient N and P ratios (Svensson et al.,
2004). The low NH4eN in VWAS and FW2 digestates also sup-
ported their use as soil amendments rather than as source of nu-
trients (Teglia et al., 2011).

3.2.2. Nitrogen mineralization in soil
The transformation of digestate organic nitrogen into mineral

forms in soil was studied via mineralization experiments (Table 4,
Fig. 3) with different digestate nitrogen application rates from 171
to 318 mgTKN/kg soil. Application of dissolved organic N (DON) of
1:5 water extractions was 27e64 mg/kg and this proportion of
organic N can be considered most easily mineralized. In the
beginning of the mineralization experiment the soil NO3eN con-
centration was low and the predominant form of soil inorganic
nitrogenwas NH4eN from the digestates. Nitrification of NH4eN to
NO3eN happened at a fast rate in all digestate applications after a
4-day adaptation/immobilization period. After 48 days the miner-
alization of organic N was of the same magnitude (around 30 mgN/
kg) as all other digestates except the FW3 digestate (2 mgN/kg,
Table 4, Fig. 3).

Considering the low N mineralization with the FW3 digestate,
the digestate responded to its readily mineralized N concentration,
while the organic N application was 25e60% lower thanwith other
digestates. Other studied digestates had lower initial NH4eN con-
centrations and 15e30% of their organic N mineralized during the
incubation. FW3 digestate did not show notable differences in
ryegrass growth experiments, indicating that the increase of
mineralized N in soil was not vital for plant growth (Gunnarsson
et al., 2010), when the initial NH4eN concentration was high. In
addition, the lowmineralization can be attributed to the availability
of organic nitrogen (Abubaker et al., 2015; Rigby and Smith, 2013),
which was low due to the variation in the digestate application
volumes.

The net N mineralization started soon after a short adaptation/
immobilization period due to the easily degradable material, and

no further nitrogen immobilization was detected which is reported
to lead to a good growth response (Gutser et al., 2005). The low
initial NH4eN in FW2 digestate was due to the feedstock pre-
treatment where the nitrogen-containing molecules have been
previously reported to transform into recalcitrant and hardly
degradable Maillard compounds (Tampio et al., 2014), and there-
fore, low mineralization and growth responses were anticipated.
However, the Nmineralizationwith FW2 digestatewas on the same
level as in the other studied digestates indicating that the soil mi-
crobes were still, to some extent, able to transform the rather
recalcitrant nitrogen. With VWAS digestate the observed high C/
Norg ratio and the lowNUE during the growth experiment indicated
low N release and availability which were reflected by 50%
decreased mineralization of Norg compared to the other studied
digestates in the mineralization test. This difference was connected
with the composition of the waste-activated sludge feedstock
which led to a low nitrogen concentration in the VWAS digestate.

3.2.3. Ryegrass growth and nitrogen uptake
The plant growth and nitrogen uptake in pot experiments were

studied with Italian ryegrass (cv. Fabio) in order to compare the
nitrogen fertilizer value of the digestates (Table 5, Fig. 4).
Depending on the applied nitrogen amount, digestate applications
produced ryegrass yields of 38e60 gDW/pot, which were 5e30%
higher than the control with similar inorganic N concentration.
FW1 and FW2 digestates had 20e30% higher yields compared to
the control and high NH4eN utilization efficiencies (NUENH4-N)
>90% were observed because soluble nitrogen was fully used for
plant growth. However, with FW3, OFMSW and VWAS digestates
the increase in the ryegrass yield was more moderate (5e10%)
compared to the control, and NUEs were between 74 and 82%
indicating that the soluble N was not fully available for plant
growth. During the growth experiment 30e50% of the TKN was
utilized by the ryegrass from all studied digestates.

The improved ryegrass growth response was compared to the
mineral fertilizer control, which indicated that the nutrient
composition, especially nitrogen availability, was sufficient for
plant growth in the studied digestates. The ammonium nitrogen
level of the digestate applications was comparable to ammonium
nitrate level of the controls, and part of DON was also mineralized
and increased ryegrass growth. The result is supported by previous
studies, where the FW- and OFMSW-based digestates have been
reported to increase the crop biomass yield compared to digestates
originating from other feedstocks (Abubaker et al., 2012; Haraldsen
et al., 2011; Svensson et al., 2004) and increased or similar yields as
mineral fertilizers (Haraldsen et al., 2011; Walsh et al., 2012). In
comparison, in a long-term (4 years) field-scale fertilization study,
digestates produced 88% of the yield of mineral fertilizers (Odlare
et al., 2011), and equal yields to mineral fertilizers were achieved
when digestates were supplemented with mineral fertilizers
(Odlare et al., 2008).

During the growth experiment the NUENH4-N, calculated from
the applied NH4eN, showed high values (>75%, Table 5) for all
digestates indicating that the ryegrass was able to use themineral N
of the digestates, as previously reported (NUE 90e95%, Gunnarsson
et al., 2010; Grigatti et al., 2011). The NUETKN values, calculated
according to the applied TKN, were between 40 and 50% with FW-
and OFMSW-based digestates (except FW2) and around 33% with
VWAS and FW2 digestates. Considerably higher NUETKN values
(44e85%) have been previously reported with pig slurry (Grigatti
et al., 2011) and a mixture of pig slurry and agro-industrial
wastes (Gunnarsson et al., 2010; Alburquerque et al., 2012a),
while the average NUETKN for mineral fertilizers was around 60%
(Gutser et al., 2005), as also shown in the present study. The rela-
tively low NUEs found in this study (33%) with FW2 and VWAS

Table 4
Applied nitrogen and mineralization of nitrogen after 48 days incubation.

Digestate FW1 FW2 FW3 OFMSW VWAS

Application (g/100g)
FM 2.2 2.6 4.8 5.1 8.6
Applied (mg/kg)
TKN 205 171 235 244 318
Norg 108 121 77 102 181
DON 36 27 53 64 54
NH4eN 97 50 158 142 137
NO3eN 0 0 1 0 0
Mineralization from applied organic N
mg/kg 36 34 2 29 26
% of DON 100 125 3 45 47
% of Norg 33 28 2 28 14
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digestates indicated that the TKN still consisted of recalcitrant N,
which was not plant available and fully mineralizable (Gunnarsson
et al., 2010). These results were supported by previous findings
with FW2 feedstock, where the feedstock pretreatment trans-
formed nitrogen into a recalcitrant form, reflected in the low
NH4eN concentration and reduced soil mineralization capacity.
However, with VWAS the characteristics of waste-activated sludge
most likely affected the digestate TKN composition, its uptake ef-
ficiency and high C/Norg ratio lowering N release. Thus, VWAS
digestate produced similar growth response as FW and OFMSW
digestates, and no effect of the uneven N and P concentrations
between digestates (see chapter 3.2.1) were observed on ryegrass
growth in the short-term experiment.

4. Conclusions

Overall, the studied urban digestates originating from FW,
OFMSW and VWAS had potentially favorable agronomic charac-
teristics and produced 5e30% higher ryegrass yields compared to
the control mineral fertilizer with a similar inorganic nitrogen
concentration, while the feedstock source played a major role in
material characterization. FW and OFMSW digestates (except FW2)
reflected their feedstock composition and showed rather similar
nutrient concentrations, soil N mineralization, ryegrass growth and
heavy metal content and were, as follows, characterized with high
agronomic value. The VWAS digestate showed decreased nitrogen
availability due to lower nitrogen concentration of the feedstock
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Fig. 3. Nitrogen mineralization during 48-day incubation tests. Digestates FW1 (a), FW2 (b), FW3 (c), OFMSW (d), VWAS (e).

Table 5
Ryegrass yields and N uptake during pot experiments with the studied digestates and control. Ryegrass yield after 3rd harvest and nitrogen uptake and nitrogen uptake
efficiency (NUE) after 2nd harvest. NUEs calculated with NH4eN and TKN.

Treatment Applied (mg/pot) Yield N uptake NUENH4-N NUETKN

TKN Nsoluble NH4eN (gDM/pot) (mgN/pot) (%) (%)

Controls
N0 0 0 e 18.9 ± 0.6 243.9 ± 9.3 e

N500 500 500 e 31.8 ± 2.8 582.9 ± 16.9 68
N1000 1000 1000 e 50.8 ± 4.6 858.1 ± 31.5 61
N1500 1500 1500 e 63.1 ± 4.2 1138.1 ± 33.3 60
N2000 2000 2000 e 77.6 ± 5.2 1440.2 ± 63.6 60
Digestates
FW1 1540.8 997.6 727.1 50.5 ± 1.3 895.0 ± 3.5 90 42
FW2 1284.3 580.8 376.2 38.4 ± 3.1 663.8 ± 14.7 112 33
FW3 1763.6 1584.7 1188.4 58.3 ± 5.6 1123.9 ± 67.1 74 50
OFMSW 1832.6 1546.9 1069.7 59.1 ± 4.3 1116. ± 42.2 82 48
VWAS 2390.0 1441.1 1032.9 56.8 ± 2.9 1014.8 ± 13.8 75 32
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which led to decreased fertilizer value. In addition, VWAS digestate
increased the risk for soil contamination due to high content of
heavy metals, which also exceeded the limits within European
legislation and thus, prevents its use in agriculture as such. How-
ever, the temperature and pressure pretreatment of the FW2
feedstock reduced the digestate nitrogen availability and promoted
its use as a soil amendment rather than a fertilizer.
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a b s t r a c t

This study compared four different digestate liquid treatment systems of a theoretical anaerobic
digestion plant in order to facilitate the utilization of municipal food waste nutrients in agriculture. The
mass, nutrient and energy balances of a theoretical plant digesting 60 kt/y of food waste were used to
evaluate the feasibility of the treatments to concentrate nutrients into liquid fertilizer products. The
studied technologies for digestate liquid treatment were ammonia stripping, ammonia stripping com-
bined with reverse osmosis (RO), evaporation combined with RO, and stripping combined with both
evaporation and RO. As a result, processing of digestate into concentrated fertilizer products consumed
less than 10% of the produced energy from food wastes and was also sufficient for the heat-demanding
digestate liquid treatments, evaporation and stripping. The digestate liquid treatment systems were
considered as nitrogen and potassium concentration methods which were able to concentrate up to 67%
of the feedstock nitrogen into transportable fertilizer products with low mass. Of the studied digestate
systems evaporation combined with RO was evaluated as the most efficient nutrient recovery technology
for the production of transportable fertilizer products due to the high concentration of nutrients and
nutrient availability as well as low product mass and energy consumption. Overall, the selection of the
treatment technology is dependent on the location of the anaerobic digestion plant relative to the
agricultural land and the type of fertilizer products needed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Anaerobic digestion (AD) of food waste (FW) is increasingly
used to produce renewable energy, in the form of heat and power
or vehicle fuel, and nutrient-rich digestate for agriculture, to
decrease the use of energy intensive mineral fertilizers (Laureni
et al., 2013). However, the digestate has usually unbalanced
nutrient ratios for plant growth (Camilleri-Rumbau et al., 2014).
Large mass due to high water content increases the transportation
need of the digestate, as the AD plants treating municipal FW are
usually located far from agricultural lands (Babson et al., 2013).
Digestate treatment by solideliquid separation is an increasingly

used treatment for the production of phosphorus containing solid
digestate and liquid digestate containing water-soluble nitrogen
and potassium. The solideliquid separation of the digestate divides
most of the mass into the liquid fraction decreasing its nutrient
concentrations (Hjorth et al., 2010). Low nutrient concentrations
and large mass complicate the use of the liquid digestate in agri-
culture and increase the transportation need (Chiumenti et al.,
2013). To efficiently utilize the FW nutrients, the treatment of
liquid digestate is needed to decrease its mass and increase nutrient
concentrations.

The digestate liquid can be treated to remove water and
simultaneously concentrate nutrients. This lowers the environ-
mental impact (i.e. global warming potential and acidification) and
reduces transportation costs to areas with nutrient deficits
compared with digestate use as such (Rehl and Müller, 2011). In
addition to the decreased transportation costs, the additional eco-
nomic benefits of the digestate liquid treatment are related to the
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profit gained from the selling of the fertilizers (Fuchs and Drosg,
2013; Rehl and Müller, 2011). With the combination of solid-
eliquid separation and digestate liquid treatment, fertilizer prod-
ucts with optimal composition can be produced (Hjorth et al.,
2010). Produced fertilizers can be designed to match the crop
nutrient requirements and to achieve better control of the nutrient
contents of the applied fertilizer to reduce the nutrient run-off and
leaching. These products could be also used to supplement the raw
digestate fertilization by replacing mineral fertilizers.

Technologies for digestate liquid treatment such as ammonia
stripping, evaporation, struvite precipitation, membrane separa-
tion, as well as various combinations of these, have been previously
studied considering nutrient recovery and production of nutrient-
rich products with, e.g., digestate liquids, manure and urine
(Antonini et al., 2011; Bonmatí et al., 2003; Bonmatí and Flotats,
2003a, b; Chiumenti et al., 2013; Ek et al., 2006; Ledda et al.,
2013). However, to ensure the usability and sustainability of
different digestate liquid treatment techniques and to facilitate the
agricultural utilization of the nutrients over longer transportation
distances, the total digestate treatment chain and all produced
mass flows should be taken into consideration as well as all the
process inputs, e.g., chemicals and energy (Mehta et al., 2015). As
life cycle assessment and energy efficiency studies have mainly
concentrated on the use of raw digestate or separated solid diges-
tate (e.g. Bacenetti et al., 2013; Berglund and B€orjesson, 2006;
Evangelisti et al., 2014; P€oschl et al., 2010; Smyth et al., 2009)
only a few studies exist where the digestate liquid and its treatment
has been taken into consideration (Rehl and Müller, 2011). In
addition, these life cycle studies focus solely on environmental and
ecological effects and do not evaluate the fertilizer products from
the viewpoint of biogas plant efficiency or agriculture and plant
nutrition. From these perspectives information about the mass,
nutrient and energy balances of an AD plant with digestate liquid
treatment is important, in addition to environmental aspects.

The aim of this study was to compare the potential of four
digestate liquid treatment systems of a theoretical AD plant
digesting municipal FW to produce fertilizer products with low
water and concentrated nutrient contents. The studied treatment
systems were different combinations of ammonia stripping, evap-
oration and membrane filtration, which have been applied in the
full scale treatment of digestate or manure based liquids (see e.g.
Boehler et al., 2015; Flotats et al., 2011; Fuchs and Drosg, 2013). For
all four systems the mass, nutrient and energy balances were
calculated and the nutrient recovery, mass reduction and energy
efficiencies were compared based on typical literature values from
laboratory, pilot and full scale studies. The performance of the
treatment systems was also assessed in relation to the energy
consumption of fertilizer product transportation to see the effect of
digestate liquid treatment on the transportability of the products.

2. Materials and methods

2.1. Overview of the theoretical AD plant

This study investigated a theoretical mesophilic AD plant
which was assumed to digest source-segregated municipal FW
(60 kt/y, kilotonnes per year). Fig. 1 presents the applied AD plant
system boundaries which include pretreatment, a digester,
digestate treatment and biogas upgrading. The FWwas pretreated
and hygienized (1 h at 70 �C) and subsequently diluted to a total
solids (TS) content of 15% with processed water or water from the
local water supply. The digestate treatment was assumed to
include the separation of the digestate into liquid and solid
digestates using a centrifuge. The liquid digestate was assumed to
be treated with one of the four digestate liquid treatment systems

consisting of ammonia stripping, evaporation and membrane
(reverse osmosis, RO) technologies (Fig. 2). The formed biogas was
assumed to be upgraded in a combined heat and power unit (CHP)
into heat and electricity to be used in the AD plant and the excess
electricity was to be fed to the power grid.

2.2. Pretreatment, hygienization, AD and gas upgrading

2.2.1. Mass and nutrient balances
The feed for AD was based on the characteristics of source-

segregated FW: TS 25%, volatile solids (VS) 23%, Ntot 7.5 kg/tFM
(fresh matter), NH4-N 0.4 kg/tFM, Ptot 0.9 kg/tFM, Ktot 2.8 kg/tFM
(Tampio et al., 2014, 2015). The FW (60 kt/y) was assumed to be
pretreated as in Banks et al. (2011) by shredding/maceration and
then hygienized (1 h at 70 �C according to European Council, 2011;
European Parliament and the Council, 2009). Pretreatment and
hygienization were not considered to affect the FW mass and
nutrient content as material was not removed during the pre-
treatment step. The dilution water was assumed to be added to the
FW during the maceration step (40 kt/y water to achieve TS of 15%,
mixture referred to as feedstock). The mass of the produced
digestate was calculated by subtracting the mass of the biogas from
the feedstock (60 kt of FW þ 40 kt of dilution water). The calcula-
tion of the biogas mass was based on biogas composition (60% CH4,
40% CO2) and component densities (CH4 0.72 kg/m3, CO2 1.96 kg/
m3, see Supplementary material for calculations). In the digestate,
the total nutrient concentrations (Ntot, Ptot, Ktot, kg/tFM) were
assumed to be the same as in the feedstock, while the ammonium
nitrogen in FW was assumed to increase from 0.4 kg/tFM to 4 kg/
tFM after digestion (Tampio et al., 2014, 2015).

2.2.2. Energy balance
The energy balance included both heat and electricity con-

sumption and production in the AD plant. The amount of thermal
energy (th) needed for heating the FW (60 kt) to 75 �C to maintain
the required temperature during hygienization was calculated
assuming the specific heat capacity of the feedstock to be the same
as that of water (4.18 kJ/kgºC, see Supplementary material for cal-
culations). The heat energy from the hygienization was assumed to
be sufficient for the mesophilic (40 �C) digester (Berglund and
B€orjesson, 2006; Prapaspongsa et al., 2010) and thus, no addi-
tional heating was allocated for the heating of FW prior to the
digester. However, the heating of the dilution water (40 kt/y) was
calculated with the specific heat capacity of water using tempera-
ture difference from 15 to 40 �C. Heat losses from the hygienization
and digester units were assumed to be in total 15% of the heat
demand (digester heat loss 15% in Smyth et al., 2009, 20% in
Rapport et al., 2011) being dependent on the reactor design as well
as the difference between the reactor and outdoor temperature.
The electricity (el) consumption of 37.5 kWh/tFM feedstock for the
hygienization and pretreatment unit (reviewed in P€oschl et al.,
2010; see Supplementary material), and 18 kWh/tFM for the
digester was used (reviewed in Berglund and B€orjesson, 2006;
reviewed in P€oschl et al., 2010; see Supplementary material).

The energy content (MWh/y) of the produced biogas was
calculated by multiplying the biochemical methane potential of
the FW (BMP, 450 m3CH4/tVS, Tampio et al., 2014) with the
amount of feedstock VS fed to the reactor. The conversion factor
of 1 m3(CH4) ¼ 10 kWh was used. For the conversion of the
biogas into heat and electricity in the CHP unit, the energy
conversion efficiencies of 38% for electricity and 48% for heat
were used (Bacenetti et al., 2013; Poeschl et al., 2012). Addi-
tionally, for the CHP-unit electricity the consumption of 5% of the
energy produced in CHP was applied (Banks et al., 2011;
Havukainen et al., 2014; Naegele et al., 2012; P€oschl et al.,
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2010; see Supplementary material). However, the use of different
desulfurization methods for the biogas prior to CHP can increase
the energy consumption, which was not taken into consideration
in this study. E.g. in Karellas et al. (2010) the combined desul-
furization with a spray scrubber and CHP was reported
consuming 15% of the electricity produced in CHP in an AD plant
treating pig manure, wheat straw and glycerol (45 kt/y).

2.3. Digestate treatment

The digestate was assumed to be separated with a decanter
centrifuge producing liquid and solid fractions of which the liquid
fractionwas further treated to produce fertilizer products. The solid
digestate was assumed to be used as such in agriculture, as it is the
practice e.g. in the UK, Scandinavia and Switzerland, where the

legislation does not require further treatment with e.g. composting
(Saveyn and Eder, 2014). Centrifuge separation efficiencies for
mass, TS, VS and nutrients (Ntot, NH4-N, Ptot, Ktot) were adopted
from the literature and the electricity consumptionwas assumed to
be 3.5 kWh/tFM digestate (Flotats et al., 2011, reviewed in Hjorth
et al., 2010, Ledda et al., 2013, Møller et al., 2000, 2002, Table 1,
see Supplementary material). Polymer/flocculent additions used in
separation were not included in the mass balance as the annual
total amount of additions was considered negligible (for example
1.625 g/gTSdigestate of both polymer and mineral conditioner,
Alvarenga et al., 2015).

It was assumed that all outputs from the different digestate
liquid treatment systems were suitable for agricultural use and/or
processed water suitable for discharging (Fig. 2). Processed water
was used as dilution water before the digester and the surplus
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boxes represent studied unit operations.
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water was assumed to be discharged. Additional treatments of
processed water with, e.g., active carbon filters (Zarebska et al.,
2015) were not taken into consideration. With each treatment
system, the consumption of chemicals (NaOH, H2SO4, m3/y) was
included in the calculation of the output mass and characteristics.

2.3.1. Reference system, S0
In the reference system (referred as S0), the digestate liquid did

not undergo any treatment after digestate separation (Fig. 2). Thus,
due to the lack of liquid treatment, the water for feedstock dilution
came from the local water supply, i.e., outside the system bound-
aries. The digestate liquid was not used for dilution due to the high
nitrogen content which could accumulate during digestion and
inhibit the process.

2.3.2. Stripping, S1
Ammonia stripping combined with H2SO4 scrubbing (system

referred to as S1) was studied to produce ammonium sulfate and
stripping residue (Fig. 2). During stripping, NH4-N is transformed to
NH3 along with the temperature and a pH increase and further
recovered with H2SO4 in the form of ammonium sulfate
((NH4)2SO4) during scrubbing. In the mass and nutrient balance
calculations the nitrogen (NH4-N) recovery efficiency was assumed
to be 95% based on laboratory, pilot and full scale studies
(Basakcilardan-Kabakci et al., 2007; Bonmatí and Flotats, 2003a;
Flotats et al., 2011; Gu�stin and Marin�sek-Logar, 2011; Laureni
et al., 2013; Liu et al., 2015, Table 1; see also Supplementary
material). (NH4)2SO4 was assumed to be a chemically pure prod-
uct with no TS, VS, Ptot or Ktot, while the Ntot was assumed to
consist solely of the NH4-N. The NH4-N mass balance was based on
the assumption that the NH4-N concentration in the produced
ammonium sulfate was 40 kg/tFM (Laureni et al., 2013). The energy
consumption during stripping consisted of the heat energy for the
temperature increase from the digester to the stripper (from 40 to
80 �C) which was calculated using the specific heat capacity of
water. Electricity consumption for stripping of 2 kWh/kgN recov-
ered was used (reviewed in van Eekert et al., 2012, Table 1; see
Supplementary material). The stripping was assumed to be
executed in atmospheric pressure and thus, no energy consump-
tion for the production of vacuum was allocated. NaOH (50%)
consumption for the pH increase before stripping was assumed to
be the same as the pH increase of urine (pH from 9 to 10, 20 L/m3,
Antonini et al., 2011). NaOH consumption could be reduced with

CO2 stripping before ammonia stripping (Boehler et al., 2015),
which was, however, not taken into consideration in this study. The
H2SO4 (93%) consumption during ammonia stripping was calcu-
lated using the molar ratios of H2SO4 and (NH4)2SO4 and the ni-
trogen concentration of 40 kg/tFM in the ammonium sulfate, from
which the consumption of 0.08 m3/t liquid digestate was used.

2.3.3. Stripping and reverse osmosis, S2
Ammonia stripping was combined with reverse osmosis treat-

ment (system referred as S2) to produce ammonium sulfate,
retentate and processed water (Fig. 2). After stripping, the stripping
residue was directed to the RO treatment producing processed
water flow for discharge. For stripping treatment, the mass and
nutrient separation/recovery efficiencies, chemical and energy
consumptions calculations were based on the same values as in
system S1 (Table 1). The mass and nutrient balances for the RO
treatment were calculated based on the typical values from the
literature (Table 1) and the electricity use of 2.5 kWh/t stripping
residue was applied (Carretier et al., 2015; Chiumenti et al., 2010;
Ek et al., 2006; Flotats et al., 2011; Ledda et al., 2013; Mondor
et al., 2008; see Supplementary material). The regeneration and/
or change of RO membranes were not taken into consideration.

2.3.4. Evaporation and reverse osmosis, S3
Evaporation combined with RO (referred as S3) was studied to

concentrate nutrients in the liquid digestate and a major part of the
liquid into condensate which was further treated with RO to pro-
duce retentate. The retentate was in turn recycled back to separa-
tion, and processed water was directed to discharge (Fig. 2). The pH
of the digestate liquid was controlled with H2SO4 to prevent the
volatilization of NH4

þ during evaporation where the liquid was
heated to 80 �C. The mass and nutrient balance calculations for the
evaporation were based on typical literature values from labora-
tory, pilot and full scale studies (Bonmatí and Flotats, 2003b;
Chiumenti et al., 2013; Ek et al., 2006; Flotats et al., 2011; Maurer
et al., 2003, Table 1; see also Supplementary material). The TS
and VS separation efficiencies in the concentrate were assumed to
be 100% and the NH4-N recovery rate the same as in Ntot (80%). The
H2SO4 (93%) consumption of 0.005 m3/t digestate liquid for the pH
decrease during evaporationwas based on the pH decrease of urine
andmanure with strong H2SO4 (pH from 9 to 6 in Ek et al., 2006, pH
from 7.2 to 5.5 in Sørensen and Eriksen, 2009). The consumption of
other chemicals such as antifoaming additives was not included.

Table 1
The separation efficiency of decanter centrifuge, nutrient recovery efficiencies of digestate liquid treatment technologies and energy consumption of each treatment. Values
chosen based on literature (see also Supplementary material).

Material Separation/recovery efficiency, % Energy consumption,

Mass TS VS Ntot NH4-N Ptot Ktot kWh/t to be treated

Solid-liquid separation of digestate
Liquid digestate 90a 20a 20b 70a 81a 10a 85a 3.5a

Digestate liquid treatment
Stripping
Ammonium sulfate e e e e 95c e e 2d þ heate

Evaporation
Concentrate 20f e e 90f e 100f 100f 5f þ heate

Reverse osmosis
Retentate 28g 100g 100g e 95g 95g 99g 2.5g

e, not applicable.
a Flotats et al., 2011, reviewed in Hjorth et al., 2010, Ledda et al., 2013, Møller et al., 2000, 2002.
b Separation efficiency for VS was assumed to be same as for TS.
c Basakcilardan-Kabakci et al., 2007, Bonmatí and Flotats, 2003a, Flotats et al., 2011, Gu�stin and Marin�sek-Logar, 2011, Laureni et al., 2013, Liu et al., 2015.
d kWh/kgN recovered in ammonium sulfate, reviewed in van Eekert et al., 2012.
e Calculated with the specific heat capacity of water.
f Bonmatí and Flotats, 2003b, Chiumenti et al., 2013, Ek et al., 2006, Flotats et al., 2011, Maurer et al., 2003.
g Carretier et al., 2015, Chiumenti et al., 2010, Ek et al., 2006, Flotats et al., 2011, Ledda et al., 2013, Mondor et al., 2008.
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The energy consumption of evaporation consisted of the heat en-
ergy needed to increase the digestate liquid temperature from 40 to
80 �C plus the electricity consumption of 5 kWh/t liquid digestate
based on typical literature values (Bonmatí and Flotats, 2003b;
Chiumenti et al., 2013; Ek et al., 2006; Flotats et al., 2011; Maurer
et al., 2003, Table 1; see also Supplementary material). No vac-
uum conditions for the evaporation were applied as the process
temperature was high (80 �C). Mass and nutrient separation/re-
covery efficiencies, chemical and energy consumptions considering
RO were the same as in S2.

2.3.5. Stripping, evaporation and RO, S4
Combined stripping, evaporation and RO (S4) were studied to

produce both ammonium sulfate and concentrate. After stripping,
the stripping residue was evaporated to produce concentrate and
condensate. The condensate was treated in RO after which the
retentate was further recycled back to digestate separation and the
processed water was discharged (Fig. 2). The same mass and
nutrient separation/recovery efficiencies, chemical and energy
consumptions for stripping were used as in system S1, for evapo-
ration as in system S3 and for RO as in system S2 (Table 1). However,
it was assumed that heat from the stripping (80 �C) was sufficient
for the evaporation and thus, no heat energy was allocated for
evaporation (Ervasti et al., 2011).

In systems S1-S4, no heat losses were calculated for stripping
and evaporation, nor the energy consumption of the membrane
changes for RO, due to the lack of reference data in the literature. As
the operational temperatures were the same in stripping and
evaporation (80 �C), the effect of heat losses in the total energy
balances between systems S1-S3 was assumed to be relatively
small. In the full scale stripping and evaporation plants the heat
losses due to the convection and radiation through treatment
apparatus, and through the evaporation of material, are reduced
with the insulation and use of heat exchangers.

2.4. Transportation

The energy consumption during the transportation of the fer-
tilizer products from the digestate liquid treatments was calculated
using the energy consumption of a semitrailer truck in Finland,
0.17 kWh/t-km (full 25t load, EURO 5 truck type, VTT, 2012). The
transportation of liquid products from each digestate liquid treat-
ment systems was studied from 0 to 250 km.

3. Results

3.1. Mass and nutrient balance of AD and digestate treatment

The mass and nutrient flows of digestate and digestate liquid
treatments formed the mass and nutrient balance of the systems
showing the concentration of nutrients into fertilizer products. The
calculations were based on the mass flow of the feedstock
(FW þ diluting water) and added chemicals as well as the charac-
teristics of the digestate. The mass of the digestate accounted for
87% of the initial feedstock fed to the AD plant (60 kt of FW þ 40 kt
of dilution water), while 13% of the feedstock was transformed into
biogas during AD. The digestate separation produced liquid (79 kt/
y) more than eight times the amount of solid digestate (9 kt/y)
(Table 2, Table 3).

The treatment of the digestate liquid with stripping (S1)
concentrated 45% of the initial feedstock nitrogen into ammonium
sulfate (40 kg/tFM) with the mass of 11 kt/y (Table 2, Table 3). The
mass of the ammonium sulfate accounted for only 5% of the feed-
stock mass flow when the chemical additions were not considered
(Table 3). The remaining stripping residue flow was 85 kt/y with

low nitrogen concentration (1.5 kgN/tFM) compared with the un-
treated digestate liquid (4.0 kgN/kgFM) but with comparable in the
concentrations of both phosphorus (0.1 kgP/tFM in the stripping
residue and digestate liquid) and potassium (1.9 kgK/tFM in the
stripping residue, 1.8 kgK/tFM in the digestate liquid). In total, the
amount of outputs from the stripping system was 85 kt/y (ammo-
nium sulfate þ stripping residue, Table 2) which was 70% of the
feedstock nitrogen, 10% of phosphorus, 85% of potassium and 79%
the feedstock mass without chemical additions (Table 3).

In combined stripping þ RO treatment (S2), stripping produced
the same amount of ammonium sulfate as in a system with strip-
ping only (S1, 11 kt/y), while the RO treatment of stripping residue
produced retentate and processed water flows of 21 kt/y and 53 kt/
y, respectively (Table 2). The retentate still contained nutrients (5.4
kgN/tFM, 0.2 kgP/tFM, 6.9 kgK/tFM), andwas assumed to be used as
fertilizer in agriculture (as in Ledda et al., 2013), and not recycled
within the digestate liquid treatment as in systems S3 and S4. Thus,
in this system the mass of the fertilizer products (ammonium sul-
fate, retentate) was 32 kt/y (Table 2), and concentrated 70% of the
feedstock nitrogen, 10% of phosphorus and 84% of potassium into
26% of the feedstock mass without chemical additions (Table 3).

Evaporation treatment combined with RO (S3) produced only
16 kt/y of nutrient-rich concentrate (17.9 kgN/tFM, 0.3 kgP/tFM, 9.0
kgK/tFM). Subsequently, RO treatment produced 18 kt/y of reten-
tate and 45 kt/y of processed water from the condensate (Table 2).
Without chemical additions the fertilizer product from system S3
(concentrate) accounted for 63% of the feedstock nitrogen, 10% of
phosphorus, 85% of potassium and 16% of the feedstock mass
(Table 3).

When stripping and evaporation were combined with RO (S4)
two fertilizer product flows, ammonium sulfate and concentrate,
were produced as well as retentate and processed water (11 kt/y,
15 kt/y, 16 kt/y, 42 kt/y, respectively, Table 2). In total, with fertilizer
products, ammonium sulfate and concentrate, 67% of the nitrogen,
10% of phosphorus and 85% of potassium from the feedstock was
recovered and concentrated into 20% of the mass flow of the feed-
stock, when the chemical additions were not considered (Table 3).
The nitrogen recovery of 67% in S4 was 3% lower compared with
system S1 with stripping, which was due to the produced retentate
and processed water flows in S4, which contained traces nitrogen
but were not considered as fertilizer products. The nutrient con-
centrations in the concentrate from S4 were similar to the
concentrate from S3 (0.3e0.4 kgP/tFM, 9e9.6 kgK/tFM), except for
the nitrogen content, which was for the most part recovered with
stripping (6.8 kgN/tFM in S4, 17.9 kgN/tFM in S3, Table 2).

The efficiency of the four liquid digestate treatment systems in
concentrating nitrogen from the feedstock into fertilizer products
was assessed with the ratio between the recovered nitrogen (% of
the feedstock) and the recovered mass (% of the feedstock, from
Table 3). The resulting efficiencies were 0.9 for systems S0 and S1
and 2.7, 4.0 and 3.4 for systems S2, S3 and S4, respectively, where
the increasing ratio demonstrates increasing the concentration of
nitrogen into products with lowmass. The most efficient system for
the digestate liquid treatment was S3, combining both evaporation
and RO to produce a fertilizer product with low mass and high
nitrogen concentration.

3.2. Energy balance

The energy production in AD was based on the methane pro-
ductionof theFW,around62GWhperyear,whichwasutilized inCHP
for the production of electricity (24 GWhel/y), and heat (29 GWhth/y,
Table 4). In total, AD consumed 9% of the produced total energy as
electricity for pretreatment and hygienization of the feedstock (2250
MWhel/y), gas conversion inCHP (1180MWhel/y) anddigestion (1860
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MWhel/y). The heat consumption of the AD in total was 10% of the
produced total energy including hygienization (4200 MWhth/y),
digester (1200 MWhth/y) and heat losses (800 MWhth/y) (Table 4).

All the four studied digestate treatment systems (S1-S4) and the
reference system (S0) included solideliquid separation with a
centrifuge, which used 300 MWh of electricity per year (0.5% of the
produced energy, Table 4) as the material electricity consumption
was calculated per produced digestate. The digestate stripping (S1,
S2) had an electricity demand of 400 MWhel/y, while the addition
of the RO treatment (S2) increased the electricity demand by 190
MWhel/y (total 590 MWhel/y in S2). Evaporation (S3) consumed a
similar amount as stripping and the electricity consumption of RO
was 160 MWhel/y (total 550 MWhel/y in S3). In the system

combining stripping þ evaporation þ RO (S4), the electricity con-
sumption in total was 920 MWhel/y, which accounted 1.5% of the
energy produced in AD. The heat demand in all four studied
treatment systems (S1-S4) was similar, around 3700 MWh/y (6% of
the produced energy in AD), as the heat consumption for both
stripping and evaporationwas similar, RO did not use any heat, and
in the system combining stripping þ evaporation þ RO (S4) the
heat demand was allocated only for stripping (Table 4).

The total energy consumption of the digestate liquid treatment
systems increased from systems S1 to S4 as the units in the treat-
ment of digestate liquid increased being 4100, 4300, 4200 and
4600 MWh/y in systems S1, S2, S3 and S4, respectively (Table 4).
The combined energy consumption of the digestate treatment

Table 2
Mass and nutrient flows presented as tonnes per year (t/y), and concentrations (kg/tFM, in parentheses) in feedstock, digestate, separated solid and liquid digestate fractions
and outputs of the digestate liquid treatment systems (S0-S4). Fresh matter (FM), reverse osmosis (RO).

Material Mass TS VS Ntot NH4-N Ptot Ktot

Reactor feedstock
Food waste 60000 15000 13800 450 24 54 168

(250.0) (230.0) (7.5) (0.4) (0.9) (2.8)
Dilution water (recycled water in S3-S4) 40000 e e e e e e

Biogas, digestate and solideliquid separation
Biogas 12586 12586 12586 e e e e

Digestate 87414 2414 1214 450 264 54 168
Liquid digestate, S0 no treatment 78673 483 243 315 214 5 143

(6.1) (3.1) (4.0) (2.7) (0.1) (1.8)
Solid digestate, S0-S4 8741 1932 972 135 50 49 25

(221.0) (111.1) (15.4) (5.7) (5.6) (2.9)

Digestate liquid treatment
Stripping, S1
Ammonium sulfate 11373a 0 0 203 203 0 0

(0) (0) (40) (40) (0) (0)
Stripping residue 73594b 483 243 112 11 5 143

(6.4) (3.2) (1.5) (0.1) (0.1) (1.9)

Stripping þ RO, S2
Ammonium sulfate 11373a 0 0 203 203 0 0

(0) (0) (40) (40) (0) (0)
Stripping residue (to RO) 75168b 483 243 112 11 5 143

(6.4) (3.2) (1.5) (0.1) (0.1) (1.9)
Retentate 20606 483 243 111 10 5 141

(23.4) (11.8) (5.4) (0.5) (0.2) (6.9)
Processed water (recycled) 52988 0 0 1 1 0 1

(0) (0) (0.01) (0.01) (0.01) (0.03)

Evaporation þ RO, S3
Concentrate 15820c 483 243 284 192 5 143

(30.5) (15.4) (17.9) (12.2) (0.3) (9.0)
Condensate (to RO) 62938 0 0 32 21 0 0

(0) (0) (0.5) (0.3) (0) (0)
Retentate (recycled) 17623 0 0 30 20 0 0

(0) (0) (1.7) (1.2) (0) (0)
Processed water (recycled) 45316 0 0 1 1 0 0

(0) (0) (0.02) (0.02) (0) (0)

Stripping þ evaporation þ RO, S4
Ammonium sulfate 11373a 0 0 203 203 0 0

(0) (0) (40) (40) (0) (0)
Stripping residue (to evaporation) 73594b 483 243 112 11 5 143

(6.4) (3.2) (1.5) (0.1) (0.1) (1.9)
Concentrate 14798d 483 243 101 10 5 143

(32.6) (16.4) (6.8) (0.7) (0.4) (9.6)
Condensate (to RO) 58875 0 0 11 1 0 0

(0) (0) (0.2) (0.02) (0) (0)
Retentate (recycled) 16485 0 0 11 1 0 0

(0) (0) (0.7) (0.1) (0) (0)
Processed water (recycled) 42390 0 0 0 0 0 0

(0) (0) (0.001) (0.001) (0) (0)

e, not applicable.
a H2SO4 addition of 6293 m3/y.
b NaOH addition of 1573 m3/y.
c H2SO4 addition of 85 m3/y.
d H2SO480 m3/y.
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systems and AD was 15.9e16.4 GWh, which accounted for 26% of
the total energy produced.

The energy consumption of the digestate liquid treatment
per recovered nitrogen in the concentrated fertilizer products
(ammonium sulfate, concentrate) were the lowest (150 kWh/
kgN) with the following systems: evaporation þ RO (S3);
stripping þ evaporation þ RO (S4) (Table 4). In systems with
stripping (S1 and S2) the energy consumption was higher
(200e210 kWh/kgN) due to the lower amount of nitrogen in the
produced ammonium sulfate compared with the products from
systems S3 and S4. However, when only electricity consumption
was taken into consideration, the evaporation þ RO (S3) and
stripping (S1) had lower electricity consumptions per recovered
nitrogen (19e20 kWhel/kgN in S1 and S3, around 30 kWhel/kgN
in S2 and S4, Table 4) as the electricity demand per year was low
and nitrogen recovery efficiency higher compared with the sys-
tems stripping þ RO (S2) and stripping þ evaporation þ RO (S4).

3.3. Transportation of fertilizer products

The energy consumption associated with the transportation of
the fertilizer products in the digestate liquid treatment systems
(S0-S4) was evaluated in relation to the increasing transportation

distance (from 10 to 250 km, Fig. 3). Of the studied products, the
concentrate from the evaporation treatment (S3) used less than
700 MWh/y during 250 km transportation, and was considered as
the most energy efficient to transport longer distances. In contrast,
the transportation the digestate liquid as such (S0) and stripping
residue from S1 consumed the largest amount of energy (around
700 MWh/y transportation distance 50 km, 3300e3600 MWh/y
distance 250 km) (Fig. 3, Table 2).

4. Discussion

4.1. Energy consumption of AD, digestate liquid treatment and
transportation

The present results, based on typical literature values from
laboratory, pilot and full scale studies, show that the processing of
digestate through solideliquid separation and digestate liquid
treatments into concentrated fertilizer products consumed less
than 10% of the produced energy in an AD plant treating 60 kt/y of
FW. In total AD, solideliquid separation and digestate liquid
treatment accounted for 26% of the produced energy, of which
around 19% was used in the AD and separation of the digestate into
solid and liquid fractions. The lower energy consumption of only
8e17% of the total energy produced was previously reported for a
theoretical AD plant treating FW (90 kt/y) combined with ammonia
stripping and hydrogen recovery, where the additional energy
input from the assumed produced hydrogen most likely lowered
the ratio between energy input and output (Babson et al., 2013).
Compared with the present study, similar energy demand, 17% and
20% of the total energy production, was previously assumed in life
cycle assessment studies for ADs combined with digestate solid-
eliquid separation treating 20e60 kt/y of an organic fraction of
municipal solid waste and a mixture of municipal and agricultural
substrates (Berglund and B€orjesson, 2006; P€oschl et al., 2010;
respectively). In the present study the differences in the total en-
ergy produced in AD and the lower ratio between energy demand
and total energy production compared with a study by Berglund
and B€orjesson (2006) were due to the high energy content of the
FW feedstock in the present study (450 m3CH4/tVS compared to
around 300 m3CH4/tVS in Berglund and B€orjesson, 2006). If similar
digestate liquid treatment systems as those studied in this paper
would be applied to an AD plant treating solely, e.g., manure, which
produces less methane and has lower VS content (cow manure 148
m3CH4/tVS, VS 11%, Møller et al., 2004), the total energy production
of the plant would be lower (9800MWh/y) and digestate treatment
(solids separation and liquid treatment) would require all of the
feedstock's energy and the energy balance would be negative

Table 3
The partition of feedstock mass and nutrients in the digestate, separated solid and
liquid digestates and fertilizer products from the digestate liquid treatment systems
(S0-S4). The partition is presented as % of the feedstock. The mass is calculated from
the feedstock fed to the digester (60 kt food waste þ 40 kt dilution water). The
addition of chemicals is not taken into consideration in the mass partition. Reverse
osmosis (RO).

% of feedstock Mass Ntot NH4-N Ptot Ktot

Digestate and solideliquid separation
Digestate 87 100 1100 100 100
Liquid digestate, S0 79 70 891 10 85
Solid digestate, S0-S4 9 30 209 90 15
Stripping, S1
Ammonium sulfate 5 45 846 0 0
Stripping residue 74 25 45 10 85
Fertilizer products in total 79 70 891 10 85
Stripping þ RO, S2
Ammonium sulfate 5 45 846 0 0
Retentate 21 25 42 10 84
Fertilizer products in total 26 70 888 10 84
Evaporation þ RO, S3
Concentrate 16 63 802 10 85
Stripping þ evaporation þ RO, S4
Ammonium sulfate 5 45 846 0 0
Concentrate 15 22 40 10 85
Fertilizer products in total 20 67 886 10 85

Table 4
Energy production of the studied anaerobic digestion (AD) plant and the energy consumption during AD (including pretreatment and hygienization, biogas upgrading and
digester), digestate separation and digestate liquid treatment. Energy consumption of the digestate liquid treatment is calculated towards the recovered concentrated fertilizer
fractions (ammonium sulfate, concentrate), where stripping residue from S1 and retentate from S2 were not included. Reverse osmosis (RO), combined heat and power (CHP),
electricity (el), thermal (th).

Process Electricity (MWhel/y) Heat (MWhth/y) Total (MWh/y) Total (kWh/kgN) Electricity (kWhel/kgN)

Energy production
Primary energy production in AD e e 62100 e e

Energy in CHP 23598 29187 52785 e e

Energy consumption
AD 5293 6142 11435 e e

Solideliquid separation 306 e 306 e e

Energy consumption in digestate liquid treatment
No treatment, S0 0 0 0 0 0
Stripping, S1 406 3727 4133 203 20
Stripping þ RO, S2 590 3727 4317 213 29
Evaporation þ RO, S3 551 3658 4209 148 19
Stripping þ evaporation þ RO, S4 922 3727 4649 153 30

e, not applicable.
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(900 MWh/y needed in addition to the AD plant's energy produc-
tion). In this sense, the digestate liquid treatment systems are more
rational options when feedstock has a high methane potential and
initial organic matter and nutrient concentrations, such as FW.

Heat consumption of all the studied digestate liquid treatments
accounted for 80e90% of the total energy demand, because with
both stripping and evaporation increased process temperature
(80 �C applied in this study) is needed to achieve efficient nutrient
recovery (Mehta et al., 2015). As the electricity consumption be-
tween stripping and evaporation was similar (390e400 MWh/y),
the total energy consumption was 4100 kWh/y with both stripping
and evaporation, while the RO treatment consumed only electricity
(150e180 MWh/y) as no heat was required. Similarly, evaporation
treatment was reported to consume over 50% more energy
compared with the treatment with combined microfiltration,
reverse osmosis and ion exchangewhen digestate originated from a
mixture of manure and plant materials (AD with the electric power
of 186 kWel, Rehl and Müller, 2011). Accordingly, due to the large
heat demand of digestate liquid treatments with stripping and
evaporation, the use of these treatments is rationalized by inte-
gration with AD, which enables the recovery of the plant's excess
heat (Bonmatí et al., 2003; Fuchs and Drosg, 2013; Hjorth et al.,
2010; Mehta et al., 2015), especially in situations where the AD
plant's heat energy is not utilized in, e.g., district heating systems.

The results showed that the nitrogen recovery from the diges-
tate liquid treatments consumed 150e210 kWh/kgN, as the con-
sumption was allocated to the recovered nitrogen in the
concentrated fertilizer products. This is over 15 timesmore than the
energy consumption of mineral nitrogen fertilizer production in
Europe (35.2 GJ/tNH3 ~ 9.8 kWh/kgNH3, Yara, 2015a). However,

despite the higher energy consumption of the treatment of diges-
tate liquids, the advantage with the use of liquid fertilizers from
waste materials is the promotion of nutrient recycling and miti-
gation of greenhouse gas emissions through anaerobic digestion
compared to the manufacturing of mineral fertilizers (Evangelisti
et al., 2014). The energy demand in all four digestate liquid treat-
ments combining two to three treatment technologies was also
higher compared to a pilot-scale stripping treatment with urine
(18.8e28.2 kWh/kgN recovered, Antonini et al., 2011), where the
lower treatment temperature (40 �C vs. 80 �C in the present study)
decreased energy consumption. Lower energy consumption was
also reviewed with ion exchange, membrane distillation and
chemical precipitation technologies (0.04e0.63 kWh/kgNH3,
Zarebska et al., 2015), where the treatments did not require heat
energy for nutrient recovery. The energy consumption of the
studied digestate liquid treatment technologies could be, however,
reduced by using lower process temperatures. For example suc-
cessful ammonia stripping (N recovery >80%) has also been re-
ported at temperatures from 35 to 50 �C (Antonini et al., 2011;
Laureni et al., 2013; Liu et al., 2015), while the use of lower tem-
peratures (35e40 �C) with evaporation is possible with the increase
of vacuum (pressure 5e7 bars, Bonmatí and Flotats, 2003b;
Chiumenti et al., 2013). Additionally, the heat consumption of the
treatment processes could be reduced by using heat exchangers to
recycle the process heat, which was not taken into consideration in
this study.

As the energy consumption during transportation was affected
by the mass of fertilizer products (from 16 to 87 kt/y), up to an 80%
decrease in the energy consumption during transportation of the
fertilizer products was possible using the studied digestate liquid
treatment systems when compared to the transportation of the
untreated digestate liquid. Energy savings of 80%, 67% and 59%
during transportation were possible with the following treatment
systems, respectively: evaporation combined with RO (S3); com-
bined stripping, evaporation and RO (S4); stripping combined with
RO (S2). This was due to the lower transportable mass compared
with the untreated digestate liquid in the reference system (S0).
Decreased energy consumption of transportation supports the use
of these digestate liquid treatments in AD plants treating FW,which
are usually located far from agricultural lands (Babson et al., 2013)
and where the reuse of the FW nutrients is challenging due to long
transportation distances. Similar energy savings from trans-
portation of municipal waste-based digestate have been reported
after solideliquid separation, where the energy consumption of
transportation of solid digestate after separation decreased 50%
(distance 5 km, P€oschl et al., 2010), thus the transportation of the
liquid digestate was not discussed. The advantage with the diges-
tate liquid treatment systems applying RO treatment is the reduc-
tion of the total mass of the transportable products compared with
the untreated digestate liquid, as some mass exits the system as
treated water and retentate. With stripping only (S1), where no RO
was included in treatment of digestate liquid, the mass of ammonia
sulfate was low, but with the stripping residue also aimed for use in
agriculture, the total mass of products was high (87 kt/y), which is
feasible to transport only by minimizing the distance between the
AD plant and the fields to be fertilized. A high total mass of 87 kt/y
with stripping (S1) was due to the addition of chemicals during
stripping which also led to 10% higher energy consumption during
transportation compared to the reference system (S0).

4.2. Characteristics of fertilizer products

The results, based on typical literature values, showed that
liquid digestate treatment with evaporation, combined with RO
(S3), produced the most concentrated nutrient product by
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Fig. 3. Energy consumption of transportation (megawatt hours per year, MWh/y) of
fertilizer products produced in each digestate liquid treatment system in relation to
the transportation distance.
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concentrating the original FWmass of 60 kt/y into 16 kt/y. The high
nitrogen and potassium and low phosphorus concentrations within
the concentrate (18 kgN/tFM, 12 kgNH4-N/tFM, 0.3 kgP/tFM, 9 kgK/
tFM) compared with the untreated digestate liquid (4 kgN/tFM, 2.7
kgNH4-N/tFM, 0.1 kgP/tFM, 1.8 kgK/tFM), were dependent on the
mass and nutrient recovery and characteristics of the feedstock.
Previously similar (18.7 kgN/tFM) and slightly higher (>20 kgN/
tFM) nitrogen concentrations have been reported after acid evap-
oration with pig slurry digestate (Chiumenti et al., 2013; Bonmatí
and Flotats, 2003b; respectively). Compared with the concentrate
from evaporation, commercial mineral fertilizers in solid form have
remarkably higher nutrient concentrations (e.g. 303 kgN/tFM, 114
kgP/tFM, 245 kgK/tFM, Abubaker et al., 2012, 266 kgN/tFM, 13 kgP/
tFM, 43 kgK/tFM, Yara, 2015b), thus, the characteristics of N and K
were in line with commercial liquid fertilizers intended for, e.g.,
vegetables fertilization (24 kgN/tFM, 55 kgP/tFM, 40 kgK/tFM, Yara,
2015c). Hence, the concentrate from evaporation could potentially
replace liquid mineral fertilizers, especially in cases where phos-
phorus fertilization is not needed.

All four studied digestate liquid treatment systems produced
fertilizer products containing either N (ammonium sulfate) or N,
P and K (concentrate, retentate, stripping residue) in different
proportions, which affect their use as fertilizers in agriculture
and also affect the amount of fertilizers spread on agricultural
lands. The proportion of mineral nitrogen in total N (NH4-N/Ntot)
was 100% in the ammonium sulfate from stripping (S1, S2, S4)
and 68% in the concentrate from evaporation (S3), indicating the
high availability of N to plants and fast growth response after
fertilization (Abubaker et al., 2012). In concentrate from com-
bined stripping, evaporation and RO (S4), retentate from strip-
ping and RO (S2) and stripping residue from stripping alone (S1)
the NH4-N/Ntot was 10%, 9% and 7%, respectively, indicating
slower N release in soils. When considering the NPK ratios, po-
tassium was the dominant nutrient in all fertilizer products
(except ammonium sulfate), as the NPK ratios (per FM) were
around 100:5:130 in the stripping residue from stripping (S1),
the retentate from stripping combined with RO (S2) and the
concentrate from combined stripping, evaporation and RO (S4).
The concentrate from the system combining evaporation and RO
(S3) showed the most balanced NPK ratio of 100:2:50, which was
also somewhat similar to the NPK need of herbaceous plants,
100:14:68 (Knecht and G€oransson, 2004), thus with remarkably
lower P content. The low share of phosphorus was due to the
digestate solideliquid separation, which distributed only 10% of
the P in FW into the liquid digestate, while the water-soluble N
and K were the predominant nutrients. As follows, all the studied
fertilizer products can be used in agriculture supplementing
especially N or N and K fertilization in situations where the soil P
content is already high.

The low nutrient concentration within especially stripping res-
idue (from stripping, S1, 1.5 kgN/tFM, 0.1 kgNH4-N/tFM, 0.1 kgP/
tFM, 1.9 kgK/tFM) increases the fertilizer application amounts per
hectare and discourages the use of the residue in agriculture. The
amount of the stripping residue to be spread during fertilization
(assumed N fertilization rate 170kgN/ha) was high, over 100 t/ha,
due to the low nutrient concentrations, which could affect the soil
properties due to soil wetting/water logging (Rigby and Smith,
2011). More practical volumes were achieved with fertilizer prod-
ucts from other treatment systems, as the amount of mass applied
to soils was 4 t/ha for ammonium sulfate from stripping (S1, S2, S4),
9 t/ha for concentrate from evaporation and RO (S3) and around
25e30 t/ha for concentrate from stripping, evaporation and RO (S4)
and retentate from stripping and RO (S2).

All in all, the most suitable digestate liquid treatment system
for concentrated fertilizer products considering nutrients,

energy and transportability was the concentrate from the sys-
tem with evaporation and RO (S3), thus, the production of a
different fertilizer product (e.g. ammonium sulfate) is possible
with slightly larger energy input with a system combining
stripping, evaporation and RO (S4) or stripping and RO (S2).
However, along with the recovery of useful nutrients the evap-
oration and also RO treatment are able to concentrate some
undesired components, such as heavy metals, into the concen-
trate, which could affect the fertilizer use of the products
(Mehta et al., 2015). Furthermore, the addition of chemicals to
the digestate liquid during the treatment, and their effects on
soil after fertilization, should be noticed. E.g. sulfuric acid ad-
ditions during/after stripping (S1, S2, S4) and before evaporation
(S3, S4), both lower the pH value and increase the salinity,
which are likely to cause corrosion (Vaneeckhaute et al., 2013b).
Like sulfur, also sodium acts as micronutrient in plant nutrition.
However, in large doses sodium increases the soil salinity and
affects the soil structure (reviewed in Kronzucker et al., 2013;
Vaneeckhaute et al., 2013a). The Na concentration in the strip-
ping residue from system S1 was calculated to be around 6 g/
kgFM which is about double the amount of Na in manure and
manure based digestate (Vaneeckhaute et al., 2013a,b). It is thus
important to measure the pH and salinity of the produced liquid
fertilizer products and monitor the effect of these products in
soils after fertilization.

5. Conclusions

This theoretical study showed the feasibility of FW nutrient
recovery through AD and digestate liquid treatment and the
production of transportable fertilizer products with the energy
produced in AD. Despite the use of heat-demanding treatments,
such as evaporation and stripping, the energy produced in AD
was sufficient for digestate liquid treatment consuming fewer
than 10% of the total energy produced in AD. The studied
digestate liquid treatment systems were mostly considered as
nitrogen concentration methods which are able to concentrate
up to 67% of feedstock nitrogen into liquid fertilizer products
with low mass. Of the studied digestate systems evaporation
combined with RO was evaluated as the most efficient nutrient
recovery technology for the production of transportable fertil-
izer products for agricultural application due to the highest
concentration of nutrients, nutrient availability, the low mass
of the product and low energy consumption of the treatment.
Stripping was an efficient technology for the recovery of nitro-
gen, however, the high mass of the residue containing the
remaining K and P should be further managed sustainably.
Overall, the selection of the treatment technology is dependent
on the location of the AD plant relative to agricultural lands and
the type of fertilizer products needed (N fertilizer, NPK
fertilizer).

Acknowledgments

This work was funded by the Fortum Foundation (grant number
201400302). The authors are grateful to Karetta Timonen, Taija
Sinkko, Sari Luostarinen, Juha Gr€onroos, Kaisa Manninen, Teija
Paavola and Erkka Laine for the valuable comments and advice
during a project that preceded this work.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.jclepro.2016.03.127.

E. Tampio et al. / Journal of Cleaner Production 125 (2016) 22e3230



References

Abubaker, J., Risberg, K., Pell, M., 2012. Biogas residues as fertilisers e effect on
wheat growth and soil microbial activities. Appl. Energy 99, 126e134. http://dx.
doi.org/10.1016/j.apenergy.2012.04.050.

Alvarenga, E., Hayrapetyan, S., Govasmark, E., Hayrapetyan, L., Salbu, B., 2015. Study
of the flocculation of anaerobically digested residue and filtration properties of
bentonite based mineral conditioners. J. Environ. Chem. Eng. 3, 1399e1407.
http://dx.doi.org/10.1016/j.jece.2015.01.015.

Antonini, S., Paris, S., Eichert, T., Clemens, J., 2011. Nitrogen and phosphorus re-
covery from human urine by struvite precipitation and air stripping in Vietnam.
Clean. Soil Air Water 39, 1099e1104. http://dx.doi.org/10.1002/clen.201100036.

Babson, D.M., Bellman, K., Prakash, S., Fennell, D.E., 2013. Anaerobic digestion for
methane generation and ammonia reforming for hydrogen production: a
thermodynamic energy balance of a model system to demonstrate net energy
feasibility. Biomass Bioenergy 56, 493e505. http://dx.doi.org/10.1016/j.
biombioe.2013.05.024.

Bacenetti, J., Negri, M., Fiala, M., Gonz�alez-García, S., 2013. Anaerobic digestion of
different feedstocks: impact on energetic and environmental balances of biogas
process. Sci. Total Environ. 463e464, 541e551. http://dx.doi.org/10.1016/j.
scitotenv.2013.06.058.

Banks, C., Chessire, M., Heaven, S., Arnold, R., 2011. Anaerobic digestion of source-
segregated domestic food waste: performance assessment by mass and en-
ergy balance. Bioresour. Technol. 102, 612e620. http://dx.doi.org/10.1016/j.
biortech.2010.08.005.

Basakcilardan-Kabakci, S., Ipekoglu, A.N., Talini, I., 2007. Recovery of ammonia from
human urine by stripping and absorption. Environ. Eng. Sci. 24, 615e624.
http://dx.doi.org/10.1089/ees.2006.0412.

Berglund, M., B€orjesson, P., 2006. Assessment of energy performance in the life-
cycle of biogas production. Biomass Bioenergy 30, 254e266. http://dx.doi.org/
10.1016/j.biombioe.2005.11.011.

Boehler, M.A., Heisele, A., Seyfried, A., Gr€omping, M., Siegrist, H., 2015. (NH4)2SO4
recovery from liquid side streams. Environ. Sci. Pollut. Res. 22, 7295e7305.
http://dx.doi.org/10.1007/s11356-014-3392-8.

Bonmatí, A., Flotats, X., 2003a. Air stripping of ammonia from pig slurry: charac-
terization and feasibility as a pre- or post-treatment to mesophilic anaerobic
digestion. Waste Manage 23, 261e272. http://dx.doi.org/10.1016/S0956-
053X(02)00144-7.

Bonmatí, A., Flotats, X., 2003b. Pig slurry concentration by vacuum evaporation:
influence of previous mesophilic anaerobic digestion process. J Air Waste
Manage Assoc 53, 21e31. http://dx.doi.org/10.1080/10473289.2003.10466112.

Bonmatí, A., Campos, E., Flotats, X., 2003. Concentration of pig slurry by evapora-
tion: anaerobic digestion as the key process. Water Sci. Technol. 48, 189e194.

Camilleri-Rumbau, M.S., Norddahl, B., Wei, J., Christensen, K.V., Søtoft, L.F., 2014.
Microfiltration and ultrafiltration as a post-treatment of biogas plant digestates
for producing concentrated fertilizers. Desalin Water Treat. 12, 1e15. http://dx.
doi.org/10.1080/19443994.2014.989638.

Carretier, S., Lesage, G., Grasmick, A., Heran, M., 2015. Water and nutrients removing
from livestock manure by membrane processes. Can. J. Chem. Eng. 93, 225e233.
http://dx.doi.org/10.1002/cjce.22125.

Chiumenti, R., Chiumenti, A., da Borso, F., 2010. Digestate treatment by means of a
full scale membrane system: an innovative method for managing surplus ni-
trogen and for valorizing farm effluents. In: Ramiran 2010, 14th Ramiran In-
ternational Conference, Lisbon, Portugal, 12e15 September, 2010.

Chiumenti, A., da Borso, F., Chiumenti, R., Teri, F., Segantin, P., 2013. Treatment of
digestate from a co-digestion biogas plant by means of vacuum evaporation:
tests for process optimization and environmental sustainability. Waste Manage
33, 1339e1344. http://dx.doi.org/10.1016/j.wasman.2013.02.023.

Ek, M., Bergstr€om, R., Bjurhem, J.-E., Bj€orlenius, B., Hellstr€om, D., 2006. Concen-
tration of nutrients from urine and reject water from anaerobically digested
sludge. Water Sci. Technol. 54, 437e444. http://dx.doi.org/10.2166/wst.2006.
924.

Ervasti, S., Paavola, T., Rintala, J., 2011. Recovery of nitrogen and phosphorus from
biogas plant digestate with combined ammonia stripping and water evapora-
tion. In: International IWA-Symposium on Anaerobic Digestion of Solid Waste
and Energy Crops, August 28eSeptember 01, 2011, Vienna, Austria.

European Council, 2011. Commission Regulation (EU) No 142/2011 of 25 February
2011 implementing Regulation (EC) No 1069/2009 of the European Parliament
and of the Council laying down health rules as regards animal by-products and
derived products not intended for human consumption and implementing
Council Directive 97/78/EC as regards certain samples and items exempt from
veterinary checks at the border under that Directive. Off. J. Eur. Union L 054,
0001e0254, 26/02/2011.

European Parliament and the Council, 2009. Regulation (EC) No 1069/2009 of the
European Parliament and of the Council of 21 October 2009 laying down health
rules as regards animal by-products and derived products not intended for
human consumption and repealing Regulation (EC) No 1774/2002 (Animal by-
products Regulation). Official J. Eur. Union L 300, 0001e0033, 14/11/2009.

Evangelisti, S., Lettieri, P., Borello, D., Clift, R., 2014. Life cycle assessment of energy
from waste via anaerobic digestion: a UK case study. Waste Manage 34,
226e237. http://dx.doi.org/10.1016/j.wasman.2013.09.013.

Flotats, X., Foged, H.L., Bonmati Blasi, A., Palatsi, J., Magri, A., Schelde, K.M., 2011.
Manure Processing Technologies. Technical Report No. II concerning “Manure
Processing Activities in Europe” to the European Commission, Directorate-

General Environment, p. 184. Available at: http://agro-technology-atlas.eu/
docs/21010_technical_report_II_manure_processing_technologies.pdf
(accessed 11.06.15.).

Fuchs, W., Drosg, B., 2013. Assessment of the state of the art of technologies for the
processing of digestate residue from anaerobic digesters. Water Sci. Technol. 67,
1984e1993. http://dx.doi.org/10.2166/wst.2013.075.

Gu�stin, S., Marin�sek-Logar, R., 2011. Effect of pH, temperature and air flow
rate on the continuous ammonia stripping of the anaerobic digestion
effluent. Process Saf. Environ. 89, 61e66. http://dx.doi.org/10.1016/j.psep.
2010.11.001.

Havukainen, J., Uusitalo, V., Niskanen, A., Kapustina, V., Horttanainen, M., 2014.
Evaluation of methods for estimating energy performance of biogas pro-
duction. Renew. Energy 66, 232e240. http://dx.doi.org/10.1016/j.renene.2013.
12.011.

Hjorth, M., Christensen, K.V., Christensen, M.L., Sommer, S.G., 2010. Solid-liquid
separation of animal slurry in theory and practice. A review. Agron. Sustain Dev.
30, 153e180. http://dx.doi.org/10.1007/978-94-007-0394-0_43.

Karellas, S., Boukis, I., Kontopoulos, G., 2010. Development of an investment deci-
sion tool for biogas production from agricultural waste. Renew. Sust. Energ Rev.
14, 1273e1282. http://dx.doi.org/10.1016/j.rser.2009.12.002.

Knecht, M.F., G€oransson, A., 2004. Terrestrial plants require nutrients in similar
proportions. Tree Physiol. 24, 447e460. http://dx.doi.org/10.1093/treephys/24.4.
447.

Kronzucker, H.J., Coskun, D., Schulze, L.M., Wong, J.R., Britto, D.T., 2013. Sodium as
nutrient and toxicant. Plant Soil 369, 1e23. http://dx.doi.org/10.1007/s11104-
013-1801-2.

Laureni, M., Palatsi, J., Llovera, M., Bonmatí, A., 2013. Influence of pig slurry char-
acteristics on ammonia stripping efficiencies and quality of the recovered
ammonium-sulfate solution. J. Chem. Technol. Biotechnol. 88, 1654e1662.
http://dx.doi.org/10.1002/jctb.4016.

Ledda, C., Schievano, A., Salati, S., Adani, F., 2013. Nitrogen and water recovery from
animal slurries by a new integrated ultrafiltration, reverse osmosis and cold
stripping process: a case study. Water Res. 47, 6165e6166. http://dx.doi.org/10.
1016/j.watres.2013.07.037.

Liu, L., Pang, C., Wu, S., Dong, R., 2015. Optimization and evaluation of air-
recirculated stripping for ammonia removal from the anaerobic digestate of
pig manure. Process Saf. Environ. 94, 350e357. http://dx.doi.org/10.1016/j.psep.
2014.08.006.

Mehta, C.M., Khunjar, W.O., Nguyen, V., Tait, S., Batstone, D.J., 2015. Technologies to
recover nutrients from waste streams: a critical review. Crit. Rev. Env. Sci. Tec.
45, 385e427. http://dx.doi.org/10.1080/10643389.2013.866621.

Maurer, M., Schwegler, P., Larsen, T.A., 2003. Nutrients in urine: energetic aspect of
removal and recovery. Water Sci. Technol. 48, 37e46.

Mondor, M., Masse, L., Ippersiel, D., Lamarche, F., Mass�e, D.I., 2008. Use of electro-
dialysis and reverse osmosis for the recovery and concentration of ammonia
from swine manure. Bioresour. Technol. 99, 7363e7368. http://dx.doi.org/10.
1016/j.biortech.2006.12.039.

Møller, H.B., Lund, I., Sommer, S.G., 2000. Solid-liquid separation of livestock slurry:
efficiency and cost. Bioresour. Technol. 74, 223e229. http://dx.doi.org/10.1016/
S0960-8524(00)00016-X.

Møller, H.B., Sommer, S.G., Ahring, B.K., 2002. Separation efficiency and particle size
distribution in relation to manure type and storage conditions. Bioresour.
Technol. 85, 189e196. http://dx.doi.org/10.1016/S0960-8524(02)00047-0.

Møller, H.B., Sommer, S.G., Ahring, B.K., 2004. Methane productivity of manure,
straw and solid fractions of manure. Biomass Bioenergy 26, 485e495. http://dx.
doi.org/10.1016/j.biombioe.2003.08.008.

Naegele, H.J., Lemmer, A., Oechsner, H., Jungbluth, T., 2012. Electric energy con-
sumption of the full scale research biogas plant “Unterer Lindenhof”: results of
longterm and full detail measurements. Energies 5, 5198e5214. http://dx.doi.
org/10.3390/en5125198.

Poeschl, M., Ward, S., Owende, P., 2012. Environmental impacts of biogas deploy-
ment e Part I: life cycle inventory for evaluation of production process emis-
sions to air. J. Clean. Prod. 24, 168e183. http://dx.doi.org/10.1016/j.jclepro.2011.
10.039.

Prapaspongsa, T., Poulsen, T.G., Hansen, J.A., Christensen, P., 2010. Energy produc-
tion, nutrient recovery and greenhouse gas emission potentials from integrated
pig manure management systems. Waste Manage Res. 28, 411e422. http://dx.
doi.org/10.1177/0734242X09338728.

P€oschl, M., Ward, S., Owende, P., 2010. Evaluation of energy efficiency of various
biogas production and utilization pathways. Appl. Energy 87, 3305e3321.
http://dx.doi.org/10.1016/j.apenergy.2010.05.011.

Rapport, J.L., Zhang, R., Jenkins, B.M., Hartsough, B.R., Tomich, T.P., 2011. Modeling
the performance of the anaerobic phased solids digester system for biogas
energy production. Biomass Bioenergy 35, 1263e1272. http://dx.doi.org/10.
1016/j.biombioe.2010.12.021.

Rehl, T., Müller, J., 2011. Life cycle assessment of biogas digestate processing tech-
nologies. Resour. Conserv. Recy. 56, 92e104. http://dx.doi.org/10.1016/j.
resconrec.2011.08.007.

Rigby, H., Smith, S.R., 2011. New markets for digestate from anaerobic diges-
tion. Desktop study on new markets. Wrap, Material change a better En-
viron. Aug 2011. Available at: http://www.wrap.org.uk/sites/files/wrap/
New_Markets_for_AD_WRAP_format_Final_v2.c6779ccd.11341.pdf (accessed
25.06.15.), 50 pages.

Saveyn, H., Eder, P., 2014. End-of-waste Criteria for Biodegradable Waste Sub-
jected to Biological Treatment (Compost & Digestate): Technical Proposals.

E. Tampio et al. / Journal of Cleaner Production 125 (2016) 22e32 31



JRC Scientific and Policy Reports. European Commission, Joint Research
Centre, Institute for Prospective Technological Studies. EUR 26425 EN.

Smyth, B.M., Murphy, J.D., O'Brien, C.M., 2009. What is the energy balance of grass
biomethane in Ireland and other temperate northern European climates?
Renew. Sust. Energ Rev. 13, 2349e2360. http://dx.doi.org/10.1016/j.rser.2009.
04.003.

Sørensen, P., Eriksen, J., 2009. Effects of slurry acidification with sulphuric acid
combined with aeration on the turnover and plant availability of nitrogen. Agr.
Ecosyst. Environ. 131, 240e246. http://dx.doi.org/10.1016/j.agee.2009.01.024.

Tampio, E., Ervasti, S., Paavola, T., Heaven, S., Banks, C., Rintala, J., 2014. Anaerobic
digestion of untreated and autoclaved food waste. Waste Manage 34, 370e377.
http://dx.doi.org/10.1016/j.wasman.2013.10.024.

Tampio, E., Ervasti, S., Rintala, J., 2015. Characteristics and agronomic usability of
digestates from laboratory digesters treating food waste and autoclaved food
waste. J. Clean. Prod. 94, 86e92. http://dx.doi.org/10.1016/j.jclepro.2015.01.086.

Vaneeckhaute, C., Meers, E., Michels, E., Ghkiere, G., Accoe, F., Tack, F.M.G., 2013a.
Closing the nutrient cycle by using bio-digestion waste derivates as synthetic
fertilizer substitutes: a field experiment. Biomass Bioenergy 55, 175e189.
http://dx.doi.org/10.1016/j.biombioe.2013.01.032.

Vaneeckhaute, C., Meers, E., Michels, E., Buysse, J., Tack, F.M.G., 2013b. Ecological
and economic benefits of the application of bio-based mineral fertilizers in

modern agriculture. Biomass Bioenergy 49, 239e248. http://dx.doi.org/10.1016/
j.biombioe.2012.12.036.

van Eekert, M., Weijma, J., Verdoes, N., de Buisonj�e, F., Reitsma, B., van der Bulk, J.,
van Gastel, J., 2012. Explorative Research on Innovative Nitrogen Recovery.
Rapport 51. STOWA. Available at: http://www.stowa.nl/Upload/publicaties/
STOWA%202012%2051_LR.pdf (accessed 25.06.15.).

VTT, 2012. LIPASTO -emission Calculation System. VTT Technical Research Centre of
Finland. Available at: http://lipasto.vtt.fi/yksikkopaastot/tavaraliikennee/
tieliikennee/tavara_tiee.htm (accessed 08.07.15.).

Yara, 2015a. Life Cycle Analysis of Ammonium Nitrate. Available at: http://www.
yara.fi/lannoitus/ymparisto/reducing-carbon-footprint/fertilizer-life-cycle-
perspective/life-cycle-analysis-of-ammonium-nitrate/ (accessed 07.09.15.).

Yara, 2015b. YaraMila Y 1 (in Finnish). Available at: http://www.yara.fi/lannoitus/
tuotteet/yaramila/18b0-yaramila-y-1/ (accessed 07.09.15.).

Yara, 2015c. Ferticare Starttiliuos (in Finnish). Available at: http://www.yara.fi/
lannoitus/tuotteet/other/1883-ferticare-starttiliuos/ (accessed 07.09.15.).

Zarebska, A., Nieto, D.R., Christensen, K.V., Søtoft, L.F., Norddahl, B., 2015.
Ammonium fertilizers production from manure: a critical review. Crit.
Rev. Env. Sci. Tec. 45, 1469e1521. http://dx.doi.org/10.1080/10643389.2014.
955630.

E. Tampio et al. / Journal of Cleaner Production 125 (2016) 22e3232



 



 

 

Supplementary Material for 

Liquid fertilizer products from anaerobic digestion of food waste: mass, nutrient 

and energy balance of four digestate liquid treatment systems 

 

Elina Tampio
a,b,

* , Sanna Marttinen
c 
, Jukka Rintala

b 

 

a
Natural Resources Institute Finland (Luke), Bio-based Business and Industry, Tietotie 

2 C, FI-31600, Jokioinen, Finland 

b
Tampere University of Technology, Department of Chemistry and Bioengineering, P.O. 

Box 541, FI-33101 Tampere, Finland 

c
Natural Resources Institute Finland (Luke), Bio-based Business and Industry, 

Viikinkaari 4, FI-00790, Helsinki, Finland 

 

 

 

 

 

 

 

 

*Corresponding author: Tel.: +358 29 532 6573, E-mail address: elina.tampio@luke.fi  



 

 

1. Hygienization and digester 

1.1 Mass balances 

The volume of methane produced during anaerobic digestion per year (AD, m
3
/y) 

was calculated by multiplying the amount of volatile solids (VS) fed to the reactor (t/y) 

with the methane potential of the feedstock (m
3
/tVS). The mass of methane was 

calculated according to equation: 

m= V× ρ / 1000 

where the m is the mass of CH4 (tFM/y), V is the volume of CH4 (6.21 Mm
3
/y) and ρ is 

the density of CH4 (0.72 kg/m
3
). 

The volume of CO2 annually produced in the AD was calculated using the carbon 

dioxide content (40%), the assumed methane content (60%) and the volume of methane 

(6.21 Mm
3
/y). The mass of CO2 was calculated the same way as the mass of CH4 using 

the CO2 density of 1.96 kg/m
3
. Subsequently, the digestate mass was calculated by 

subtracting the biogas mass (CH4 + CO2, 12 586 t/y) from the feedstock mass. 

For the calculation of the mass balances of total solids (TS) and VS, it was 

assumed that the produced biogas was produced from TS and VS. Subsequently, the TS 

and VS contents of the produced digestate were calculated as the difference between 

feedstock TS or VS (t/y) and biogas mass (t/y). The nutrient content in digestate was 

assumed to be the same as in the feedstock except in the case of NH4-N, which 

concentration was assumed to increase from 0.4 g/kg fresh matter (FM) (feedstock) to 4 

g/kgFM (digestate) according to Tampio et al. (2014, 2015). 

  



 

 

1.2 Energy balances 

In the hygienization unit the feedstock (60 kt of food waste) was heated to 75 °C. 

The amount of energy needed for feedstock mixture heating was calculated with the 

specific heat capacity of water according to the equation: 

∆E= c × m × ∆t 

where ∆E is the energy needed for heating the feedstock mixture, c  is the specific heat 

capacity of water (cwater = 4.18 kJ/kgºC), m is the mass of the mixture (kg) and ∆t is the 

change of the temperature (from 15 to 75 °C). For the digester, the amount of energy 

needed was allocated only for the dilution water (40 kt/y). This is because the heat from 

the hygienization unit was assumed to be sufficient for the heating of the FW feedstock 

(60 kt/y) (Berglund and Börjesson 2006, Prapaspongsa et al. 2010). The heating of 

water from 15 to 40 °C was calculated with the specific heat capacity of water as above. 

A similar method, based on the heat capacity of water for the calculation of the heat 

demand, was also used e.g. by Bacenetti et al. (2013), Rapport et al. (2011) and Smyth 

et al. (2009).  

For the biogas production the conversion factor 1 m
3
(CH4) = 10 kWh was used for 

the calculation of the energy content of the produced biogas.  

Heat loss from the hygienization and digester was assumed to be 15% of the heat 

demand according to Smyth et al. (2009). Also higher values for digester heat loss have 

been reported, e.g., 20% of the heat demand in Rapport et al. (2011). 

The electricity and heat consumption during feed pretreatment and hygienization 

as well as during digestion and gas upgrading in CHP-unit (combined heat and power) 

were calculated according to the literature values (Table S1). The CHP efficiency was 

also chosen according to the literature information (Table S1). 

  



 

 

Table S1. Energy consumption of hygienization and pretreatment, anaerobic digestion 

and gas upgrading in CHP obtained from the literature and values chosen for the 

calculations. 

 Energy 

consumption Electricity Heat Reference 
Pretreatment + hygienization 

 
150 kWh/tTS 10% of heat in CHP reviewed in Pöschl et al. 2010 

 
37.5 kWh/t Calculated value Present study 

Digester 

 

3% biogas                       

(18.6 kWh/t
a
) 

9.6% biogas                

(55.8 kWh/t)
a reviewed in Pöschl et al. 2010 

 

7.5% of electricity in CHP 

(17.7 kWh/t)
a 

20% of heat in CHP         

(47.2 kWh/t)
a reviewed in Pöschl et al. 2010 

 
18 (15-22) kWh/t 31 (19-50) kWh/t 

reviewed in Berglund and 

Börjesson 2006 

 
5 kWh/t biomass 34 kWh/m

3
 raw material DEA 2005 

 
18 kWh/t Calculated value Present study 

CHP-unit 

 
4.5 % of electricity in CHP  -  Pöschl et al. 2010 

 
6.3% of electricity in CHP - Havukainen et al. 2014 

 8.5-8.7% of electricity in CHP - Naegele et al. 2012 

 4.2% of electricity in CHP - Banks et al. 2011 

 
5 % of electricity in CHP - Present study 

CHP efficiency 

 
40.9 % 44 % Bacenetti et al. 2013 

 
37 % 47.1 % Bacenetti et al. 2013 

 
35.7 % 51 % Bacenetti et al. 2013 

 
40 % 48 % Poeschl et al. 2012 

  38 % 47 % Present study 
a
Calculated with the results from the present study 

-, not available 

  



 

 

2. Digestate separation 

The digestate solid-liquid separation efficiency and energy consumption of a decanter 

centrifuge were based on the literature values (Table S2). 

Table S2. Centrifuge separation efficiencies and energy consumption obtained from the 

literature and values chosen for the calculations. Separation efficiency presented as the 

percentage in the liquid fraction. Digestate (D), digestate liquid (DL), manure (M). 

Separation efficiency, % Energy Material Reference 

Mass TS VS N NH4-N P K 

Electricity 

(kWh/m
3
 

digestate)   
 - 31-46  -  69-76  -  9-48  -  3.1-5.6  D Møller et al. 2002 

91 36  -  72 89 10 99  -  DLpig Ledda et al. 2013 
76 17  -  48 81 4 77  -  DLcow Ledda et al. 2013 

22.5  -   -  87  -  19 33.5 1.8-2.2 Mpig 
Melse and Verdoes 

2005 
 -  38-67  -  71-87  -  34-40  -  4.3-6.3 Mpig Møller et al. 2002 
 -  35-45  -  51-73  -  18-22  -  4.3-7.3 Mcow Møller et al. 2002 

75-95 5-66  -  46-99 72-92 9-52  -   -  Mpig, cow 
reviewed in Hjorth et 

al. 2010 
 -   -   -   -   -   -   -  2-4  -  Flotats et al. 2011 
 -   -   -   -   -   -   -  3  -  Møller et al. 2000 
90 20 20 70 81 10 85 3.5  -  Present study 

-, not available 

 

  



 

 

3. Stripping of digestate liquid 

The digestate liquid stripping efficiency and energy consumption were based on 

the literature values (Table S3). The heat demand of the stripping was calculated with 

the temperature change between digester (40 °C) and stripper (80 °C) using the heating 

capacity of water as in Chapter 1.2 of the Supplementary material. 

Table S3. Recovery efficiency, process parameters and energy consumption of stripping 

obtained from the literature and values chosen for the calculations. Recovery efficiency 

presented as percentage in ammonium sulfate. Digestate (D), manure (M), digestate 

liquid (DL), urine (U). 

Recovery 

efficiency (%) Process parameters Consumption Scale Material Reference 

N NH4-N pH 
Tempera-

ture (°C) 

Energy 

(kWh/kgN 

recovered) 
   - 97 - 35 - lab D Liu et al. 2015 

- >96 8.5-11.5 80 - lab D Bonmatí and Flotats 2003a 
- >80 9.5 40-50 - lab D, Mpig Laureni et al. 2013 

65-80 80-92.2 8.5-11 30-70 - pilot DL 
Guštin and Marinšek-Logar 

2011 
65-76 - 9-9.5 60 - full DL Morales et al. 2013 

94 - 10 40 18.8-28.2
a pilot U Antonini et al. 2011 

- 92 12 16 - lab U 
Basakcilardan-Kabakci et al. 

2007 
- 65-98.8 7.7-11.5 80 - lab Mpig Bonmatí and Flotats 2003a 

90 - 9.3 60 11-14 full - reviewed in Morales et al. 2013 
- - - - 7.3 (aeration) - - reviewed in Mauer et al. 2003 

- - - - 
0.8-23 

(electricity) - - 
reviewed in van Eekert et al. 

2012 
- 95 9-10 <100 - - - Flotats et al. 2011 
- 95 - 80 2 + heat

b - - Present study 
a
 kWh/kg NH4-N 

b
Calculated with the specific heat capacity of water 

   -, not available
    

 

4. Reverse osmosis treatment for stripping residue and condensate 

The recovery efficiency and energy consumption of the reverse osmosis (RO) 

treatment were based on the literature values (Table S4).  

 

 



 

 

Table S4. Recovery efficiency, process parameters and energy consumption of reverse osmosis obtained from the literature and values 

chosen for the calculations. Recovery efficiency presented as percentage in retentate. Digestate (D), digestate liquid (DL), urine (U), 

sewage reject water (S), manure (M).  

Separation/recovery efficiency, % Process parameters Consumption Scale Material Reference 

Mass TS VS N NH4-N P K pH 

Tempera

-ture 

(°C) 

Pres-

sure 

(bar) 

Energy (kWh/m
3
 

stripping 

residue/condensate)     
  -   -   -   -   -   -   -   -   -  10-30 2.5-10 lab D Carretier et al. 2015 

28 86-100  -  99.7 99.6 72 99.5  -   -   -   -  full DL Ledda et al. 2013 

29 97-100  -  97 97 100 99  -   -   -   -  full DL Ledda et al. 2013 

28  -   -   -   -   -   -   -   -   -   -  full DL Chiumenti et al. 2010 

 -   -   -  95  -  90 99 6-9.2 10-45  -  
8 (electricity) 4 

(heat) lab U Ek et al. 2006 

 -   -   -  90  -  92 97 6-9.2 10-45  -  
5 (electricity) 0 

(heat) lab S Ek et al. 2006 

 -  92.3 98-100  -  66  -   -  8.8 22.5 55 
 

lab Mpig
a Mondor et al. 2008 

 -   -  99  -  99.5  -   -   -   -  10-100 1.5-10  -   -  Flotats et al. 2011 

28 100 100  -  95 95 99  -   -   -  2.5  -   -  Present study 
a
After electrodialysis treatment 

-, not available
 

 

 

 



 

 

5. Evaporation treatment for digestate liquid and stripping residue 

The digestate liquid evaporation efficiency and energy consumption were based 

on the literature values (Table S5). The heat demand of evaporation was calculated as 

the temperature change between the digester (40 °C) and evaporator (80 °C) using the 

heating capacity of water as in Chapter 1.2 of the Supplementary material. In system 

stripping + evaporation + RO (S4) no heat was allocated for evaporation, thus it was 

assumed that heat from the stripping (80 °C) was sufficient for the evaporation as was 

presented in Ervasti et al. (2011). 

Table S5. Recovery efficiency, process parameters and energy consumption of 

evaporation obtained from the literature and values chosen for the calculations. 

Recovery efficiency presented as percentage in concentrate. Digestate (D), digestate 

urine (U), sewage reject water (S). 

Recovery efficiency, % Process parameters Consumption Scale Material Reference 

Mass N P K pH 

Temper

-ature 

(°C) 

Pres-

sure 

(bar) 

Energy (kWh/m
3
 

digestate liquid or 

stripping residue) 
   

- 80-84 84-96 90-99 5.9-6.5 40 6.7 - lab D 
Bonmatí and 

Flotats 2003b 

20.2 99.2 - - 3.5-5 35 5.3 - - D 
Chiumenti et 

al. 2013 

10 - - - - 78 0.2 
1.9

a 
(electricity)  
3

a
 (fuel) - U 

Mauer et al. 

2003 

- 95 100 99 4.5-5.5 >30 - 
30 (electricity) 0 

(heat) lab U Ek et al. 2006 

- 95 100 100 4.5-5.5 >30 - 
30 (electricity) 0 

(heat) lab S Ek et al. 2006 

15-20 98 - - <5.5 - - 
21 (electricity) 

107-353 (heat) - - 
Flotats et al. 

2011 
20 90 100 100 - 80 - 30 + heat

b - - Present study 
a
kWh/kgN 

         
b
Calculated with the specific heat capacity of water 

-, not available 
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