23/03/16

Performance and beef quality of growing bulls offered whole crop legume-cereal and alsike clover silages Pesonen, M., Huuskonen, A. & Honkavaara, M.

Natural Resources Institute Finland Green Technology

Animal Research Science Seminar 11.02.2015, University of Helsinki, Viikki Campus Maiju Pesonen

Outline

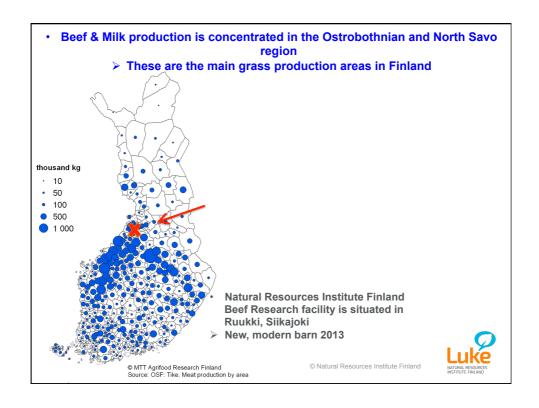
- Background
- Objectives
- Materials & methods
- Results
- Conclusions

Background

- 1) Alsike clover is an interesting alternative forage crop
 - > Well suited to acidic, organic soils
- 2) Producing whole crop small grain cereal silages provides an opportunity to improve the efficiency of forage production for ruminants under Northern European conditions
 - > Cost effective, wide harvest window, high yield, benefits in manure spreading and ley re-establishment ect. ect.
- Especially in organic farming systems using different clovers is a conventional approach and annual legumes are often sown with cereals
 - > <u>Nitrogen fixing, soil improvement effect ect.</u>
 - Legumes can enhance the nutritional quality of the cereal whole crop silage
- · However, there is paucity of published information:
 - a) on performance,
 - b) carcass characteristics
 - c) meat quality
- of growing bulls when grass silage is replaced by whole crop legumecereal or alsike clover silages
 Natural Resources Institute Finland

Objective

Our objective was to determine the effects of silage plant species:


- > whole crop legume-cereal silage vs. grass
- > alsike clover silage vs. grass

On growing beef bulls:

➤ Aberdeen Angus ➤ Nordic Red

On the production traits:

- > on animal performance
 - √ intake, growth, carcass characteristics
- beef quality
 - √ pH, marbling, drip loss, shear force, colour, sensory analysis
- ➤ beef fatty acid profile

Materials & methods 1

- The experiment comprised in total:
 - √ 50 Aberdeen Angus bulls
 - √ 50 Nordic Red bulls
 - > Four five animal pens / treatment
 - > Two pens of each breed / treatment
- The feed intake was measured and recorded with GrowSafe feed intake system
 - ➤ Each pen contained two GrowSafe feeder nodes
- During the experiment, the bulls were housed in an uninsulated barn
 - ✓ Peat-straw mixture was used as bedding
 - ✓ Space allowance / bull 10.0 m²

Luke NATURAL RESOURCE NATURAL RESOURCES

Materials & methods 2

- The grass silage was the regrowth from a timothy (Phleum pratense) sward (TS)
- Alsike clover (Trifolium hybridum) was harvested at flowering state (AS)
- · Two legume-cereal mixtures:
 - ✓ Faba bean (Vicia faba) + wheat (FW)
 - ✓ Pea (Pisum sativum) + wheat (PW)
- > All silages were preserved in bunker silos & treated with formic acid based additive

	Feeds									
	TS	AS	FW	PW	Barley					
Dry matter (DM), g/kg feed	289	295	277	269	883					
Crude protein, g/kg DM	129	164	154	174	107					
NDF, g/kg DM	580	450	465	427	210					
Metabolisable energy, MJ/kg DM	10,1	9,6	9,7	9,7	13,2					
Digestible OM in DM, g/kg DM	629	603	608	608	821					
рН	3,96	4,10	3,79	3,98						

- The crude protein content was 19 % higher in FW, 35 % higher in PW and 21 %higher in AS than in TS
- TS had 4 % higher ME content than the whole crop legume-cereal silages
- TS had 5 % higher ME content than the alsike clover silage

Materials & methods 3 - Total Mixed Ration

- The composition of the diets were:
 - > All the TMRs had 650 g/kg forage and 350 g/kg cereal in the DM
 - > The cereal was rolled barley
 - > The TMR was offered for the bulls ad libitum

		TMR (65:35)									
	TSB	TASB 50:50	ASB	FWB	PWB						
Dry matter (DM), g/kg feed	378	381	385	365	356						
Crude protein, g/kg DM	121	133	144	138	151						
NDF, g/kg DM	451	408	366	376	351						
Metabolisable energy, MJ/kg DM	11,2	11	10,9	10,9	10,9						
Digestible OM in DM, g/kg DM	696	688	679	683	683						
Protein balance in the rumen, g/kg DM	-2	7	16	11	22						

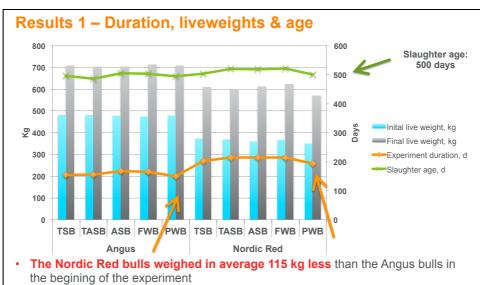
- Due to differences in composition of the experimental silages the FWB, PWB, TASB and ASB rations had 9-25% more crude protein than the TSB
 - > Protein over feeding?
 - In all rations the PBV value fullfilled the Finnish recommendation for growing cattle (PBV above -10 g/kg DM for animals over 200 kg LW)

Materials & methods 4

Statistical model included:

- · the effects of diet, breed and their interaction
- the effect of the slaughtering batch
- the effect of pen was used as an error term when differences between treatments were compared because treatments were allocated to animals penned together
- · initial live weight as a covariate in the model
- Differences between the treatments were tested using orthogonal contrasts:

Feeding experiment 1:

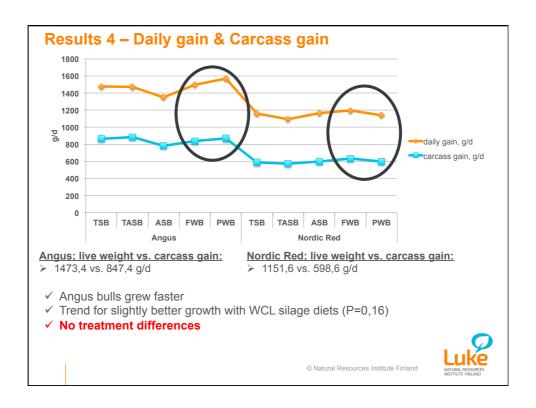

- 1) Breed (Ab vs. Nordic Red)
- 2) Diet (Grass silage diet vs. WCLC-silage diets)
- 3) Whole crop legume-cereal silage diets (Faba bean vs. Pea)

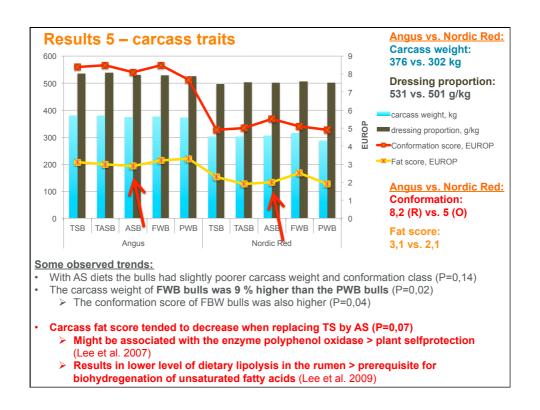
Feeding experiment 2:

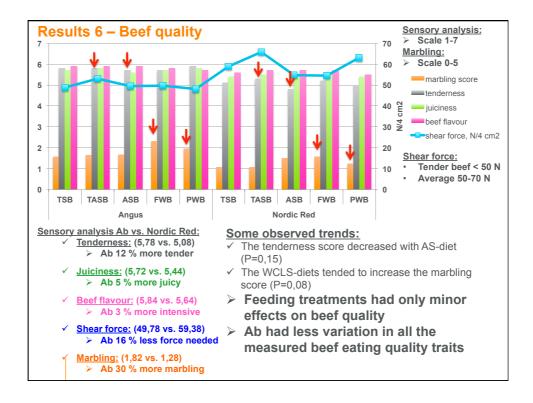
- 1) Breed (Ab vs. Nordic Red)
- 2) Linear effect of alsike clover inclusion
- 3) Quadratic effect of alsike clover incl.
- 4) Linear interaction between breed and alsike clover incl.
- 5) Quadratic interaction between breed and alsike clover incl.

Since the interactions between breed and feeding treatments were not statistically significant, the interactions are not presented

© Natural Resources Institute Finland


- The final live weight was in average 104,6 kgs higher for the Angus bulls
- · The duration on the experiment was in average 49 days shorter for the Angus
- PWB diet tended to shorten the duration of the experiment (P=0,02)
- There were no differences in the slaughter age


Results 2 – Feed intake												
	Angus							Nordic Red				
	TSB	TASB	ASB	FWB	PWB	TSB	TASB	ASB	FWB	PWB		
Dry Matter, kg/d	12,20	12,45	12,01	13,40	12,15	10,95	10,87	10,97	/12,33	10,44		
DMI, g/kg live weight	20,5	21,0	20,4	22,6	20,5	22,6	23,2	23,0	25,2	23,1		
Metaboliz able energy (ME), MJ/d	136	136	131	143	132	123	119	120	132	113		
Crude protein, g/d	1457	1635	1707	1840	1834	1317	1432	1561	1688	1565		


- The total DMI of the Angus bulls was 12 % higher
 - > Daily ME and CP intakes were higher for Angus bulls (exp 1. P=0,005; exp 2. P=0,003)
- DMI relation to LW was 11 % higher in the Nordic Red bulls (exp 1. P=0,01; exp 2. <0,001)
- The FBW diet tended to increase DM and energy intakes (P=0,006)
- \cdot CP intake were higher with whole crop legume silage and alsike clover diets (exp 1. and exp. 2 <0,001)

Results 3 - Feed conversion										
	Angus									
	TSB	TASB	ASB	FWB	/PWB	TSB	TASB	ASB	FWB	PWB
Kg DM/kg carcass gain	13,9	14,3	15,6	16,1	14,1	19,4	19,7	19,0	19,8	17,9
MJ ME/kg carcass gain	151	156	174	172	154	211	216	212	212	194
g CP/kg carcass gain	1688	1845	2188	2223	2154	2236	2499	2636	2714	2641

- There were no significant differences in DM or energy conversion rates when replacing timothy silage with alsike clover silage
- CP conversion reduced linearly with increasing alsike clover inclusion
- √ The PWB diet tended to increase feed efficiency of the bulls (<0,001)
 </p>
- √ The FBW diet tended to reduce the feed efficiency of the bulls (<0,001)
 </p>
- ✓ Angus bulls used 4,36 kg less feed DM and needed 47,6 MJ less feed energy for 1 kg carcass gain than the Nordic Red bulls
- $\checkmark\,$ Angus bulls were in average 23 % more efficient in converting the feed to carcass gain than the Nordic Red bulls
- The bulls could not utilize the additional protein obtained through feeding

Results 7 - Fatty acid profile											
	Angus						Nordic Red				
	TSB	TASB	ASB	FWB	PWB	TSB	TASB	ASB	FWB	PWB	
Saturated fatty acids, %	45,92	44,33	44,11	46,00	46,10	42,44	43,29	44,52	43,71	45,33	
Monoun saturated fatty acids, %	46,27	47,20	47,72	46,90	46,40	48,99	48,99	47,41	48,36	46,02	
Polyun saturated fatty acids, %	6,71	7,52	7,38	6,24	6,57	7,53	8,18	7,89	7,00	7,71	
n6/n3 fatty acid ratio	3,01	2,90	2,91	3,20	3,10	4,33	4,31	4,12	4,29	4,49	
 The loin samples of the Angus bulls contained a higher proportion of saturated fatty acids (<0,001) Angus bulls tended to contain lower proportion of mono- and polyunsaturated fatty acids compared to the NR bulls 											
 The n-6/n-3 fatty acid ratio of the Nordic Red bulls was 30% higher than the corresponding value of the Angus bulls (<0,001) 											
• AS diet tended to produce beef with lower <i>n</i> -6/ <i>n</i> -3 fatty acid ratio ➤ The effect was even more pronounced in Nordic Red bulls (P=0,23) © Natural Resources Institute Finland											

Conclusions

- At fixed 500 days slaughter age <u>breed</u> <u>differences were observed</u>:
 - √ in growth
 - √ carcass traits
 - √ beef quality
- The results indicate that Aberdeen Angus bulls produced beef with a lower n-6/n-3 fatty acid ratio compared to Nordic Red bulls (more healthier)
- Replacing moderately digestible timothy silage by whole crop legume-cereal silages or alsike clover silage in the diet did not have any remarkable effects:
 - > on animal performance
 - > carcass characteristics or
 - > beef quality of the growing bulls
- The possibility of protein over feeding should be taken into consideration in ration planning with high CP legume forages

 © Natural Resources Institute Finland

