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Highlights
•	 Probability of damage of treated seedlings can be predicted from the probability of damage 

of control seedlings (feeding pressure).

Abstract
The objective of the study is to derive a method by which one can analyze how the probability of 
damage made by pine weevils on seedlings treated with insecticides depends on the probability 
of damage on untreated control seedlings, called feeding pressure. Because the probabilities vary 
from stand to stand and from block to block, the analysis is done using a generalized linear mixed 
model. The dependency of probability of damage on the feeding pressure cannot be properly 
analyzed using observed relative frequency of damage of control seedlings as a covariate, but it 
can be analyzed using a bivariate model. One equation describes damage of control seedlings and 
another equation damage of treated seedlings. The random stand and block effects of different 
equations are correlated. For a given probability of stand level control seedling damage, the random 
stand effect for control seedlings can be computed using a link function, then random stand effects 
for treated seedlings can be predicted using the best linear predictor from the random effect for 
control seedlings. Using an inverse link the prediction can again be presented in the probability 
scale which is of interest to the user. Using these three steps the probability of damage of treated 
seedlings can be predicted from the control damage probability. The probability of damage of 
treated seedlings can also be predicted from the observed relative frequency of damaged control 
seedlings using simulation. The complementary log-log link was used for control seedlings and 
the log-log link for treated seedlings.
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1 Introduction

The pine weevil (Hylobius abietis)	inflicts	considerable	damage	on	conifer	regeneration	areas	in	
a large part of Europe. There have been several studies on pine weevil ecology and modeling of 
how pine weevil damage depends on stand properties and different chemical and soil preparation 
methods (e.g. Örlander and Nilsson 1999; Nordlander et al. 2005, 2011). However, these papers 
have not related damage under different treatments in the same regeneration areas; the analysis 
has been concentrated on how different treatments differ marginally. In this paper we develop a 
method for comparing different treatments in the same stand.

In our data each stand has several blocks. In each block in each stand there is a plot, called the 
control, on unprepared soil, and another plot on mounded soil planted with seedlings treated with 
an insecticide. For the current analysis the probability of damage of seedlings on unprepared soil in 
the stand indicates the amount of weevils in the neighborhood, and is called feeding pressure. The 
feeding pressure is a theoretical latent variable. Feeding pressure can be measured with observed 
relative frequencies of damaged seedlings on unprepared plots, but as the observed relative frequen-
cies vary around the true probabilities, these measurements contain random measurement error.

The feeding pressure can also be explained by some other factors, but for this study the 
amount of weevils in the neighborhood results only from its own upper level stochastic process, 
and we would like to make inference conditional on it. Decision whether to make treatment or 
not can be made knowing the distribution of feeding pressure and the probability of damage of 
treated seedlings for each level of feeding pressure. The dependent variable in our analysis is the 
binary variable indicating whether a seedling is damaged or not. The probabilities evidently vary 
randomly between stands and possibly between blocks within stands, thus a generalized linear 
mixed model (GLMM, see Stroup 2013 and Demidenko 2004) is a natural methodological frame-
work for analyzing our data.

We thus want to model how the damages on treated plots depend on the feeding pressure. 
For two reasons this cannot be properly modeled by using the measured feeding pressure, i.e., the 
observed relative frequency of damage of control seedlings, as an explanatory variable in a GLMM. 
First, using measured feeding pressure as an explanatory variable in a GLMM would lead to a 
model where the probability of damage of treated seedlings does not go to zero when the feeding 
pressure goes to zero. This would be illogical. Secondly, it is well known that measurement errors 
of	the	independent	variables	lead	biased	estimates	in	statistical	modeling.	The	first	obstacle	could	
be circumvented by using logarithm or inverse of the measured feeding pressure (augmented by a 
small constant) as a covariate, but the second obstacle would require complicated modeling (e.g. 
Torabi 2013).

The effect of feeding pressure can be solved nicely using a bivariate GLMM with correlated 
random effects. One equation describes the damage on the control plots and second correlated 
equation describes the damage on treated plots. It is then possible to derive how the probability of 
damage on treated plots depends on the probability of damage on control plots (feeding pressure).

To concentrate on the feeding pressure, we do not include in the model all the predic-
tors available in the data. We use just one seedling level predictor, distance to the humus, as an 
example. We used the SAS GLIMMIX procedure for the analysis (SAS for Windows, SAS 9.3 
TS Level 1M2x64_7PRO platform; SAS institute Inc., Cary, NC, USA). As there was a seedling 
level predictor in the model, we had to analyze the data as binary data (not as binomial data). The 
Laplace method was used in the analysis as there were convergence problems when using Gauss-
ian quadrature which would otherwise be preferred (Stroup 2013). Logit, probit, log-log, and 
complementary log-log links will all be considered.
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2 Data

In spring 2012 and spring 2013, Norway spruce (Picea abies [L.] Karst.) container seedlings were 
planted on 11 and 9 regeneration areas (stands), respectively, in central Finland. Regeneration areas 
were mounded before planting. Before planting, a part of the seedlings were treated with an insec-
ticide (lambda-cyhaltorin 100 g L–1, KarateZeon-tekniikka). In each stand, seedlings were planted 
in four blocks. In each block, 25 treated seedlings were planted onto the mounds, one seedling 
per mound. In addition, 25 (10 in 2012) seedlings were also planted between the mounds onto the 
unprepared soil (control). Feeding of pine weevils on seedlings was checked in the autumn of the 
planting year. Feeding was coded as 0 if no feeding scars were found and 1 if there was even a 
small scar on the stem of a seedling. At planting, seedling distance to the nearest humus was also 
measured to an accuracy of 1 cm. Fig. 1 shows the dependency of relative stand frequencies of 
damage of treated and control seedlings.

3 Method and results

The model for the control plots was:

y1ijk = Bernoulli p1ijk( ) (1)

link1 p1ijk( ) = µ1 + a1i + b1ij (2)

Fig. 1. Points (marked with ‘@’) show he relative frequencies of damaged treated seedlings, f2, in different stands with 
respect to the relative frequency of damaged control seedlings, f1. The error bars in both directions indicate the standard 
error computed as ( )−f f n1 .	The	thin	solid	lines	describe	the	median	and	95%	confidence	interval	when	the	prob-
ability of damage of treated seedlings, P2i, is predicted from f1 using the estimated model and simulation assuming that 
each	stand	has	four	plots	with	17	seedlings	in	each	plot.	The	thick	solid	lines	show	the	median	and	95%	confidence	
interval when f2 is predicted from f1.
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where y1ijk is the indicator variable for damage of seedling k in the control plot in block j in stand i, 
μ1	is	a	fixed	constant,	and  σ( )a N 0,i a1 1

2 and  σ( )b N 0,ij b1 1
2 are random stand and block (or plot) 

effects, respectively. We have no way to separate block and plot effects using our data. For sepa-
rate models it would be better to describe these effects as plot effects, but when considering the 
models simultaneously, these effects need to be described as block effects. Thus we use the block 
effect term throughout.

For treated plots we have the model:

y2ijk = Bernoulli p2ijk( ) (3)

link2 p2ijk( ) =α0 +α1xijk + a2i + b2ij (4)

where α0 and α1	are	fixed	parameters,	xijk is the distance to the humus, and  σ( )a N 0,i a2 2
2  and 

 σ( )b N 0,ij b2 2
2  are random stand and block effects, respectively.

We assume that the random stand and block effects are correlated across equations, and the 
joint distribution of random effects is multivariate normal. The obtained model is a multivariate 
model at stand and block level but not at seedling level as y1 and y2 cannot be measured from the 
same seedling. Let us denote that σ ( )= a acov ,a i i12 1 2  and σ ( )= b bcov ,b i i12 1 2 . These covariances 
can be estimated by putting the data for different models together and using dummy variables to 
select the appropriate components for each observation. GLIMMIX also allows to specify different 
link functions to different equations (observations). The complete model (which can be utilized 
when writing the SAS code) can be written:

ytijk = Bernoulli ptijk( ) (5)

linkt ptijk( ) = µ1h1ijk +α0h2ijk +α1 h2ijk x2ijk( )+ a1ih1ijk + a2ih2ijk + b1ijh1ijk + b2ijh2ijk (6)

where t  = 1 for control seedlings and t  = 2 for treated seedlings, h1ijk and h2ijk are the indicator 
variables for the control and treated seedlings, respectively, x2ijk is distance to humus for treated 
seedlings.

We are interested in how the probability of damage to treated seedlings depends on the 
probability	of	damage	to	seedlings	in	unprepared	soil.	These	stand	level	probabilities	are	defined	
as the probabilities of damage if the random plot effects are zero and the distance to humus is 
equal to the mean of the whole data. The stand averages of the distance to humus are very close 
to the overall average, thus doing the analysis also with respect different values of stand averages  
xi would not be informative (and xi is not generally known). Let us denote these stand damage 
probabilities as Pti , i.e.

P1i = link1−1 µ1 + a1i( ) (7)

P2i = link2−1 α0 +α1x + a2i( ) (8)

where link –1 is the inverse link function for control seedlings (link1) and for treated seedlings 
(link2), and x is the overall average of distance to humus. P1i is our theoretical measure for feed-
ing pressure. Because of the nonlinearity of the link functions these stand probabilities are not the 
averages of plot probabilities. Let us then look at how the damage to seedlings on treated plots 
depends on the feeding pressure. We are interested in predicting (explaining) P2i with P1i even if 
in practice P1i is never known (but its distribution is implied by Eqs. 1 and 2). If P1i is given, then 
we can solve a1i from Eq. 7, i.e.
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link1 P1i( ) = µ1 + a1i ⇒ a1i = link1 P1i( )− µ1 (9)

When a1i is known then the conditional expectation of a2i, which is thus the best predictor 
(see McCulloch and Searle 2001), is:

â2i = E a2i a1i( ) = σ12aa1i
σ1a2

(10)

and the variance of the prediction error is

var â2i − a2i( ) =σ 2a2 − σ12a2

σ1a2
(11)

Then using Eq. 10 in Eq. 8 we get:

P̂2i = link2−1 α0 +α12x + â2i( ) (12)

Adding ( )± −a a1.96sd ˆ i i2 2 to â i2 we	get	a	95%	confidence	interval	for	the	predicted P̂ i2 . Note 
that when P1i approaches 1, P̂ i2  also approaches 1, which seems to be in contradiction with Fig. 1. 
Note that in Eq. 12 we can also use the distance to humus of an individual seedling instead the 
average distance.

We tried logit, probit, log-log (ll) and complementary log-log (cll) links. The best –2 log 
likelihood	and	Pearson’s	chi-square	fit	was	obtained	when	the	cll-link	was	used	for	control	seedlings	
and the ll-link for treated seedlings. The relative frequencies of the damage of control seedlings 
and treated seedlings are close to one or zero, respectively. In such cases the complementary log-
log link is useful according to Stroup (2013, p. 317). Evidently also the log-log link should be 
considered in such cases.

The log-log link is

gll p( ) = − log − log p( )( ) (13)

which has the inverse link for a linear predictor η

pll = exp(−exp(−η)) (14)

The complementary log-log link is

gcll p( ) = log − log 1− p( )( ) (15)

with the inverse link

pcll η( ) = 1− exp −exp η( )( ) (16)

The model obtained by using the log-log link and coding damage as 1 is equivalent to the 
model where no damage is coded as 1 and a complementary log-log link is used (and vice versa). 
Note that ll- and cll-links are nonsymmetrical unlike probit and logit links, thus coding ‘success’ 
differently leads to a different model.

The parameter estimates obtained were: 
µ α α σ σ= = − = − = =ˆ 0.59, ˆ 0.97, ˆ 0.007845, ˆ 1.05 , ˆ 0.43 ,  a a0 1 1

2 2
2
2 2 and σ =ˆ 0.42a12  (the correlation 

between a1i and a2i was thus 0.93). For block effects σ σ= =ˆ 0.44 , ˆ 0.14 ,b b1
2 2

2
2 2  and σ =ˆ 0.021b12  
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(the correlation between b1ij and b2ij was thus 0.33). The variances and the covariance of block 
effects were much lower than the variances and the covariance of the stand effects, and only the 
between	block	variance	of	the	control	seedlings	was	significant.	The	variances	of	random	effects	
of control seedlings are much larger than variances of treated seedling. This shows that such a 
univariate GLMM where same random effects would apply for both control and treated seedlings 
would not be a reasonable alternative for the proposed bivariate GLMM. Fig. 2 shows predicted 
P2i	and	the	95%	confidence	intervals.

One condition for the model to be logical is that the stand probability of damage of treated 
seedlings, P2i , is clearly less than the probability of damage of control seedlings, P1i , in all stands, 
not just on average. This is clearly the case in the range of P1i values shown in Fig. 2, even if P2i 
approaches P1i when P1i approaches one.

Up to now we have considered the prediction of P2i with P1i . In principle, it could be of 
interest to predict P2i using observed relative frequency of damage of control seedlings (‘measured 
feeding pressure’). In our special case, this is not of interest as it would take too long to test the 
control seedlings before planting the whole stand, but in other applications of the method this may 
be of interest. With our model, the prediction of P2i from the observed relative frequency of dam-
aged control seedlings is easy using simulation. As an example, we simulated one million stands 
with four blocks. Each block had a control plot having 17 seedlings. This correspond roughly the 
average situation in our data where we had 10 or 25 seedlings in the control plots. The distance 
to the humus was equal to the overall average. Classifying the data with respect to the observed 
relative	frequency	of	damaged	control	seedlings	we	computed	the	median	and	95%	confidence	
interval of P2i for each relative frequency. The result is shown in Fig.1 with thin solid lines. Com-
paring	Fig.	1	to	Fig.	2	we	note	that	the	confidence	interval	is	wider	when	P2i is predicted from the 
relative frequency than from true (unknown) P1i. When the relative frequency of control seedling 
damage	is	exactly	1,	the	upper	confidence	limit	is	0.38.	In	contrary,	when	P1i is one, then both the 
lower	and	upper	confidence	limit	of	P2i is also one.

Fig. 2. The solid lines show the predicted stand level probability of damage P̂2i	and	the	95%	confidence	interval	in	
treated seedlings as a function of the stand level probability P1i of damage in control seedlings when distance to the 
humus is equal to its overall average. The maximum value for P1i is P1i		=		0.9999995	which	is	the	upper	95%	confidence	
limit for P1i. The dashed lines are obtained when the distance to the humus is the average value ± sd. All curves go to 
one when P1i goes to one.
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Also the relative frequency of the damage of treated seedlings, f2, was simulated according 
to the estimated model. The number of treated seedlings in a block was 25, as in our data. The 
thick	lines	in	Fig.1	show	the	median	and	confidence	interval	for	f2.	The	confidence	interval	shows	
that	the	observed	relative	frequencies	fall	reasonably	well	within	the	confidence	interval.	When	
f1	was	1,	then	the	upper	confidence	limit	for	f2 was 0.41, which is in agreement with the data and 
which demonstrates that the exact behavior of P2i when P1i goes to one cannot be inferred from 
relative frequencies in a moderately small data set. As the distance to humus was assumed to be 
constant, the simulation could be done plot wise using binomial distribution. The simulation took 
a couple of seconds.

4 Discussion

We have demonstrated that the problem of predicting one probability from another probability can 
be made in a simple way using a bivariate generalized linear model with correlated random effects. 
Intuitively the other probability is a covariate, but trying to put the probability into the model directly 
using observed relative frequency leads to theoretical and practical problems, as discussed in the 
introduction. We hope that the approach presented can also be applied in other settings.

A problem in the data analysis was that we were forced to use Laplace method in the esti-
mation of the GLMM instead of Gaussian quadrature. A probable reason for the convergence 
problems was that our data set is rather small and the random stand effects were highly correlated. 
However, obtaining better estimates for the parameters would not change our methodology, which 
is the main focus in this paper.

We applied the ll-link to treated seedlings and cll-link to control seedlings. In the literature 
(e.g. by Stroup 2013) usually only a cll-link is presented. We think that if there is no theoretical 
reason for preferring a cll-link (as Fisher 1922 had in when estimating the density of infective 
organisms), both should be considered. A model with an ll-link can be obtained by changing the 
coding of success and continuing to use a cll-link, but it is more straightforward to work directly 
with the ll-link.

Here we had two simultaneous equations. In our data we also have a third dimension, the 
damage of seedlings in mounded plots without chemical treatment. The level of damage of seed-
lings in mounded plots without treatment is between that of the control and treated plots. This third 
dimension is important with respect to silvicultural decision making, but methodologically it does 
not require any new concepts, so it will be analyzed later.

It would be interesting to obtain a theoretical explanation for the obtained link functions. 
Some explanation could be obtained for the cll-link by assuming a compound Poisson process for 
the pine weevil density and a constant risk zone around a seedling, but the obtained estimate for 
weevil density was not compatible with the estimate obtained using untreated seedlings planted on 
mounded plots. No explanation could be reached for the damage of treated seedlings, i.e., when 
the ll-link was used. In any case, the ecology of the pine weevil is quite complicated and no simple 
explanation could be anticipated.

It is an open question, should the predicted probability for treated seedlings, P2i , go to one 
when P1i goes	to	one,	as	it	does	in	our	model.	The	simulation	result	that	the	confidence	interval	
was below 0.41 when the observed relative frequency was one shows that relative frequencies in 
Fig. 1 cannot be used as evidence that P2i should not approach one. It would require a large data 
set with many plots in a stand to see what really happens at high P1i . Formulating the model so 
that P2i does not go to one when P1i goes to one cannot be done in a simple way in the GLMM 
framework.
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The feeding pressure can be explained with some stand level variables. Thus, if these vari-
ables	are	used	in	the	model	for	treated	seedlings	they	will	also	be	significant	predictors.	It	is	of	
interest to test if these variables operate only via feeding pressure, or if they also have an additional 
direct	effect.	This	can	be	tested	by	testing	if	these	variables	are	significant	after	putting	the	linear	
predictor of feeding pressure into the model (of course one predictor needs to be dropped in order 
to avoid linear dependencies between the predictors).

Using our model we can both predict P2i from P1i and estimate the distribution of P1i . Thus 
based on our model, the decision maker can start to use also quantitative decision making methods 
(see e.g. Kangas et al. 2015) when deciding whether to make the treatment or not. For instance, 
after determining the utility of forest regeneration result for different damage proportions, the 
decision maker can maximize the expected utility. The presented model for the distribution of P1i 
is very rough. It will be developed further in the future by adding stand variables to the model.
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