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Highlights
•	 A parameter recovery method (PRM) was developed for forest stand inventories and compared 

with previously developed parameter prediction methods (PPM) in Finland.
•	 PRM for the 2-parameter Weibull function provided compatibility for the main stand charac-

teristics: stem number, basal area and one of the four optional mean characteristics.
•	 PRM provided comparable and at its best, superior accuracy in volume characteristics com-

pared with PPM.

Abstract
The moment-based parameter recovery method (PRM) has not been applied in Finland since the 
1930s, even after a continuation of forest stand structure modelling in the 1980s. This paper presents 
a general overview of PRM and some useful applications. Applied PRM provided compatibility for 
the included stand characteristics of stem number (N) and basal area (G) with either mean (D), basal 
area-weighted mean (DG), median (DM) or basal area-median (DGM) diameter at breast height 
(dbh). A two-parameter Weibull function was used to describe the dbh-frequency distribution of Scots 
pine stands in Finland. In the validation, PRM was compared with existing parameter prediction 
models (PPMs). In addition, existing models for stand characteristics were used for the prediction 
of unknown characteristics. Validation consisted of examining the performance of the predicted 
distributions with respect to variation in stand density and accuracy of the localised distributions, 
as well as accuracy in terms of bias and the RMSE in stand characteristics in the independent test 
data set. The validation data consisted of 467 randomly selected stands from the National Forest 
Inventory based plots. PRM demonstrated excellent accuracy if G and N were both known. At its 
best, PRM provided accuracy that was superior to any existing model in Finland – especially in 
young stands (mean height < 9 m), where the RMSE in total and pulp wood volumes, 3.6 and 5.7%, 
respectively, was reduced by one-half of the values obtained using the best performing existing PPM 
(8.7–11.3%). The unweighted Weibull distribution solved by PRM was found to be competitive 
with weighted existing PPMs for advanced stands. Therefore, using PRM, the need for a basal area 
weighted distribution proved unnecessary, contrary to common belief. Models for G and N were 
shown to be unreliable and need to be improved to obtain more reliable distributions using PRM.
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1 Introduction

There are two main options for predicting distribution in tree size distribution modelling: the 
parameter prediction method (PPM) and the parameter recovery method (PRM) (Hyink and 
Moser 1983). PRM has been divided to two main approaches: percentile-based and moment-based 
recovery. However, these methods are typically mixed (see Baldwin and Feduccia 1987; Cao 2004; 
Poudel 2011) and augmented with recovery equations that use neither moments nor percentiles, 
instead using a parameter such as total volume (Hyink and Moser 1983; Mehtätalo et al. 2007). 
Therefore, we ignore the percentile- and moment-based recovery division in this paper. In addi-
tion to the abovementioned parametric methods, non-parametric methods are also available for 
describing stand structure in terms of size distribution. In Finland, non-parametric methods that 
have been used include the k-MSN method and the k-NN method (Haara et al. 1997; Maltamo 
and Kangas 1998; Packalén and Maltamo 2007; Peuhkurinen et al. 2008).The distribution-free 
percentile-based diameter distribution models have been presented by Kangas and Maltamo 
(2000b). The Weibull distribution is the theoretical distribution most likely to be used due to its 
high	flexibility	relative	to	the	number	of	parameters	used.	However,	there	is	no	a	priori	biological	
basis for using the Weibull distribution or any other statistical function (Shiver 1988). Thus, the 
selection of the distribution function is entirely up to the researcher. A similar situation arises when 
choosing whether the selected distribution function is used to describe the unweighted or weighted 
random variable. The former is typically selected for stem frequency distribution of tree heights 
or breast-height diameters (dbh), and the latter is selected for basal area-dbh distribution or stand 
volume-dbh distribution (see Loetsch et al. 1973).

In Finland, models are typically based on a weighted, basal area-dbh distribution, whereas 
elsewhere, basal area-dbh distribution models are rarely used (see Gove and Patil 1998). For 
example, in Scandinavia, dbh-frequency distributions are typically unweighted (e.g., Mønnes 
1982; Tham 1988; Holte 1993). The use of weighting is partly a result of relascope-sampled data, 
which provide direct estimates for the stand basal area, partly because of its ability to emphasise 
the large and the most valuable trees (see Päivinen 1980). Weighted distribution models include 
beta, Weibull and Johnson’s SB functions (e.g., Päivinen 1980; Maltamo 1997; Siipilehto 1999; 
Siipilehto 2011a; Kilkki and Päivinen 1986; Kilkki et al. 1989; Maltamo et al. 1995; Siipilehto 
et al. 2007). The few existing dbh-frequency distributions used in Finland were presented at the 
beginning of 21st century (Maltamo et al. 2000; Sarkkola et al. 2003; Sarkkola et al. 2005). More 
recently, comparisons between dbh-frequency and basal area-dbh distribution model were made 
by Maltamo et al. (2007) and Siipilehto (2011a) in Finland and Gobakken and Næsset (2004) 
in Norway. Note that for young stands, the assessed stand characteristics are unweighted in the 
Finnish	National	Forest	 Inventory	 (NFI)	and	 in	 forest	management	planning	 (FMP)	fieldwork	
(see Solmun maastotyöopas 1997). Many of the existing distribution models used in Finland 
have	been	compared	with	each	other	to	find	the	most	reliable	models	for	applied	forest	planning	
system use (Maltamo et al. 2002a; Maltamo et al. 2002b). The system requires auxiliary models for 
stand characteristics, such as stand basal area and weighted median dbh for young stands models 
developed	by	Nissinen	(2002).	In	addition,	there	are	still	few	distribution	models	specifically	for	
young stands. These models include height distribution models for Scots pine (Siipilehto 2006a) 
and planted Norway spruce (Valkonen 1997), in addition to dbh-frequency distribution models for 
Scots pine (Siipilehto 2011a), all of which apply the Weibull function.

Note that parameter prediction method has been improved lately by using Generalized 
Linear	Model	(GLM)	to	fit	the	distribution	function	and	the	prediction	models	for	the	parameters	
simultaneously (Cao 2004). However, the improvement by GLM was quite marginal, when the 
prediction equations provided high degrees of determinations (see Siipilehto 2006a).
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The parameter recovery procedure is different from direct parameter prediction. In general, 
one needs as many known distribution-related stand characteristics as there are parameters in the 
used distribution function. These characteristics may be moments (e.g., mean and quadratic mean) or 
percentiles (e.g., median) of the distribution, but the characteristics can be any stand characteristics 
that can be mathematically derived from the distribution (see Hyink and Moser 1983; Mehtätalo et 
al. 2007). In special cases, one might use only moments (e.g., Burk and Newberry 1984; Lindsay 
et al. 1996) or only percentiles (e.g., Dubey 1967; Bailey and Dell 1973; Gobakken and Næsset 
2004). If the number of known characteristics is lower than the number of distribution parameters, 
then some of the characteristics need to be predicted using regression models. Moments or percen-
tiles are better understood in terms of their relationship with stand characteristics and, therefore, 
are regarded as easier to predict from other stand characteristics (see Knoebel and Burkhart 1991; 
Gobakken and Næsset 2004). 

It is interesting that since the old studies by Cajanus (1914), Ilvessalo (1920), Lönnroth (1925) 
and Lappi-Seppälä (1930), recovery models have not, for the most part, been used in Finland. Some 
exceptions include pure percentile-based recovery models for special cases, such as the effect of 
moose browsing or the effect of retained trees and stand edges on the height distribution for Scots 
pine sapling stands (Valkonen et al. 2002; Siipilehto and Heikkilä 2005; Siipilehto 2006a; Ruuska 
et al. 2008). As an option in model validation, Kangas and Maltamo (2000c) used sample mini-
mum and maximum for recovering the three-parameter Weibull function. More recently, parameter 
recovery utilizing predicted volume from airborne laser scanning (ALS) data have been presented 
by Mehtätalo et al. (2007) and applied by Peuhkurinen et al. (2011).

In	this	study,	we	first	present	the	general	relationships	between	tree	diameter	distribution	
and certain stand characteristics (number of stems, quadratic mean diameter and both basal-area 
weighted and pure mean and median diameters). These relationships are used to develop parameter 
recovery equations for a two-parameter Weibull function. Using these equations, four combina-
tions of recovery equations are proposed. Two of these combinations are evaluated thoroughly and 
compared with the latest parameter prediction methods (Siipilehto 2011a; Siipilehto 2011b). The 
effect of the imputation of missing stand characteristics in PRM is also evaluated. 

2 Materials and methods

2.1 Test data

The data were obtained from 6th and 7th NFI-based permanent sample plots, established in seed-
ling stands (TINKA: dominant height, HDOM < 5 m when established) and more advanced stands 
(INKA: HDOM	≥	5	m)	 in	1976–1989	 (see	Gustavsen	 et	 al.	 1998).	The	 re-measurements	were	
carried out twice, 5 and 10 years or 5 and 15 years after establishment for the INKA and TINKA 
data sets, respectively. Each stand sample plot consisted of a cluster of three circular plots within 
a stand. These plots were combined for reliable stand characteristics and distributions (see Shiver 
1988). The total number of trees tallied was approximately 100–120 per stand. In the sapling stand 
TINKA data, all crop trees were measured for dbh and height. In the INKA data, the tree heights 
were measured from smaller radius circular plots representing one-third of the total sample area. 
Missing	tree	heights	were	completed	with	Näslund’s	(1936)	height	curve	fitted	by	stand.	Instead	of	
pure expectation, random error was added to the expected height (see Siipilehto 2011a). Data were 
restricted to D > 1.5 cm and G > 1.5 m2ha–1 to avoid the obvious anomalies resulting from the low 
proportion of trees above breast height in the youngest stands. Siipilehto (2011a) divided the data 
randomly into a modelling data set (75%) and a validation data set (25%) to evaluate the models. 
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Apart from the formulation of the systems of equations, the applied parameter recovery method 
did not need any further modelling. Thus, the recovered Weibull distributions were simply tested 
using	the	above	mentioned	validation	data	set	(Table	1).	The	final	number	of	observations	was	
467 for the validation data set. The data set was divided to represent young stands, (mean height 
H < 9 m, 248 stands) and advanced stands (H 9 m, 219 stands). Note that stand characteristics are 
calculated from tallied trees and the measured dbh is assumed as being error-free. 

2.2 Diameter distribution and stand characteristics

Let random variable X be the diameter of a tree in a forest stand. The probability density function 
of tree diameter is

( ) ( )=f x F x' . (1)N N

To emphasise that the density fN(x) is proportional to the number of stems, we use subscript N here. 
The corresponding cumulative diameter distribution is

∫( ) ( )=F x f u du. (2)N N
x

0

The number of stems between the diameters x1 and x2 is N(FN(x2) – FN(x1)) where N is the total 
number of stems.

It is often more convenient to use the basal area instead of the number of stems to measure 
the stand density. The density function of the basal-area weighted diameter distribution is a size-
biased distribution of order two (Gove and Patil 1998), which can also be viewed as a special case 
of a weighted distribution:

( )( ) ( )=f x
x f x
E x

. (3)G
N

2

2

The corresponding cumulative distribution function is

∫( ) ( )=F x f u du, (4)G G
x

0

and the basal area between the diameters x1 and x2 is G(FG(x2) – FG(x1)) , where G is the total basal 
area.

Table 1. The mean and range of the validated stand characteristics for young (H < 9 m) and advanced 
(H ≥ 9 m) stands from validation data.

G N DDOM HDOM Volume Logs Pulp Waste

Young stands n = 248
mean 8.9 1590 14.7 8.7 40.1 - 32.4 7.6
min 0.4 251 4.4 2.8 0.9 - 0.0 0.9
max 24.1 4552 30.7 17.1 117.3 - 101.0 29.1
Advanced stands n = 219
mean 17.4 872 25.3 17.0 134.4 78.7 51.7 4.0
min 2.4 122 15.2 11.0 14.8 0.0 6.3 0.4
max 34.4 2988 36.4 26.8 341.6 249.8 128.0 18.3
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To derive relationships between different stand characteristics, the following general expres-
sion, which holds for all values of x, is very useful:

( ) ( )=Tf x Nf x t x( ), (5)T N

where t(x)	defines	an	increasing	transformation	of	tree	diameter	x and T is the total of that variable 
(e.g., in per ha basis). The most practically useful transformations as t(x) are tree volume and basal 
area and in those cases, T is the total volume or basal area. If the transformation is basal area, the 
equation yields

∫( ) ( )= =
∞

G qNE X qN u f u du (6)N
2 2

0

that yields the relationship for quadratic mean diameter, basal area and the number of stems:

∫ ( )= =
∞

DQM G
qN

u f u du, (7)N
2 2

0

in which q = π / (2 × 100)2 is the conversion factor to square meters. The arithmetic mean diameter 
is the expected value of X over the unweighted distribution

∫( ) ( )=
∞

E X uf u du. (8)N N0

The basal-area weighted mean diameter is the expected value of the basal-area weighted distribution:

∫
∫

( )
( )
( )( ) ( )

( )
= = =

∞
∞

E X uf u du
uu f u du

E X
E X
E X

(9)G G
N

0

2
0

2

3

2

The inverse of cumulative distribution function provides the quantile function:

( ) ( )= −Q p F p , (10)1

which can be used to compute different tree diameter quantiles. In the context of tree diameter 
distributions, the particularly important quantiles are the arithmetic and basal-area weighted median 
diameters, which are the 0.5th quantiles of the unweighted and basal-area weighted diameter dis-
tributions, respectively:

( )= −DM F 0.5 (11)N
1

( )= −DGM F 0.5 . (12)G
1

The	following	section	provides	applications	of	the	above-specified	relationships	to	the	recovery	
of the parameters of the two-parameter Weibull distribution using different stand characteristic 
measurements.

2.3 Properties of the two-parameter Weibull distribution

The Weibull distribution has been widely used to describe and predict size distributions in forestry. 
It	can	be	regarded	as	quite	flexible	in	describing	different	shapes	of	unimodal	distributions	(Bailey	
and Dell 1973). The two-parameter Weibull probability density function (f) is as follows:
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{ }( ) ( ) ( )= −−f x b c c b x b x b; , / / exp / , (13)c c1

where x is the random variable, the observed diameter or height of a tree in a stand plot and b and 
c are the scale and shape parameters of the Weibull function, respectively. 
Assuming the Weibull distribution for random variable X, The mean of X (Eq. 8) becomes

( ) ( )= Γ +E X b c b c; , 1 / 1 (14)N

and the mean of the basal-area weighted distribution (Eq. 9) becomes

( ) ( )
( )=

Γ +
Γ +

E X b c b
c
c

; ,
3 / 1
2 / 1

, (15)G

where the gamma function Γ(k) is a shortcut for the integral ∫Γ = − −∞
k u e du( ) k u1

0
.

The cumulative Weibull function has a closed-form expression: 

{ }( ) ( )= − −F x b c x b; , 1 exp / . (16)c

The closed-form cumulative function makes the computation of quantiles easy. The median (Eq. 11) 
becomes 

( )=DM b ln 2 . (17)c
1

The density of the basal-area weighted diameter distribution (Eq. 3) yields 

( ) =
Γ +











− 

















+

f x b c

c

c
b

x
b

x
b

; , 1
2 1

exp (18)G

c c1

that implies (Gove and Patil 1998) that transformation Y = (x / b)c has the standard gamma distribu-
tion with the cumulative distribution function

γ( ) =
Γ +





+





F y k

c
c

y; 1
2 1

2 1, , (19)

where k = 2 / c + 1 and γ(k), the incomplete gamma function, is a shortcut for the integral

∫γ = − −k y u e du( , ) k uy 1
0

. Although integrals γ(k, y) and Γ(k) cannot be solved in closed forms, they

are practically useful because numerical evaluation of the integrals has been implemented in most 
computing environments. Using the distribution function of Y, the basal-area weighted median 
diameter (Eq. 12) for the Weibull-distribution of tree diameter can be written as (because the median 
of a monotonic transformation equals the monotonic transformation of the original median): 
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= +













−DGM b F
c

0.5; 2 1 , (20)
c1

1

where F–1(y) is the quantile function of Y that is the inverse function of the standard Gamma 
cumulative density function.

Finally, Eq. 7 for squared quadratic mean gets form 

( )= Γ +DQM b c2 1 . (21)2 2

2.4 Parameter recovery options

We focused on PRM using the two-parameter Weibull distribution and solving it using the com-
monly assessed mean or median diameters, such as arithmetic mean (D), basal area-weighted mean 
(DG), median (DM) and basal area-median (DGM) using the recovery equations (14), (15), (17) and 
(20), respectively. These equations ensured that the applied mean or median diameter of the stand 
was equal to the corresponding characteristic computed from the recovered Weibull distribution. 
In addition, Eq. (21) was used to ensure compatibility with stand density in terms of the number of 
stems and basal area. The recovery equations are presented in Table 2. As there are two parameters 
in the Weibull distribution, a recovery needs two of these equations for the system to have a unique 
solution. Therefore, recovery Methods A–D (See Table 2) were constructed, each of which used 
the basal area and number of stems and one additional measure for mean or median stand diameter. 
Note that no matter the mean or median used for solution, the solved two-parameter Weibull func-
tion always represents dbh-frequency distribution in this paper. Table 2 lists the equations in the 
form	of	finding	the	roots,	f(y) = 0, as they were required in the subroutine funcv for the Newton’s 
method subroutine newt of the Numerical recipes in FORTRAN (Press et al. 1992, p. 379). The 
FORTRAN IMSL library was used for solving the parameters (see Appendix).

2.5 Stand characteristics and the height curve

If	the	stand	characteristic	required	for	PRM	was	not	measured	in	the	field,	it	was	predicted.	The	
applied family of models (Siipilehto 2011a) consisted of seemingly unrelated regressions for eight 

Table 2. The recovery equations and their use in Methods A–D.

Recovery equation Used in Method(s)

( )Γ + − =b c D1/ 1 0 A

( )
( )

Γ +
Γ +

− =b
c
c

DG
3 / 1
2 / 1

0 B

− =b DMln(2) 0c1/ C

+











− =−b F
c

DGM0.5; 2 1 0
c1

1

D

Γ + − =b c DQM(2 / 1) 02 2 A, B, C, D
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stand characteristics (G, N, D, DGM, H, HGM, DDOM, HDOM) and for the parameters of three 
optional dbh-distributions along with the height curve. The models were calibrated using linear 
prediction theory for the best linear unbiased predictor (BLUP) estimation (see Lappi 1991). 
Known stand characteristics were applied as calibrating variables to improve the expectations for 
the unknown stand characteristics and unknown parameters of the distribution functions and the 
height curve. Calibrated (BLUP) estimates for the parameters of Näslund’s (1936) height curve 
have	demonstrated	excellent	goodness-of-fit	(see	Siipilehto	2011b,	page	28–30).	In	conclusion,	
the family of models explored by Siipilehto (2011a) included all the needed sub-models (stand 
characteristics, dbh distributions, height-dbh relationship) for generating dbh and height for the 
sample trees of a stand from different combinations of known stand characteristics. In the present 
study, comparisons between distribution modelling approaches in their capability to generate 
essential stand characteristics (e.g., assortments volume) were made exactly in the same manner 
as in Siipilehto (2011a). Although the focus was on Weibull dbh-frequency distribution (WN), 
the results can be compared similarly with the BLUP estimated basal area-dbh distribution using 
Weibull (WG) and Johnson’s SB (SBG) functions (Siipilehto 2011a). In addition, a recent SBG model 
(Siipilehto et al. 2007) and the Weibull height distribution model for young stands (Siipilehto 2009) 
are compared with the same data in Siipilehto (2011b).

2.6 Validation of the models

Because the BLUP models for stand characteristics included D and DGM, but not DM and DG, 
only Method A and Method D were validated thoroughly. When predicting the missing stand vari-
able, we started from the assumption that the commonly known stand characteristics, according to 
guidelines for FMP and for NFI, were available for linear prediction. This presupposed knowledge 
of the basal area-weighted characteristics (DGM, HGM and G) for advanced stands and arithme-
tic stand characteristics (D, H and N) for young stands. These variables are referred to later as 
SOLMU variables (see Solmun maastotyöopas 1997). The most realistic additional characteristics 
for advanced stands are HDOM and N because they are sometimes additionally required for the 
aforementioned characteristics (Kuvioittainen arviointi ja... 1998). The combination of known 
stand characteristics has its effect not only on recovered or predicted dbh-distribution but also 
on the predicted Näslund’s (1936) height curve. Therefore, both parameters have their effect on 
generated stand characteristics; recovered or predicted distributions have a particular their effect 
on generated dbh characteristics: D, DGM and DDOM, in addition to basal area, G, while the 
predicted height curve has its effect especially on height characteristics, H, HGM and HDOM. 
Finally, both parameters are needed to derive tree and stand volume. Stand volume and timber 
assortments were calculated according to models for individual tree volume and a taper curve as 
a function of known tree dbh and height (Laasasenaho 1982). 

The well-known inequality claims that the arithmetic mean, D, is always smaller than the 
quadratic mean, DQM (Hardy et al. 1988). In practice, it was shown that DGM should be greater 
than DQM for the unimodal Weibull distribution. When DQM is approaching DGM, the recov-
ered shape parameter c is increasing and the distribution is turning into a peak. We noticed that 
the BLUP estimated basal area was not accurate enough and sometimes resulted in a DQM that 
was lower than or equal to D.	Note	that	if	this	happened,	PRM	was	not	able	to	find	the	solution.	
In these cases, we were forced to re-predict basal area. Using the model by Nissinen (2002), the 
inequality DQM > D was achieved and the parameters could be solved so that the convergence 
criterion (10–5) was always met. 

The accuracy of the compared methods was validated in terms of bias (22) and RMSE (23) 
in the generated stand characteristics, such as stem number, basal area, dominant diameter and 
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height, volume of total growing stock, timber assortments and waste wood fraction. The relative 
bias and RMSE were calculated by dividing them by the mean value of the observed Yi and they 
were expressed as percentages.

∑( )= −
=

bias
n

Y Y1 ˆ (22)i i
i

n

1

∑( )
=

−

−
=RMSE
Y Y

n

ˆ

1
(23)

i i
i

n 2

1

Using the same data and the same validation criteria as Siipilehto (2011a) and Siipilehto (2011b) 
means that the results were fully comparable, not only between PPM and PRM methods for the 
Weibull in this paper but also among all of the models that were previously validated by Siipilehto 
(2011b). Note that the trees for young stands were sampled from the cumulative Weibull distribu-
tion,	imitating	fixed	area	sampling,	whereas	trees	for	the	advanced	stands	were	sampled	from	the	
weighted distribution, imitating relascope sampling. A systematic sample of 40 trees was taken 
from the predicted distributions.

3 Results

3.1 PRM compared with PPM for characterising the variation in N

Method D	was	used	in	a	25-year-old	Scots	pine	stand	with	fixed	DGM = 10 cm, G = 10 m2ha–1 
and varying stem number, N (ha–1): 3100 for high density, 2500 and 1900 for moderate densities 
and 1300 for low density forest stands. Comparisons were made between the BLUP estimated 
(PPM) and recovered (PRM) WN distributions. Similar comparisons between various models can 
be observed in Siipilehto (2011b, p. 33–34). The BLUP estimation did not respond adequately 
to the variation in stand density (Fig. 1). Thus, PPM resulted in as high as 27% underestimation 
in stem number for the highest density and 16% overestimation for the lowest density when the 
distribution was scaled for the basal area. PRM found converged solutions for these distributions 
and thus provided correct densities. The resulting variation in the shape of the WN distribution was 
surprisingly wide. The highest density of 3100 ha–1 resulted in a strongly right-skewed, almost 
decreasing distribution while the lowest density of 1300 ha–1 resulted in a very peaked distribution 
and therefore, it was shown with its own Y-axis in Fig. 1. Indeed, in the lowest density, the trees 
were mostly distributed between the 8 and 11 cm dbh-classes while in the other cases, the trees 
were distributed between the 1 and 20 cm dbh-classes. In the peaked distribution, DQM (9.896 cm) 
was close to DGM, resulting in a high value for the shape parameter c (24.5). The only existing 
PPM that could provide an almost adequate response to the same variation in stem number was the 
SBG distribution model by Siipilehto et al. (2007), as shown by Siipilehto (2011b, Fig. 5 on p. 34).

3.2 Localising for a real stand

As in the paper by Siipilehto (2011a), we included the same 21-year-old planted Scots pine stand 
to study localising the distribution. The observed stand characteristics were as follows: G = 9.6 
m2ha–1, N = 949 ha–1, D = 11.0 cm, DGM = 12.4 cm, H = 7.1 m, HGM = 7.5 m, DDOM = 15.7 cm 
and HDOM = 7.7 m. The PRM (Method A) was used for WN together with BLUP estimation for 
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Fig. 2. Parameter recovery method for the 2-parameter Weibull function 
localised to a real stand. BLUP estimation (Siipilehto 2011a) was 
used for calibrating the prediction of basal area, if it was unknown.

Fig. 1. Two-parameter Weibull distributions predicted with BLUP estima-
tion for PPM (Siipilehto 2011a) and Method D for PRM with respect 
to variation in N of 3100 (▬), 2500 (─), 1900 (- - -) and 1300 ha–1 (∙∙∙) 
when DGM was 10 cm and G 10 m2ha–1.
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the unknown stand characteristics. Fig. 2 gives us the observed and the expected W(0) distribution 
without localisation, in addition to the distributions localised with N, D and H (i.e., W(N, D, H)) 
and with the varying additional stand characteristics (e.g., W(+G) with the additional basal area). 
The resulting distributions resembled those in Siipilehto (2011a, Fig. 4). However, the primary 
difference is the fact that basal area was the most useful additional variable for PRM while it did 
not calibrate the BLUP estimate for WN effectively (Siipilehto 2011a). The error (overestimation) 
in total volume with the additional G was 5.3 m3ha–1 (12%) using PPM and only 0.9 m3ha –1 (2%) 
using PRM. An even smaller error was found using PRM with the additional DGM, namely 0.7 
m3ha –1. However, when using the common SOLMU variables (N, D and H), the resulting error 
was approximately the same, 5 m3ha –1, an overestimation with both PPM and PRM. 

It is worth mentioning that if parameters were recovered using Method B, C or D (not 
shown) from the known N and G, together with either DG (12.3 cm), DM (11.1 cm) or DGM, the 
solution for the parameters were so close to that of Method A that the differences were hardly 
visible. Indeed, parameter b was always the same 12.06 and c was given values of 4.421, 4.474, 
4.458 and 4.466, respectively.

3.3 PRM compared with PPM for generated stand characteristics

Method A for PRM was used in young stands except with the knowledge of N, DGM, HGM and 
G, when Method D	was	used	instead.	The	first	bars	in	the	Figs.	3–5	represent	knowledge	of	the	
common SOLMU variables. When the SOLMU variables were assumed to be known in young 
stands, the RMSE of each validated characteristic was higher in PRM compared with any PPM in 
the studies by Siipilehto (2011a, b). Included additional HDOM and especially DDOM improved 
the accuracy in all validated stand characteristics. The knowledge of G in addition to N means 
that DQM and thus the 2nd raw moment could be derived correctly. This was shown to be a huge 
improvement in the accuracy of the stand characteristics (Fig. 3). For example, RMSE in total 
volume was 27% when predicted with SOLMU variables, and the additional dominant tree char-
acteristics reduced RMSE to 22–19%, whereas the additional G provided an RMSE of only 3.5% 
using Method A and 3.6% using Method D (Fig. 3). 

The two rightmost bars in Figs. 3–5 demonstrate that the RMSEs of the validated character-
istics were quite comparable, regardless if Method A with D or Method D with DGM was applied 
in PRM, when both N and G were also known. This comparability was also true in both young 
and advanced stands. However, in young stands, pulpwood volume as well as HDOM	benefited	
more from DGM knowledge, while waste wood and DDOM were slightly more accurate with a 
known D. Respectively, in advanced stands, the total volume and HDOM were more accurate with 
DGM, whereas the volume fractions and DDOM were slightly more accurate with D (Figs. 4 and 
5). Finally, knowledge of G and N resulted in an RMSE of only 1.6% in total volume with known 
DGM while it was 2.8% with D. When N was unknown, the BLUP outcome estimation presented 
only modest accuracy (RMSE of 20%).

The compared methods produced different type of biases. In young stands, Siipilehto (2011a) 
found 4.6% underestimation in total volume with WN, when SOLMU input variables were used 
as a calibrating variables (Table 3). However, using PRM with the BLUP estimate for basal area, 
the corresponding bias reached a 12% underestimation. In addition, the same 12% underestima-
tion was also found for DDOM, as was a 9% underestimation of HDOM. The BLUP estimation 
for WN resulted in the smallest biases in most cases, if the sum characteristics G and N were not 
also known (Table 3). In general, PRM was superior in terms of bias if both G and N were also 
known. The residual errors in such a case are given in Fig. 6 for the total volume in young stands 
using PPM and PRM.
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Fig. 4. RMSE% in volume characteristics using parameter recovery with 
BLUP estimation for missing stand variable in advanced stands (Siipilehto 
2011a). Method D was used except when G, D, H and N were known, in 
which case, Method A was applied.

Fig. 3. RMSE% in young stand characteristics using parameter recovery 
with the BLUP estimation for missing stand variables (Siipilehto 2011a). 
Method A was used except when G, DGM, HGM and N were known, in 
which case, Method D was applied.



13

Silva Fennica vol. 47 no. 4 article id 1057 · Siipilehto & Mehtätalo · Parameter recovery vs. parameter prediction…

If we compare the WN distribution in advanced stands, PRM resulted in generally lower bias 
in total and commercial wood volumes but also a higher bias in waste wood volume as well as in 
stem number and dominant tree characteristics (Table 4). The overestimations of 7% of DDOM 
and 13–14% of N were the obvious reasons for the 23–24% overestimation in waste wood volume. 
Indeed, if N and G were known, they were unbiased and the bias in DDOM was reduced to 0.3–1% 
using PRM. Thus, the determination of the correct DQM through the knowledge of G and N proved 
essential for the accuracy of PRM. However, no matter the compared method or combination of 
known stand characteristics, the total volume was always only slightly biased (Table 4) (see also 
Siipilehto 2011a, b). The approximately 7–10% bias in log and pulpwood volumes using BLUP 
estimation for WN was reduced to 0–6% using PRM. The best-performing WG distribution in the 
study by Siipilehto (2011a) also most frequently presented (17 times out of 35 cases) the least 

Fig. 5. RMSE% in stem number and dominant tree characteristics using 
parameter recovery with BLUP estimation for missing stand variables in 
advanced stands (Siipilehto 2011a).

Table 3. The bias (%) in stand characteristics using the Weibull dbh-frequency distribution for young 
stands (H < 9 m) with varying combination of known stand characteristics used as calibrating 
variables. The models included the BLUP estimation for the Weibull by Siipilehto (2011a) and 
PRM for the Weibull along with the BLUP estimates for the unknown stand characteristics by 
Siipilehto 2011a. The best validating criteria with respect to the combination of input variables 
are highlighted in bold.

Model Predictors Volume Pulp Waste G DDOM HDOM

BLUP N, D, H 4.6 5.7 0.3 1.4 3.5 3.6
N, D, H, HDOM 1.2 1.6 –0.3 –0.2 1.3 1.7
N, D, H,DDOM 1.7 2.3 –0.8 –0.1 1.3 2.6
N, D, H, G 2.4 2.8 0.7 0.2 1.9 2.8
N, DGM, HGM, G 1.6 2.3 –1.2 0.1 1.4 2.2

PRM N, D, H 12.3 16.0 –0.9 6.6 12.4 8.5
N, D, H, HDOM 9.5 12.2 –0.8 5.3 8.8 5.3
N, D, H,DDOM 8.1 10.5 –1.1 4.4 7.3 6.1
N, D, H, G 0.6 0.4 1.3 0.0 –2.7 1.0
N, DGM, HGM, G 0.5 0.4 1.0 0.0 –2.2 1.6
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Fig. 6. Residual errors in total volume using BLUP estimation (Siipilehto 
2011a) as a parameter prediction model (PPM) or parameter recovery 
method (PRM) for predicting the Weibull distribution with D, H, N and G 
as the known stand variables in young stands.

Table 4. The bias (%) in stand characteristics using the Weibull as a dbh-frequency (WN) or basal area-dbh 
distribution (WG) for advanced stands (H ≥ 9 m) with varying combinations of known stand characteris-
tics used as calibrating variables. The models included the BLUP estimation for the Weibull distribution 
(Siipilehto 2011a) and PRM for the Weibull function along with the BLUP estimates for the unknown 
stand characteristics by Siipilehto 2011a. The best validating criteria with respect to the combination of 
input variables are highlighted in bold.

Model Predictors Volume Logs Pulp Waste N DDOM HDOM

WN BLUP G, DGM, HGM 1.2 10.0 –9.9 1.8 –1.5 1.6 0.4
G, DGM, HGM, HDOM 1.1 10.0 –10.1 2.5 –1.2 1.8 0.5
G, DGM, HGM, DDOM 1.0 9.6 –9.8 2.9 –0.9 1.7 0.4
G, DGM, HGM, N 0.9 7.3 –7.4 –0.6 –1.9 0.8 0.2
G, D, H, N –0.9 0.2 –2.7 2.0 1.7 –2.8 –2.3

WG BLUP G, DGM, HGM 0.2 1.6 –2.2 5.0 2.4 0.1 –0.2
G, DGM, HGM, HDOM 0.2 1.8 –2.6 5.5 2.4 0.3 –0.0
G, DGM, HGM, DDOM 0.2 2.0 –2.6 2.5 0.5 0.2 –0.2
G, DGM, HGM, N 0.2 1.6 –2.2 3.4 1.6 –0.2 –0.2
G, D, H, N –2.3 –8.7 7.8 17.2 12.4 –4.7 –3.0

WN PRM G, DGM, HGM 1.1 5.1 –2.3 –23.4 –13.8 –7.4 –2.1
G, DGM, HGM, HDOM 1.8 6.4 –2.2 –23.3 –13.0 –7.2 –0.3
G, DGM, HGM, DDOM 0.7 5.1 –2.9 –23.9 –13.5 –7.3 –2.1
G, DGM, HGM, N –0.1 0.8 –1.6 2.8 0.0 –0.3 –0.5
G, D, H, N –0.9 0.0 –2.5 1.2 0.0 –1.0 –1.8
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biased stand characteristics in the present study. According to the data reported in Table 4, choosing 
the size distribution model such that the available data and the PPM applied are based on the same 
scale (i.e., arithmetic stand variables for frequency distribution, weighted medians for basal-area 
dbh distribution) appears to be essential. In the case of PRM, the mean characteristic used was of 
no practical importance (Table 4). 

4 Discussion

It is convenient to present various options for parameter recovery in one paper. In addition to the 
standard moment-based parameter recovery with the arithmetic mean (D) together with the second 
raw moment, squared quadratic mean dbh, DQM2 (e.g., Lindsay et al. 1996; Cao 2003), we presented 
equations utilising basal area-weighted mean (DG), median (DM) or basal area-weighted median 
(DGM) for the recovery of the two-parameter Weibull function. DQM was calculated from either 
the known or predicted stem number (N) and basal area (G). The Newton-Raphson method for 
root-finding	was	used	to	solve	the	parameters	of	the	system	of	two	non-linear	equations.	Because	
this	method	appeared	somewhat	sensitive	to	the	initial	guess,	we	emphasised	finding	functions	for	
the appropriate initial values of the shape parameter c.	The	final	functions	eliminated	approximately	
50–70% of the needed iterations compared with the use of constant initial values that converged 
for each stand (see Appendix). 

Studies by Siipilehto (2011a; b) in Finland previously indicated that dbh-frequency distri-
bution was superior in young stands, but the weighted, basal area-dbh distribution was a better 
option in advanced stands in terms of the accuracy in stand characteristics generated from predicted 
distributions. Similar results have been shown by Gobakken and Næsset (2004) and Palahi et al. 
(2007).	Furthermore,	Siipilehto	(2011b,	p.	33–34)	noticed	that	stem	number	was	not	an	efficient	
variable for calibrating the shape of the Weibull distribution, but instead, it was more useful for 
calibrating the SBG distribution using BLUP estimation. Thus, considerably high RMSE was found 
in the generated stand density with the Weibull distribution using PPM. 

Recently, a great amount of effort has been expended toward calibrating the predicted 
distribution to achieve compatibility between various input stand characteristics. This has been 
performed mostly to improve the accuracy in stem volume and assortments (see Kangas and 
Maltamo 2000a; Kangas and Maltamo 2002; Mabvirura et al. 2002). Note that the calibration 
estimation presented by Deville and Särndal (1992) necessitates abandoning the smooth shape of 
the original distribution function. Thus, calibration functions enable mimicking of the irregularities 
(e.g., bi- or multimodality) of the observed distributions (see Kangas and Maltamo 2000a; Kangas 
and Maltamo 2003). The Mehtätalo (2004) method, on the other hand, performs the calibration 
through adjusting directly the predicted diameter percentiles. In contrast, PRM provides a unique 
solution, keeping the original smooth shape of the unimodal distribution function together with the 
demonstrated compatibility and without a priori estimated prediction models. In this approach, the 
irregularities of the observed distribution are more or less brushed aside and regarded as random 
variation due to sampling. The interesting question raised when applying PRM is how much the 
achieved compatibility can improve e.g. volume characteristics compared with PPM.

In young stands, PRM was able to yield a clearly lower RMSE for total volume (3.6%) than 
PPM at its best (8.4% according to Siipilehto 2011a). Conversely, the lowest RMSE for DDOM 
(3.8%) and HDOM (4.4%) were found using the BLUP estimation for WN as the best option for 
existing PPMs (Siipilehto 2011a). There are two main reasons for the above results. On one hand, 
the BLUP estimations for the Weibull distributions (WG and especially for WN) were effectively 
calibrated with dominant tree characteristics (Siipilehto 2011a) while the applied PRM did not 
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utilise knowledge of dominant tree characteristics, when solving the parameters of the Weibull dis-
tribution. Thus, the more accurate DDOM using the BLUP estimated Weibull distribution resulted 
in the more accurate HDOM as well. On the other hand, the compatibility in the sum characteris-
tics G and N using PRM resulted in a meaningful improvement in volume characteristics. Of the 
compared PPMs in advanced stands, the BLUP estimation for WG provided the lowest RMSE of 
1.7, 5.3 and 7.0% for total, log and pulp wood volumes, respectively, but WN provided the lowest 
RMSE for waste wood of 11.6% (Siipilehto 2011a). Apart from total volume, the above best results 
required a large amount of information in addition to common SOLMU variables (see Siipilehto 
2011a, Table 10). PRM proved competitive with PPM as long as G and N were both known. For 
example in volume fractions, PRM provided an RMSE of 5–7% in log and pulp wood volumes, 
which were quite similar to the best options using PPM. Indeed, the BLUP model for the WG and 
SBG distribution by Siipilehto et al. (2007) provided an RMSE of 6–8%. Simultaneously, an RMSE 
in waste wood of 10–13% using PRM was equal to PPMs at their best but clearly lower than PPMs 
in general (22–25%), when N was a known input variable in addition to SOLMU variables (see 
Siipilehto 2011b, Fig. 7).

Overall, the results of the PRM were closely related to the accuracy of the models, which 
were used for the unknown stand characteristics. In this study, the stand characteristics were pre-
dicted using BLUP estimation, which enabled calibration of the expectations with the arbitrary set 
of known stand characteristics under linear prediction theory (see Lappi 1991; Siipilehto 2011a). 
For PRM, the predictions for G in young stands and predictions for N in advanced stands proved 
crucial. Burk and Newberry (1984) warned that PRM is very sensitive to small changes in the 
moment predictions. Because the BLUP estimated basal area was not accurate enough, the solved 
DQM was sometimes lower than D	and	PRM	was	not	able	to	find	the	solution.	For	example,	with	
the SOLMU input variables, this outcome was observed 30 times out of 248 cases in young stands. 
When the Nissinen model (2002) was used for re-predicting basal area, the required inequality 
D < DQM was achieved. On the other hand, the BLUP estimated N, calibrated with SOLMU vari-
ables for advanced stands (i.e., G, DGM and HGM) was suitable for recovery because the resulting 
DQM was lower than DGM. However, the accuracy in N was unsatisfactory, having an RMSE of 
20% and a bias of 13%. 

The evaluation data of this study included error-free measurements of the stand characteris-
tics used. In practice, however, the measurements always include errors. Therefore, in a practical 
situation, the incompatibility of the stand characteristics may lead to lack of solution more often 
than we observed in this study. Furthermore, the accuracy of the recovered diameter distribution 
may be lower than demonstrated here with error-free data. Indeed, in Finland, the RMSE in N and 
G in forest inventory data have varied between 18–81% and 10–32%, respectively. Today, ALS 
is used in practical forest inventory and ALS based applications have shown similar (Maltamo 
et al. 2004; Uuttera et al. 2006) or improved accuracy (Suvanto et al 2005; Uuttera et al. 2006; 
Peuhkurinen et al. 2011; Næsset (2002) compared with the conventional visual assessment of the 
stand characteristics or photo-interpretation (Kangas et al 2004; Uuttera et al. 2006).

In conclusion, in simulation systems, such as MELA or MOTTI, a considerable number 
of different types of models are linked together (see Hynynen et al. 2002). Especially in young 
stands, we are attempting to follow the development of numerous stand characteristics over time 
in the current version of MOTTI (Siipilehto 2006b). When reaching a threshold of HDOM of 8 
m, the followed stand characteristics are converted into individual trees using alternative size 
distribution models. It is obvious that the sampled trees describing the stand should represent at 
least those stand characteristics that were used for predicting the distributions. The current PPM 
models in MOTTI, namely, the Weibull height distribution (Siipilehto 2009) and SBG diameter 
distribution (Siipilehto et al. 2007), perform quite satisfactorily, but they do not provide compat-
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ibility.	Strict	compatibility,	if	required,	may	be	difficult	to	achieve	and	the	solution	would	require	
extra calibration functions, such as those shown by Kangas and Maltamo (2000a) and Palahi et al. 
(2006). However, the compatibility between the three essential stand characteristics is obviously 
one of the desired features that the presented parameter recovery method can offer. At its best, the 
parameter recovery method provided superior accuracy for young stands and at least competitive 
accuracy for advanced stands compared with any existing distribution model used in Finland. In 
addition, the common belief that the random variable needs weighting for advanced stands proved 
somewhat controversial. As a whole, the PRM approach can be best improved by improving the 
accuracy of the forest inventory methods (e.g. Peuhkurinen et al. 2011) and models for the most 
appropriate stand characteristics. To this end, multivariate multiresponse modelling (see Miina and 
Saksa	2006;	Miina	and	Heinonen	2008)	for	stand	characteristics	are	under	study.	To	be	able	to	find	
a solution for the unimodal Weibull distribution using PRM, we must ensure that the inequalities 
D < DQM < DGM hold for the input variables in the system of equations, regardless whether they 
are given as predicted characteristics or determined by measurement or visual assessment.
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Appendix

The IMSL library functions GAMMA(k) and GAMIN(P,k) and numerical recipes (Press et al. 1992) 
were used to solve the parameters of the two-parameter Weibull function in FORTRAN. Solving 
the	non-linear	systems	of	equations	was	achieved	by	the	Newton-Raphson	root-finding	algorithm	
using the subroutine newt (Vetterling et al. 1992, p. 131). This method appeared somewhat sensi-
tive to the initial parameter guesses. The parameter b (represent 63rd percentile) was set to DQM. 
The initial value c	from	2	to	3	could	be	used	as	a	relevant	range	for	the	fixed	initial	value	for	the	
shape parameter. However, utilising the high correlation between c	and	two	differently	defined	
mean characteristics (see Siipilehto 2009) and developing it with a trial and error method, we found 
satisfied	equations	for	c_ini as follows:

c_ini	=	1/ln(DQM4/Da4 + 0.1) and 
c_ini	=	1/ln(Db 2/ DQM2 + 0.05), 
where Da is either D or DM and Db is either DG or DGM, respectively.

Fig. A1 shows that the initial guess was quite accurate until the value of approximately c = 10. The 
tested constant initial values of c_ini	of	2.0	and	3.0	needed	a	total	of	10891–23037	and	7277–11078	
iterations when Methods A, B and D were applied. The functions for the initial values reduced the 
requirement to 5232–5449 iterations. Thus, in the data set consisting of 467 stands, the functions 
resulted in an average of approximately12 iterations/stand.

Fig. A1. Initial guess and the final solution for the shape parameter c of the 
Weibull function.
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