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Abstract

This study concentrates on the assessment of the error in the estimates of Finnish
multisource National Forest Inventory (MS-NFI) and its minimisation, as well as
for the k—nearest neighbour method (k—NN). The MS-NFI utilises optical area
satellite images, mainly Landsat TM and ETM+, and digital maps, in addition to
field plot data, to produce geo-referenced information, thematic maps and small-
area statistics. The non-parametric k~NN estimation method is used in the esti-
mation of forest variables for single pixels and to define weights of field plots to
a particular computation unit, e.g. a municipality. First, the estimation parame-
ters that are optimal for the objectives of MS-NFI were achieved by examining
the prediction error at the pixel level. Secondly, potential variables, covariates or
other exogenous variables, what might explain the residual variation in the £~NN
estimates were studied. Finally, two methods were presented aimed at reducing
the effect of map errors on MS-NFI small-area estimates.

The selection of the estimation parameters was examined for four study areas that
covered a greater part of the variation found in the Finnish forests. The error
estimates were obtained by leave-one-out cross-validation. The most important
parameters for minimising the estimation error of the total volume and volume by
tree species at pixel level were the value of k, the geographical horizontal reference
area (HRA) radius used to select the training data and the stratification of the field
plot pixels, and training data employing the site class map. With the sampling
intensity in the 8th and 9th Finnish National Forest Inventory, a geographical HRA
with a radius of 40-50 km was found to be optimal for the total volume estimates
and for volumes by tree species on the mineral land map stratum. For the peatland
stratum, a wider reference area, 60-90 km, was required.

The main sources of error in the Finnish MS-NFI are considered to be the repre-
sentativeness of the field sample with respect to the estimation problem, the low
dynamic range of spectral channel values on forestry land (FRYL) on high resolu-
tion optical satellite data, the small size of the NFI field plots compared to the pixel
size in image data and the locational errors in the image and field plot data. The
first principal component (PC1) of the Landsat TM or ETM+ channel values of
the field plot pixel was strongly related to the residual variation in the volume and
basal area estimates. The residual variances of field plot volume were regressed
against PC1 and the model was used to remove the trend component of PC1 from



the residuals, but the random error component still remained high in the residuals.

A calibration method was introduced to reduce the map errors on MS-NFI small-
area estimates. The method was based on large-area estimates of map errors; i.e.
the confusion matrix between land use classes of the field sample plots and corre-
sponding map information. A method to compute the calibrated field plot weights
was also presented. These weights were in turn used to calculate the small-area
estimates. In the second method, the k-NN estimation was carried out separately
within each map strata employing all the field plots from all the land use classes
within each stratum.

Comparisons were made between the aggregates of MS-NFI small-area estimates
from the two methods and field inventory estimates at the region level in order to
determine the total amount of correction, and for the subregions (groups of mu-
nicipalities) to detect the possible bias in the small-area estimates. Although quite
different in nature, both methods corrected the bias in the FRYL area estimates.
The FRYL estimates of the calibrated MS-NFI are consistent with post-stratified
estimates at the region level. When compared to the field inventory based esti-
mates of tree species volumes for subgroups of municipalities (1738-4238 km?),
the stratified MS-NFI performed better than the original MS-NFI and calibrated
MS-NFI. Some of the estimates from the two latter methods differed by more than
two standard errors from the field inventory estimates in the subregions of the test
data.

The parameter selection methods and the small-area estimation map error correc-
tion methods, together with the field inventory estimates and their standard errors,
provide a method for reducing the estimation error and a reference of the accu-
racy of the MS-NFI results. However, if there is a significant systematic error in
the small-area estimates of a certain subregion, it may not be possible to remove
the error by varying the estimation parameters. Other methods or auxiliar data is
needed to do this.

Keywords: multisource forest inventory, k—nearest neighbours, cross-validation,
Landsat TM and ETM+, stratification, training data selection, prediction error,
statistical calibration
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1. Introduction

1.1. The objectives of national forest inventories

There are three main types of forest inventories: the operational, the management
and the national forest inventories (Cunia 1978). The objective of national forest
inventories is to produce statistically unbiased, reliable forest resource information
for large areas for strategic planning, primarily by decision makers. Estimates of
both current values and rates of changes of forest resources are required (Cunia
1978). Periodic national forest inventories can provide information on trends in
the state of forests (Lund 1993). The estimates are required, e.g. of the forest
resources, growing stock, growth, health of forests and, increasingly, of the biodi-
versity in the forests. The national forest inventory methods should be statistically
valid, cost-efficient and flexible (Cunia 1978).

In recent years, there has been a growing interest in obtaining national forest in-
ventory results for smaller areas than had previously been possible based on field
samples only, e.g. for municipalities and even for single forest stands, for for-
est planning, timber procurement and biodiversity assessment purposes (Tomppo
1987, 1991, Schreuder et al. 1993, Kangas 1996, Tokola & Heikkild 1997, Nilsson
1997, Tomppo et al. 1998, Franco-Lopez et al. 2001). The remote sensing data
from airborne and spaceborne sensors has been the key to a more efficient use of
forest inventory data. Some of the advantages of remote sensing data are that they
offer a synoptic view of the study area, the data can be obtained rapidly for large
areas and they can be processed digitally (Schreuder et al. 1993). Traditionally,
the remote sensing data has been used as a part of the sampling design, in order to
decrease the cost of field work rather than to try to obtain results for significantly
smaller areas than normally used in strategic forest inventories (Loetsch & Haller
1973). The classification based on remote sensing data has been used in stratified
sampling (Tomppo et al. 2001), multistage-sampling (Schreuder et al. 1993) and
multiphase-sampling (Poso 1972, Schreuder et al. 1995). The post-stratification
may also provide an effective means to decrease the variance in the estimates after
the actual sampling (McRoberts et al. 2002). The concept of multisource forest in-
ventory employing remote sensing data and digital map data has been introduced
to forest inventories. One prerequisite for a multisource inventory method is that
it should be possible to estimate all the variables measured in the field (Kilkki &
Piivinen 1987).



1.2.  Multisource national forest inventory

Multisource national forest inventories employ various sources of geo-referenced
data, in addition to field inventory data, to obtain more reliable estimates or esti-
mates for smaller areas than when employing the pure field plot data only. Holm-
gren & Thuresson (1998) list the following types of forest inventory applications
employing remote sensing data: land cover classification of timber types, esti-
mation of the forest variables for forest management planning purposes, segmen-
tation to determine stand and other boundaries, landscape ecology analysis and
large-scale forest inventories. Continuous variables, such as stand volume, vol-
ume by tree species, age and mean breast height diameters have been estimated
for forest management planning purposes employing optical area remote sensing
data and field plot data. Sampling based methods, parametric and non-parametric
regression methods and neural networks have been used, occasionally in conjunc-
tion with segmentation techniques (Poso et al. 1987, Tomppo 1987, 1991, Tokola
et al. 1996, Hagner 1997, Mikeld & Pekkarinen 2001). In small-area estimations,
indirect estimation methods are used and support is obtained from similar compu-
tation units by applying methods to link the field plot data and the auxiliary data
(Schreuder et al. 1993). Non-parametric regression has been used for small-area
estimation in the Scandinavian countries and the United States (Tomppo 1991,
Tokola et al. 1996, Nilsson 1997, Gjertsen et al. 2000, Franco-Lopez et al. 2001).
The non-parametric regression methods are relatively easy to use and require no
assumptions about the shape of the model.

In multisource forest inventories, both airborne and spaceborne imagery from ac-
tive or passive sensors may be employed, although optical area remote sensing data
has mainly been employed. Aerial photography has demonstrated its applicabil-
ity for both large area and management inventories (Poso 1972, Loetsch & Haller
1973, Schreuder et al. 1993). Airborne laser instrument and radar data applications
in the mapping of forests are still at the development stage (Hyyppd et al. 1997,
Naesset 2002).

The earth observation satellites provide continuous image data for large areas
(Campbell 1996) and the increase in the number of satellites may help to over-
come the problem of cloudiness in the image data. The high resolution image data
from Landsat and SPOT satellite programs have been used frequently in large-area
land-use or land-cover classification, as well as for multisource forest inventories
(Campbell 1996, Eisele 1997, Nilsson 1997, Tomppo et al. 1998, Franco-Lopez
et al. 2001). The medium resolution satellites have shown potential in estimating



volume and biomass, by covering large areas at low cost (Tomppo et al. 2002).
The radar satellite imagery (SAR) has yielded less accurate forest parameter esti-
mates than high resolution optical satellite data (Tomppo et al. 1996). The spectral
and spatial resolution of the remote sensing data has been enhanced in multisource
forest inventories by employing multitemporal or multiple instrument image data
(Poso et al. 1999, McRoberts et al. 2002). New, very high resolution satellite data
with 1-5 m pixel size is now available, but it is costly and requires new estimation
methods due to the scale of the target, i.e. forest stands and trees (Woodcock &
Strahler 1987, Hyppédnen 1996, Pekkarinen 2002).

Topographic databases, digital elevation models and other map data are readily
available in digital format (National Land Survey of Finland 1996). However, the
map data may include location errors, it may be out-of-date and the attributes may
not correspond to the ones used in the multisource forest inventory. Despite the
possible inconsistencies between map data and remote sensing data, the map data
can be used to improve an estimation either as ancillary information or together
with remote sensing data in the analysis (Wilkinson 1996).

The Finnish multisource National Forest Inventory (MS-NFI) utilises optical area
satellite images and digital maps, in addition to field plot data, to produce geo-
referenced information, thematic maps and small-area statistics. A non-parametric
k—nearest neighbour method (k—NN) is used in the estimation of forest variables
for single pixels and to define weights of field plots to a particular computation
unit, e.g. a municipality (Tomppo 1991). One advantage of the k~NN method is
that all the inventory variables can be estimated simultaneously. Field data from
surrounding computation units (municipalities), in addition to the unit itself, are
utilised when estimating results for the particular unit. It is therefore possible to
obtain estimates for smaller areas than would be the case when employing sparse
field data only (Kilkki & Pidivinen 1987, Tomppo 1991).

1.3.  Aim of the study

This study concentrates on the assessment and minimising of the error in the
Finnish MS-NFI and the k—NN estimation method. The errors are studied at the
pixel level, for small areas, i.e. municipalities and at the region level. First, the dif-
ferent sources of error and their significance in the MS-NFI estimation are studied.
The general outlines of small-area estimation and the non-parametric regression
methods are discussed and the application of these methods in the MS-NFI is in-
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troduced.

In the k—NN estimation, the overall error is minimised by tuning the estimation pa-
rameters. Leave-one-out cross-validation, a resampling technique, is used to guide
the parameter selection at the pixel level. These techniques are applied to choose
the parameters for the Finnish MS-NFI. The remaining variation in the error is
studied and potential explanatory variables are sought to model the prediction er-
IOr.

Two methods are developed to decrease the error in the small-area estimates caused
by the forestry land (FRYL) area delineation based on erroneous map data. FRYL
consists of forest land, other wooded land and waste land. A statistical calibration
method posterior to the k-NN estimation is compared to the k~NN estimation
applied by map strata. The MS-NFI small-area estimates are validated by groups
of municipalities —subregions— and at the region level against the field inventory
based key forest variable estimates and their standard errors.
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2. Error sources in multisource national forest inventory

In multisource forest inventories, the number of errors increase with the number of
data sources. Explanatory models or standardised rules must be applied at various
phases of data production (Freden & Gordon 1983, Tomppo et al. 1997, Burrough
& McDonnell 1998), e.g. a definition of land use classes, volume models for sam-
ple trees and calibration equations for the satellite imagery exo-atmospheric radi-
ances. Various types of error taxonomies can be used to describe the error structure
of the MS-NFI. The error components of a forest inventory are measurement er-
rors, sampling errors and model estimation errors (Cunia 1965). The accuracy
of the spatial data can be grouped into thematic, positional and temporal accuracy
(Burrough & McDonnell 1998) or thematic and non-thematic errors (Foody 2002).
The measurement errors in remote sensing procedures can be divided into errors in
the measurement of field data, errors in the measurement of remote sensing data,
and the misregistration in space or time between field variables and remote sensing
variables (Curran & Hay 1986). The main sources of error in the Finnish MS-NFI
are considered to be the representativeness of the field sample with respect to the
estimation problem, the low dynamic range of spectral channel values on FRYL on
high resolution optical satellite data, the small size of the NFI field plots compared
to the pixel size in image data and the locational errors in the image and field plot
data (II; Halme & Tomppo 2001). In the Table 1, several sources of error in the
MS-NFI data are presented. They are grouped according to spatial data and forest
inventory error types. Some estimates of error magnitudes are given, based on the
literature and practical experiences in the Finnish MS-NFI.
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3. Small-area estimation and k—nearest neighbour es-
timation in multisource national forest inventory

3.1. Small-area estimation

Small-area estimation refers to the calculation of statistics for a small subpopula-
tion (domain) within a large geographical area. Sample sizes are often too small to
provide reliable direct estimators for a small area (Rao 1998). Small-area estimates
gain support from related areas that are nearby or similar according to auxiliary in-
formation (Schreuder et al. 1993). The indirect estimation methods are grouped
into estimators based on implicit models and model-based estimators (Rao 1998).
The former group contains a synthetic estimator, for which it is assumed that the
small areas have the same characteristics as the large areas (Gonzalez 1973). A
reliable direct estimator for a large area is used to derive an estimator for a small
area (Rao 1998). In the model based methods, either non-parametric or parametric
methods are applied to the auxiliary information in order to derive the small-area
estimates. Because the small-area estimators are, at least partially, model-based,
the estimates obtained are usually biased. However, the biased estimator can still
be useful if the mean square error (MSE) of the estimator is smaller than that of
the unbiased estimator (Kangas 1996).

Kangas (1996) employed several parametric and non-parametric models in a small-
area estimation of municipality level volume estimates using NFI field plot data
and their coordinates as auxiliary data. The mixed model estimator was found to
be the most reliable of the tested models. In general, models that can be corrected
for their observed residuals were recommended: mixed models, the Mandallaz
estimator and kriging estimator (Kangas 1996). The area interpretation of weights
for field plots used in a small-area estimation for a particular computation unit is
useful, e.g. for management planning systems. To obtain this interpretation, all the
weights must be positive, the weights must be same for all the target variables and
add up to the total area of the calculation unit (Tomppo 1996, Lappi 2001). The
weighting approach retains the natural covariation between the field plot variables
within each field plot.

In the multisource inventories, non-parametric regression methods have been widely
used to estimate the forest variables by associating the field plots directly to the
pixels of satellite image data in order to produce thematic maps (Kilkki & Péivi-
nen 1987, Tomppo 1991, Nilsson 1997, Franco-Lopez et al. 2001). Area inter-
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pretation is used at least in the reference sample plot method (Kilkki & Péivinen
1987) and Finnish MS-NFI (Tomppo 1991). Lappi (2001) argues that the chosen
nearest neighbour field plots may not add up to statistically unbiased or statisti-
cally optimal estimates for the region to be estimated. He presented a small-area
calibration estimator that minimises the sum of distances between prior and poste-
rior weights of field plots for a distance function while respecting the calibration
equation based on spectral values of satellite image. A spatial variogram model
was applied for calculating the variances of the calibration estimator.

The bias in the Finnish MS-NFI small-area estimators has been assessed by apply-
ing the standard error estimates of the field inventory estimates at the region and
subregion level (III), because an explicit error variance estimate is not available.
Some small-area estimation methods have estimators for variances. The resam-
pling methods are useful in the estimation of the error for small areas, but unlike
in the kriging methods, it is difficult to take into account the possible autocorrela-
tions in the data (Davison & Hinkley 1997).

3.2. k-nearest neighbour estimation method

Nonparametric regression methods are a collection of techniques for fitting a curve
when there is little a priori knowledge about the shape of the true function, and the
form of the function is not restricted. These methods are applied in exploratory
analysis and, increasingly, as stand-alone techniques (Altman 1992, Linton & Hir-
dle 1998). Nonparametric regression methods can be considered to belong to the
group of generalised additive models (Hastie & Tibshirani 1997). The general

formula for nonparametric regression for a simple bivariate dataset (X;,Y;)" | is

)fi:m(Xi)+ei, 1=1,...,n, (1)

where ¢€; is a random error independent over observations, E(¢;|X; = z) = 0
and Var(¢|X; = z) = o?(x). m(:) is the regression function of Y on X and
m is estimated at the group of observations covering some subset A" in support of
X. It is a linear smoother of the form } ", W,;(x)Y; for the weights Wi;(z)7,
depending only on X, ..., X, (Linton & Hirdle 1998). The kernel and the k-
nearest-neighbour estimators are among the most common smoothers in forestry
applications.
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The kernel estimate is a weighted average of the response variable in a fixed neigh-
bourhood, bandwidth h, of z; the Nadaraya-Watson kernel estimate is

mp(z) = S Kn(z - Xy)Y;
' Z?:l Kp(z — X5) )

2

where K (-) is any kernel function. The k—NN estimate is a weighted average of
the response variables in a varying neighbourhood, defined by those X that are
among the k—NNs of a point

~ Zi x Y;
(z) = % 3)

where N (z) is the set of indices of the k~NNs of z. Eq. 3 is comparable to a
kernel smoother applying a uniform kernel and a variable bandwidth A (Linton &
Hirdle 1998).

The NN algorithms have been extensively used in the statistical pattern recogni-
tion since the paper by Fix & Hodges (1951) in which they presented the simple
nearest neighbour classifier. The pattern recognition system typically consists of a
feature extraction and classification phase. Dasarathy (1991) reviews several stud-
ies concerning the classifier risks for finite and infinite samples, the asymptotic
performance of the classifiers, selecting the training data, choice of k£ and metrics.
The nearest neighbour distances are also used in geostatistics (Bailey & Gatrell
1995). Apart from the multisource inventories, the k~NN method and kernel meth-
ods have been used in other fields of forest inventory, such as basal area diameter
distribution estimation (Haara et al. 1997, Maltamo & Kangas 1998), generalising
sample tree data (Korhonen & Kangas 1997) and generalising detailed stand char-
acteristics from stand databases employing less accurate stand information (Moeur
& Stage 1995, Malinen 2003).

The choice of k affects the shape of the regression function; when k increases a
smoother fit is obtained with a smaller variance but larger local bias for 7 (z) with
given z and a fixed sample size (Altman 1992). The mean squared error (MSE)
is a commonly applied optimality criterion for error minimisation. The quadratic
loss by MSE can be studied at a single point « or globally (Linton & Hirdle 1998),
which may alter the selected smoothing parameter k.

The question may arise, how to select £ as the sample size n increases? In pattern
recognition, the k~NN classifier has the asymptotic property that when a sequence
of k,, satisfies k, — oo and k,/n — 0 as n — oo, the classification error ap-
proaches the optimal rate of Bayes decision rule for discrete variables (Stone 1977,
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Keller et al. 1985). However, in practical problems with moderate n, the optimal
selection depends largely on the distributions of the variables (X,Y") (Kulkarni
et al. 1998).

The E-NN estimates are potentially biased if the true function has substantial
curvature (Altman 1992); e.g. the convex relationship between satellite digital
numbers (DN) and field plot volume should yield a positive bias in the estimates
(Nilsson 1997). The weighting of the neighbours can be used to decrease the bias
(Altman 1992).

Resampling techniques, the most popular of them being cross-validation, are fre-
quently applied to the error quantification and parameter selection for classification
and estimation problems. Bootstrap methods can be used to estimate the general-
isation error and also confidence limits. Efron & Tibshirani (1997) introduced the
.632 bootstrap method and improved .632+ bootstrap method for classification
problems. These are smoothed versions of cross-validation, partially correcting
the bias in the bootstrap variance estimates.

McRoberts et al. (2002) pointed out several weaknesses in the k~~NN estimator
compared to parametric linear regression: the small k£ value may result in RMSE
values larger than the standard deviation of the observations, and unrelated pre-
dictor variables included in the subset of covariates may increase the MSE. The
latter case is related to the ’curse of dimensionality’; the rate of convergence for
optimal solutions to non-parametric regression is slower in multidimensional cases
(Linton & Hirdle 1998). In the k~NN estimation, the observations from large fea-
ture space distances may be negatively correlated, whereas observations separated
by large geographic distances are expected to be uncorrelated (Tokola et al. 1996,
McRoberts et al. 2002). The k—NN estimates may be biased near the boundaries
of the feature space, because the nearest neighbour distances tend to be greater and
the neighbours may be concentrated in one direction only. The spatial distribution
of the neighbours in the feature space can be taken into account in the estima-
tion. Local adaptation of non-parametric methods models may help to overcome
the edge effect problem as well as the bias caused by strong curvature in the true
regression function (Malinen 2003).

The standard techniques for bandwidth selection may fail in a situation where the
€; satisfy E(¢;|X; = x) = 0 but are autocorrelated. Altman (1990) studied the
selection of bandwidth for the kernel estimator employing data with correlated er-
rors. Cross-validation produces parameters favouring undersmoothing in this kind
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of situations (Altman 1990). A simple way to correct the effect of autocorrelation
in cross-validation is to leave out more than one observation. Altman (1990) sug-
gested either adjusting of the selection criteria or the transformation of residuals.
The correlation function should be estimated from the data. However, when the
form of the function is not known, the wrong choice of smoothing parameter can
induce false serial correlation in the residuals (Opsomer et al. 2001).

3.3. Parameter selection in the MS-NFI £—NN estimation (l)

In the k-NN estimation, the overall error (or other selected criterion) is minimised
by tuning the estimation parameters. The selected parameters are the features of in-
terest and their weighting; the distance metric and the smoothing parameter, value
of & (Malinen 2003). The MS-NFI also has parameters related to the selection of
training data: stratification of the image and field plots on the basis of digital map
data; and the geographical reference area from which the nearest neighbours are
selected (Tomppo 1996, Tokola 2000).

The aim in (I) is to examine the selection of the estimation parameters employing
the error estimates obtained from leave-one-out cross-validation. There were two
objectives in the selection of parameters: to minimise the MSE of the key variable
estimates and at the same time to retain some of the variation of the original field
plot data in the spatial variation of the estimates. The statistical significance of
the global bias in the k~~NN estimates was also examined in (I). Only one set of
parameters per satellite image is preferred to maintain the covariation between the
field plot variables in the estimates, consequently a weighting (Tomppo & Halme
2004) or other compromise is required in the operative MS-NFI between the set of
parameters obtained for different variables.

The original features of the Landsat TM spectral channel values and Euclidean
distance measure were used. The weighting of the Euclidean distance had only a
slight effect on the global MSE in (I), (c.f. Tokola et al. 1996). A mild topographic
correction was carried out for the DN values of satellite image spectral channels
using a modification of the Lambertian surface reflectance assumption employing
digital elevation model. Outside of northern Finland, the topographic correction
had only local significance.

The two somewhat contradictory objectives —minimising the MSE and retaining
variation— have led to heuristic rules or subjective selection of k£ in MS-NFI ap-
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plications employing Landsat TM or ETM+ image data. Several values of k
have been applied: one (Franco-Lopez et al. 2001), 5-10 (Tomppo 1996), 10—
15 (Tokola et al. 1996, Nilsson 1997), a minimum relative decrease RMSE k in (I)
and an ’objective criteria’ (minimum MSE) k,,; (McRoberts et al. 2002). In (I),
the objectives defined earlier were met under the condition of minimum decrease
of 0.5 % between k and k+ 1 sought from a window ranging from k+ 1 to k+ 5.
This criterion was needed when different geographical reference areas were used
to select the training data. It yielded & values 7-11 for the total volume estimates.

Landsat images cover geographically large areas that may contain edafic and cli-
matic variation both horizontally and vertically. The atmospheric conditions and
the radiometric properties of the image data may also vary within the image (Helder
et al. 1992, Tomppo et al. 1998). The MS-NFI estimates will be biased for a forest
area if there is locational dependency in the spectral values of pixels within the
training data (Kilkki & Piivinen 1987). Kilkki & Piivinen (1987) proposed the
use of the same training data (locationally uncorrelated) covering the particular
surveyed forest area. On the other hand, the training data should be large enough
to cover the true range and variation in the inventory area. A fixed size moving
geographical horizontal (and vertical) reference area windows (HRA and VRA)
have been used in the Finnish MS-NFI (Tomppo 1996). Because the locational
dependencies are difficult to model explicitly, the global unbiasedness is checked
using the cross-validation method.

The RMSE of the total volume and volume by tree species were studied against the
geographical HRA radii. The mineral and peatland strata were analysed separately
because there is high moisture content and moisture variation in the peatland soils
compared to mineral soils. A near minimum MSE for volume estimates was ob-
tained for mineral land already with a 20 km radius and for peatland with a 30 km
radius, or employing 150-300 field plots. The maximum radius was sought by
estimations based on field plots outside different geographical HRA. Significantly
biased estimates were obtained for spruce and pine volume in some subregions
that employed field plots from 40—60 km and larger radii. On mineral stratum, the
40-50 km geographical HRA radius yielded, on average, 400—600 field plots to the
training data and did not increase the RMSE or decreased the bias in some cases.
Nilsson (1997) in a simulation study recommended the same number of field plots
for the estimation of total volume.

The area of peatlands is smaller than for mineral soils and their proportion varies
across the country; generally larger geographical HRA radii, 60-90 km, are re-
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quired to obtain a sufficient number of field plots. However, if the average number
of field plots in the peatland stratum falls below 300, an estimation in two strata
may not be justified. This map-based stratification is not very accurate and there
are also differences within the peatland forests (Tomppo 1996). However, it was
demonstrated in (I) that the stratification significantly decreased the global bias of
the volume estimates within both strata.

Tokola (2000) found a 20 km geographical HRA radius to be optimal for total vol-
ume and pine and a 30 km radius for spruce and deciduous volume estimates in a
study with NFI data in Eastern Finland applying cross-validation for error estima-
tion. However, the decrease in the degree of determination was slow and the study
material enabled radii only up to 40 km. Lappi (2001) in a small-area estimation
study that used a calibration estimator and NFI field plots, concluded that 500 field
plots outside the county to which the timber volume was to be estimated was rea-
sonable in addition to the field plots of the county itself. To an average size county
in the particular study area this would yield an approximately 35 km geographical
HRA radius fixed to the centre of the county, assuming circular counties. However,
the field plots outside the county obtained less weight in the estimation.

The parameters obtained are generally suitable for the MS-NFI, but a significant
global bias in the results may still remain. Local bias may occur in the small-area
estimates, especially in the edges of satellite image data or inventory area, when
trend-like large-scale changes occur in the forest. The NFI sample is too small for
reliable error estimation in small areas. The bias in the key field plot variables can
be studied in the parameter selection phase or posterior to the k~NN estimation by
comparing the MS-NFI estimates in the subregions (groups of municipalities) to
the NFI field inventory estimates.

3.4. Error variations at the pixel level in the £~NN estimates of the
MS-NFI (Il)

There are several sources of error in the multisource forest inventories because
they employ measurement data and models of different natures and scales. These
errors contribute to the uncertainty in the k~~NN estimates. At the pixel level, the
prediction errors measured with relative RMSE are usually high, e.g. 50-80 % for
field plot volume (I; Tokola et al. 1996). These error estimates are obtained by
cross-validation.
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The aim in (II) has been to study the variation in the error (residuals of the k~NN
estimation by cross-validation) and to see whether there is a functional dependency
between observable covariates and the prediction error. The potential explanatory
variables for which the values could be obtained for every pixel were tested: i.e.
estimated values of forest variables, variables of the selected nearest neighbour
field plots and the spectral channel or digital map data values of pixels. The field
plots in the training data were studied as an independent sample, ignoring the
possible spatial autocorrelation between the field plots within the same cluster. The
focus was on pixel-level prediction error of field plot volume and weighted mean
of basal area (BA) observations in the k~NN estimation. The possible cumulation
of systematic error in small areas was beyond the scope of the study.

The effect of locational error, which is quite significant in the MS-NFI training
data, was minimised by employing a procedure to reassign the satellite image in-
formation to the field plot data (Halme & Tomppo 2001), or by restricting the
number of mixed pixel field plots in the training data. The weighted mean of BA
observations in and near the field plot was used instead of pure field plot BA to
decrease the sampling error in the dependent variable. The use of weighted BA
decreased the random variation (coefficient of variation) in the training data, as
well as the MSE in the cross-validation. These results suggest that the optimum
field plot size for MS-NFI purposes is larger than that currently applied when high
resolution optical satellite data is used.

The standard deviation of the k neighbours’ field plot variable was found to be a
good measure of uncertainty. The estimated volume and BA correlated with the
standard deviation and can be potentially employed in the analyses of uncertainty.

The residuals were studied against the spatial neighbourhood spectral variables,
numerical map data (3x3 window) values and variables describing the spatial dis-
tribution, direction and clustering of neighbours in the Euclidean feature space.
The first principal component of the field plot pixels, the spectral brightness fea-
ture (Horler & Ahern 1986), strongly correlated with the volume and BA estimates,
and with their residuals from the £~NN estimation. Concerning the spatial neigh-
bourhood, the bias in the estimates increased close to the non-FRYL map mask.
This result supports the use of map data to stratify the MS-NFI in (IV). At the
edges of the feature space, there should be more error in the k~NN estimates, but
the variables describing the spatial distribution of the £ neighbours did not corre-
late with the volume or BA residuals. The distances in DN for the majority of field
plot pixels in the feature space are quite small compared to the possible magnitude
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of error in the Landsat TM data (Curran & Hay 1986).

The effect of the first principal component was removed from the residuals by
using a model of field plot volume residual variances. The remaining variation
was weakly correlated with the other potential explanatory variables. The random
error component remained considerable in the k~NN residuals. At single field plot
level, the cause of the error seemed to be case sensitive: mislocation of the field
plot, the radiation from the surrounding land use classes or stands, the deviation
of the target field plot from the surrounding forest and extreme field plot variable
values.

3.5. Correction of map errors in the MS-NF| small-area estimates
(H1,1v)

The delineation of the inventory area is one of basic steps in planning and execut-
ing a forest inventory. The forest area estimate can be based on the sample and the
remote sensing and map data can be employed as auxiliary data, e.g. in stratifica-
tion (Loetsch & Haller 1973). The error component of the estimate of the area of
FRYL is included in the total error of the estimate. In the Finnish NFI, the land
area is assumed to be known, and the estimates, both for mean and total values, are
based on ratio estimators of field sample plots (Tomppo et al. 1997). The standard
errors are estimated using local quadratic forms (Matérn 1960). In the MS-NFI,
the FRYL area has been delineated based on the numerical map data and in some
cases from satellite image data (Tomppo 1991). More precisely, other land use has
been estimated from the map data and the rest has been considered to be FRYL
consisting of the forest land, other wooded land and waste land. The problem with
the current MS-NFI map data is that it is not necessarily up-to-date, there are lo-
cational errors and it does not correspond exactly to the NFI land use classes. The
aim in (IIT) and (IV) has been to reduce the map error in the MS-NFI small-area
estimates: to obtain better FRYL area estimates and to correct the effect of map
error in the forest resource estimates.

The error probabilities from the cross-tabulation (confusion) matrix of a classi-
fication can be used to correct or calibrate for misclassification bias in (remote
sensing based) statistical estimates of class proportions (Hay 1988, Czaplewski &
Catts 1992). The confusion matrix must be based on a statistical sampling scheme
(Card 1982). In (III), a calibration method is introduced to reduce the map errors
in MS-NFI small-area estimates. The method is based on the confusion matrix
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between land use classes of the field sample plots and corresponding map infor-
mation, estimated from a large region. If the map strata can be expected to be
reasonably homogeneous with respect to the map errors and land use class dis-
tribution, the proportions estimated for large region can be used for small areas
(synthetic estimation) (Gonzalez 1973). In the calibration literature, the method
is identified as "inverse calibration for classification error" (Brown 1982), intro-
duced by Tenenbein (1972). In (III), the aggregates of the estimated land use class
areas over the large region agree with unbiased post-stratification estimators (Holt
& Smith 1979).

In (III), a method is found to calibrate the field plot weights c; ;7 for computation
unit U in such a way that the sum of the calibrated weights over all training data
plots is equal to the calibrated FRYL area estimates when applying the confusion
matrix and the above method. The calibration of the weights is not straightforward
because there are only FRYL field plots in the training data and there is a lack of
correspondence between the NFI land use classes and the map strata. In addition,
the calibrated MS-NFI may produce negative weights ¢; 7 for some field plots.

In (IV), the k-NN estimation was employed by map strata. All the field plots
within each map stratum, irrespective of the field measurement based land use
class, were used for estimating the areas of land use classes and forest variables of
the particular stratum. The applied strata were formed so as to be as homogeneous
as possible with respect to the NFI based land use classes. However, the number
of strata was restricted by the fact that there should be a sufficient number of field
plots for the k~NN estimation (IV). The aim of the method was to obtain simulta-
neously the FRYL area estimate and accurate forest variable estimates within each
stratum. A compromise was made in the parameter selection between the high
overall accuracy of FRYL classification and minimising the MSE of the key forest
variables. The stratified MS-NFI resembles the field inventory estimation in the
sense that all the field plots within a stratum are retained in the training data. The
final estimates are obtained by combining the stratum-wise estimates.

In (II) and (IV), the stratified and calibrated MS-NFI reduced the error in the
FRYL area estimates caused by errors in the map data. Comparisons were made
between the aggregates of MS-NFI small-area estimates and field inventory es-
timates at the region level in order to determine the total amount of correction,
and at the subregions (groups of municipalities), to detect the possible bias in
the small-area estimates. At the region level, the calibrated FRYL area estimates
were by construction, equal to the post-stratified FRYL area estimates, and the
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post-stratification efficiently reduced the standard error of the estimate in land use
classes that were homogeneous with the map strata (III). For the stratified MS-NFI,
FRYL area correction remained between the original MS-NFI and the calibrated
estimates. The calibration typically increased the volume estimates at both the re-
gion and subregion levels. The original MS-NFI estimates were calibrated upwards
or downwards more or less systematically. The stratified MS-NFI small-area es-
timates, especially for volume and volume by tree species, varied more compared
to the original MS-NFI estimates. The calibrated and stratified MS-NFI estimates
of FRYL and total volume did not differ significantly from the field inventory es-
timates in subregions of size ranging from 1728 to 4238 km?. However, only
the stratified MS-NFI estimates of tree species volumes were within two standard
errors of the field inventory estimates in the subregions of the test data. If the orig-
inal MS-NFI estimates are clearly biased in the subregions, the calibration method
alone can not correct the bias.

In the calibration method, the confusion matrices were calculated for large regions,
where several thousands of field plots were available. The assumption of constant
misclassification probabilities within the strata may not have held. The confusion
matrices could be formed for subregions: according to Czaplewski & Catts (1992)
improvement in the estimation precision of the classes starts to diminish after 500—
1000 sample plots in a simple random or systematic sample. However, in (III) the
smallest strata had less than 50 field plots.

Formation of the strata is more simple in the stratified MS-NFI, but the estimation
parameters must be sought for all the strata applying cross-validation. The FRYL
area estimates for each stratum were not very sensitive to the values of k or geo-
graphical HRA in (IV). The field plot weights w; ,, to pixel pj, in stratum h, i.e.
the fuzzy membership values of field plot ¢, retain the variation in the training data
in the estimates. The classification accuracy for FRYL and non-FRYL was not
very high in (IV); the number of field plots within minor strata may be too small
for efficient classification.
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4. Discussion

In (I), the most important parameters for minimising the estimation error of the
total volume and volume by tree species at pixel level were the value of k, the
geographical HRA radius to select the training data and the stratification of the
field plot pixels, and training data employing the site class map. With the parameter
selection criteria employed, the parameters obtained were quite similar in the four
different study areas that represented different geographical areas of Finland. This
indicates a consistency in the quality of Landsat TM image data and in the NFI
field plot data. The selection of k was based on the the condition of minimum
decrease of 0.5 % between k and k£ + 1 on a smoothed prediction error curve
in (I). According to McRoberts et al. (2002), the threshold percentage should be
taken from the minimum RMSE. In general, if there is more than one criterion for
selecting the estimation parameters, e.g. minimising the MSE and retaining some
of the original variation in the field plot data in the estimates, it would be more
objective to state and apply them in an analytical way. The use of a small value of
k may be appealing because it retains the original variation of the field plot data in
the produced map data (Franco-Lopez et al. 2001). However, a consequence may
be that k—NN yields a MSE larger than the variance in the observations (McRoberts
et al. 2002). Secondly, there is less variation in the forest variables for units the
size of a Landsat TM pixel (30x 30 m?) than in the NFI field plots, c.f. Nyyssonen
et al. (1967).

In (I), the geographical HRA radii for mineral land and peatland strata were de-
termined using the following criteria: to minimise the MSE of the key variables,
to exclude from the training data field plots that would introduce bias into the es-
timates (maximum HRA radius) as well as to obtain a sufficient number of field
plots on average in the training data (minimum HRA radius). Tokola (2000) found
a smaller HRA radius to be optimal when the criterion was to minimise the MSE
of volume and volume by tree species from the cross-validation estimates. How-
ever, Nilsson (1997) recommended that the same number of field plots should be
employed in the training data as were found to be suitable in (I) on mineral stra-
tum. In northern Finland, there is more variation in the altitude and, according to
experiences in the operative MS-NFI, the use of geographical VRA will decrease
the bias in the vertical subsets of the training data (Tomppo et al. 1998).

Stratifying the image and field plots for mineral strata and peatland strata signifi-
cantly decreased the bias of the volume estimates within those strata in (I). In gen-

25



eral, stratifying the low radiometric resolution satellite data employing auxiliary
data that reduces the within strata variation, e.g. a forest site quality map (Tokola
& Heikkild 1997) or stand characteristics data (Nilsson 1997, Tomppo et al. 1999)
will reduce the bias within strata and possibly the global MSE in the k~NN estima-
tion. The £—NN estimates of forest stand border pixels have a larger bias than those
inside the stand and a separate estimation of stand boundaries would decrease this
error (Tokola & Kilpeldinen 1999). The bias in the estimates also increases close
to non-FRYL map strata in (II). In (IV), The MS-NFI by strata was employed.
The relatively large amount of training data required limits the number of strata to
be formed. Combining remote sensing data and map data will propagate different
types of error in the output data (Wilkinson 1996). The stratified remote sens-
ing classification may produce artificial boundaries on the output thematic maps
(Hutchinson 1982).

In (I and II), the cross-validation has been applied assuming independent sam-
pling, despite the fact that the key forest variables between neighbouring field
plots within clusters are spatially correlated. E.g. the volume for forest and other
wooded land had a correlation coefficient greater than 0.3 up to a distance of ap-
proximately 500 m within the same cluster in Central and Northern Finland in the
7th NFI (Tomppo et al. 2001). Spatial autocorrelation also occurs in the satellite
image spectral channel values. This derives from both the sensor spatial properties
and the spatial structure of the scene (Collins & Woodcock 1999). However, in
the cross-validation it has not been detected in practice that the nearest neighbours
would be more often from the same cluster as the target field plot. Nevertheless,
the spatial autocorrelation range from the left-out pixel in cross-validation should
be taken into account either by modifying the cross-validation (Altman 1990) or
simply by the ’leave-some-out’ method (Linton & Hirdle 1998).

It is inevitable that the prediction error at the pixel level will be considerable in an
MS-NFI that employs high resolution satellite data. The size of the field plot is
small compared to the instant field of view of the satellite, the amount of mixed
pixels is large and the image spectral channel values contain little variation for
well-stocked stands (Ripple et al. 1991, Ard6 1992). However, reducing the main
sources of error in the MS-NFI, e.g. in the field plot data, should decrease the
prediction error in the k—NN estimates. Reducing the field plot locational error in
the training data not only decreases the RMSE of mean volume estimates obtained
from the cross-validation, but also retains more of the correct variation in the esti-
mates (Halme & Tomppo 2001). It also corrects the typical shrinkage towards the
mean in the k~NN estimates rather more than when a small value of % is used. The
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sampling error in the training data is decreased by the use of weighted mean of BA
observations from a larger area than a field plot (II).

These results lead to the larger question of the optimal field sampling design for
MS-NFI purposes. This will include the questions concerning the size of the field
plot, the distance between field plots, the representativeness of the sample. When
the field sample is used in a remote sensing application, an optimal spatial reso-
lution of the remote sensing data may be selected for the estimation (Hyppénen
1996) or the resolution —and the sensor— may be fixed. Under budget constraints,
a balance should be found between the need for a large enough field plot size to
provide a good covariation between the remote sensing data and the key variables,
and the need for the training data to cover the variation of field variables within the
satellite image cover (I). The spatial autocorrelation in the forest variables and in
the remote sensing data should be taken into account in this optimisation process,
cf. Wang et al. (2001).

Further refinement of the estimation parameters could increase the accuracy of
the forest variable estimates. The predictive power of the feature space variables
employed can be summarised by applying canonical correlation analysis (Moeur
& Stage 1995) or weighting the features based on optimisation rules (Tomppo &
Halme 2004). This is useful when only one set of parameters is used for all the
forest variables. The local adaptation of the &~NN method could be used, based
on the selected nearest neighbours or on the spectral features. The larger k~-NN
estimates also had a larger residual variation and variation in the selected nearest
neighbours in (II) and it might be possible to decrease the prediction error by
applying a stronger smoothing for the pixels where high volume estimates will be
produced. On the other hand, the spatial distribution of the k neighbours varies
at the edges of the feature space and the Euclidean distances in DN are small
between the field plot pixels of high stand volume, whereas in open land and in
young forests the distances can be quite high.

The confusion matrices used for the calibration in (III) were estimated for entire
forestry centres. If the error probabilities in the confusion matrix vary signifi-
cantly within such large regions, the calibration could be split into subregions. A
priori information of the map accuracies, efficient stratification to subregions and
the evaluation of standard errors of the misclassification probabilities, c.f. (Card
1982), could be used to determine the optimal size and distribution of the subre-
gions for calibration. In general, the stratified MS-NFI was a more simple method
than calibration and provided, on average, more accurate estimates of the volume
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by tree species for small areas.

The field inventory estimates and their standard errors for large regions and subre-
gions (groups of municipalities) are useful in assessing the systematic error of the
MS-NFI estimates within a satellite image or some subarea of it (II[; Tomppo &
Katila 1992). The errors for field inventory estimates are large for areas less than
150 000 ha of FRYL, and other methods could be tested to evaluate the accuracy
of the MS-NFI results, e.g. post-stratified field inventory estimates or resampling
methods at the municipality level. There is both map error and forest variable es-
timation error in the aggregates of MS-NFI small-area estimates and this makes
comparison with the field inventory estimates more difficult than in the cross-
validation at pixel level, where only FRYL field plot pixels are employed. The
parameter selection methods studied in (I) and the small-area estimation map er-
ror correction methods in (III and IV), together with the field inventory estimates,
provide a method to reduce the estimation error and a reference of the accuracy
of the MS-NFI results. However, if there is a significant systematic error in the
small-area estimates of a certain subregion, it may not be possible to remove the
error by varying the parameters studied in (I). In practice, the small-area estimates
are dependent upon where the small area is located with respect to the employed
satellite image and the training data. The satellite images and the large regions
covered by the field inventory data form a mosaic of ’estimation images’ that are
analysed separately. Consequently, neighbouring pixels and small areas may em-
ploy training data from different geographical reference areas. This may cause bias
in the results. It has been found necessary to take the tree species composition of
the reference area into greater account , i.e. large scale trend-like changes of forest
variables (Tomppo & Halme 2004). This indicates that the correlation between
covariates and the volumes by tree species may not be strong enough to define the
field plot weights c; ¢ for the small areas, and the use of averages of variables from
a window defined by large scale trends around a municipality, decreases the error
in the small-area estimates. The bias in the small-area estimator could be therefore
corrected, e.g. by applying a combination of k~NN estimator and a direct sam-
ple estimator, a composite estimator, weighted by some criteria (Schreuder et al.
1993).

The parameter selection in the cross-validation is based on the global MSE and
bias criteria. The systematic error in the aggregates of small-area estimates at the
region and subregion levels are assessed by applying field inventory estimates.
The aim in the MS-NFI is to obtain unbiased estimates for the small areas as well.
The question is open as to, how much the optimal parameters for small areas or
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subregions would differ from the global optimum.

A spatial presentation of the estimation of uncertainty would be useful for the data
analyst. Building an error estimation method based on sources of error is a com-
plex problem (Bastin et al. 2000). The measures of uncertainty studied in (IT) may
be far from the true prediction of error and more information of the target pixels,
especially mixed pixels, are needed. The finer resolution PAN images could help
to assess the representativeness of the field plots and to decrease the estimation er-
ror. Also, the fact that pixel-level estimation errors can be spatially autocorrelated
must be taken into account in the error estimation method (Congalton 1988, Flack
1995). Wallerman (2003) in a study employing Landsat TM and an intensive field
sample, found the spatial dependence of the residuals from a spatial regression
model to be lower than the residuals from ordinary least squares regression, but
only with field plot data sampled by distances of less than 300 m.

Although a reliable method for estimating pixel-by-pixel error could be produced,
such a method would not be suitable for deriving the error estimates for larger
computation units such as forest stands and municipalities. The error estimates
for larger areas cannot be obtained directly by combining the error estimates for
single pixels due to spatial autocorrelation both in the satellite image and field
data and, in the case of cross-validation error estimates, due to locational errors
in the field plot data. The error variance of the MS-NFI for small areas could be
estimated employing models describing the second order properties of the MS-NFI
error estimates for pixels, obtained from cross-validation (Lappi 2001). However,
the field plot volume prediction error of the MS-NFI estimates depends not only
on distance between pixels but, e.g. on the true volume. In addition, the k-~NN
prediction errors may not be treated as the residuals of a trend surface of a spatial
model. The several sources of error in the MS-NFI, both in the field plot data
and the remote sensing data, can reduce the reliability of the spatial modelling of
erTors.
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Abstract

The paper examines the selection of parameters for the nonparametric ~-NN estimation method that is used in the Finnish multisource
National Forest Inventory (MS-NFI). The MS-NFI utilises NFI field plot data, optical area satellite images and digital maps and produces
forest variable estimates from the single pixel level up to the national level. The most important parameters to be selected are: the distance
metric, the number of the nearest neighbours, &, parameters related to the digital elevation model, stratification of the image data, as well as
the width of the moving geographical horizontal and vertical reference areas (HRAs and VRAs). The root mean square errors (RMSEs) and
significance of biases at pixel level were evaluated in order to find optimal parameters. A leave-one-out cross-validation method was applied.
The emphasis is placed on the search for moving geographical HRAs and VRAs, as well as in the stratification of the field plots and the
satellite images on the basis of auxiliary data. Stratification reduces the bias of the estimates significantly within each strata. With the current
sampling intensity of the Finnish national forest inventory, a geographical HRA with a radius of 40—50 km was found optimal for the total
volume estimates and for volumes by tree species in the mineral land map stratum. On the average, there was a sufficient number of field
plots to cover the variation of forest variables within the image area to be analysed. The inclusion of field plot data beyond this area
introduced bias to the estimates. For the peatland strata, a wider reference area, 60—90 km, was needed. A VRA, together with topographic
correction of the digital values of images, reduced the standard error of the volume estimates in Northern Finland. © 2001 Elsevier Science

Inc. All rights reserved.

Keywords: Nonparametric estimation; Satellite images; Multisource forest inventory; Stratification; Cross-validation; Training data selection

1. Introduction

The trend in large area inventories is towards geogra-
phically accurately located information and small area
estimates. Under Finnish conditions this means municipal-
ity and forest holding level estimates (Eisele, 1997;
Franco-Lopez et al., 2000; Gjertsen et al., 2000; Nilsson,
1997; Tokola & Heikkild, 1997; Tomppo, 1991; Tomppo et
al., 1999a, 1999b).

The use of satellite images in forest inventories has been
studied since the beginning of 1970s. The focus has been
on the estimation of basic variables, such as volumes by
tree species, basal area, age and mean breast height

* Corresponding author. Tel.: +358-9-857-05-312; fax: +358-9-625-
308.

E-mail address: matti.katila@metla.fi (M. Katila).
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erkki.tomppo@metla.fi (E. Tomppo).

diameter of stand (Hagner, 1997; Tokola et al., 1996;
Tomppo, 1987, 1991). Parametric and nonparametric
regression, as well as neural networks, together with
segmentation techniques, have been used. Forest inven-
tories involve high numbers of variables measured in the
field, typically between 100 and 400 variables concerning,
e.g., site, volume and increment of growing stock, forest
damages and forest biodiversity. Estimates for all of these
are usually necessary.

The Finnish multisource National Forest Inventory (MS-
NFI) has utilised optical area satellite images and digital
maps, in addition to field plot data, since 1990. A nonpara-
metric k-nearest neighbour method (k-NN) deviates from the
usually applied methods and has made it possible to
estimate all inventory variables at the same time (Tomppo,
1991). Field data from surrounding units (municipalities), in
addition to the unit itself, are utilised when estimating
results for one unit; the method is known as synthetic
estimation in statistical literature (e.g., Rao, 1998). This

0034-4257/00/$ - see front matter © 2001 Elsevier Science Inc. All rights reserved.
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makes it possible to obtain estimates for smaller areas than
would be possible with sparse field data only (Franco-Lopez
et al., 2000; Nilsson, 1997; Tomppo, 1996). The method
produces georeferenced information, thematic maps and
small area statistics. The field plot data should, however,
cover the variation of field variables within the satellite
image cover. Consequently, a large number of observations
is required.

The k-NN algorithm searches the feature space for the &
nearest pixels, whose field data vectors are known, applying
a distance measure, d, defined in the feature space. Field
data from the k nearest pixels is transferred to the unknown
pixel. The method has been widely studied in pattern
recognition (Cover & Hart, 1967; Keller et al., 1985) and
statistics (Linton & Hardle, 1998). Altman (1992) showed
that the A-NN estimator may give biased estimates as the
value of k increases, but that the bias can be reduced with
weighted averages of the k neighbours. The error rate
asymptotically approaches the optimal rate of the Bayes
decision rule for discrete variables when both the & and n
(number of observations) tend to infinity in such a way that
k/n — 0 (Keller et al., 1985).

A set of parameters is chosen for the ~-NN method in the
operative MS-NFI. Examples are: (1) the image features; (2)
the distance measure; (3) the value of %, i.e., the number of
the nearest neighbours; (4) parameters related to the possible
use of digital elevation model; (5) stratification of the image
and field plots to mineral land and peatland on the basis of a
digital site class map, produced by the National Land
Survey (NLS); and (6) the geographical reference area from
which the nearest field plots are selected. The geographical
reference area is crucial for the estimation procedure and is
selected separately for each pixel in the Finnish MS-NFI
(Tomppo, 1996).

Franco-Lopez et al. (2000) and Nilsson (1997) studied
different distance metrics using the &-NN method. Several
studies have been conducted for selecting the optimal value
of k (Franco-Lopez et al., 2000; Nilsson, 1997; Tokola et al.,
1996; Tomppo, 1996; Tomppo et al., 1998b). It is affected
by the layout and the size of the field plots, size of the pixel
and the variation of the field variables. Compromises are
often needed due to the fact that retaining the variation of
field variables in the estimates may presume a low value of
k, while minimising of pixel level root mean square errors
(RMSEs) presumes higher value of & (cf. Franco-Lopez et
al., 2000). Stratification of the study area and field plots has
been studied on the basis of supplementary data such as site
quality maps and old forest management planning data, e.g.,
by Tokola and Heikkild (1997), Tomppo et al. (1999b) and
Tomppo et al. (1998a, 1998b).

The selection of the geographical reference area on a
large scale has not been systematically studied, partly due
to lack of large scale test data. The objective of this paper
is to fill this gap. The paper addresses the selection of the
reference area, both in horizontal and vertical directions
(horizontal and vertical reference area (HRA and VRA)).

Another goal is to study the stratification of the field plots
based on supplementary data: in this case, the digital
peatland map. The selection of the parameters, especially
the value of k, must also be addressed in order to
complete the reference area selection and stratification in
an optimal way.

There are several reasons for the use of pixel-dependent
geographical HRA and VRA from the possible nearest field
plots to the pixel to be analysed. A large forest area,
covered, e.g., by one Landsat 5 or 7 Thematic Mapper
(TM) satellite image (with a size of 183 x 172 km), may
involve a gradual change in vegetation structure. In Finland,
the vegetation zone may change, e.g., from South Boreal to
Middle Boreal. This often implies that the average structure
of the growing stock, as well as other forest variables, also
change. The proximity of large lakes or sea, as well as
elevation variations, affect the average structure of the
growing stock and other vegetation composition as well.
The relationship between growing stock and image features
may vary because of these changes. Too wide an HRA, i.e.,
too large a value for the geographical maximum distance,
may lead to biased estimates. On the other hand, when field
plot layout is sparse, a minimum distance is needed to
include all the local variation of the forest variables in the
field plots.

The high moisture content and large moisture variation
make the reflectance of peatland forests very different from
that of mineral soil forests, even with a similar structure of
the growing stock (Tomppo, 1987). A stratification of the
image area and the field plots have been made according to
the digital site class map in the operative MS-NFI (Tomppo,
1996; Tomppo et al., 1998b). The proportion of peatlands of
the land area varies with inventory areas. The hypothesis
presented here is that different geographical HRAs are
needed for peatland strata and mineral soil strata.

Developing an analytical method for deriving the
standard error of the estimates of a forest area is a
challenging task due to the spatial dependencies of the
forest variables and the image data itself. A satisfactory
analytical solution is still under development. However,
statistically reliable error estimates of forest variables from
the pure field inventory data can be used to assess the
MS-NFI results (Katila et al., 2000; Tomppo & Katila,
1992). For these purposes, a large enough part of the
image must be analysed.

The leave-one-out cross-validation method is applied in
this paper to estimate the average biases and RMSE of
predictions at the single pixel level for different combination
of &-NN estimation parameters: particularly VRA, HRA and
strata. The parameters are chosen in such a way that the
RMSE:s of the estimates are minimised and the biases of the
estimates are simultaneously kept within twice the standard
error from the value 0. The procedure is also applied to
control errors by strata defined by field variables. Errors by
volume classes are important, especially in map production
(Franco-Lopez et al., 2000).
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2. Materials

Four areas in Finland were chosen for this study. These
were located approximately between longitudes 21°40'E,
30°25'E and latitudes 59°40'N, 68°10'N (Fig. 1). The land
areas varied between 13878 and 38220 km? (Table 1). The
test data contains field measurements from the 8th and 9th
NFI, and digital map data and satellite images as applied in
the MS-NFI. The study areas were chosen in such a way that
the image acquisition and the field inventory were from the
same year, that the image quality was good and that the
image area contained as many field plots as possible. The
structure and average volume (m*/ha) of the growing stock
vary within study areas and especially between study areas.
The four study areas cover the greater part of the variation in
land use classes, soil properties, tree species variation and
climatic in Finland. The Western Finland study area: (1)
contains large peatland areas, the Central Finland study
area; (2) is rich in fertile mineral soils and the southwestern
image; and (3) has a relatively high nonforestry land

20E
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Image path/row and date

1. 191/16 13.6. 1997
2. 188/16-17 24.8.1996
3. 189/17-18 7.8.1984
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Fig. 1. The coverage of the four Landsat 5 TM satellite images plotted over
the map of the proportion of spruce-dominated forests on forest land based
on the 8th NFI field data.

proportion. The Northern Finland study (4) area is from
the north boreal vegetation zone, in which Scots pine (Pinus
sylvestris L.) dominates, and has moderately high elevation
variation. The forests of the study areas are either pine or
Norway spruce (Picea abies (L.) Karst.) dominated with
birch (Betula spp.) and other deciduous species as a mixture.

The field sample of the NFIs were measured from
systematically located clusters of sample plots. The sample
plots (14—18 per cluster) were located along a rectangular or
L-shape tract at 200- to 300-m intervals, depending on the
area. Trees were measured from field plots belonging to
forest and other wooded land (FOWL) stands. The tally
trees were selected with PPS sampling (sampling with
probability proportional to size), applying a basal area factor
of 1.5 in the Northern study area and 2 elsewhere. The
probability of a tree’s inclusion is proportional to its cross-
sectional area at a height of 1.3 m; a maximum radius of
12.45 m was used in Northern Finland and 12.52 m in
Central and in Western Finland. Unrestricted PPS sampling
(sampling with no maximum distance) was applied in the
southwestern study area. The inclusion of ‘border’ trees is
carefully checked. The distance of the nearest forest stand
boundary from the field plot centre point was recorded in
10-m classes from 0 to 40 m.

The field plots that are within forestry land (FRYL) are
selected from the NFI field sample for the following
analyses. They are divided into forest land, other wooded
land and waste land, according to site productivity (Table 2)
(Tomppo et al., 1998a, 1999b; Tomppo et al., 1997). The
mean and the standard deviation of the volumes of the field
plot measurements for the main tree species, mean basal
area and age of the field plot stand are presented in Table 3.

The Landsat 5 TM satellite images employed were
rectified to the national grid coordinate system with
regression models of first or second-order polynomials
calculated from 35 to 70 ground control points. These
were identified from topographic maps and satellite
images. The model residuals were checked over images
to ensure an even distribution of the rectification model
errors. The mean square error of the model, together in the
direction of rows and columns, varied between 0.6 and 0.7
satellite image pixels. Nearest neighbour resampling was
used with a pixel size of 25x25 m? for intensities
(Tomppo et al., 1998b).

3. Methods
3.1. MS-NFI estimation method

Multisource estimates are computed for FRYL pixels.
FRYL is separated from the other land use classes by means
of digital map data in the current MS-NFI. Cloud-free FRYL
areas of a satellite image are analysed with the FRYL field
plots i chosen for the training data set. Incorrectly located
field plots and those that contain non-FRYL land use classes
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Table 1

Study areas: satellite images of the 8th MS-NFI and 9th MS-NFI, field inventory data

Field plot data

Satellite image

Study area NFI Land area (km?) FRYL (%) Year Cluster distance (km) Plots per cluster Landsat 5 TM Date

Southwestern Finland 8+ 38220 69.1 1994 7x16 16 189/17-18 940709
Central Finland 9 18787 82.0 1996 7x7 18/14* 188/16-17 960824
Western Finland 9 13878 73.0 1997 7x7 18/14* 191/16 970613
Northemn Finland 8 13687 98.1 1993 10 x 10 15 190/12-13 930713

® Every fourth cluster had 14 field plots in the Central and Western Finland study areas.

are excluded from the training data set, the proportion is
usually in the range of 2-6%.

The MS-NFI estimates are weighted averages of the
field plot variables. The &-NN method is used to calculate
the weights (Keller et al., 1985; Tomppo, 1991). Data from
the k nearest field plots in the feature space, i;(p), ...,
ii(p) are utilised in the analysis of each pixel p. More
precisely, the field plots are sorted according to Euclidean
feature space distance between p; and p, and the k nearest
plots are chosen.

Stratification of the FRYL area and the training data to
peatlands and mineral soils according to a numerical map
data has usually been applied in such a way that only
pixels within the same stratum as the target pixel are
accepted as neighbours. The geographical distance to the
potential nearest neighbours has been restricted to 40—120
km due to gradual changes of vegetation type. Simulta-
neous upwards and downwards vertical maximum dis-
tances of 50—150 m have also been applied, particularly
in North Finland. Cross-validation-based error estimation
and the large area subregion estimates from field data have
been used to decide upon the suitable geographical refer-
ence area while keeping in mind the need for a certain
minimum number of field plots (Tomppo, 1996; Tomppo et
al., 1998b).

The weight w; , of the field plot i to the pixel p is defined
as

1 1 .
Wip =—=—/ —, if and only if i
PP je{ii(p), ik (p)} POP

€ {ll(p)7 1l/t(p)} = 0:

where {i,(p), ..., ix(p)} is the set of the field plots whose
corresponding pixels are the k nearest ones to the plot p.

otherwise, (1)

Table 2

A value t=1 was applied for the weighting parameter in
this study. A small positive value is given for 0 distances.

The weight w;,, can be interpreted as that share of the
pixel p that obtains data from the field data vector of the plot
i. For a single pixel p, the estimate of the average of a
continuous variable is expressed by Eq. (2)

r;zp: Z Wi pm (2)

i€FRYL

For more details, see (Tomppo, 1996).
3.2. Feature selection

The original Landsat 5 TM channels 1 -5 and 7 are used.
Topographic correction for the digital number values of
channels has been made on rugged terrain with a modifica-
tion of the Lambertian surface reflectance assumption. The
normalised intensity value /* is calculated from the
observed intensity value / and angle o between sun and
the normal of the land surface (Eq. (3)).

I" =1/cos"a (3)

The exponent »<1 has been added to the denominator,
because the Lambertian reflecting surface assumption is not
necessarily true for a varying forest area. The value r=1
usually leads to overcorrection (Tomppo, 1992).

3.3. Results validation

The choice of the classification parameters was tested
with a leave-one-out cross-validation method: a single field
plot p; belonging to the ground truth data set is classified
with the other plots (Linton & Hardle, 1998). Other possible

The land use class distribution of the FRYL field plots over the study areas, the minimum and maximum elevation above the sea level and the proportion of

field plots in peatland and mineral soil strata of the site class map

Elevation Forest Other wooded Waste FRYL Peatland Mineral soil
Study area range (m) land (%) land (%) land (%) (no. of plots) stratum (%) stratum (%)
Southwestern Finland 0-213 95.1 35 1.4 3546 11.7 88.3
Central Finland 79-301 96.9 1.7 1.4 6220 19.4 80.6
Western Finland 0-223 89.2 5.9 5.0 4661 30.1 69.9
Northern Finland 149-549 67.4 20.1 12.5 2013 29.1 70.9
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Table 3

The mean and the standard deviation of the volume of the growing stock of field plots by tree species, basal area (BA) of the field plot stand (three

measurement points) and the field plot stand age on FOWL of study areas

Southwestern Finland

Central Finland

Western Finland Northern Finland

Variable X s ¢ s X K X s

Volume (m*/ha) 131.8 103.0 114.6 99.9 89.0 824 354 40.9
Volume of pine (m*/ha) 41.9 57.4 37.8 54.8 443 53.7 21.9 353
Volume of spruce (m*/ha) 68.3 89.3 53.9 84.3 27.8 57.4 8.7 19.4
Volume of deciduous species (m*/ha) 21.6 40.0 22.8 38.1 17.0 33.9 4.7 11.0
BA (m?) 16.9 10.4 15.7 10.5 13.2 9.9 5.6 6.3
Age (years) 56.8 37.1 51.7 36.1 58.1 39.6 68.7 83.8

methods are the hold-out estimator (i.e., “data splitting™),
jack-knifing and bootstrapping.

The RMSE has been used as a measure of reliability of
the continuous variables (Eq. (4)).

RMSE = 4)

where y;, i=1, ..., n are the values of variables in the
training data set and y; is the estimated value. Other criteria
are bias (Eq. (5)) and the standard error of bias (Eq. (6)).

zn:()A’f = i)
e ()

(6)

where s(e) is the standard deviation of errors y; — y; and also
the variance component of the RMSE, which does not
include the possible bias.

The quantity s(€) can be used for testing whether the bias
deviates significantly from zero. Deviations greater than
2s(é) from the field plot based estimate of mean are here
considered to be statistically significant.

The cross-validation errors are studied within strata of
variables or by location, i.e., as soil class and subareas of
the study area in order to obtain an idea of the possible bias
in subclasses.

The options considered in the field plot data selection
and stratification in the error analysis are: (1) maximum
geographical distance (vertical and horizontal) from the
pixel under analysis to the potential nearest neighbours
and (2) stratification of field plots and image area based
on auxiliary data (digital site class map).

4. Results
4.1. Selection of the number of k nearest neighbours
A practical rule for the selection of k& was developed in

the following tests. The RMSE normally decreases as k
increases until a minimum RMSE is reached (Fig. 2). The

minimum may not be reached before k=30, but the decrease
levels off between 10 and 15 for mineral soil stratum and
slightly earlier for peatland stratum, where there are fewer
observations (Table 2).

Four different ways of selecting the value of & were
tested for geographical HRAs of 10—200-km radii: (1) the
minimum RMSE between | and 30; (2) the minimum
RMSE controlled by the significance of the bias; (3) a
choice under the condition of minimum decrease of 0.5% in
RMSE between & and £+ 1; and (4) a fixed k=10 (Fig. 3).
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Fig. 2. RMSE (a), bias and double S.E. of bias (b) of total volume estimates
against number of k for 40 (mineral soil stratum and all plots) and 70 km
(peatland stratum) geographical HRA, stratification and no stratification,
Central Finland study area.
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Fig. 3. RMSE of total volume estimates for differently chosen & values
against geographical HRAs of 10-200 km; (a) mineral soil stratum and (b)
peatland stratum, Central Finland study area.

The biases of the minimum RMSE option were nonsignifi-
cant for all HRAs. The values of & were equal to options (1)
and (2). The values of k obtained with the 0.5% decrease in
the RMSE rule were near to 10. Note, however, that the test
is for the total volume only.

Options (1) and (2) produced the smallest RMSE, but
since it was desirable to retain some of the variation of the
original field plot data in the pixel level estimates (cf. Moeur
& Stage, 1995), alternatives (3) and (4) were employed in
the following calculations.

4.2. Stratification of the field data to peatlands and mineral
soils

The stratification of the field plot data according to (1)
site class map and (2) field plot main site class was tested in
the cross-validation. The RMSE and the bias of the total
volume estimates from the cross-validation were studied
separately for each stratum and for the whole field sample
plot data of the study area. The value of k was selected with
the condition of minimum decrease of 0.5% in RMSE
between k and k+1 in this analysis.

The advantage of stratification becomes clear when the
average biases of the volume estimates are compared within
both site class map strata, classified by all the sample plots
and by only the sample plots within each stratum. The
former estimates from the cross-validation are significantly
biased (Fig. 4). The bias of the total volume estimate
changed from —2.7 to — 6.4 m*ha on the mineral soil
stratum and from — 1.5 to 6.0 m*/ha on the peatland stratum
when the map based stratification was left out in Western
Finland study area with a 50-km radius of HRA. The site
class map based stratification decreased the global RMSE
value only by approximately 0.5 m*ha, with 40 km and
larger radius of geographical HRA. The use of precise site
class information for the stratification, based on the field
plot data, did not improve the accuracy of the estimates. The
stratification is applied overall in the following tests.

4.3. Horizontal and vertical geographical reference area

Different sizes of pixel-dependent HRA and VRA were
studied; i.e., the variation available in the corresponding
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Fig. 4. Bias and the significance of bias of total volume estimates for the
Western Finland study area. Target field plot data stratified to mineral soil
(a) and peatland (b) according to the site class map; training data: all field
plots, particular stratum field plots stratified according to map data and field
plot data.
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training data and the RMSE and bias of the pixel level
estimates of total volume and volumes by tree species.
Geographical reference areas were sought, which would
yield the minimum RMSE and unbiased estimates and
would have a sufficient amount of field plots in the
training data.

4.3.1. Minimum size of the reference area

The applied A-NN estimation method utilises a pixel-
dependent geographical HRA. The spatial variation of field
variables affects the selection of the area: The larger the
geographical area of the training data, the better it covers the
true variation of the values of the field variables. This can be
seen from the distribution of the standard deviations of
volume computed from the surrounding training data of
each field plot in the Central Finland area. When the HRA
increases, the standard deviations concentrate around the
one computed from the whole field data (volume 103.6
m*/ha) (Fig. 5).

A larger geographic HRA is necessary for more rare
combinations of field plot variables, as can be seen in Fig. 6.
For example, in the training data for the Western Finland
FRYL area on mineral soil stratum, an average HRA of 40-
km radius is required to obtain 10 field plots from spruce-
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dominated forests of volume 250—300 m*/ha and age >80
years. For the particular image, the 40-km HRA would seem
to be the minimum for obtaining a sufficient amount of
nearest neighbour candidates.

4.3.2. Maximum size of the reference area

The contribution to the volume estimates of field plots
from different geographical distances was studied in order to
better reveal their value in the estimation of volume. A
cross-validation test, complementary to the above tests for
selection of the training data, was made. Only the field plots
beyond a certain radius were used.

The RMSE and the bias of tree species’ volume estimates
were calculated from the field plot data outside geographical
HRAs of 0-200 km (cf. Tokola, 1998). The area of South-
western Finland was chosen due to its large area and
variation in the spruce dominance of the forests. The RMSE
and biases of the estimates were studied for the whole study
area and for three smaller subareas (Fig. 7): (1) spruce-
dominated (335 target plots) and pine-dominated areas (2)
(515 target plots) and (3) (687 target plots). The number of
field plots selected for the training data was kept constant
for each sample plot (or cluster). Only mineral soil stratum
field plots were applied with k=10.
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Fig. 5. The distribution of standard deviation of volume in the training data for the target field plots of the Central Finland study area; (a) 20 km, (b) 40 km and

(c) 100 km geographical HRAs.
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Fig. 6. The average number of 250 ~300 m*/ha field plots and subsets of sample plots (logarithmic scale) in the training data in Western Finland study area

when different HRA are applied.

The global relative RMSE, i.e., the percentage of the
RMSE of the mean volume of the field plot data, of the pine
and spruce volume estimates increased by only a few
percent and the biases were not significant as the HRA
increased. Naturally, there was more variation in the RMSE
and in the bias of the estimates in the subareas (Fig. 8). The
relative RMSE of subareas (1) and (3) increased slightly
both for spruce and pine volume estimates as the distance

increased from 0 to 100 km. The biases ¢ for subareas
showed a clear increase with the remoteness of the training
data. The bias of the spruce volume estimate became
significant for sample plots beyond 40 km geographical
distance for the spruce-dominated subarea (1) (é=—11.4,
s(€)=4.8) and for subarea (3) (€=6.2, s(€)=2.6). The
Northwest subarea (2) did not produce biased estimates
until the sample plots were further than 80 km; at this
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Fig. 7. The coverage of the Southwestern Finland study area and three subareas (1), (2) and (3) plotted over the map of the proportion of spruce dominated

forests on forest land based on the 8th NFI field data.
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Fig. 8. Bias and the significance of bias of spruce (a) and pine (b) volume
estimates for Southwestern Finland area. A total of 350 sample plot training
data selected beyond various geographical distances.

distance, the pine volume estimate became significantly
biased (é=—4.7, s(€)=2.2). There seems to be a second
minimum in the error estimates for both pine and spruce
when applying the sample plots beyond a distance of 80 km.
For subarea (1), there is a second wide spruce-dominated
area, and for subareas (2) and (3), the training data further
than from the neighbouring spruce-dominated areas
is applied.

When the reference area was defined to contain all the
field plots within the HRA, only the estimate of spruce
volume became significantly biased; from distances 90 and
130 km upwards for subareas (1) and (2), respectively.

4.3.3. Principle of reference area selection

The number of sample plots in the training data selected
with a constant geographical HRA radius varies consider-
ably within the image area; the proportion of FRYL varies
between inventory areas and within images. Near the image
boundaries, there is lower number of field plots available.
An alternative choice for selecting the training data was
tested. Instead of a constant geographical HRA radius, a
constant number of field plots HRA was employed, cf.
minimum number of plots criterion (Tokola, 1998). The

other MS-NFI parameters were: (1) k selected with a
condition of minimum decrease of 0.5% in RMSE between
k and k+ 1 and (2) stratification of field plot data according
to the site class map.

In practice, the geographical HRAs were calculated for
each cluster in such a way that the required constant number
of field plots was approximately achieved. For example, for
300 mineral soil field plots, the geographical distance was
on the average 27 km and varied between 21 and 53 km, and
for 150 peatland stratum field plots, the distance was on
average, 44 km and varied between 20 and 100 km within
the Central Finland area.

There were only slight differences between the RMSE
values of the two methods of training data selection (Fig. 9).
There were no noticeable differences between the RMSE of
the volume estimates for the subgroups of volume classes of
the training data.

4.3.4. HRA and VRA for total volume estimates

The relative RMSE of the total volume was tested for
various HRAs between 10 and 200 km. The comparison
was made for all the images and also separately for both site
class strata. All the other parameters, except the pixel-
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Fig. 9. Relative RMSE of total volume estimates on (a) mineral soil and (b)
peatland stratum for the Central Finland study area. Training data selected
with a geographical HRA and with a constant number of field plots HRA.
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dependent HRA, were fixed: (1) & selected with a condition
of minimum decrease of 0.5% in RMSE between k and £+ 1
and (2) stratification of field plot data according to the site
class map.

With respect to the mineral soil, the RMSE of the
estimates did not change much beyond geographical dis-
tances of 30—50 km (Fig. 10); concerning the number of
field plots available for classification, there was only a slight
decrease after 200—-300 field plots. Sample plots beyond a
geographical distance over 100 km or 1000 plots gave a
slight increase in the RMSE for the Central Finland and
Western Finland areas. The biases correspondingly had a
decreasing, though nonsignificant, trend.

For the peatland stratum, the relative RMSE of the
Northern Finland area was >100% and was not included
in Fig. 11. The number of field plots for the peatland
stratum was low for the Southwestern Finland area, only
414 (Fig. 11(b)), which may be insufficient for the estima-
tion of other MS-NFI variables. The decrease in the RMSE
of the estimates levels off in the peatland-dominated Wes-
tern Finland area with a 60-km HRA. For the other two
study areas, the decrease in RMSE continues over a 100-km
range. The proportion of peatlands varies with the study
area: the RMSE graphs are more alike when plotted against
the average number of plots available. The decrease con-
tinues after 200 plots, but quite slowly. It seems that
different geographical HRAs are needed for mineral and

peatland strata due to different proportion of the strata.
RMSEs close to the minimum level of RMSE for the
volume estimate were obtained using 200—300 plots for
both mineral and peatland strata, except for the South-
western Finland area where only 50 plots were required
(small proportion of peatlands).

The minimum number of plots required in training data,
rather than a certain geographical HRA data, was tested by
taking subsamples from the training data with k=10. Two
less intensive sampling designs were tested: 53% (nine plots
per cluster) and 18% (three plots per cluster) of the original
sample for the mineral soil stratum of Western Finland area.
Larger geographic HRA radii were needed for the 18%
subsample (three plot clusters) (Fig. 12(a)). The minimum
number of field plots required was approximately 100—200
plots for all the different field samples. The smallest sub-
samples seemed to benefit most from the increasing number
of sample plots (from remote geographical distances) (Fig.
12(b)). This could be due to the poor variance reduction
power of the sparse (18%) sample.

The altitude above sea level varies from 150 to 550 m in
the Northern Finland study area (Table 2), and the VRA
area was tested in addition to the HRA. The elevation
variation of the terrain changes the irradiance properties of
the vegetation and a simple modified Lambertian cosine
correction with an exponent was used. The parameters from
the operative MS-NFI were tested: a +100 m inclusion
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Fig. 10. Relative RMSE % ((a) and (b)), bias and significance of bias (m*/ha) (c) of total volume estimates on the mineral soil stratum.
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Fig. 11. Relative RMSE % ((a) and (b)), bias and significance of bias (m*/ha) (c) of total volume estimates on the peatland stratum.

range and the normalised intensity values /* with the
exponents 0.4 and 0.8. The value of k was selected by
applying a condition of minimum decrease of 0.5% in the
RMSE of the estimate between & and k+ 1. Both the 100-m
VRA limitation and the cosine correction with p=0.4 gave
the largest decrease (5%) in the RMSE of the total volume
estimates on the mineral soil stratum at 50-km radius of
HRA. These parameters also increased the bias, but not
significantly (Fig. 13).

4.3.5. HRA for estimates of volume by tree species

The dependence of the RMSE of the volume estimates
were studied by tree species with the different geographical
HRAs. The RMSE of the volume estimates for the three
main tree species groups were tested against geographical
HRAs of 10-200 km in the Central Finland (Fig. 14) and
peatland-dominated Western Finland areas (Fig. 15). The
other MS-NFI parameters were: (1) k selected with a
condition of minimum decrease of 0.5 in RMSE between
k and k+1 and (2) stratification of the field plot data
according to the site class map.

The RMSE of the volume estimates for the two main tree
species (pine and spruce) decreased to 20—-30-km radii of
HRA on the mineral soil stratum but did not decrease much
after these distances. The relative RMSE of the deciduous
tree species’ volume estimates had a slowly decreasing

trend, but the explanatory power R*? (Eq. (7)) of the k-
NN estimates was close to zero (Table 4).

On the peatland stratum, there was a greater difference in
the culmination of the RMSE decrease against the HRA:
30-50-km radii for both Central Finland and Western Fin-
land areas (Figs. 14(c) and 15(c)). Spruce volume estimates
were biased in the peatland stratum in Western Finland (Fig.
15(d)); the volume of spruce varies substantially in the
particular stratum (Table 4). Note that the 40-km geogra-
phical inclusion distance, on the average, gives 190 and 270
sample plots, respectively, for the training data on peatland
stratum for Central Finland and Western Finland areas. The
inclusion of all the field plots in the training data causes
extra variation in the estimates due to numerous mixed
pixels. The same graphs produced with the sample plots
selected with the distance to the stand boundary >20 m had
sharper changes in the RMSE.

4.3.6. The precision of the volume estimates at the pixel
level

The cross-validation results of the tree species’ volume
estimates were compared with the sample plot statistics. The
MS-NFI parameters were chosen for each tree species,
stratum and test area: (1) k selected with a condition of
minimum decrease of 0.5% in RMSE between k& and k+ 1;
(2) stratification of field plot data according to the site class
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Fig. 12. RMSE (m*/ha) on the mineral soil stratum for Western Finland
study area, different densities of the original field plots.

map; and (3) the HRA and VRA parameters producing the
minimum RMSE of the total volume estimate were applied
for each stratum.

The mean and the standard deviation of the field plot
data, and the absolute and relative RMSE, bias and the
standard error of bias of the estimates, were calculated
(Table 4). The RMSE of the MS-NFI estimates were
compared with the standard deviation s(m) of the field plot
data variables. A R *? coefficient was computed to compare
the predictivity, the amount of variation reduced by the
“model”, of different variables and methods (Eq. (7)) (cf.
Tokola et al., 1996):

R?=1- ﬁ% (7)
s(m)

As mentioned above, the volume estimates of tree
species with highest volumes have the smallest relative
RMSE in each strata. In the Western Finland area, two of
the tree species’ volume estimates are significantly biased
for mineral soils, i.e., larger than twice the standard error
of bias s(€). This indicates that obtaining unbiased esti-
mates for all the tree species’ volume estimates is not an
easy task.

The R*? coefficient varied between 0.16 and 0.42 for
the total volume estimates and 0.06 and 0.46 for the
dominant tree species estimates of the different stratum.
Estimates for the Northern Finland peatland stratum had a
poor explanatory power. There are many treeless mires, for
which the variation of moisture is large and this may cause
severe misclassifications.

Of all three species, the spruce volume estimates had the
highest R*2. The spruce volume also had the highest
variation among the tree species’ volumes in the field plot
data. The variation of the spruce estimates is still signifi-
cantly reduced, although the relative RMSE is over 100%.
The R*? coefficients for pine are lower, especially when
pine is not the tree species with the highest volumes. The
deciduous tree species estimates have a low R * 2 coefficient.
These species occur mostly in mixed forests with coniferous
species. The early summer satellite image of the Western
Finland area gave the highest R *? for the deciduous species
estimates. For the peatland stratum, differences in R*?
values by tree species were small. The R * % values for the
mineral soil were approximately the same magnitude as
those presented by Tokola et al. (1996). However, the
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Fig. 13. Relative RMSE, bias and significance of bias for total volume
estimates for the Northern Finland study area, VRA and HRA, intensity
correction, mineral soil stratum.
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Table 4

The absolute and relative RMSE, bias (&), the standard error of the bias (s(€)) for the volume estimates and variable mean (r), the standard deviation of the
variable (s(m)) and R *? coefficient by study areas; stratification and different geographical HRA radius according to the site class map.

Tree rﬁ RMSE (k-NN) RMSE é s(é) s(m) No. of
Study area Strata/ HRA species (m*/ha) (m*/ha) (%) (m*/ha) (m’/ha) (m*/ha) R*? plots
Western Finland mineral 40 km total 102.4 70.7 (8) 69.0 -2.52 1.24 86.3 0.33 3258
pine 47.0 52.0 (8) 110.8 1.21 0.91 57.1 0.17
spruce 36.5 52.0 (6) 142.3 -2.22 0.91 64.3 0.35
deciduous 18.9 33.5(9) 1773 -1.26 0.59 36.0 0.13
peatland 60 km total 57.9 48.1 (7) 83.1 -1.94 1.28 62.4 0.40 1403
pine 38.1 384 (9) 101.0 0.55 1.03 44.4 0.25
spruce 7.4 21.9 (5) 295.4 -1.19 0.58 27.4 0.36
deciduous 124 24.2 (10) 194.3 -1.09 0.64 27.8 0.25
Central Finland mineral 40 km total 121.7 84.9 (9) 69.8 0.02 1.20 103.6 0.33 5012
pine 37.1 54.2 (9) 146.1 1.17 0.77 57.1 0.10
spruce 60.7 72.3 (8) 119.2 —0.46 1.02 88.4 033
deciduous 239 39.0 (9) 163.0 —0.61 0.55 393 0.02
peatland 70 km total 85.1 64.4 (10) 75.7 0.74 1.85 76.0 0.28 1208
pine 40.7 40.6 (10) 99.6 1.89 1.17 442 0.16
spruce 259 49.5 (8) 190.9 0.04 1.42 56.3 0.23
deciduous 18.5 31.509) 170.5 —0.81 0.91 32.6 0.07
Southwest Finland mineral 50 km total 136.0 87.5 (11) 64.4 -0.84 1.56 104.2 0.30 3132
pine 423 56.6 (10) 134.0 1.83 1.01 58.8 0.07
spruce 71.8 75.5 (10) 105.2 -1.92 1.35 90.8 031
deciduous 219 383 (11) 174.7 -0.78 0.68 40.1 0.09
peatland 90 km total 100.4 66.6 (9) 66.4 —0.96 3.28 87.6 0.42 414
pine 39.5 37.3 (10) 94.6 1.43 1.84 453 0.32
spruce 41.7 533 (8) 127.8 -1.23 2.62 723 0.46
deciduous 19.3 37.1 (9) 192.9 -1.25 1.83 393 0.11
Northern Finland mineral 50 km total 432 34.0 (9) 78.8 1.31 0.90 432 0.38 1428
pine 273 33.2 (8) 121.6 1.15 0.88 39.1 0.28
spruce 10.5 18.1 (10) 172.6 0.17 0.48 213 0.28
deciduous 5.4 11.1 8) 206.3 —0.05 0.29 11.6 0.08
peatland 80 km total 16.3 24.2 (8) 148.9 -0.27 1.00 26.4 0.16 585
pine 8.8 17.0 (8) 192.2 0.24 0.70 17.5 0.06
spruce 43 12.4 (6) 2922 -0.21 0.51 12.9 0.08
deciduous 32 8.1 (9) 254.7 -0.19 0.33 9.1 0.22

stratification was not applied in that study and the NFI

sample data were from smaller areas.

5. Discussion

The selection of the appropriate geographical HRA and

VRA and the effect of stratification of the field plots and
images on the basis of digital site class map for the Finnish
MS-NFI method were studied applying RMSE and biases of
volume estimates at pixel level. The leave-one-out cross-
validation method was used to obtain average RMSE and
biases of estimates for pixels. The main findings with the
applied test data were: (1) The stratification of the satellite
image and the field plot data with the site class map
significantly decreased the bias of the volume estimates.
(2) The geographical HRA radius of 40—50 km on mineral
soil stratum included a sufficient number of field plots
(400-600) for different variable combinations, and to
minimise the RMSE of the volume estimates with the

current sampling intensity in the NFI. Field plots from
larger distances increased the bias of the volume estimates
in the image subareas. (3) For the peatland stratum, covering
a minor part of the FRYL, larger HRA radii (60—90 km)
were needed. (4) The VRA, together with normalised
intensity values, decreased the global relative RMSE of
the total volume estimate on the mineral soil stratum in
Northern Finland.

5.1. Sources of error in the training data

Errors in the field measurements and in the location of
the field plots, location errors of the pixels, imaging system
errors and atmospheric condition errors cause extra varia-
tion in the estimates (Curran & Hay, 1986; Tomppo et al.,
1999a). The location errors decrease the precision of pixel
level estimates of the cross-validation in two ways: both the
pixel to be analysed and the field plot pixel may possess
location errors. Even if there was no location error, the size
of the NFI field plot measured with PPS sampling is much
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smaller than the area of a single pixel (625 m?); the trees of
d.b.h. 10 and 20 cm are tallied from area of 39 and 157 m?,
respectively, when a basal area factor of 2 is applied. The
smaller the average size of the trees, the smaller is the area
of the forest stand covered by the field plot.

5.2. Distance metric and the value of k

The original digital values of channels 1-5 and 7 of
Landsat 5 TM were used as image features, although
improvement in the precision of the estimates could have
been expected with transformations or weighting of the
original channels (Franco-Lopez et al., 2000; Tokola et al.,
1996; Tomppo et al., 1999a, 1999b). The Euclidean distance
measure was used in the feature space. The weighting of
spectral distances would be expected to reduce the bias in
the estimates (Altman, 1992). Weights between 0 and 2 have
been tested in other studies when optical area satellite data
and point sampling or concentric circular field plots material
have been applied (Nilsson, 1997; Poso et al., 1999; Tokola
et al., 1996; Tomppo, 1991). The weighting of distance with
t=1-2 was found to give a smaller RMSE of volume
estimates than nonweighted distances, especially for smaller
HRAs (<50 km). The weighting with 7=1 gave slightly
better results on mineral soils and was chosen for this study.

Two objectives have been kept in mind when selecting
the value of &: (1) minimising of the RMSE of the estimates
of the key variables and (2) retaining the original variation
of the field plot data in the spatial variation of the estimates.
These objectives conflict to some extent, the RMSEs of the
estimates decrease slightly until the value of k=20-30,
wherefore, e.g., Nilsson (1997) and Tokola et al. (1996)
suggested a value k=10-15. For example, for mapping or
for forest planning purposes, Franco-Lopez et al. (2000) and
Moeur and Stage (1995) suggested a much smaller value,
even the value k=1, which retains the variation of the
original data. A compromise is necessary for practical
inventories. Weighting of contradicting objectives, e.g.,
the RMSE and retaining the variation, would be needed to
select the value k& in an analytical way. The weighting,
however, depends on for what purposes the estimates are
used. A heuristic rule has therefore been applied in selecting
the value of & in the Finnish MS-NFI. The value has usually
been between 5 and 10 (Tomppo, 1996).

A moderate value of & can also be argued by the fact that
the stratumwise biases may increase when the value of &
increases. A value higher than 1 for &, on the other hand,
can be argued by the fact that the area of a NFI sample plot
is smaller than the area of a pixel. The field plot data
involves also theoretically more variation than pixel level
data should involve.

Selecting the value of k& with minimum decrease of 0.5%
in RMSE between & and £+ 1 led to values of k=5-12. A
constant k=10 was also used. The value selection for k was
not very sensitive to the number of observations in the
training data when »n>100.

When the global RMSE criterion is used the appropriate
choice of k depends on several parameters: (1) number of
sample plots in the training data; (2) size of the field plots
compared to the pixel size; (3) weighting of the spectral
distance in the estimation, a higher distance weight reduces
the importance of the last neighbours; and (4) the density of
the training data in spectral space.

5.3. Stratification

The stratification, which applied the site class map
(peatlands and mineral soils), significantly decreased the
bias of the volume estimates (Fig. 4), although the NLS’s
peatland delineation is different from that of the NFI. Maps
often underestimate the area of peatlands and they also
contain location errors (Tomppo et al., 1998b). The global
RMSE of the combined total volume estimates only
improved by 1%. Contrary to expectations, the use of the
precise sample plot data for the stratification did not
significantly improve the global RMSE of the volume
estimates compared to the map based site class stratification.
Tokola and Heikkild (1997) obtained a 5% reduction of the
global RMSE in the pixel level estimates of total volume
with a stratification based on forest site quality maps and
NFI data when using an estimation method similar to the
one used here.

The stratification of low radiometric resolution satellite
data with the auxiliary data, which is correlated with the
estimated variables, will most often reduce the bias of the
estimates within the strata. The stratification can help to
avoid mismatches in the classification of certain type of
forests, e.g., peatlands and mineral soils or old-growth forest
stands. However, the minimum number field plots in the
training data for each stratum must be maintained (Tomppo
et al., 1999a).

5.4. Geographical reference area

In the presence of spatial trends in the forest variables,
pixel-dependent geographical HRAs of radius 10-200 km
were tested for the selection of training data for the Finnish
MS-NFI. The RMSE and the bias of the volume estimates
based on the cross-validation were calculated separately for
the two strata. Different HRAs were required for the peat-
land and mineral soil strata due to the different proportion of
the strata (Table 2). On the mineral soil map, a suitable HRA
was 40—50 km for total volume estimate, although most of
the variance reduction was already gained at a distance of 20
km (Fig. 10). On the peatland stratum, the suitable HRA
varied more, from 60 to 90 km, and the variance reduction
was slower than in the case of mineral soils (Fig. 11). When
the average number of sample plots in the training data was
studied instead of the HRA, a near minimum RMSE was
achieved with 150—300 sample plots. However, increasing
the number of sample plots to between 400 and 500
decreases the error of both strata. Increasing the HRA to
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100 km and over did not increase the global relative RMSE
of the total volume estimate, except for two images on
mineral soil stratum.

The RMSE of the volume estimates for spruce and pine
reached a local minimum with a slightly smaller HRA
radius than that for the total volume. As the RMSEs were
not significantly higher, if the HRA was the same as with the
total volume, the same radius could be used.

The number of sample plots is more important than the
geographical distance when subsets of the original sampling
design were selected for the field plot data (Fig. 12).
However, when the estimation was made with the training
data containing sample plots only beyond a 50—60-km or
larger HRA radius, the spruce and pine volume estimates
were significantly biased in the subareas of the South-
western Finland study area (Fig. 8). These radii are compar-
able with results presented by Tokola (1998).

It can be concluded that in the boreal forests of Finland, a
40-50-km geographic HRA radius for mineral soil is
suitable, depending on the intensity of sampling. This also
yields a reasonable amount of variation in the sample plot
data (400—600 sample plots) for subclasses of variables
(Fig. 6) and does not lead to significant biases within the
subareas of an image. Nilsson (1997) found the same
number of sample plots sufficient for a total volume
estimation on the FRYL with simulated forest map and
Landsat TM data.

On the average, the peatlands account for 26.6% of the
FRYL in southern and 40.6% in northern Finland (Finnish
Forest Research Institute, 1999), that is to say, less than the
mineral soils. Thus, a geographical HRA radius of 60 km for
peatland-dominated areas and 90-km radius for areas with
low peatland proportion is recommended for the Finnish
MS-NFI. However, if the average amount of sample plots in
the training data falls below 300, stratification may not be an
appropriate method.

The VRA, together with normalised intensity values,
decreased the global relative RMSE of the total volume
estimate on the mineral soil stratum in Northern Finland
(Fig. 13). Changes in altitude have a clear impact on the
vegetation in Northern Finland (Seppild & Rastas, 1980).
The VRA distance of +100 m alone did not, however,
affect the global RMSE of volume estimates, but from
earlier experience, it is known that it decreases the bias of
the estimates in vertical subareas.

The RMSEs of the volume estimates were high at the
pixel level, but seem to be of the same magnitude for the
same strata for the different study areas and satellite images
(Table 4). The worst estimates were obtained for the mixed
pixels, i.e., those near stand boundaries. The explanatory
powers as measured by R * 2 increased to over 0.5 for the
total volume estimates when the sample plots near the stand
boundaries were omitted from the cross-validation (cf.
Tokola & Kilpeldinen, 1999).

The estimates for the surveyed area will be biased, if
there is a locational dependency in the spectral values

of pixels within the HRA (Kilkki & Péivinen, 1987).
Kilkki and Pédivinen (1987) proposed the use of the
same (locationally uncorrelated) training data for each
pixel of the surveyed forest area. In the Finnish MS-
NFI, a fixed size moving HRA is applied and artificial
boundaries are avoided (Tomppo, 1991). The locational
dependencies for FRYL within the HRA satellite images
are quite difficult to model explicitly due to the com-
plexity of imaging systems, atmospheric attenuation and
target reflectance properties. In the operative inventory,
the global and local unbiasedness of the estimates were
checked using the cross-validation method and large area
forest statistics prior to the classification. A knowledge
of the range and shape of vegetation cover changes
(Fig. 1) has been used to define the appropriate form
and size of the reference areas (rectangular or circle)
(Tomppo, 1996).

In this context of local unbiasedness, obtaining a variable
number of field plots in the training data for each pixel, due
to image boundaries and proportion of FRYL, seems to have
only minor effects on the precision of the MS-NFI results
within the particular image. There were no significant
differences in the global RMSE and bias of the total volume
estimates between the selection of training data with a
constant number of sample plots HRA or using geographic
HRA (Fig. 9). The study of the biases by subareas also
failed to reveal significant differences between the two
training data selection methods.

These results do not cover the problem which is present
particularly when trend-like large-scale changes occur in
forests. The small area estimates are highly dependent
upon how the area is located with respect to the applied
satellite image. The satellite images obtained for the
inventory area of a certain year form an image ‘mosaic.’
Since each satellite image will be analysed separately,
neighbouring pixels, or small areas, may employ training
data from a different geographical reference area depending
on how the area is located with respect to the applied
satellite image.

Other possible ways to define the geographic HRAs
could be a combination of VRA and HRA — an ellipsoid,
or the mean effective temperature sum of thermal season
and vegetation zones as a surface use of 7 h. However,
because the forests in Finland are not in a natural state, the
pure edafic and climatic factors may only partly explain the
location dependent variation in the forests. In addition, the
silvicultural regimes vary between forest owner groups —
private, state and companies.

New and enhanced map data, e.g., soil and bedrock
maps, could be studied for stratification purposes in the
future, since there will be more digital map data available.
The Finnish MS-NFT is proceeding in its 9th cycle and the
independent 8th MS-NFI estimation result could also be
tested for stratification purposes. More directly, the succes-
sive MS-NFI image cover intensity values could be used as
multitemporal features.
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Error variations at the pixel level in the k—nearest
neighbour estimates of the Finnish multisource National
Forest Inventory
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Abstract

The paper examines the residual variation in the k—nearest neighbour (k—NN) es-
timates of the Finnish multisource National Forest Inventory (MS-NFI). In the
MS-NFI, field plots, satellite images and digital maps are utilised. The prediction
errors at single pixel level for field plot volume and weighted mean of basal area
(BA) observations were studied applying leave-one-out cross-validation method
and potential explanatory covariates were seeked. The standard deviation of the
field plot variable from the k neighbours was a good measure of the estimation
uncertainty. The first principal component (PC1) of the Landsat TM or ETM+
channel values of the field plot pixel had a strong relation to the volume and BA
estimates and to the prediction error. The residual variances of field plot volume
were regressed against PC1 and the model was used to remove the trend compo-
nent of PC1 from the residuals. The random error component still remained high
in the residuals.

Keywords: cross-validation, k—nearest neighbours, Landsat TM and ETM+, mul-
tisource forest inventory, prediction error



1. Introduction

In recent years, there has been a growing interest in obtaining national forest inven-
tory results for small areas, i.e. for municipalities and forestry holdings (Schreuder
et al. 1993, Tomppo 1996, Kangas 1996), and even for forest stands (Tomppo
1987). For this purpose, auxiliary data is required in addition to sparse field mea-
surements. In multisource inventories, remote sensing and numerical map data
is combined with the forest inventory data to obtain estimates of forest variables
for single pixels (Tomppo 1996, Tokola et al. 1996, Nilsson 1997, Franco-Lopez
et al. 2001). Since 1989, the Finnish multisource National Forest Inventory (MS-
NFI) has utilised optical area high resolution satellite images, numerical map data
and field plot data to produce thematic maps and forestry statistics for munici-
palities. All the forest variables can be estimated simultaneously by employing
a non-parametric k-nearest neighbour (k—NN) method. A large number of field
plots is required because the training data should cover the range and variation
present in the inventory area (Tomppo 1996, Katila & Tomppo 2001).

Multisource inventory methods involve several sources of error because they com-
bine measurement data and models of different nature and scale. In the MS-NFI,
the data at each step is produced by an explanatory model or standardised rule: the
land use classes are defined by certain rules, volume models are employed for sam-
ple trees, the satellite imagery exo-atmospheric radiances are calibrated to digital
numbers using linear models.

There have been various attempts to represent the spatial variation of the classifi-
cation error. Error maps have been produced by employing extrapolation of errors
from the training data set (Steele et al. 1998), magnitude and partitioning of class
membership in fuzzy classification (Zhang & Foody 1998) and geostatistical ap-
proaches to model the variation in accuracy (DeBruin 2000).

In the £-NN estimation, the overall error is minimised by tuning the estimation
parameters. Error quantification methods include resampling techniques such as
leave-one-out cross-validation and bootstrap methods (Katila & Tomppo 2001,
Franco-Lopez et al. 2001). The numerous error sources increase the uncertainty
in the MS-NFI estimates. The prediction errors, described with relative RMSE for
mean volume estimates at the field plot level, have been high, 50-80 %, and the
proportion of explained variation in the field plot data has been 3040 % (Tokola
et al. 1996, Katila & Tomppo 2001).



The spectral channel values of Landsat TM and ETM+ satellite images contain
little variation in the well-stocked stands (Ardo 1992). It might be expected that
variation in the estimates increases, as the volume of the target (field plot) in-
creases. If there is a functional dependence between observable covariates and the
prediction error, a model can be estimated for the given form of heteroskedasticity,
c.f. heteroskedastic linear regression models (Polasek et al. 1998).

The objective of this paper is to study the residual variation in the k~NN estimation
and to determine whether there is a functional dependence between the residuals
and covariates or other exogenous variables. In addition, some suggestions are
made for reducing the random error in the k~NN estimates. This paper is one step
in deriving an analytical method for estimating the error of multisource estimates
from pixel level to region level. The next phase will be finding suitable models to
estimate the k-NN estimation error, taking into account the spatial dependencies
of the errors. The explanatory variables should be such that their values can be
obtained for every pixel. Potential explanatory variables are target field plot pixel
values, the estimated values of forest variables and the variables of the selected
k-NN field plot pixels (forest and spectral variables). A simple empirical error es-
timation model is tested for the MS-NFI data. The leave-one-out cross-validation
method is employed for the error prediction at the single pixel level. The behaviour
of the prediction error is studied in a realistic setting created by two geographically
different study areas in Finland.

2. Material

The two study areas are located between longitudes 21°40'E and 31°36’E and lat-
itudes 61°21’N and 63°50'N (Fig. 1). The test data contains field measurements
from the 9th NFI and satellite image data from the same years (Table 1). The
Western Finland study area contains large peatland areas and the Eastern Finland
study area consists largely of medium fertile mineral soils (Table 2). The forests
of the study areas are characterised by Scots pine (Pinus sylvestris L.) or Norway
spruce (Picea abies (L.) Karst.), mixed with birch (Betula spp.) and other decidu-
ous species.

The NFI field samples were measured from systematically located clusters of sam-
ple plots. The sample plots (10-18 per cluster) were located along a rectangular
or L-shape tract at 250 or 300 m intervals, depending on the area. The average
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Fig. 1. Location of the study areas and path, row and time of acquisition of the
Landsat 5 TM and Landsat 7 ETM+ images employed.

Table 1. Study areas: satellite images of the 9th MS-NFI and field inventory data.

Field plot data Satellite image

study area land forestry year cluster plots per  Landsat date

area land distance cluster path/row

(km?) (%) (km)
Western Fin- 13920  72.7 1997 7x7 18/14(a) LsS TM  13.6.1997
land 191/16
Eastern 14660  88.8 2000 7x17 18/14(a) Ls7 ETM+  10.6.2000
Finland/north 186/16-17
Eastern 6670 86.9 2000 6x6 14/10(b)  Ls7 ETM+  10.6.2000
Finland/south 186/16-17

(a) Every fourth cluster had 14 field plots.
(b) Every fourth cluster had 10 field plots.

field plot location error has been estimated to be 20 m (Halme & Tomppo 2001).
This is caused by map error and field plot location applying precision compass
and tape. Trees were measured on parts of field plots belonging to forest and other
wooded land (FOWL) stands. The tally trees were selected with PPS-sampling
(sampling with probability proportional to size), applying a relascopic factor of
two. The probability of a tree’s inclusion was proportional to its cross-sectional

4



area at a height of 1.3 m; a maximum radius of 12.52 m was used. The distance of
the nearest forest stand boundary from the field plot centre point was recorded by
10 m classes from O to 40 m and the bases for stand delineation were recorded, e.g.
land use class, site class, development class, tree species composition and storey
and completed drainage (Tomppo et al. 1998, 2001).

In addition to field plot measurements, three basal area (BA) observations were
made on forest land, in the stand to which the field plot is located. The first BA
measurement was made from the field plot centre point, if the BA observation was
not transected by another stand. The two other BA measurements -or all three-
were made at a distance of 20 m to the field plot centre, preferably from two of
the four main cardinal directions (Fig. 2). The basal area factor two was applied.
If a field plot was cut by a stand or land use class boundary, the entire plot was
considered to consist of two or more parts. The BA observations were made on
each field plot part (stand) belonging to forest land: more precisely, on the field
plot centre part and on the other field plot parts, where there were tallied trees.

K = field plot center I
A = preferred BA locations
B = optional BA locations

l tract line
Sorw

Fig. 2. Location of three basal area measurement points on the field plot stand.

For field plot parts belonging to forest land, a weighted mean of the three BA
observations G5 in each field plot part was calculated to better estimate the BA
on the area of a pixel (625m?). If there was a BA observation from the field plot
centre point, it was given a weight of 0.5, while the other two observations were



given a weight 0.25. Otherwise equal weights were employed. For other wooded
land, the BA estimated by the crew leader was used. Finally, the BA estimates
from each field plot part were combined for the whole field plot, weighted by the
proportions of the assessed areas of the field plot parts. It must be noted that the BA
observations contain measurement error because the border trees are not checked
and observations are biased towards the centre of the stands.

The field plots that were totally on forestry land (FRYL) were selected from the
NFI field sample for the following analyses. They were divided into forest land,
other wooded land and waste land, according to site productivity (Table 2) (Tomppo
et al. 1997). The mean and the standard deviation of the volumes of the field plot
measurements and weighted mean of BA observations on forest and other wooded
land are presented in Table 3.

Table 2. The land use class distribution of the forestry land field plots and the
proportion of field plots on peatland and mineral soil strata according to the site
class map, by study areas.

forest other waste forestry  peatland mineral
land wooded land land stratum  soil
land stratum
study area (%) plots (%)
Western Finland 89.5 5.7 4.8 4829 394 60.6
Eastern Finland 95.3 2.4 2.3 7492 28.0 72.0

Table 3. The mean and the standard deviation of the volume of the growing stock
and the weighted mean of basal area (BA) observations of the field plot parts on
forest and other wooded land by study areas.

Western Eastern

Finland Finland
variable Y s Y S
Volume (m>/ha) 93.7 82.0 110.0 94.6
BA (m?) 13.8 9.3 15.5 10.0

The Landsat 5 TM and Landsat 7 ETM+ satellite images were rectified to the
national grid coordinate system using regression models of the first order polyno-
mials calculated from 53 to 71 ground control points. These were identified from
topographic maps and satellite images. The RMSE of the rectification model from



the panchromatic image data, together in the direction of rows and columns, was
0.63 and 0.18 satellite image pixels (30x30 m?) for the Landsat 7 images 186/16
and 186/17 respectively. The RMSE for Western Finland Landsat 5 image was
0.55 pixels. The channels 1-5 and 7 from Landsat 5 and all the eight channels of
Landsat 7 ETM+, including the thermal and panchromatic channels, were used in
the k-NN estimation. Nearest neighbour resampling was used with a pixel size of
25x25 m? for all the channels (Tomppo 1996).

A multi-criteria procedure to reassign the satellite image information to the field
plot data was employed in the Western Finland study area (Halme & Tomppo
2001). A weighted function of the correlation coefficients of the selected image
and field variables is used as a scaling function in the multicriteria optimisation.
This procedure reduces the effect of the locational errors on the training data and
decreases the prediction errors, particularly for the total volume estimates.

A topographic correction for the digital number (DN) values of satellite image
spectral channels was carried out using a modification of the Lambertian surface
reflectance assumption (Tomppo 1996).

3. Methods

3.1. Multisource National Forest Inventory estimation method

In the operative MS-NFI, multisource estimates are computed for FRYL pixels.
Cloud-free FRYL areas of a satellite image are analysed using the FRYL field
plots ¢ chosen for the training data set. Field plots with uncertainty concerning
their location, and those that contain non-FRYL land use classes, are excluded
from the training data set; the excluded proportion is usually in the range of 2-6
%.

The MS-NFI estimates are weighted averages of the field plot variables. The &~-NN
method is used to calculate the weights (Keller et al. 1985, Tomppo 1991). Data
from the k nearest field plots, i1(p), ..., ix(p), in the feature space are utilised in
the analysis of each pixel p. The field plots are sorted according to distance d, ,,
between field plot pixel p; and p in the image feature space, and the k nearest plots
are then chosen.



Stratification of the FRYL area and the training data to peatlands and mineral soils,
according to a numerical map data, has usually been executed in such a way that
only pixels within the same stratum as the target pixel are accepted as neighbours.
The horizontal geographical reference area (HRA), i.e. the maximum geographical
distance to the potential nearest neighbours, has been restricted to 40 to 90 km due
to gradual changes of vegetation type and, is selected by image.

The weight w; ;, of the field plot 7 for estimating the value for the pixel p is defined
as

G Lielia@)rmin(®) —————-T(dpjyzl,-f-c) , ifd € {ia(p), -, ik (p)} "

’lUi’p =
0 otherwise,
where {i1(p), ..., i (p)} is the set of the field plots whose corresponding pixels
are the k nearest neighbours to the pixel p. Here, a value ¢ = 1 is applied for the
weighting parameter (Katila & Tomppo 2001) and an arbitrary constant ¢ = 1 is
added to the Euclidean distances to smooth the weighting of 0 distances.

The weight w; ;, can be interpreted as the share of the pixel p that obtains data from
the field data vector of plot ¢. For a single pixel p, the estimate of the average of a
continuous variable is,

o= > Wip-yi )
1€FRYL

where y; are the values of variables in the training data set.

3.2. Results validation and parameter selection

The choice of estimation parameters, k£ and geographical HRA radius, was tested
using the leave-one-out cross-validation method: a single field plot pixel p; be-
longing to the ground truth data set was estimated with the other plots (Linton &
Hirdle 1998).

The root mean square error has been used as a measure of reliability of the contin-
uous variables (eq. 3).

n Ao )2
RMSE:\/;EL(%_L)’ 3)

The estimates of biases and the standard error of biases have been used as further
criteria (Katila & Tomppo 2001). Residuals, e; = 3; — v;, of the main field plot




variables were produced for each observation i in the training data from the cross-
validation.

3.3. Indicators of estimation uncertainty from field plot variables

The values of total volume and weighted mean of BA observations for the selected
k neighbours were studied in each validated field plot. The standard deviation of
the k neighbours’ field plot values for the variable estimated was used to evaluate
the uncertainty of the k~NN estimate of each observation. The greater the devia-
tion between the neighbours, the greater is the expected prediction error , cf. class
membership probabilities from statistical classification (Canters 1997).

The average sampling error of the field plot BA G; estimated from tally trees used
to estimate the BA of a larger area (a pixel) was studied using the difference be-
tween the field plot centre point BA and the weighted mean of BA from the three
observations, G55 — Gj. For a single field plot, a high difference indicates that
the field plot measurement differs from the average BA of the surrounding forest
stand.

3.4. Variables describing the spatial neighbourhood and the Eu-
clidean feature space neighbourhood

The edges in the spatial neighbourhood of the field plot were studied employing
differences of field plot pixel and the pixel values in the surrounding 3 x3 window,
the number of non-FRYL pixels in the 3x3 window (from the numerical map
data) and the magnitude of maximum change in pixel values in the 5x5 window
of Landsat 7 Pan image of the Eastern study area, as defined by Sobel gradient
operator (Gonzales & Woods 1993). The principal component transformation was
applied to the field plot pixel spectral channel values of the study areas. The trans-
formation was made on the covariance matrix. In Table (4), the first principal
component (PC1) contains 81 % of the variation in the spectral channel values in
the Western Finland study area. PC1 is a weighted sum of all bands and Horler &
Ahern (1986) call it the spectral brightness-type feature.

The k-NN estimates may be biased at the edges of the spectral feature space be-
cause the k~-NN method cannot extrapolate beyond the observations in the training
data. Suitable variables for describing the spatial distribution, direction and clus-



Table 4. The eigenvectors for the principal components, reassigned training data,
Western Finland study area.

Eigenvector TM channel Variation

explained
1 2 3 4 5 7 %

1 0.14  0.11 0.18 0.34 0.83 036 814

2 -0.05 0.00 -0.12 093 -025 -023 15.1

3 0.83 029 039 003 -0.28 0.02 22

4 -041  0.13 0.48 0.09 -0.37 0.66 0.7

5 -0.31  0.18 0.68 -0.04 0.17 -0.61 04

6 -0.16 093 -0.34 -0.05 001 -0.02 0.1

tering of the k neighbours in the feature space were tested.

One measure of the spatial distribution of the neighbours around the pixel value
to be estimated was obtained by dividing the spectral feature space into two half
spaces applying a hyperplane that goes through the field plot pixel spectral vector
pi. The difference between the number of nearest neighbours in the the half spaces
was calculated. The hyperplane H; = {p; € R" | (w;,p;) < a} divides the
feature space R™ to open half spaces (Fig. 3). The normal vector w; that defines
the hyperplane and is perpendicular to it was obtained by subtracting the target
field plot pixel spectral vector p; from the spectral value vector p; estimated for
the field plot by the k~NN method. In this way, the number of nearest neighbours
was expected to be distributed as unevenly as possible into the halfspaces.

The polar coordinates of the k neighbouring spectral values from the target field
plot pixel were calculated on a plane formed by the two first principal compo-
nents of the training data set. The mean of the angles 6; ; between the adjacent
neighbours was used as a measure of the spatial distribution of the neighbours.

Other variables in the feature space of the k£ neighbours were the distance to the
first nearest neighbour, the standard deviation of the nearest neighbour distances
and the Euclidean distance dp, 5, from the true pixel value to the channel values
estimated with £-NN to the field plot pixel.
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Fig. 3. Hyperplane H; defined by normal vector w; and field plot pixel spectral
vector p;.

3.5. Specific error models

It was soon noticed that the PC1, the spectral brightness value, of the target pixel is
a dominating explanatory variable for the residual variation in the k—NN estimates.
The pixels with low PC1 values obtained the highest estimates and also the highest
absolute residuals in the ~~NN estimation. An attempt was made to remove the
effect of the spectral brightness value from the k~NN volume estimate residuals
obtained from cross-validation. The effect of PC1 on the volume residual variance
was modelled by assuming the variance to be a multiplicative function of two
components

¢ = f,62 @)

with the trend component f; estimated from E(e?) = f(PC1). Generalized lin-
ear models were estimated employing Poisson regression with a logarithmic link
function. The E(e?) follows Poisson distribution and the log transformation is
used to adjust for the skewness in the Poisson distribution. The PC1 trend was re-
moved from the field plot volume residuals and the remaining variance component
0; =e;/ m was studied against the potential explanatory variables.
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4. Results

4.1. The selected parameters for k.—NN estimation

The estimation parameters for the k~NN method were selected on the basis of
the pixel-level estimates of the variables. The goal was to obtain accurate volume
and BA estimations in the two strata. The pixel-dependent geographical HRAs,
which were found to be optimal in the earlier study, were used because a sufficient
number of field plots should remain in the training data (Katila & Tomppo 2001). k
values of 5 for the peatland stratum and 10 for the mineral stratum were chosen for
estimating the field plot volume and BA. These values were near the ones obtained
in the earlier study (Katila & Tomppo 2001) and were considered sufficiently large
because the obtained RMSE:s for the field plot volume were, in the Western Finland
study area, only 1 % and 6 % larger than the minimum RMSE values for the
mineral soil and peatland strata respectively. The significant global bias of the
volume estimate in the Eastern study area was not considered a major problem in
this study. Most of the results presented hereafter have been estimated with the
reassigned training data (Halme & Tomppo 2001) that includes all the FRYL field
plots not intersecting stand boundaries. The prediction errors, and the employed
estimation parameters for the FRYL field plots on mineral soil and peatland strata,
for the Eastern Finland (with minimum distance of 30 m to the stand boundary) and
Western Finland study area (using the reassigned training data) are summarised in
Table 5.

4.2. Visual inspection of residuals

In the following, the residual pattern figures are presented mostly for the Western
Finland study area mineral soil stratum. Figures from other study areas and strata
are also presented if the residual patterns are notably different.

There is a negative correlation between field plot volume and most of the re-
flectance values of the Landsat satellite images. The low dynamic range of Landsat
image spectral channel values on FRYL, the large amount of noise, small size of
field plot and other type of errors caused considerable variation in the scatter plot
of the field plot volume and PC1 of the spectral channel values, although the loca-
tional errors in the training data were reduced by reassigning the spectral values to
the field plots (Halme & Tomppo 2001) (Fig. 4).
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Table 5. The absolute and relative RMSE and bias (€), the standard error of the
bias (s(€)) for the weighted mean of basal area (BA) observations and field plot
volume estimates, mean () and the standard deviation (s(y)) of the variable and
R*? coefficient. Stratification and different geographical horizontal reference area
(HRA) radius according to the site class map, forestry land field plots with mini-
mum distance > 30 m to the nearest stand boundary (Eastern Finland study area)
and forestry land field plots not intersecting stand boundaries, reassigned training
data (Western Finland study area).

study  strata variable g RMSE RMSE e s(g) s(y) R*? No.
area /HRA (k-NN) plots
Eastern mineral BA (mZ/ha) 160 5.9(10) 369 (%) -020 0.18 109 0.71 1026

Finland 50 km volume (m3/ha) 1143 67.3(10) 588(%) -435 2.10 101.8 0.56

peatland BA (m?/ha) 109 4.8(5) 437 (%)  0.36 024 9.0 072 393
80 km volume (m3/ha)  64.4 44.4(5) 68.9 (%) 196 224 699 0.60

Western mineral  BA (m2/ha) 145 5.0(10) 34.6 (%) -0.11 0.10 102 0.76 2768
Finland 40 km volume (m3/ha)  98.8 45.1(10) 458 (%) -1.41 0.86 879 0.74

peatland BA (m?/ha) 9.5 4.0(5) 423 (%) -0.18 0.11 85 0.78 1235
60 km  volume (m®ha) 54.1 30.1(5) 55.6 (%) -1.57 085 61.6 0.76

Note: Significant bias is printed in bold font.

450F + + + Field plot volume
® ® ® Estimated plot volume

350
300
250 3%
200
150
100

50

PC1 of TM channels

Fig. 4. Field plot volume and estimated volume plotted against the PC1 of channel
values for the field plot pixel. Western Finland study area, mineral soil stratum,
reassigned training data, k= 10, 40 km geographical horizontal reference area.

The k-NN estimation (k =10) of the field plot volume reduced much of the vari-
ation, but averaged the results; high volume estimates are missing (Fig. 4). Em-
ploying a small value of £ would slightly decrease the shrinkage towards mean,
and would globally better preserve the original variation in the field plot data, c.f.
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Franco-Lopez et al. (2001). On the other hand, this may yield a RMSE value larger
than the standard deviation of the observations (McRoberts et al. 2002). The esti-
mated volume and the variation of the residuals had a relatively strong correlation
(Fig. 5).

200F

residual m3/ha

.
-200f e e

=300k s " L s ) " L
0 50 100 150 200 250 300 350
estimated volume m3/ha

Fig. 5. Residuals e; of the field plot volume estimate plotted against the estimated
field plot volume ;. Western Finland study area, mineral soil stratum, reassigned
training data, k= 10, 40 km geographical horizontal reference area.

Field plot variables

The standard deviation of the k—neighbours’ field plot values correlated with the
residuals of the variable to be estimated, field plot volume and weighted mean of
BA observations (Figures 6b and 6d). The average of the differences of field plot
BA and the weighted mean of BA from the three observations, G,,s — G;, in the
selected k£ neighbours correlated weakly with the field plot volume residuals only
at the extreme values of neighbours’ average G, — G; (Fig. 7b).

Spectral variables

The highest residuals for the estimates of field plot volume and weighted mean of
BA observations occurred at the low end of the PC1 values (Fig. 6a and 6c). In
the spatial neighbourhood of the field plot pixels, the variation between the centre
pixel and the surrounding pixels is related to the spectral brightness (PC1) of the
pixel value. The highest volume residuals had the lowest variation in the field plot
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Fig. 6. Residuals e; of the field plot volume estimate and the first principal com-
ponent of the spectral channel values (PC1) (a) and standard deviation of the k
neighbours’ field plot volume (std_mvol) (b), residuals e; of weighted mean of the
basal area observations estimate and PC1 (c) and the standard deviation of the k&
neighbours’ weighted mean of BA observations (std_wba3) (d). Western Finland
study area, mineral soil stratum, reassigned training data , k= 10, 40 km horizontal
reference area.

pixel values as well as in the spatial neighbourhood. Consequently this variable
was not useful.

The delineation of stand boundaries in the field is often defined by criteria other
than those visible on the Landsat PAN images, e.g. tree species composition or
site index. However, the stand boundaries with other land use classes and between
different development classes obtained high Sobel gradient magnitude values. On
average, the k-NN volume estimates were biased downwards on the field plots
with high edge magnitude. Apart from this trend, there was no clear dependence

between the field plot volume estimate residuals and Sobel gradient magnitude
(Fig. 7a).

The nearness of non-FRYL indicated by the non-FRYL map pixels in the 3x3
window caused systematic bias in the field plot volume estimates in the two study
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Fig. 7. Residuals e; of the field plot volume estimate and Sobels edge gradient
from a 5x5 window of Landsat ETM+ Pan channel (12.5x12.5 m?) (a) and the
mean of k neighbours’ G5 — G; (mea_dba3) (b). Eastern Finland study area,
mineral soil stratum, minimum distance > 30 m to the nearest stand boundary,
k=10, 50 km horizontal reference area.

areas. The field plot volume was underestimated with nearness of other land use
mask pixels, e.g. agricultural or built up land. However, when the number of other
land use pixels increased to over six pixels, the bias disappeared, partly due to
the decreased volume of the target field plots. The few field plots close to water
obtained overestimates of volume (Table 6).

Table 6. The average residual e of the field plot volume estimate and the number of
non-forestry land pixels in a 3 x3 window according to numerical map data, Western
Finland study area, mineral soil stratum, all forestry land field plots.

other land water

n € n €
no. of pixels (m®/ha) (m®/ha)
0 2893 0 3210 -3
1-3 295 -23 39 24
4-6 45 -28 9 55
7-9 27 2 2 193
All 3260 -2 3260 -2

The distance between estimated and the true channel values dp, 5, (Fig. 8a) was
not correlated with the residuals of volume estimates and weighted mean of BA
observations estimates. The distance d,,, 5, was correlated both with the distance
to the first nearest neighbour and the standard deviation of the nearest neighbour
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Fig. 8. Residuals e; of the field plot volume estimate and the Euclidean dis-
tance between target field plot pixel and k~~NN estimated spectral channel values
(euc_eoch) (a), the difference in the number of neighbours between two halves of
feature space (b) and the first principal component of the spectral channel values
(PC1) and standard deviation of the k£ neighbours’ field plot volume (std_mvol)
(c). Western Finland study area, mineral soil stratum, reassigned training data ,
k=10, 40 km horizontal reference area.

distances. These distance measures were, in turn, weakly correlated with PC1;
with low PC1 values, the neighbour distances are small.

The difference in the number of nearest neighbours between half spaces and the
small polar coordinate angles between nearest neighbours should indicate an un-
even spatial distribution of the nearest neighbours in the feature space. However,
there was no clear dependence between the number of nearest neighbours in the
halfspaces (Fig. 8b) or the average polar coordinate angle ¢; ; of adjacent nearest
neighbours and the residuals of volume or weighted mean of BA observations.
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4.3. Specific error models

The spectral brightness value (PC1) of the target pixel was a dominating explana-
tory variable in the error analysis: low PC1 value pixels obtained the highest esti-
mates and also had the highest variation in the residuals of the k~NN estimation.
Possible explanatory variables based on the spectral channel values in the spatial
neighbourhood or in the nearest neighbours contained little variation at the low
PCI field plot pixel values. For example, the standard deviation of the k neigh-
bours’ field plot volume was strongly correlated with PC1 of the spectral channel
values (Fig. 8c).

Generalized linear models were used to regress the residual variance against PC1
of spectral features and its transformations. The aim was to remove the effect of the
spectral brightness value from the volume residuals of the cross-validation. The
Poisson regression models had a significant goodness of fit and parameter standard
errors. The models captured the average trend between PC1 and the variance of
the volume residuals.

The models explained most of the trend in error variance correlated with PC1 (Fig.
9a). The variation of the residual component §; had the strongest correlation with
the standard deviation of the k& neighbours’ field plot volume (Fig. 9b).

residual gl_difvol
residual gl_difvol

-9k b n " L N " "
-30 -20 -10 0 10 20 30 40 50 o 20 40 60 80 100 120 140
PC1 of T™M channels std_mvol m3/ha

Fig. 9. Residual component §; of the field plot volume estimate with variance
component of first principal component (PC1) removed by Poisson regression
(gl_difvol) and PC1 of the spectral channel values (a) and standard deviation of
the k neighbours’ field plot volume (std_mvol) (b). Western Finland study area,
mineral soil stratum, reassigned training data , k= 10, 40 km horizontal reference
area.
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5. Discussion

The residual variation of the k~NN estimates of the field plot volume and the
weighted mean of the BA observations was studied employing the prediction errors
from leave-one-out cross-validation. The appropriate estimation parameters, e.g.
k and geographical HRA, were selected as a compromise between minimising the
overall error and retaining some of the original variation in the field plot data in
the spatial variation of the estimates (Katila & Tomppo 2001). Potential variables
explaining the variation in prediction error were sought, based on knowledge of
the error components in the MS-NFI estimation. The standard deviation of the k
neighbours’ field plot variable was a good measure of the estimation uncertainty
and was correlated with the k~NN estimates of the variable. The nearness of the
non-FRYL map mask increased the bias in the estimates. The spectral brightness
of the field plot pixel (PC1) had a strong relation to the volume and BA estimate,
and to the uncertainty of the k—NN estimate. The prediction errors were higher at
the lower end of the spectral brightness values, as the correlation between the field
variables and the remote sensing variables weakened. In a variance model of the
field plot volume residuals, the PC1 value of the field plot pixel explained most of
the non-random variation.

In the resampling methods used to estimate the prediction error, the observations
at the edges of the feature space obtained neighbours from one direction only.
However, the variables describing the spatial distribution of the k& neighbours in
the feature space did not clearly correlate with the volume or BA residuals in this
study. Although this error component was not very distinct, an advanced non-
parametric method could remove a part of this error, e.g. symmetrized k-NN
estimator (Linton & Hirdle 1998) or local adaption of non-parametric methods
(Malinen 2003).

The k—NN estimates of forest stand border pixels have larger bias than those in-
side the stands (Tokola & Kilpeldinen 1999). Thematic map errors frequently oc-
cur at patch boundaries and are associated with the misregistration of map data
and mixed pixels (Foody 2002). The errors in the pixel-level estimates are often
spatially correlated (Congalton 1988, Flack 1995). In this study, only field plots
with a minimum distance of 30 m to the stand boundary or field plots not inter-
secting stand boundaries (reassigned training data) were used. If all the FRYL
field plots were applied in the cross-validation, the prediction error variation in the
results would be higher and the dependencies between residuals and explanatory
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variables would weaken. The effect of the neighbouring pixel values on the esti-
mation errors was analysed using the DN values of Landsat TM and ETM+, Sobel
gradient magnitude from Landsat 7 Pan images and the number of non-FRYL map
pixels in the 3x3 window. Only the map data was demonstrated to be useful in
the error detection (Table 6). Katila & Tomppo (2002) applied MS-NFI by map
strata, an idea that is supported by these results. Furthermore, new strata should
be formed to estimate separately the boundary pixels of water, other land use and
FRYL.

The Euclidean distances of field plot pixels in the feature space were not directly
related to the differences in the field plot variable values (Fig. 4). A distance
measure related to the variation in the field plot variable might be more easily
interpreted, e.g. Tokola et al. (1996) employed differences between the regression
estimates of forest stand characteristic.

Since the spectral brightness value of the field plot pixel was correlated with the
residual variation and also with the other explanatory variables, an attempt was
made to remove this trend from the residuals using a variance model (eq. 4). Pois-
son regression models were fitted to the residual variance and PC1. Although the
parameters of the models were significant, separate models for the low and high
values of PC1 might have worked better. The £-NN estimates themselves, e.g.
from the produced thematic map data, can be used in posterior analyses of uncer-
tainty in the estimates. The estimated volume could be employed as a dependent
variable and modelling of the error variance could occur after the estimation.

Explanations of the magnitude and direction of residuals seemed to be case sen-
sitive. When the field plot values and the potential explanatory variables were
studied together with a display on the numerical map data and the remote sensing
data, several explanations for the error presented themselves: mislocation of the
field plot, the radiation from the surrounding land use classes or stands, the de-
viation of the target field plot from the surrounding forest and extreme field plot
variable values (e.g. BA 40 m?/ha or greater).

By reducing the main sources of error in the MS-NFI, e.g. in the field plot data, it
should be possible to decrease the random error in the k&~NN estimates. Reducing
the effect of the field plot location error in the training data decreases the RMSE
values of mean volume estimates obtained from the cross-validation (Halme &
Tomppo 2001). It also corrects the typical shrinkage towards the mean in the k-
NN estimates and better preserves the original variation of the field plot data in
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the spatial variation of the estimates. The use of BA observations from an area
larger than a field plot decreased the random variation in the training data; s(y)/7
provides the coefficient of variation in Table 5. The relative RMSE of the weighted
mean of BA observations was 10 to 25 percentage points lower than the relative
RMSE of the field plot volume estimates (Table 5).

In the MS-NFI, cross-validation has been applied assuming independent sampling.
If the prediction errors from cross-validation are spatially correlated the parame-
ters obtained may favour undersmoothing (Altman 1990). A solution is to apply
’leave-some-out’ cross-validation (Linton & Hirdle 1998) or to modify the cross-
validation procedure (Altman 1990).

Although a larger field plot size employing weighted mean of BA observations
and the reassignment of the training data removed some of the sampling error
and the locational error, the random error component remained considerable in the
estimates of this study. Since the larger k—NN estimates had also a larger residual
variation and variation in the the selected nearest neighbours, it might be possible
to decrease the prediction error by applying stronger smoothing to the pixels where
high volume estimates will be produced. Again, a local adaptation of the non-
parametric methods could be used, based on the selected nearest neighbours.

New very high resolution satellite data and high altitude aerial photographs are
becoming increasingly available for remote sensing purposes. These data can be
used to survey the location and the representativeness of a field plot by detecting
forest stand edges and mixed pixels.

A future research task in the development of the MS-NFI method is to develop a
reliable method for estimating the error at the pixel level and a method to derive er-
ror estimates for small areas. The error estimates obtained for single pixels cannot
be directly combined to estimate the error in larger areas due to locational errors
in the field plot data and the spatial autocorrelation both in the satellite image and
field data. The error variance of the MS-NFI for small areas could be estimated
by employing models describing the second order properties of the MS-NFI error
estimates obtained from cross-validation for pixels (Lappi 2001). However, the
field plot volume prediction error of the MS-NFI estimates not only depends on
distance between pixels but, e.g. on the true volume. In addition, the k~NN pre-
diction errors may not be treated as the residuals of a trend surface of a spatial
model. The various sources of error in the MS-NFI can reduce the reliability of
the spatial modelling of errors.
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Calibration of small-area estimates for map
errors in multisource forest inventory

Matti Katila, Juha Heikkinen, and Erkki Tomppo

Abstract: A multisource inventory method has been applied in the Finnish National Forest Inventory (NFI) since 1990. The
method utilizes satellite images and digital map data, in addition to field measurements, and produces estimates of all field
parameters for computation units as well as thematic maps. Information from base maps is employed in delineating forestry
land from other land use classes. The map data are not necessarily up-to-date and often contain significant errors. This paper
introduces a statistical calibration method aimed at reducing the effect of map errors on multisource forest resource estimates.
The correction is based on the confusion matrix between land use classes of the field sample plots and corresponding map
information. The proposed method is illustrated in a realistic setting using data from the ninth NFI.

Résumé : Une méthode d’inventaire multi-source a été appliquée dans le cadre de I’inventaire national des foréts en Finlande
depuis 1990. La méthode utilise des images satellite et des données cartographiques digitales, en plus de mesures prises

sur le terrain, et produit des estimés de tous les paramétres de terrain pour les unités de calcul aussi bien que pour les cartes
thématiques. L’information des cartes de base est utilisée pour délimiter le territoire forestier et le distinguer du territoire
affecté a d’autres usages. Les données cartographiques ne sont pas nécessairement a jour et contiennent souvent des erreurs
significatives. Cet article présente une méthode statistique de calibration visant a réduire I’effet des erreurs cartographiques
sur les estimés multi-source des ressources forestieres. La correction est basée sur la matrice de confusion entre les classes
d’utilisation des terres des places-échantillons sur le terrain et les informations géographiques correspondantes. La méthode
proposée est illustrée ici dans un contexte réaliste a 1’aide de données provenant du neuviéme inventaire national des foréts.

[Traduit par la Rédaction]

Introduction

One of the greatest challenges to today’s large-scale forest
inventories is to produce accurate localized results. Estimates
are required for small regions, such as municipalities or forest
holdings, using sample sizes that yield adequately precise es-
timators only for larger regions, such as provinces or forestry
centres. This problem is also familiar, and more widely studied
in the context of official and demographic statistics, where var-
ious strategies have been proposed for small-area estimation,
usually utilizing supplementary data from censuses or admin-
istrative records (e.g., Rao 1998).

For forest inventories, digital maps and satellite images are
the most commonly available useful sources of supplementary
data. Typical topographic map information is helpful in sep-
arating the area of interest, the forestry land, from water and
areas of other land use, though the maps are seldom up-to-date.
Other common problems with map data include location errors,
missing or noncorresponding land use classes, and errors that
arise during data processing, when rasterizing map themes of
small or narrow area, for example.

In the National Forest Inventory of Finland (NFI), conducted
by the Finnish Forest Research Institute, digital maps and satel-
lite images have been used in small-area estimation since 1990.
The applied multisource method (MS-NFI; Tomppo 1991, 1996),
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using the k-nearest-neighbours (k-nn) estimation, has been
proven to yield reliable small-area statistics and to be practical
for operational use. It has gained widespread interest and has
been experimented in Sweden, Germany, Norway, China, and
New Zealand (Tomppo et al. 1999a).

MS-NFI is essentially a two-stage procedure, where digital
maps are applied in the first stage to delineate forestry land
and to estimate its area. Estimation of the area of forestry land
subclasses and the mean and sum of forest variables are then
based on field observations and satellite data within the map-
delineated forestry land. The reason for this is that all non-
forestry land use classes cannot be separated from forestry land
reliably enough with satellite image analysis (Tomppo 1996).

The direct use of digital maps typically yields overestimates
of forestry land area, mostly because some land use masks (e.g.,
power lines and railways) are not always available in the ap-
plied digital maps. On the other hand, nonforestry land included
within the map-based forestry strata reduces the mean timber
volume estimates. In practice it has sometimes been necessary
to calibrate the small-area estimates in such a way that their
aggregation into large regions agrees with the corresponding
estimates from pure field measurements.

In this paper a statistical calibration method is suggested to
reduce the effect of map errors on small-area estimates using
the confusion matrix estimated from a large region. For the
land use class areas, the suggested calibration leads to synthetic
estimators (Gonzalez 1973), whose aggregates over the whole
region agree with unbiased post-stratification estimators (Holt
and Smith 1979). The approach is also found in calibration and
remote sensing literature (Brown 1982; Czaplewski and Catts
1992) as “inverse calibration for classification error,” a method
introduced in Tenenbein (1972). However, our application and
the proposed method are slightly different from the usual

© 2000 NRC Canada
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Fig. 1. Location of the study area, and the municipality boundaries
of the forestry centres.
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classification setting, because the map categories may differ
from the statistics categories.

Objectives of the study

The aims of this study were to develop a calibration method
that could be implemented into the current operational NFI and
to study its behaviour in a realistic setting, using the computa-
tion units and the actual data available from the ninth NFI of
Finland, with all its limitations. To fulfill these aims we could
not always choose the most obvious alternatives. For example,
different types of map errors had to be treated differently in or-
der to integrate the calibration into the current MS-NFI. Also,
we have not yet found a fully satisfactory method of assess-
ing the standard errors of MS-NFI estimators, which makes it
rather difficult to study the properties of calibrated small-area
estimators.

Standard errors are available for large-area estimators from
pure field data and post-stratified land use class area estimators
(the available map data are not useful as a basis for poststrati-
fication in the estimation of forest variables). Accordingly, the
main emphasis here is on the large-area properties: Does cali-
bration improve the agreement of the aggregates of small-area
estimates with unbiased field data estimates? The assumption
of homogeneous map errors over the large regions may natu-
rally lead to biases in the synthetic estimators for small regions.
Their magnitude in the small regions of interest is difficult to
determine, but to reveal significant biases we examined regions
of intermediate area, for which pure field data estimates are
reasonably reliable.

In this study, large regions are represented by forestry cen-
tres and small regions, by municipalities. The primary land use
classes are forestry land (FRYL), arable land, built-up land, land
claimed by traffic and power lines, and water. Forestry land is
further divided into subclasses of forest land, other wooded

Can. J. For. Res. Vol. 30, 2000

Fig. 2. Satellite image mosaic, Landsat 5 Thematic Mapper path
and row and time of acquisition.
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186/16 27.5.1992
187/15 12.8.1994
188/16 2.7.1994
189/17 9.7.1994
189/16 31.8.1996
188/17 24.8.1996
188/16 24.8.1996
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land, and waste land. The union of forest and other wooded
land (FOWL) is of particular importance, because only trees on
FOWL are included in the NFI timber volume estimates; waste
land consists of practically treeless open bogs and rocks. The
statistics considered in this study are the area of the primary
land use classes and of FOWL (essential in total volume esti-
mation), and the mean and total volumes of growing stock of
major tree species.

Material

Field measurements

The study area (Fig. 1) consists of the forestry centres of
Keski-Suomi (total area 19388 km?) and Pohjois-Savo (total
area 19953 km?) in central Finland, located approximately in
the area bordered by 24°10'~28°50'E and 61°20'-64°00'N. Wa-
ter covers 17% of the study area and forest 84% of the land
area. The forests are typical boreal forests dominated by Scots
pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.)
Karst.), which also form mixed forests with birch (Betula spp.)
and other deciduous species.

The study area contains 54 municipalities ranging from 68
to 1589 km*; 30 municipalities are located in Keski-Suomi and
24 are in Pohjois-Savo. The total area and land area of each
municipality were obtained from the National Land Survey of
Finland (1997) and are assumed to be exact in this study.

The field data are from the ninth NFI; both Keski-Suomi and
Pohjois-Savo were sampled during the 1996 field season. A sys-
tematic cluster sampling design was applied, where one cluster
consists of 18 or 14 field plots” located along a rectangular tract

2Three out of four clusters consist of 18 temporary plots; in every fourth cluster,
14 permanent plots were established with few additional measurements.
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Fig. 3. Topographic database (dark grey) and the Base map data
areas.

©National Land Survey of Finland,
permission Nos. 360/MYY/00 and 361/MYY/00

300 m apart (Tomppo et al. 1999¢, 1999b). The cluster refer-
ence points form a square lattice with 7 km between adjacent
clusters. A total of 13 613 field plots, of which 11 275 were on
land, were measured within our study area.

Trees were measured on parts of plots belonging to FOWL.
They were picked up by sampling with probability proportional
to size, the inclusion probability of a tree being proportional to
its basal area. Relascopic factor two was applied on the study
area. Diameter and distance of all boundary trees were measured
to judge whether a tree should be included in the sample.

Supplementary data

Seven Landsat 5 Thematic Mapper images were needed to
cover the whole study area (Fig. 2). Three main images were
from the same year as the field inventory data and covered 90%
of the area. Four additional images from years 1992 and 1994
were used to obtain full cloud-free coverage. Each image was
rectified to the National Coordinate System using regression
models of first- or second-order polynomials, fitted to 30-70
control points, which were identified from base maps. The
nearest-neighbour method was applied for the resampling of
the images to 25 m x 25 m pixel size.

The digital map data are mainly from the National Land Sur-
vey (FNLS) but vary in their quality and accuracy. The Topo-
graphic Database (TOPO) (National Land Survey of Finland
1998) is the most accurate and up-to-date data source, but it
currently covers only 50% of our study area (Fig. 3). For the
rest of the area (to be called ‘BASE area’), the map data are
from several data sources. For example, the arable land mask
was scanned from the 1 : 50 000 basic maps, for which the field
work dates from 1961 to 1985.
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Table 1. Derived map stratification.

Code

(h) Stratum Region
1 Forestry land BASE
2 Forestry land TOPO
3 Arable land BASE
4 Arable land TOPO
5 Buildings and urban area BASE
6 Buildings and urban area  TOPO
7 Other built-up land BASE
8 Other built-up land TOPO
9 Roads Whole
10 Water BASE
11 Water TOPO

By combining the various map data sources we produced a
thematic map (or stratification) that classifies each 25m x 25m
pixel of the study area into one of the 11 strata listed in Table 1.
The stratification was designed in such a way that each stratum
is as homogeneous as possible with respect to the land use class
distribution. To achieve this, each theme, except for the uniform
road mask, was split into BASE and TOPO areas. The forestry
land strata consist of the areas that are left outside all other map
themes.

As in the operational MS-NFI, we also used the digital ele-
vation model and a peatland mask to supplement the satellite
image data in the k-nn estimation, and the digital municipal-
ity boundaries (from FNLS), to delineate the computation units
(Tomppo 1996).

Current NFl methods

The method presented in this paper has been developed as a
modification of the currently operational NFI of Finland. There-
fore the latter is used as the basis for comparisons whenever
possible. The large-area NFI estimates for forestry centres are
based on field data only, whereas municipality level (small-
area) estimates are computed by means of the MS-NFI method
using satellite images and digital map data.

Field data method

Area estimation from pure field data is based on ratios of field
plot counts and on the known land area of forestry centres. The
area of land use class / within forestry centre R is estimated by

[1] AR1=

where n g is the number of sample plots within R that represent

land use class /, ng jand is the number of plots located on land,
and AR Jand is the total land area of R. The area of any subclass f
whose indicator is observed in the field (e.g., forest — other
wooded — waste land or pine — spruce — deciduous-dominated
forest) can naturally be estimated in a similar manner.
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The mean volume within forestry land subclass f of forestry
centre R is estimated by the sample average

[21  Ory= —p

where v; is the mean volume (m3/ha) in field plot i, I, s is
the set of sample plots within R that represents subclass f, and
ng,s is the (random) number of such plots. The total volume
estimator vR is the product of the mean volume estimator ([2])
for f = FOWL and the FOWL area estimator obtained using
[1], and it simplifies to

_ ZiG’R.FOWL viA

[3] Vr R.land

MR, land

These can all be considered as ratio-of-means estimators.
However, because of the spatial correlation of forest variables
combined with the systematic sampling design, the usual vari-
ance estimators (Cochran 1977), based on simple random sam-
pling, are not valid in their accuracy assessment. Instead, the
standard errors are estimated using local quadratic forms as
suggested in Matérn (1960); details are given in the Appendix.

MS-NFI method

In the current multisource method, forestry land is separated
from other land uses on the basis of the digital map data (strata
1 and 2 of Table 1; the term ‘forestry land stratum’ will refer
to the union of these strata). Forestry land subclass areas and
means, and totals of forest variables, are estimated by weighted
sums or averages of field measurements in plot i belonging to
the training data set J C IrryL, which includes all FRYL plots
except for those that are obviously poorly localized in the field
and those that contain non-FRYL parts. In our study, this set
contained 9417 field plots.

Weights for ploti € J are computed as sums of pixel weights
over pixels in the forestry land stratum. The pixel weights, in
turn, are determined by the k-nn method, the details of which
are given in Tomppo (1991, 1996). The basic idea is to use the
satellite image and other supplementary data to find, for each
pixel p within the forestry land stratum, the k most similar
in the training set. Let us denote the field plots correspond-
ing to these “k nearest-neighbours” of p by i1(p)., ..., ix(p).
Non-negative weights w;, , are defined according to the applied
similarity measure in such way that w; , > 0, if and only if
i €{i1(p),...,ik(p)} and

4 Y wp=a
iel

where a is the area of one pixel. The weight of ploti € J to the
forestry land of municipality U is then

51 cu= Y, wip

PEUFRRYL

where Urryr denotes the restriction of the forestry land stratum
to U. Note that ¢; y may be positive also for plots outside U,
which leads to synthetic estimators borrowing strength from
outside the computation unit.

Can. J. For. Res. Vol. 30, 2000

The sum of weights ¢; ¢y over all training set plots is equal
to the area of Urryr. This allows for the interpretation of ¢; i/
as that area of the forestry land of U that is most similar to
plot i. The natural estimator for the area of any forestry land
subclass f within U is then

[6] Zu,f = Z ciUu

ielf

where J; contains the training set plots that belong to sub-
class f. The MS-NFI estimator of the mean volume within
forestry land subclass f of U is the weighted average:

Lies, Ciuvi

M y=
d Zié.’/ Ci,Uu

and that of the total volume is obtained by choosing subclass f =
FOWL and omitting the denominator:

B Vo= Y cuw

ieJrowL

Calibrated MS-NFI estimators

It is obvious that the MS-NFI method is vulnerable to the
failure of the forestry land map stratum in representing the
true forestry land area. In practice, this stratum is usually too
large, leading to the overestimation of the forestry land area. On
the other hand, the nonforestry land pixels typically add to the
weights of low volume plots, which leads to the underestimation
of mean volume.

Here we propose a calibration to the MS-NFI estimators,
based on large-area estimates of map errors. Although the qual-
ity of map data varies, it is often possible to define the map strata
in such a way that each one is reasonably homogeneous with
respect to the map errors and the land use class distribution.
This enables the use of synthetic small-area estimation, using
the proportions that have been estimated from a larger region.
The stratification of Table 1 was applied in this study. The re-
striction of stratum # to forestry centre R or to municipality U
will be denoted by Ry and Uj, respectively.

Land use class areas

Let us first consider the estimation of the area of land use
class / in municipality U. Recall that the (uncalibrated) MS-
NFI estimator would simply be the combined area of the map
strata within U that correspond to class /. We propose a natural
calibration for errors in the map strata using the field data from
forestry centre R in which U belongs. First, the proportion of
land use class / within each map stratum h is estimated by the
corresponding plot count ratio:

nRyl
nRy,

91  Pru=

computed over the entire forestry centre (ratios computed by
municipalities are too variable, the very reason for the need of
specific small-area estimation). The calibrated area estimator
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is then obtained by summing the corresponding proportions of
municipality level stratum areas:

[10] Ay, =) Pr,iAy,
h

where Ay, is the area of Uj.
Note that the aggregate of small-area estimates over forestry
centre R

(Y Ay,

UeR

is equal to the unbiased poststratification estimator:

(12]  Ap; =Y PryiAr,
h

Properties of the synthetic municipality level estimators [10]
depend highly on the homogeneity of map strata with respect
to land use class distribution. If the true proportions Py, were
constant for all municipalities within R, then the estimators
would be unbiased. .

Since the areas Apg, are known and proportions Pg,; are
based on field data, the sampling errors of the large-area esti-
mators A% ; can be assessed by combining standard stratified
sampling formulae (Cochran 1977) with the variance estima-
tors for the field data method. Again, the details are given in the
Appendix.

Calibrated plot weights

Map errors affect MS-NFI estimators [6]—[8] through the plot
weights ¢; y, which are defined as sums over the forestry land
map strata [5]. Calibration of these weights for the map errors is
not straightforward in the MS-NFI context, essentially because
nonforestry land field plots are excluded from the training set
for satellite image processing and also because the map strata
are different from the NFI land use classes. Here we propose
a heuristically derived calibration, which is implementable in
the currently operational system and has the important property
that in analogy with the uncalibrated MS-NFI, the sum of the
calibrated weights over all training data plots is equal to the
calibrated forestry land area estimate A7, gy -

First, we wish to eliminate from the sum on the right hand side
of [5] the contribution of the pixels that are falsely classified
as forestry land on the basis of map data. Our proposal is to
estimate the contributions separately for each nonforestry land
use class / by the product of the estimates of the number and
average weight of the forestry land stratum pixels that actually
belong to /.

Using again the large-area estimate of the confusion matrix,
the number of such pixels in municipality U can be estimated
by

(131 Njmuu= 2 Pr.iNu,
he(1,2}

where Ny, is the number of pixels in Up.
We have no direct way to reliably assess the weights (w;, ;)
of the forestry land stratum pixels (p) that actually belong to /.
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Table 2. Representative map
strata for nonforestry land use
classes used in the plot weight

correction.
Land use Strata
Arable 34
Built-up 5,6
Traffic, etc. 9
Water 10,11

Therefore our estimation is based on the assumption that they
are, on average, similar to those of pixels in such map strata that
best represent land use class /. We selected the representative
map strata for each nonforestry land use class as shown in Ta-
ble 2; the union of the map strata that represent land use class /
is denoted by h(!). The pixel weights (w; ) of training data set
plots i € J were computed to all pixels (p) within these strata
in the same manner (k-nn) as for those within the forestry land
stratum in the ordinary MS-NFI. The average weight of training
set plot i to a pixel, whose actual land use class is /, was then
estimated by

— Wi, p
14] vy = ) 7=
peUqy O

Our estimator for the total contribution of falsely classified
forestry stratum pixels to ¢; y is finally obtained by summing the
products of [13] and [14] over all nonforestry land use classes:

. _
Z Ny /i, Unay
I£FRYL

(151 ¢y =

This leads to “downwards calibrated” weights:
[16] ¢ y=civ-— Ciu

which can be considered to represent the contribution from pix-
els in the forestry land strata that actually belong to forestry
land. The calibrated estimator of the area of that part is

17 Ajgurr= 2. Pr.ryLAU,
he{1,2}

To account for the map errors to the other direction, that is,
for pixels in the nonforestry land strata that actually belong to
forestry land, we assumed that in each computation unit they
are, on average, similar to pixels in the forestry land stratum of
that unit. This leads to scaling the downwards calibrated weights
¢;.y up by the area correction factor Ay, pryy /A7, FrRYL: AS
a result the calibrated weights are

A*
U,FRYL eTit
(18] «¢fy= ‘Z*——(Ci,u - Z N{/FRYL,I'”LUAU))
UrryL,FRYL I1#FRYL

Calibrated MS-NFI estimates are then obtained by replacing
¢i,u in [6]-[8] by C?,U' It should be noted that although these
weights add up to A}, pryy , the positivity of individual weights
is not guaranteed.
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Table 3. Land use class distribution among field plots by map stratum in the forestry centre of Keski-Suomi.

Land use class /

Forestry Arable Built-up Traffic, etc. Water Total

PRyt npy Proi nRyi PRyt Nryi PR, nRyi Pryi ngyi ng,
Stratum h (%) (%) (%) (%) (%)
Forestry/BASE 946 2763 19 55 1.3 37 1.3 39 0.9 25 2919
Forestry/TOPO 93.8 1766 2.0 37 24 46 1.3 24 0.5 9 1882
Arable/BASE 23.0 49 69.9 149 5.2 11 0.9 2 0.9 2 213
Arable/TOPO 6.1 13 91.9 195 1.4 3 0.0 0 0.5 1 212
Buildings,urban/BASE ~ 22.6 7 0.0 0 67.7 21 9.7 3 0.0 0 31
Buildings,urban/TOPO  10.5 2 0.0 0 89.5 17 0.0 0 0.0 0 19
Other built-up/BASE 10.5 2 0.0 0 89.5 17 0.0 0 0.0 0 19
Other built-up/TOPO 0.0 0 0.0 0 91.7 11 8.3 1 0.0 0 12
Roads 39.3 100 7.9 20 20.1 51 323 82 0.4 1 254
Water/BASE 23 10 0.0 0 0.4 2 0.0 0 97.3 431 443
Water/TOPO 0.3 2 0.2 1 0.4 3 0.0 0 99.1 677 683

Total 70.5 4714 6.8 457 33 219 23 151 17.1 1146 6687

Table 4. Land use class distribution among field plots by map stratum in the forestry centre of Pohjois-Savo.

Land use class /

Forestry Arable Built-up Traffic, etc. Water Total

FR,,: nRy.1 ﬁR;,.l NRy,.1 i;R;,,I NRy.l ﬁR;,.l NRy.t ﬁk..l NRy.l ng,
Stratum h (%) (%) (%) (%) (%)
Forestry/BASE 93.5 1853 2.0 39 1.7 34 1.2 24 1.6 31 1981
Forestry/TOPO 94.7 2631 1.8 49 1.9 53 1.2 33 0.4 12 2778
Arable/BASE 254 63 69.8 173 32 8 0.8 2 0.8 2 248
Arable/TOPO 4.8 20 93.1 388 1.2 5 0.7 3 0.2 1 417
Buildings,urban/BASE 9.4 2 4.8 1 81.0 17 0.0 0 4.8 1 21
Buildings,urban/TOPO  12.5 2 31.2 5 56.3 9 0.0 0 0.0 0 16
Other built-up/BASE 19.2 5 39 1 76.9 20 0.0 0 0.0 0 26
Other built-up/TOPO 10.3 3 3.5 1 86.2 25 0.0 0 0.0 0 29
Roads 41.6 89 15.9 34 12.6 27 299 64 0.0 0 214
Water/BASE 38 20 0.0 0 1.1 6 0.0 0 95.1 503 529
Water/TOPO 3.8 25 0.0 0 0.0 0 0.0 0 96.2 642 667
Total 68.1 4713 10.0 691 29 204 1.8 126 17.2 1192 6926

Table 5. Land use class area estimates and their standard errors for forestry centres with and without poststratification.

Area (1000 ha) Absolute SE (1000 ha) Relative SE (%)
Centre Land use Field Poststratification Field Poststratification Field Poststratification
Keski-Suomi  Forestry 1382 1378 126 74 09 05
Arable 134 128 99 47 74 3.6
Built-up 64 69 57 40 88 59
Traffic, etc. 44 44 36 32 81 74
Water 314 321 — 23 — 07
Pohjois-Savo  Forestry 1357 1360 124 73 09 05
Arable 199 187 109 49 55 26
Built-up 59 59 6.7 44 114 74
Traffic, etc. 36 39 36 34 98 8.8
Water 344 351 — 29 — 038

Note: Water area of the field inventory column was obtained from the official statistics of the National Land Survey of Finland.
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Fig. 4. Uncalibrated vs. calibrated MS-NFI estimates for each
municipality: percentage of FRYL of the total area (%).
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Results

Confusion matrices

The confusion matrices (Tables 3 and 4) are quite similar in
the two forestry centres, thus indicating homogeneity in the map
quality. Forest map strata have nearly 95% co-occurrence with
field data on both BASE and TOPO map areas. On the basis of
field plot counts, the forestry land strata overestimate the actual
FRYL area by 2% in Keski-Suomi and by 1% in Pohjois-Savo.
The most notable differences between BASE and TOPO maps
are in the arable land strata, the latter clearly being more accu-
rate. The road stratum clearly overestimates the corresponding
land use class and is quite inaccurate, as expected.

Calibrated area estimates for municipalities

Figure 4 shows the calibrated municipality level estimates for
the proportional area of FRYL plotted against the corresponding
MS-NFI estimates. The calibration reduces the FRYL area in
most cases, although the changes are small compared with the
absolute values (Fig. 5a). The stronger correction in the small-
est municipalities of Pohjois-Savo could be due to the overlay
operations of the original land use masks: roads are on top of
all other masks. Since the estimated proportion of FRYL in the
road stratum is relatively high, this may lead to the effect of
“transferring” too much FRYL from the rural to built-up areas.

Calibrated volume estimates for municipalities

The mean volume in FOWL increases overall after calibra-
tion, as expected (Fig. 5b). The decrease of the small-area FRYL
estimates compensate the mean volume increase, and on aver-
age, the total volume estimates remain unchanged (Fig. 5c¢).
However, the relative correction of the mean volume increases
together with the uncalibrated MS-NFI estimate vy (Fig. 5b).

To understand the effect of calibration on the volume estima-
tors, we must consider some results of the classification of non-
FRYL map strata. On average, other wooded land and waste
land field plots receive higher weights in the analysis of non-
FRYL strata than in the analysis of FRYL. The mean volume
estimates for non-FRYL strata were lower (7-91 m>/ha) than
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Table 6. Area of FOWL and forestry land of forestry
centres: pure field data estimate, MS-NFI estimates with
and without calibration of plot weights.

Area (1000 ha)
Centre Landuse Field MS-NFI Calibr.
Keski-Suomi FOWL 1368 1389 1368

FRYL 1382 1403 1378

FOWL 1333 1349 1344
FRYL 1357 1372 1360

Pohjois-Savo

those for FRYL, except those for water (160-204 m?/ha). The
high values for water are due to both water and highly stocked
coniferous stands having low intensities of reflectance on all of
the Landsat Thematic Mapper satellite channels applied in this
study.

Further analysis showed that the increase in the proportion of
area covered by the TOPO map increased the relative correction
of mean volume on FOWL. The lower proportion of water area
on TOPO forestry stratum leads to smaller subtraction of the
weights of plots with high mean volumes.

Aggregates of calibrated area estimates

Recall that the aggregates of the calibrated estimates of land
use class areas are equal to the poststratified large-area esti-
mates, which are unbiased and more precise than the pure field
data estimates. Table 5 shows that the poststratification results
in nearly half the standard error of forestry land area estima-
tors. The variance reduction is smaller on more heterogeneous
classes, e.g., roads, where the within-strata variation is large.

Table 6 demonstrates how the calibration draws the aggre-
gates of FOWL and FRYL area estimates towards the pure field
data estimates (large-area estimates in Tables 6 and 7 were ob-
tained by replacing U in [6]-[8] and their calibrated versions,
by R). Note that based on poststratification standard errors,
there is a significant bias in the uncalibrated MS-NFI estimate
of FRYL area for Keski-Suomi.

Aggregates of calibrated volume estimates

Calibration of MS-NFI plot weights gives the expected in-
crease to the mean volume in Keski-Suomi (Table 7). Pohjois-
Savo seems to benefit little from the calibration, but there was
little need for the calibration in the first place. The effect of
the calibration on the volume estimates varies by tree species.
Almost all the calibrated MS-NFI estimates of total volume are
within 1 SE of the field inventory estimate in Keski-Suomi, and
within 2 SE in Pohjois-Savo. There are noticeable biases in the
MS-NFI estimates of the volume of birch and other deciduous
species. The discrimination of these species is not easy, because
they occur mainly as mixed species on coniferous stands.

Calibrated weights are negative for 1.5% of the training set
plots. The negative weights result from the spectral responses of
non-FRYL pixels in the satellite image being concentrated near
those of a few exceptional FRYL pixels; for example, arable
land pixels are similar to FRYL pixels with very low timber
volume and water pixels are similar to high volume FRYL pix-
els. The mean volume of the negatively weighted plots over
the study area was 142 m3/ha. These field plots had slightly
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Fig. 5. Percent difference between calibrated and uncalibrated MS-NFI estimates for each municipality plotted against the uncalibrated
estimates: (a) area of FRYL (km?), (b) mean volume (m*/ha), and (c) total volume (1000 m?).
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Table 7. Volume of growing stock on FOWL of forest centres: pure field data estimate with sampling error, MS-NFI

estimates with and without calibration of plot weights.

Mean volume (m>/ha)

Total volume (10° m®)

Centre Tree species Field MS-NFI Calibr. SE Field MS-NFI Calibr. SE
Keski-Suomi  Pine 48.6 472 480 1.1 66.4 65.5 657 1.6
Spruce 47.7 474 484 1.5 65.2 65.8 663 2.1
Birch 15.8 15.0 150 05 21.6 20.8 205 0.7
Other deciduous spp. 42 4.1 41 03 5.7 5.7 56 04
Total growing stock ~ 116.2 1137 1155 1.8 158.9 1579  158.1 29
Pohjois-Savo  Pine 36.7 375 379 1.0 489 50.5 51.0 14
Spruce 52.1 52.5 536 1.5 69.5 70.9 721 21
Birch 18.5 17.6 178 0.6 24.6 237 239 08
Other deciduous spp. 6.6 5.5 55 04 8.8 7.5 74 05
Total growing stock ~ 113.9 113.1 1148 1.7 151.8 1526 1543 2.7

higher pine volume estimates than the mean pine volume over
the whole study area. Of the negative weights, 29% were on
other wooded land and waste land field plots.

Small-area bias

To study a possible bias of small-area estimates the original
and calibrated MS-NFI estimates of FRYL area, mean, and to-

tal volume were combined into five groups of municipalities in
both forestry centres and compared with the pure field data es-
timates (Fig. 6). The FRYL areas of the subregions ranged from
1890 to 4160 km?. The standard errors of the field inventory
estimates were calculated and plotted (Figs. 7 and 8). The cali-
bration of MS-NFI estimates did not cause notable systematic
errors to the FRYL area and volume estimates compared with
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Fig. 6. Groups of municipalities 1-10 in the study area.
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Fig. 7. Groups of municipalities: pure field data estimates +2 SE,
MS-NFI estimates and calibrated MS-NFI estimates; percentage of
FRYL (%).
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the pure field data estimates, although in two groups neither of
the two estimates of FRYL area were within 2 SE of the pure
field data estimates (Fig. 7). The corrections are, in most groups
of municipalities, towards the field inventory estimates.

Discussion

We have presented a statistical calibration method for reduc-
ing the effect of the map errors in the MS-NFI estimates. The
method uses a confusion matrix, estimated from two data sets.
One of them is assumed to be a sparse sample yielding accurate
unbiased estimates for large areas, but having too few obser-
vations for reliable small-area estimation. The other data set,
on the other hand, is assumed to give complete coverage of the
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Fig. 8. Groups of municipalities: pure field data estimates +2 SE,
MS-NFI estimates and calibrated MS-NFI estimates; (a) mean
volume (m*/ha), (b) total volume (10° m?).
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study area, but may contain systematic errors.

The method is derived and described in a real multisource
forest inventory setting, applying satellite images, digital map
data, and a sparse grid of field data from the ninth NFI of Fin-
land. A normal large-area forest inventory involves a large num-
ber of variables, typically 200 to 400. The presented method is
applicable with all variables and parameters.

In general, the calibration method corrects the aggregates of
MS-NFI estimates towards those based on field data (which are
considered to be unbiased).

In our application, the total numbers of field plots for forestry
centres were fairly large, 6687 and 6926. In spite of that, field
plots were seldom observed on the smallest map strata, such
as urban areas and other built-up land. Therefore the standard
errors of the estimates of Pg,,; for these strata can be high.
Czaplewski and Catts (1992) recommend a minimum of 500—
1000 random sample plots for categorical data assuming that the
probabilities of misclassification are constant over the region.
Well-classified categories would need smaller samples. In our
case, the map stratum of buildings and urban areas may have
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too few observations compared with the accuracies of maps.

The method assumes that pixels that are spectrally and ac-
tually similar to non-FRYL pixels can be found among FRYL
strata pixels. We do not know how much the non-FRYL spec-
tral values really differ from FRYL. These differences also vary
seasonally because of phenology, and may cause different al-
location of weights with images of different time points. For
instance, the spectral responses of arable land are more distinct
from those of forestry land in the early summer when there is
no vegetation.

In our study area, the mean weights of field plots correspond-
ing to non-FRYL concentrated to certain field plots in such a
way that [18] gave negative weights to 1.5% of the field plots.
Methods for avoiding negative weights will be studied.

In general, we have found the calibration to work reason-
ably well, and it has already been implemented as a part of the
operative MS-NFI.
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Appendix A: On the estimation of standard
errors

Let us first consider the estimation of area proportions from
pure field data. To be specific, let us choose some regions (R)
and one land use class (/), and define indicator functions:

A1l x(r) = 1 lfPOlm.r € R belongs to land use class /
0 otherwise

and

[A2] y(r) = {(1) if point 7 € R is on land

if it is not
Then the proportion
A
[A3] p=-RL
AR,land

of land use class / among the land area of region R can be
rewritten as

Jrx(r)dr
Jry@)dr

In large-area NFI, proportion P is estimated by the field plot
ratio:

[A4] P=

ZCCI Xc

ccl Ye

[A5] P =

where c refers to a cluster of field plots, x; = } ;.. x(r;) is
the number of those plots in ¢ whose centre belongs to land
use class / (r; is the location of the centre of plot i), and y, =
Y icc ¥(ri) is the number of those plots in ¢ whose centre is
located on land. =

To estimate the variance of P the cluster-wise residuals:

[A6]  zc=x.— Py,

are assumed to form a partial realisation of a second-order sta-
tionary stochastic process on R. Letting n denote the number
of clusters in / and

a7 =%

ccl
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the variance per cluster
[A8] o2=nEZ
is estimated by the average of quadratic forms:

(Zel —2c2 — 23+ Zc4)2

[A9] 7

Ty =
in rectangular groups g of four clusters:

c3 c4
[A10]
cl ¢2

The residuals [A6] are naturally evaluated using the estimate P
instead of the unknown true value P. The variance estimator
for

[All] P=—=

+P

cYe

is obtained by applying the standard approximation for ratio
estimators (Cochran 1977):

[A12] o} =E(P - P)?

—E( nz )2 N n?E7? B no?
Zc Ye (Zc .YC)Z (Zc )’L‘)z

Inserting the quadratic form estimator of 022 yields

. nG? 93, T,
[A13] O’% = ———(ZC )Z/C)Z = -———(chyc)gz

where the grouping factor ¢ is the ratio between the number of
clusters and the number of groups. Usually all possible quadru-
ples are included so that each cluster appears in four distinct
groups and g = 1. Estimators given by [1] and [2] are essen-
tially field plot ratios similar to that in [A5], and the approach
described here was used to estimate their standard errors.

Let us then consider the poststratification estimator [12] of
the area of land use class / within region R. Using vector nota-
tion A = (Ag,, ..., Ary)T, P = (PR, .-, Pry,1)", Where
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B is the number of map strata and superscript T denotes the
transpose, we can rewrite [12] as

[Al4] A%, =ATP
and the variance of A% ; is
[A15] 03, =VarAh, = Var ATP = AT3A
where X is the covariance matrix of P.
To estimate ¥ we have derived a direct generalisation of

[A13] to the multiyariate case. For a consistent notation each
element of vector P (Pg, 1), h =1, ..., B is expressed as

ZCCI Xc,h

[A16] Pg,,=
" ch] Ye,h

where x. » and y. j are the cluster-wise plot counts within stra-
tum Ry, corresponding to those in [A5], and the cluster-wise
residuals are defined as

[A17] Zzen = Xen — Prysyenr, h=1,...,B

The elements of covariance matrix X ahz wo B W=1,...,B,

that is, the covariances of ﬁR,,J and i’\R,,/.l, are then estimated
by

T. ’
[A18] ai?h' — M‘_
’ Zc Ye,h Zc Ye,n!

where the “covariance per cluster” is estimated by generalising
[A9] to

[A19] Ty nn = (Ze1,h — Zc2,h — Zc3,h + Zed,h)
X(Zet,w = 2o — Ze3 i+ Zeaw) /4

The variance estimator 6‘%, is then obtained by simply inserting
the estimated covariances to [A15].
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Stratification by ancillary data in multisource
forest inventories employing i-nearest-
neighbour estimation

Matti Katila and Erkki Tomppo

Abstract: The Finnish multisource national forest inventory (MS-NFI) utilizes optical area satellite images and digital
maps in addition to field plot data to produce georeferenced information, thematic maps, and small-area statistics. In the
early version, forestry land (FRYL) was taken directly from the numerical map data. Such data may be outdated and can
contain significant errors, for example, the FRYL area is typically overestimated and the mean volume is underestimated.
A statistical calibration method has been introduced to reduce the map errors on multisource forest resource estimates. It

is based on large-area estimates of map errors, a confusion matrix among land-use classes of the field sample plots, and
corresponding map information. The method has some drawbacks: calculations are more complicated than in the original
MS-NFI and some field plots may have negative expansion factors. The paper presents a new stratified MS-NFI method to
reduce the effect of inaccurate map data on the forest-resource estimates. In this method, the k-nearest-neighbour (k-NN)
estimation is applied by strata. All the field plots within each map stratum, independently of their land-use classification by
field crew, are used to estimate the areas of land-use classes and forest variables of that stratum. The method was tested on
two large areas containing three Landsat 5 TM scenes and field-inventory data from the ninth NFI. The stratified MS-NFI
is essentially a different estimation method compared with the calibrated MS-NFI, which calibrates the MS-NFI estimates
more or less systematically in one direction. The stratified MS-NFI was found to be statistically simpler and there were
fewer significant errors in the estimates than in the calibrated MS-NFI.

Résumé : L'inventaire forestier national multisource de la Finlande (MS-NFI) utilise les images satellitaires optiques

et les cartes numérisées, en plus des données provenant de parcelles terrestres, pour produire I'information a référence
spatiale, les cartes thématiques et les estimations pour de petites surfaces. Dans la version antérieure, le territoire forestier
était obtenu directement a partir des cartes numériques. Or ces cartes peuvent étre obsolétes et contenir des erreurs
importantes : par exemple, la superficie du territoire forestier est typiquement surestimée et le volume moyen est sous-
estimé. Une méthode de calibration statistique a été développée pour réduire les erreurs d’estimation multisource des
ressources forestieres a partir des cartes. Cette méthode est basée sur I'estimation des erreurs des cartes sur de grandes
superficies au moyen d’une matrice de confusion entre les classes d’affectation des terres obtenues 2 partir des parcelles
terrestres et 1’information correspondante provenant des cartes. Elle comporte certains inconvénients. Les calculs sont plus
compliqués qu’avec le MS-NFI original et certaines parcelles terrestres peuvent avoir des facteurs d’expansion négatifs.
Cet article présente une nouvelle méthode, le MS-NFI stratifié, pour réduire I'effet des données erronées dans les cartes
sur I’estimation des ressources forestiéres. Avec cette méthode, 1'estimation k-NN est appliquée a chaque strate. Toutes les
parcelles terrestres dans chaque strate, indépendamment de leur classification pour I'affectation du sol par les équipes de
terrain, sont utilisées pour estimer I’aire selon la classe d’affectation des terres et les données forestieres de cette strate.
La méthode a été testée sur deux grandes zones couvertes par trois images Landsat S TM et les données d’inventaire
terrestre du neuviéme inventaire national de la Finlande. Essentiellement, le MS-NFI stratifié est une méthode d’estimation
différente du MS-NFI calibré qui calibre les estimations du MS-NFI plus ou mois systématiquement dans une direction. Le
MS-NFI stratifié s’est révélé plus simple du point de vue statistique et les estimations comportent significativement moins
d’erreurs qu'avec le MS-NFI calibré.

[Traduit par la Rédaction]

Introduction est inventories (NFI), e.g., the Scandinavian countries and the

The multisource forest inventories have been subject to in-
creasing research in the countries with existing national for-

United States. The basic idea has been to combine objectively
measured field-inventory data with available numerical map
data and remote sensing data, most often from high-resolution

optical satellites (Landsat TM, Spot HRV). Sampling-based

Received 13 July 2001. Accepted 19 February 2002. Published on  methods (Poso 1972) and nonparametric estimation methods
the NRC Research Press Web site at http://cjfr.nrc.ca/on  have been used for multisource forest inventories (Tomppo

24 August 2002. 1991; Tokola et al. 1996; Nilsson 1997; Franco-Lopez et al.
M. Katila! and E. Tomppo. Finnish Forest Research Institute, ~ 2000; Gjertsen et al. ?000) ) o )
Unioninkatu 40 A, FIN-00170 Helsinki, Finland. The amount of available numerical map data is increasing. In

forest inventories, the maps and remote sensing data have been

'Corresponding author (e-mail: matti-katila@metla.fi). used to delineate the forestry land (FRYL) (Loetsch and Haller
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1973). The classification of land-use or land-cover classes has
been one of the major applications of satellite image based
remote sensing (Campbell 1996). In the remote sensing ap-
plications, there are three different ways to incorporate the
auxiliary geographic information system (GIS) data into the
classification: stratification, classifier modification, and post-
classification sorting (Hutchinson 1982). Examples are strati-
fication of the image areas prior to estimation (Tomppo 1996),
application of the map data as a new feature in the conven-
tional estimation methods (Tomppo et al. 1999; Poso et al.
1987), and probability- or knowledge-based models for the mul-
tisource data fusion (Benediktsson and Kanellopoulos 1999).
In the Finnish multisource national forest inventory (MS-NFI),
FRYL has been delineated directly from the numerical map
data (Tomppo 1991).

The problem with the current MS-NFI map data is that it is
not necessarily up-to-date, it includes locational errors, and it
does not correspond exactly to the NFI land-use classes. Typi-
cally, FRYL area is overestimated, and consequently the mean
volume is underestimated in the MS-NFI small-area estimates.
Land-use masks give more accurate area estimates than an es-
timation from the optical high resolution satellite data alone.
However, the accuracy of area estimates can be increased if
map information and satellite image information are used to-
gether.

The Finnish MS-NFI utilizes optical satellite images and
digital maps in addition to field plot data. A nonparametric
k-nearest-neighbour method (k-NN) is used in the estimation
(Tomppo 1991). One of the advantages of the k-NN method
is that all the inventory variables can be estimated at the same
time. Field data from surrounding calculation units (municipal-
ities), in addition to the unit itself, are utilized when estimating
results for that unit. This makes it possible to obtain estimates
for smaller areas than would be possible with sparse field data
only (Kilkki and Pdivinen 1987; Tomppo 1991, 1996; Nilsson
1997). The method produces georeferenced information, the-
matic maps, and small-area statistics. In the original MS-NFI
(oMS-NFI), only those field plots that are located entirely on
FRYL, on the basis of field inventory, are used in the estimator.
The estimates of FRYL area are derived from the digital map
data (FRYL mask). Both the FRYL map area and FRYL field
plots are usually divided into two strata on the basis of map data:
mineral soil stratum and peatland stratum (Tomppo 1996).

Currently, a calibration method, denoted here by cMS-NFI,
has been introduced to reduce the effect of map errors on multi-
source forest resource estimates (Katila etal. 2000). The method
is based on the confusion matrix among land-use classes of
the field sample plots and corresponding map information. The
FRYL area estimates of the calibration method are consistent
with post-stratified estimates for large regions (i.e., in areas
of 500 000 ha or greater), while for small areas the estimator
is synthetic (Rao 1998). Despite the rather simple idea of the
calibration, it is quite laborious when applied to the MS-NFI:
the calculation is more complicated than in the oMS-NFI and
some field plots obtain negative weights (Katila et al. 2000). All
weights are in turn used to calculate the small-area estimates,
e.g., for municipality-level estimates.
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The aim of the research

The paper presents a new multisource forest inventory method
that employs accurate field plot measurements, satellite images,
and inaccurate land-use map data. The method simultaneously
produces land use class estimates and forest parameter esti-
mates and reduces the effect of inaccurate map data. In this
method, denoted by sMS-NFI, the k-NN estimation is applied
by strata. The whole area to be analysed, including water and
all land areas, is stratified on the basis of map data. Each field
plot is assigned to its corresponding stratum. All the field plots
within each map stratum, independently of the field measure-
ment based land-use class, are used for estimating the areas of
land-use classes and forest variables of the particular stratum.
The final estimates are derived by combining the stratum-wise
estimates. It is expected that the method will give more ac-
curate forest-variable estimates for FRYL than the oMS-NFI
and possibly also more accurate estimates than the calibration
method. The number of FRYL plots within a certain non-FRYL
map stratum may be small, and the errors of the forest-variable
estimates will therefore be high within the stratum. However,
the weight of these estimates (plots) on the final combined es-
timates is small.

The questions to be studied are (i) does the new method re-
duce the errors of FRYL area estimates and other forest resource
estimates caused by errors in land-use map data, and (ii) what
is the error of the forest-variable estimates compared with the
estimates based on pure field data in large areas?

The MS-NFI estimates will be calculated in a realistic set-
ting using data from the ninth NFI. Small-area estimates for
municipalities (68-1577 km?) are calculated using the three
different MS-NFI methods. The pixel-level errors of FRYL and
non-FRYL estimates of the new method are compared with
the estimates based on the oMS-NFI method by applying a
leave-one-out cross-validation method. The estimates for large-
and medium-scale (group of municipalities) areas are compared
with the field-inventory estimates to discover the magnitude of
errors of different methods.

Materials

Field measurements

Two study areas, central Finland and western Finland, were
employed. The central Finland study area was within the Land-
sat 5 TM images 188/16 and 188/17 (acquisition date: 24 Au-
gust 1996), and the western Finland study area within the image
191/16 (acquisition date: 13 June 1997). The NFI field measure-
ments employed were from the same year as the satellite images.
The field plots, used in the k-NN estimation, are located ap-
proximately between 20°38'E, 28°50'E and 61°20'N, 64°00'N
(Fig. 1). FRYL covers 82 and 73% of the land area in the cen-
tral Finland and western Finland study areas, respectively. The
central Finland study area is rich in mineral soil forests while
the western Finland study area contains large peatland forest
areas (Katila and Tomppo 2001). Both study areas consist of
typical boreal forests dominated by Scots pine (Pinus sylvestris
L.) and Norway spruce (Picea abies (L.) Karst.). Birch (Betula
spp.) and other deciduous species occur often as mixed species.

A subset of municipalities that were covered by the satellite
images and field plots were selected for evaluating the small-
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Fig. 1. Location of the study areas and applied Landsat 5 TM
path, row, and date of acquisition.

20°E
69°N 4

Image path/row and date
[ 1191/16 13.6.1997

188/16-17 24.8.1996 <

Fig. 2. Municipality boundaries in the central Finland and
western Finland study areas.

© National Land Survey of Finland
permission No. 342 / MYY / 01

area estimates. The two study areas contain 56 municipalities,
29 in central Finland and 27 in western Finland (Fig. 2). The
municipalities range in area from 68 to 1577 km?. The total
areas and land areas of each municipality were obtained from
the (National Land Survey of Finland 1997) and are assumed
to be exact in this study.

The NFI field data were measured during the 1996 field sea-

Can. J. For. Res. Vol. 32, 2002

Table 1. Derived map stratification.

Code  Stratum, (h)

Forestry land, mineral soil
Forestry land, peatland
Arable land

Built-up land and roads
Water

R R S

son in central Finland and in 1997 in western Finland. A system-
atic cluster sampling design was applied. One cluster consists
of 18 (temporary) or 14 (permanent) field plots located along a
rectangular tract 300 m apart (Tomppo et al. 1998). The cluster
reference points form a square lattice with a distance of 7 km
between adjacent clusters. A total of 6816 and 7695 field plots
were measured within the central Finland and western Finland
training data areas, of which 4706 and 4832 were on FRYL,
respectively.

Trees were measured on parts of plots belonging to forest
and other wooded land (FOWL). If a plot is cut by a stand
or a land use class boundary, the entire plot is considered to
consist of two or more parts. Trees were selected by probability
proportional to size sampling, the inclusion probability of a
tree being proportional to its basal area. A relascopic factor of
two with a maximum distance of 12.52 m was employed. The
diameter and distance of all boundary trees were measured to
judge whether a tree should be included in the sample or not.

Supplementary data

The satellite images were rectified to the national coordinate
system using regression models of first- or second-order poly-
nomials, fitted to 30-70 control points, which were identified
from base maps. The nearest-neighbour method was applied for
the resampling of the images to 25 x 25 m pixel size (Tomppo
1996).

The digital map data comes mainly from the National Land
Survey, but it varies in quality and accuracy. For the central
Finland study area, the topographic database (National Land
Survey of Finland 1996) was the most accurate and up-to-date
data source, but it covered only 50% of the study area. For the
rest of the area, the map data comes from several data sources
(Katila and Tomppo 2001). In the western Finland study area,
the areas covered by water and agricultural land were updated
from the latest topographic database.

A stratification of the study area and field plots was produced
by combining the various map data sources. Each 25 x 25 m
pixel of the study area was delineated into one of the five strata
listed in Table 1. The stratification was designed to form homo-
geneous strata with respect to the NFI-based land-use classes.
On the other hand, the stratification was done in such a way that
a high enough number of field plots, from the point of view of
k-NN estimation, were included in each stratum. A more de-
tailed stratification was used for the calibration method (Katila
and Tomppo 2001).

A map of mineral soils and peatlands was used for stratifying
the FRYL and the corresponding field plots already in oMS-
NFI. This map was also used for the stratification in the new
method. The digital elevation model was applied as in the oMS-
NFI. Digital municipality boundaries were used to delineate the
computation units (Tomppo 1996).
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Methods

MS-NFI by strata

As explained below in more detail, new plot expansion fac-
tors, i.e., plot weights, are computed in the original multisource
method for all the field plots i belonging to FRYL (Tomppo
1991, 1996). In the modified method, the weights are com-
puted by land-use map strata. Some notations are introduced.
Let us denote by H the set of the map strata, i.e., FRYL (sub-
divided into mineral soil stratum and peatland stratum), arable
land, built-up land, and water, and by 4 its element. In the no-
tations, no difference is made between a stratum, its ground
elements, i.e., 25 x 25 m squares, and the image elements cor-
responding to the ground elements, i.e., the pixels. The set of
pixels of municipality U is thus denoted by U = ey Un,
Un\Up = 98, if h # h’, where Uy, is the set of pixels in stra-
tum h. The set of field plot parts employed in the estimation
is denoted by J and can be presented as a union of field plot
parts of different land-use classes within different map strata:
J = Uperr Uieg Ji.1, where | refers to land-use class on the
basis of NFI field data (true land-use class), 4 is on the basis
of a map stratum, and G is the set of land-use classes on the
basis of NFI (Fig. 3). Instead of land-use class, the stratification
| can be based on some subclass of FRYL, e.g., pine-dominated
forests, and the rest of J. The area estimation with pure field
data utilizes the information from the centre points of the field
plots only, while the volume estimation uses information from
the whole plot (Tomppo et al. 1997). The oMS-NFI utilizes
all parts of the plots, also in area estimations (Tomppo 1996).
However, the oMS-NFI usually uses only those field plots to-
tally belonging to FRYL. A difference in the treatment of the
plots by oMS-NFI and NFI field inventory exists only when the
plot is shared among two or more different land-use class or
forest stands (when the plot consists of two or more plot parts).

Plots on any land-use class and all parts of field plots are used
in the estimation in the new method. Poorly localized field plots
are, however, removed in both multisource methods because the
correct image data can not be assigned to those plots.

As in the oMS-NFI, a distance measure d is defined in the
feature space of the satellite image data. The k-nearest field-
plot pixels (in terms of d), i.e., pixels which cover the centre of
some field plot, are sought for each pixel p under the cloud-free
satellite image area. Contrarily to the oMS-NFI, the neighbours
are sought for each pixel within each U, not only for FRYL map
stratum pixels, and the neighbours can belong to any land-use
class / or FRYL subclass f. Note that the neighbours must
belong to the same map stratum as the target pixel.

The k-nearest field plots to pixel pj, belonging to map stra-
tum A, are denoted by i1 (pp), ..., ik(Ph)-

The weight w; p, of field plot i to pixel py is defined as

1/d!

wi = Phi»Ph
ipn = :
2 jetispmenitom) Vb

m et

if i € {i1(pn), -y ik(pn)}
=0, otherwise

where ¢ is the power applied with the distance measure d.
The weight w;, ,, of the plot i is shared among the (possible)
plot parts in the proportions of the assessed areas of the plot
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parts. The total weight of a field plot part i; (belonging to map
stratum h), i € Jj 5, to land-use class (or FRYL subclass) / for
municipality U is therefore

[2] Ci, U, = aa;, Z Wi, pp,
Ph€UR

where a is the area of a pixel and g;, is the share of field plot
i belonging to field land-use class (or FRYL subclass) / with
ZI aj = 1.

The area estimator of (FRYL) class / within U is

Bl Av=Y.Y cw

h i€lip

and the mean volume estimator for timber assortment s of land-
use class or FRYL class /

Zh Zie],‘,, Ciy, Uy Vig,s
2 Zie]u, Cir, Un

where v;, ¢ is the volume per hectare of the timber assortment
s on the plot part i;.

All field plots, regardless of the land-use class, are used in the
estimation process. A subset of the plots, for example, entirely
belonging to either FRYL or non-FRYL, can also be used. The
estimates of the land-use areas and forest variables are com-
puted simultaneously.

(4] vy =

Calibrated MS-NFI estimators

The oMS-NFI estimates are calibrated based on large-area
estimates of map errors in the calibration method ¢cMS-NFI
(Katila et al. 2000). The applied map strata are assumed to be
homogeneous with respect to the “map errors”. The proportions
of land-use classes for small areas U are estimated by applying
the proportions Pg, ; estimated from a larger area R (synthetic
estimation (Rao 1998)).

(5] A, =) Pr,iAy,
h

The aggregates of small-area estimates of land-use class ar-
eas over large areas are equal to unbiased post-stratification
estimates (Holt and Smith 1979).

A method to compute the calibrated field-plot weights is
found in Katila et al. (2000). The field plots for k-NN estima-
tion are chosen for cMS-NFI in the same way as for the basic
MS-NFI. The calibration typically increases the mean volume
estimates and decreases the FRYL area estimates of small areas
when the FRYL is overestimated by the map data (Katila et al.
2000).

Validation of the results

The main emphasis in this study is in the validation of the
municipal-level estimates. An analytical method for estimating
the standard errors of the MS-NFI small-area estimates has not
yet been presented. The statistically validated estimates and
their standard errors based on the field-inventory method are
therefore used for comparisons. The relative standard error of
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Fig. 3. Training data selection and map strata in the estimation in three different MS-NFI versions.

Original MS-NFI

stratum h
FRYL non-FRYL

Land-use class / 't I?M E

non-FRYL

MS-NFI by strata

stratum h
FRYL non-FRYL

Land-use class / """
non-FRYL

the area estimates of a stratum with an area of 2000 km? is
usually not more than 5% and with an area of 10 000 km? is
not more than 2% (Tomppo et al. 1998). The standard errors
are estimated using the method of the operative NFI, which
apply local quadratic forms (Matérn 1960). The aggregates of
MS-NFI municipality estimates are compared with the field-
inventory estimates and the standard errors from the same area
(Katila et al. 2000).

Some estimation parameters have to be selected in the MS-
NFImethod. Examples are the value of k and the pixel-dependent
geographical horizontal and vertical reference areas, that is, the
area from which the field plots are applied in the estimation
(Katila and Tomppo 2001). A leave-one-out cross-validation
method and the root mean square error

Z?:] (i = )71)2

n

[6] RMSE =

has been applied as a measure of reliability with the continuous
variables in the selection. Ineq. 6, y; and y; (i = 1,...,n)are
the observed and estimated values of the variables, respectively.
The estimates of biases and the standard error of biases are used
as further criteria (Katila and Tomppo 2001).

The two main goals with the new sMS-NFI method are to
yield accurate FRYL and non-FRYL area estimates and accu-
rate forest-variable estimates within FRYL. Thus the effect of
the k-NN estimation parameters on the estimates of FRYL and
non-FRYL classes within each stratum have to be examined. A
2 x 2 confusion matrix for FRYL and non-FRYL classes is cal-
culated for the cross-validation. A fuzzy approach is used: the
weights w; ,, obtained for the k spectrally nearest field plots
are considered fuzzy membership values of the pixel py to be
classified (Zhang and Foody 1998). The global sum of these
weights are used in the 2 x 2 confusion matrices.

Within each stratum, the estimation parameters should yield
a high overall classification accuracy (CC) and preserve the
marginal distribution of the FRYL proportion in the field plot
data, i.e., an unbiased estimate of FRYL area. The parameters

Land-use class / FA"t

Calibrated MS-NFI

stratum h
FRYL non-FRYL

non-FRYL

l Map strata for estimation l

{ Field-plot sample for estimation |

Fusssssnssssnssannnnnnnnn,
= Calibration H

should also minimize the MSE and give unbiased estimates of
volumes.

Results

The accuracy of the applied land-use maps

The accuracy of the applied map data in stratifying different
land-use classes is first discussed. The proportion of the FRYL
field plot centre points within each stratum can be used as a
measure of accuracy. The proportions and number ng, of the
field plot centre points within each stratum are given in Tables 2
and 3. The FRYL area within the training data area was overesti-
mated by 1.5 and 2.6% for central Finland and western Finland,
respectively (Tables 2 and 3). The water stratum was the most
accurate in separating the FRYL, while the combined built-up
land and roads stratum was worst with 20-30% of FRYL field
plots. The new agricultural area mask for the western Finland
training data area increased the accuracy of the stratum com-
pared with the central Finland training data area. The built-up
land and road map stratum could be divided into a more spe-
cific stratum of houses, urban areas, and other built-up land and
a second stratum for roads etc. However, this would decrease
the number of field plots available for the training data set to
considerably less than 500 for those strata.

The pixel-level accuracy of forestry-land estimates
within map strata and the selected parameters for k-NN
estimation

Parameters were selected on the basis of the pixel-level esti-
mates. The goal was to obtain accurate FRYL and total volume
estimations by strata. The parameters tested were the pixel-
dependent geographical horizontal reference arearadius (HRA),
the number of nearest neighbours, &, and the power of spectral
distances z. A suitable HRA was expected to be related to the
proportion of stratum within the image area (Katila and Tomppo
2001). The results for selected HRA and k are summarized in
Tables 4 and 5.

The power of the Euclidean distance measure dj, ; , had
only minor effects on the results. Weighting of the spectral
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Table 2. Land-use class distribution among field plots by map strata in the central Finland study area.

NFI land-use class, /

Forestry Arable Built-up, etc. Water Total
Stratum, h % ng,.1 % ng, .1 % nR,.1 % ng,1 ng,
(1)  Forestry land, mineral 924 5009 4.1 132 2.4 222 1.1 58 5421
(2) Forestry land, peatland ~ 98.2 1220 0.4 5 0.7 9 0.6 8 1242
(3) Arable 1.5 95 84.6 699 35 29 036 3 826
(4) Built-up land and roads  30.8 148 10.2 49 58.5 281 0.4 2 480
(5) Water 2.7 46 0.06 1 047 8 96.75 1635 1690
Total 67.48 6518 9.17 886 5.68 549 17.66 1706 9659
Table 3. Land-use class distribution among field plots by map strata in the western Finland study area.
NFI land-use class, /
Forestry Arable Built-up, etc. Water Total
Stratum, h % nR,.l % ng,. % gy % nR,. ng,
(1)  Forestry land, mineral 92.0 3305 2.7 96 4.8 171 0.6 21 3593
(2) Forestry land, peatland ~ 97.6 1404 0.5 7 1.6 23 0.3 4 1438
(3) Arable 3.0 37 95.6 1198 1.4 18 0 0 1438
(4) Built-up land and roads  21.7 81 142 53 63.8 238 0.3 1 373
(5) Water 05 5 04 4 04 4 98.8 1025 1038
Total 62.8 4832 17.7 1358 59 454 13.7 1051 7695

bands was not used. The global estimates of FRYL and volume
were not dependent upon the value of k. The overestimation of
the FRYL area on the mineral soil and peatland strata remained
despite the changes in the estimation parameters (Tables 4 and
5). FRYL area estimation within the built-up stratum performs
better than the pure map stratification based estimate in the west-
ern Finland training data area (Table 5). The selected estimation
parameters for the oMS-NFI and cMS-NFI are presented in the
Table 6.

The errors of the minor land-use class at field-plot level, for
either FRYL or non-FRYL, within each stratum were high (pro-
ducer’s accuracies were low), though the marginal distributions
were more or less equal. Overall, CC percentages of the FRYL
and non-FRYL classification from the cross-validation are 2.7
and 1.3% lower than the CC percentages from the map-based
stratification for the central Finland and western Finland train-
ing data areas, respectively (Tables 4 and 5). However, the CC
percentage of the map-based stratification is calculated from the
field plot centre points, whereas all parts of the plots are used
in the cross-validation. The FRYL classification within strata is
in some cases poor, but a misinterpretation can be expected to
occur between open FRYL plots and non-FRYL plots, whereas
the map-based delineation may classify all kinds of forests to
non-FRYL.

An important source of bias in the land use class estimation
and other k-NN estimation is the mixed pixels between FRYL
and non-FRYL. The cross-validation of field plots divided be-
tween FRYL and non-FRYL leads to a considerable overestima-
tion of FRYL. Conversely, the mean volumes are significantly
underestimated. (Tokola and Kilpeldinen 1999) reported slight
overestimation of mean volume for NFI field plots nearest to
the forest-stand boundaries in their cross-validation study ap-
plying only NFI field plots within FRYL. However, the volume
for field plots was underestimated where the shape of the near-

est stand edge was sharp. The divided land-use field plots have
spectral values from mixed pixels, and small locational errors
may change the spectral values attached to the field plots.

Estimates by municipalities

Both the cMS-NFI and the sSMS-NFI slightly decreased the
FRYL area estimates compared with the oMS-NFI estimates
for all municipalities, except for the very small ones in central
Finland (Fig. 4a). The relative decrease of the FRYL area is
greater in the western Finland study area, 6.5 to 7.0% for
sMS-NFI and -6.5 to 0.3% for cMS-NFI (Fig. 5a). The land-
use map data also gives a greater overestimate of the FRYL area
for this image area. The municipalities with small areas, e.g.,
cities and towns, have large proportions of non-FRYL areas,
e.g., the built-up land stratum. The map usually overestimates
this area wherefore the non-FRYL map strata contain a large
amount of FRYL field plots. Consequently, both the sMS-NFI
and cMS-NFI methods increase the FRYL area estimate in these
municipalities.

The cMS-NFI systematically increases the mean volume es-
timates of FOWL by a few percentage points in both study areas,
whereas the SMS-NFI changes the estimates both upwards and
downwards compared with the oMS-NFI. Changes range from
-3.9to 5.5% (Figs. 4b and 5b). On average, the sMS-NFI does
not increase the western Finland study area mean volumes.

In the western Finland study area, a gradual change takes
place from pine- to spruce-dominated forests in an east-west di-
rection. The mean volumes of pine and spruce therefore change
by municipalities and groups of municipalities (cf. Figs. 9 and
10). The sMS-NFI seems to follow these changes better than the
c¢MS-NFI and particularly better than the oMS-NFI (Figs. 4c,
4d, 5¢, and 5d). Total volume estimates of the sMS-NFI method
are, onaverage, smaller than the oMS-NFI estimates in the west-
ern Finland study area. This is due to the fact that area estimates
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Table 4. Pixel-level errors by strata for central Finland: 2 x 2 confusion matrix and correctly classified
(CC) FRYL and non-FRYL (nFRYL) percentages and mean volume (), root mean square error (RMSE),
and bias of mean volume estimate and applied values of geographical horizontal reference area (HRA)

and k.
Cross-validation
FRYL, nFRYL, CC, m, RMSE, Bias, HRA (k),
Stratum NFIlanduse % % % m’ha m’ha  m’ha km
Mineral soil FRYL 87.0 5.2 88.5 1152 994 0.39 50 (2)
nFRYL 6.3 1.5
Peatland FRYL 96.3 1.6 96.3 84.7 69.1 1.01 60 (5)
nFRYL 2.0 0.0
Arable land FRYL 43 7.1 858 98 38.0 095 50(3)
nFRYL 7.1 81.5
Built-up land, FRYL 17.1 14.3 70.3 443 76.7 2.00 70* (5)
roads nFRYL 15.4 53.2
Water FRYL 0.8 1.5 96.7 5.8 34.1 0.08 50 (6)
nFRYL 1.7 95.9
Overall FRYL 62.6 4.7 89.8
nFRYL 5.5 27.2
Overall from map’ FRYL 64.5 3.0 92.5
nFRYL 4.5 28.0

*Euclidian distance weighting ¢ = 2 applied.

*Estimate is based on map data.

Table 5. Pixel-level errors by strata for western Finland: 2 x 2 confusion matrix and correctly classified
(CC) FRYL and non-FRYL (nFRYL) percentages and mean volume (), root mean square error (RMSE),
and bias of mean volume estimate and applied values of geographical horizontal reference area (HRA)

and k.
Cross-validation
FRYL, nFRYL, CC, m, RMSE, Bias, HRA (k),
Stratum NFI landuse % % % m*ha m’ha  m’ha km
Mineral soil FRYL 87.5 43 90.0 96.5 82.7 -0.46 40 (2)
nFRYL 5.7 2.5
Peatland FRYL 95.8 1.7 96.0 57.1 529 -1.78 60 (3)
nFRYL 2.3 0.1
Arable land FRYL 0.2 2.7 95.0 2.1 16.1 -0.75 40(2)
nFRYL 2.2 94.8
Built-up land, FRYL 12.9 7.4 84.8 242 459 1.00 70 (5)
roads nFRYL 7.8 71.9
Water FRYL 0.0 0.6 99.0 0.0 7.7 0.26 50 (5)
nFRYL 0.5 99.0
Overall FRYL 59.4 3.2 929
nFRYL 3.9 335
Overall from map*  FRYL 61.2 2.5 94.2
nFRYL 42 33.0

*Estimate is based on map data.

Table 6. Estimation parameters for oMS-NFI and ¢cMS-NFI in central and
western Finland study areas: geographical horizontal reference area radius

(HRA) and value of k.

Study area, image  Stratum HRA (km) &
CF, 188/16 Mineral soil and peatland 75 x 45* 7
CF, 188/17 Mineral soil and peatland 60 7
WEF, 191/16 Mineral soil 40 8

Peatland 60 7

*A rectangular geographical HRA was applied, east-west x north-south distances.
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Fig. 4. Percent difference between sMS-NFI and oMS-NFI estimates and ¢cMS-NFI and oMS-NFI estimates for each municipality plotted
against the oMS-NFI estimates for the central Finland study area for () area of FRYL (km?), (b) mean volume (m*/ha), (¢) mean
volume of pine (m*/ha), (d) mean volume of spruce (m*/ha), and (e) total volume (m?, x10%).
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decrease, while the mean volume estimates do not increase cor-
respondingly (Figs. 4e and 5Se).

Asa conclusion, the sMS-NFI volume estimates deviate from
the oMS-NFI estimates more than the cMS-NFI estimates do.
Figures 9 and 10 show that sSMS-NFI is closer than the cMS-
NFI estimates to the field data based estimates. This suggests
that the SMS-NFI performs better than the cMS-NFIL.

30 35 40 45 50 55 60 65 70 75 80
OMS—NFI estimate (m3/ha)

Bias by groups of municipalities

The subregions (groups of municipalities) are large enough
to enable a comparison of the field-inventory error estimates
with the MS-NFI estimates. A possible bias of the small-area
estimates was studied in nine groups of municipalities within
the central Finland (subregions 1-5) and western Finland (sub-
regions 6-9) study areas (Fig. 6). The size of the subregions
varied from 1738 to 4238 km? FRYL. The field-inventory es-
timates and standard errors of the percentage of FRYL area
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Fig. 5. Percent difference between sMS-NFI and oMS-NFI estimates and cMS-NFI and oMS-NFI estimates for each municipality plotted
against the oMS-NFI estimates for the western Finland study area for (a) area of FRYL (km?), (b) mean volume (m*/ha), (c) mean
volume of pine (m*/ha), (d) mean volume of spruce (m*/ha), and (e) total volume (m?, x10°).
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(Fig. 7), mean volume, total volume (Fig. 8), and mean and to-
tal volume for pine, spruce, and birch (Figs. 9, 10, and 11) were
plotted for comparison.

The sMS-NFI and ¢cMS-NFI did not show notable system-
atic errors in the percentage of FRYL, total volume, and mean
volume estimates (Figs. 7, 8a, and 8b). The oMS-NFI estimate
of the percentage of FRYL was significantly biased (4.4%) for
subgroup 2. The sMS-NFI and cMS-NFI estimates corrected the
percentage of FRYL, total volume, and mean volume estimates
towards the field-inventory estimates for most subgroups.

In subregions 4 (central Finland), 6, 7, and 9 (western Fin-
land) significantly biased estimates occurred for the mean and
total volumes of pine and spruce with the oMS-NFI and cMS-
NFI methods (Figs. 9a, 9b, 10a, and 10b). The sMS-NFI re-
duced the biases. The birch estimates were significantly biased
for subregions 1, 7, and 8 with the oMS-NFI and ¢cMS-NFI
methods (Figs. 11a and 11b), while sSMS-NFI slightly reduced
the biases also in these cases.

The same systematic difference between sMS-NFI and the
other two methods is clearly seen in the pine and spruce volume

©2002 NRC Canada



Katila and Tomppo

Fig. 6. The nine groups of municipalities within the central
Finland (1-5) and western Finland (6-9) study areas.

© National Land Survey of Finland,
permission No. 342 / MYY / 01

Fig. 7. Percentage of FRYL (%) of the land area obtained
from pure field data estimates (+2 SE) and oMS-NFI estimates,
¢MS-NFI estimates, and sMS-NFI estimates for the groups of
municipalities (Fig. 6) from the central Finland and western
Finland study areas.
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estimates for the western Finland study area subregions, as well
as for the municipal-level estimates (Figs. 5S¢ and 5d). The dif-
ferences between estimates for sMS-NFI and for oMS-NFI are
higher than those between oMS-NFI and ¢cMS-NFI. This may
be due to the different nature of the methods: the cMS-NFl is a
kind of calibration method. The sMS-NFI produces less biased
estimates for the volumes by tree species in the subregions than
the oMS-NFI or the cMS-NFI. The mean volume estimates for
pine ranged from 32.2 to 62.3 m3/ha (sMS-NFI) and from 33.8
to 56.8 m3/ha (cMS-NFI) and those for spruce ranged from
17.9 to 65.9 m*/ha (sMS-NFI) and from 21.2 to 67.6 m’/ha
(cMS-NFI).

1557

Fig. 8. Pure field data estimates (+2 SE) and oMS-NFI estimates,
¢MS-NFI estimates, and sMS-NFI estimates of (a) total volume
(m?, x10%) and (b) mean volume (m*/ha) for the groups of
municipalities (Fig. 6) from the central Finland and western
Finland study areas.
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MS-NFI estimates for large regions

The estimates for the entire study areas based on the three
methods (municipality estimates) were calculated and com-
pared with the field inventory based estimates. The cMS-NFI
and sMS-NFI shifted the area estimates of FOWL and FRYL
towards the field-inventory estimate in the two study areas: de-
creases were 18 000 ha and 30 000 ha with cMS-NFI and 13 000
ha and 21 000 ha with sMS-NFI. The cMS-NFI estimates were
closest to the field-inventory estimates. Both the cMS-NFI and
sMS-NFI results were within two standard error of the field-
inventory estimate (Table 7).

The cMS-NFl increases the regional mean volume estimates
by 2.0and 1.5 m3/ha for the central Finland and western Finland
study areas, respectively, compared with oMS-NFI, as well as
increases the mean volume estimates by tree species. The SMS-
NFI increases the mean volume estimate in the central Finland
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Table 7. Area of FOWL and FRYL for the central Finland and western Finland study
areas: pure field data estimate with sampling error and oMS-NFI, ¢cMS-NFI, and

sMS-NFI estimates.

Central Finland area (ha, x 10%)

Western Finland area (ha, x 10°)

Method FOWL SE FRYL SE FOWL SE FRYL SE
Field inventory 1343 13.8 1365 13.7 736 16.9 769 17.3
oMS-NFI 1375* 1394* 763 797

c¢MS-NFI 1362 1376 742 767
sMS-NFI 1362 1381 746 776

Note: Estimates with asterisks deviate from the field data estimates by more than 2 SE.

Table 8. Mean volume of growing stock on FOWL for the study areas: pure field data estimate with sampling error and oMS-NFI,

c¢MS-NFI, and sMS-NFI estimates.

Mean volume (m*/ha)

Study area Method Pine SE Spruce SE Birch SE Otherdecidous SE Total growing stock SE
Central Finland ~ Field inventory 38.6 1.0 543 1.5 187 05 6.7 04 1184 1.7
oMS-NFI 39.5 54.8 17.5* 5.6* 117.4
cMS-NFI 40.1 56.1 17.7 5.5% 119.4
sMS-NFI 40.1 54.9 18.0 6.4 119.4
Western Finland  Field inventory 490 14 279 1.3 16.1 07 29 0.3 958 1.9
oMS-NFI 48.6 27.8 15.2 24 94.1
cMS-NFI 49.8 28.1 153 24 95.6
sMS-NFI 49.4 26.7 14.8 2.7 93.5

Note: Estimates with asterisks deviate from the field data estimates by more than 2 SE.

Table 9. Total volume of growing stock on FOWL for study areas: pure field data estimate with sampling error and oMS-NFI,

¢MS-NFI, and sMS-NFI estimates.

Total volume (m?, x 10°)

Study area Method Pine SE Spruce SE Birch SE Otherdecidous SE Total growing stock SE
Central Finland ~ Field inventory 51.8 1.5 73.0 21 252 07 90 0.5 159.0 2.8
oMS-NFI 543 753 240 7.7* 161.4
cMS-NFI 54.6 76.4 24.1 7.5% 162.5
sMS-NFI 54.6 74.8 24.5 8.7 162.5
Western Finland ~ Field inventory  36.0 1.3 20.5 1.1 118 0.6 2.1 03 705 2.1
OoMS-NFI 37.0 21.1 11.6 1.9 71.6
c¢MS-NFI 36.9 20.8 11.4 1.8 70.9
sMS-NFI 36.8 19.8 11.0 2.0 69.7

Note: Estimates with asterisks deviate from the field data estimates by more than 2 SE.

by 2.0 m3/ha and decreases it by 0.6 m3/ha in the western Fin-
land study area. The sMS-NFI did not systematically increase
the mean volume estimates by tree species, as in the case of the
c¢MS-NFI. The sMS-NFI gave the most accurate results for the
broad-leaved volumes in the central Finland study area, while
the oMS-NFI and cMS-NFI produced significantly biased re-
sults for the other deciduous species volume (Table 8).

The behaviour of the cMS-NFI and sMS-NFI total volume
estimates followed that of the mean volume estimates. The other
deciduous species volume estimate errors were also significant
with the oMS-NFI and cMS-NFI in the central Finland study
area (Table 9).

Discussion

A new multisource forest inventory method (sMS-NFI) is
presented to produce forest parameter estimates and to reduce

the effect of incorrect map data on the estimates. Estimates are
computed by map strata. The new method has the advantage of
including all the sample plots within each stratum in the training
data. The method therefore resembles the one used in the field-
inventory estimation. Only FRYL field plots were employed
in the oMS-NFI and cMS-NFI and the plots intersecting FRYL
and non-FRYL boundary were excluded (Fig. 3). The sMS-NFI
estimates were compared with the ones from the oMS-NFI and
the cMS-NFI (Katila et al. 2000).

The sMS-NFI reduced the bias in the FRYL area estimates
of oMS-NFI that were caused by errors in the map data. The
FRYL area estimates from sMS-NFI for large regions remained
between the oMS-NFI estimates and the cMS-NFI estimates.
The cMS-NFI region estimates were equal to the FRYL area
estimates based on post-stratification (Katila et al. 2000). The
sMS-NFI may either increase or decrease the mean volume
estimates of large regions compared with the field-inventory
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Fig. 9. Pure field data estimates (+2 SE) and oMS-NFI estimates,
c¢MS-NFI estimates, and sMS-NFI estimates of (a) total volume
of pine (m*, x10° ) and (b) mean volume of pine (m*/ha) for the
groups of municipalities (Fig. 6) from the central Finland and
western Finland study areas.
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estimates, whereas the cMS-NFI typically increases these esti-
mates. SMS-NFI volume estimates are within the two standard
error of the field-inventory estimates. The volume estimates by
tree species are more accurate for sMS-NFI than for oMS-NFI
or cMS-NFI in large regions and subregions.

The municipal-level estimates of mean and total volumes,
and mean and total volumes by tree species based on sSMS-NFI
differ more from the oMS-NFI estimates than those based on
cMS-NFI; the cMS-NFI calibrates the MS-NFI estimates more
or less systematically upwards or downwards from oMS-NFI.
The sMS-NFI is essentially a different estimation method. The
sMS-NFI and cMS-NFI estimates of FRYL area and volume
did not produce significant errors when compared with the field-
inventory estimates of subregions (1728—4238 km? FRYL). The
sMS-NFI estimates of mean and total volume by tree species
were more accurate compared with the field-inventory estimates
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Fig. 10. Pure field data estimates (+2 SE) and oMS-NFI
estimates, cMS-NFI estimates, and sMS-NFI estimates of (a) total
volume of spruce (m?, x10%) and (b) mean volume of spruce
(m?/ha) for the groups of municipalities (Fig. 6) from the central
Finland and western Finland study areas.
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than the two other MS-NFI methods in subgroups of munici-
palities: oMS-NFI estimates and cMS-NFI estimates failed to
accurately follow the dominant tree species changes within the
the western Finland study area.

The field-inventory estimates and their standard errors have
proven to be useful in validating the MS-NFI estimates in large
regions and subregions (i.e., in areas of 200 000 ha or greater)
(Katila et al. 2000; Tomppo and Katila 1992). These estimates
can be calculated for several combinations of municipalities
to evaluate the MS-NFI estimates. The relative standard errors
of the mean volume estimates, e.g., in the applied subregions,
varied from 3.0 to 4.2%.

Since the sSMS-NFI field plot data set contained all the field
plots, the small-area estimates may be closer to the field in-
ventory based estimates, even though the sMS-NFI estimator
would not be very accurate.
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Fig. 11. Pure field data estimates (+2 SE) and oMS-NFI
estimates, cMS-NFI estimates, and sMS-NFI estimates of (a)
total volume of birch (m?, x10?) and (b) mean volume of birch
(m*/ha) for the groups of municipalities (Fig. 6) from the central
Finland and western Finland study areas.
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The sMS-NFI gave unbiased results compared with large area
field inventory results. Although it removed the bias at the re-
gion and subregion levels, it did not necessarily improve the
accuracy at field-plot level. The oMS-NFI (FRYL delineation
from map) gave a field-plot level FRYL %CC of 93-94%, but
it overestimated the FRYL area. The overall %CC of FRYL
and non-FRYL based on k-NN estimation and cross-validation
at the pixel level was slightly poorer, 90-93%. The producer’s
and user’s accuracies of the minor land-use class within strata
were poor. However, the marginal distributions of the percent-
age of FRYL remained almost unchanged in most strata. Also,
the mean volume estimates within strata were unbiased. In the
c¢MS-NFI, the post-stratification probabilities of the FRYL pro-
portions within each stratum in large areas were used to correct
the FRYL area estimates afterwards (Katila et al. 2000), while

Can. J. For. Res. Vol. 32, 2002

in the sMS-NFl it is expected that the k-NN estimation will cor-
rect the FRYL area estimates directly in the estimation phase.

The pixel-level cross-validation results should be considered
in a comparative way rather than in terms of absolute measures
of reliability. The doubled effect of the locational error of field
plots introduces conservative error estimates (cf., Verbyla and
Hammond 1995; Halme and Tomppo 2001). On the other hand,
cross-validation may underestimate errors in some cases (cf.
Hammond and Verbyla 1996). The prediction error estimates of
the cross-validation method may have a high variance. (Franco-
Lopez et al. 2000) recommended bootstrap methods to obtain
more stable variances (Efron and Tibshirani 1997).

In this test, only five strata in the SMS-NFI were employed,
while in the cMS-NFI the number of strata was 6-11. The need
for a sufficient amount of field plots in the training data limits
the possibility to increase the number of strata in the sSMS-NFI,
whereas in the cMS-NFI, well-classified categories can have
smaller field samples (Czaplewski and Catts 1992; Katila et al.
2000).

The suitable geographical HRA for each stratum was ex-
pected to be related to the proportion of stratum within the
image area and the value of & to the number of field plots in the
training data (Katila and Tomppo 2001). However, the FRYL
area estimates within map strata in the cross-validation tests
were not very sensitive to the value of k or the geographical
HRA.

Region and subregion level estimates of sSMS-NFI applying
k=1 or larger values of k were quite similar. In the operative
inventory, reasonable small-area estimates are often obtained
by estimating only a sample of pixels, e.g., every 10th pixel
along lines and elements of satellite image and k= 5-10. Con-
sequently, it is most probable that an unsampled MS-NFI esti-
mation applying only k = 1 would also yield a sufficient amount
of estimated neighbours for pixels for the municipal-level esti-
mation of forest variables.

The method presented is statistically sound for removing the
effect of the erroneous map data. The method is also computa-
tionally straightforward. It is flexible and can be utilized with
ancillary data of varying quality. For instance, if the land-use
map data is initially created using satellite image information,
the effect of land use class errors on the final forest parameter
estimates can be reduced by using the method presented.

Our firstresults are encouraging. An independent reliable for-
est inventory data would be needed to study the different MS-
NFI methods in detail. The study areas should preferably cover
different geographical and land-use combinations, as contradic-
tory results from the two study areas were sometimes obtained.
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