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Abstract  

This  study  concentrates  on  the assessment  of  the error  in the estimates  of  Finnish  

multisource  National Forest  Inventory  (MS-NFI)  and its  minimisation,  as  well  as  

for  the fc-nearest  neighbour  method (fc-NN).  The MS-NFI utilises  optical  area 

satellite images,  mainly  Landsat TM and ETM+,  and digital  maps, in addition to 

field plot  data, to  produce  geo-referenced  information,  thematic maps and small  

area statistics.  The non-parametric  fc-NN estimation method is  used in the  esti  

mation of  forest  variables for single  pixels  and  to define weights  of  field plots  to 

a  particular  computation  unit, e.g.  a municipality.  First,  the estimation  parame  

ters  that are  optimal  for the  objectives  of  MS-NFI were achieved by  examining  

the prediction  error  at the pixel  level.  Secondly,  potential  variables, covariates or 

other  exogenous variables,  what might  explain  the residual variation  in the fc-NN 

estimates  were studied. Finally,  two methods were  presented  aimed at  reducing  

the effect  of map errors  on  MS-NFI small-area estimates.  

The selection  of  the estimation  parameters  was  examined for  four study  areas  that 

covered  a greater  part  of  the  variation found in the  Finnish  forests. The  error 

estimates  were  obtained by  leave-one-out cross-validation.  The most important 

parameters  for  minimising  the estimation error  of  the total volume and volume by  

tree species  at  pixel  level were  the value of  k,  the  geographical  horizontal reference 

area  (HRA)  radius used to  select  the training  data and the stratification of  the field 

plot  pixels,  and training  data employing  the site  class  map. With the sampling  

intensity  in  the  Bth  and 9th Finnish  National Forest Inventory,  a  geographical  HRA 

with  a  radius  of  40-50 km  was  found to  be  optimal  for  the total  volume estimates  

and for  volumes by  tree  species  on  the  mineral  land map stratum. For  the  peatland  

stratum, a  wider reference area, 60-90  km,  was  required.  

The main sources  of  error in  the Finnish  MS-NFI are  considered to  be  the repre  

sentativeness of  the  field sample  with  respect  to the  estimation problem,  the low 

dynamic  range of  spectral  channel values  on  forestry  land (FRYL)  on  high  resolu  

tion optical  satellite  data,  the  small  size  of  the  NFI  field plots  compared to  the pixel  

size  in  image  data and  the locational errors  in  the image  and field plot  data. The  

first  principal  component  (PCI)  of  the  Landsat TM or  ETM+ channel values of 

the  field plot  pixel  was  strongly  related to  the  residual  variation in  the volume and 

basal area estimates.  The residual variances  of  field  plot  volume were regressed  

against  PCI and the  model was used to  remove  the trend component  of  PCI from 



the residuals,  but  the random error  component  still  remained high  in the residuals.  

A calibration method was  introduced to reduce the  map  errors  on  MS-NFI small  

area estimates.  The method was  based on large-area  estimates of  map errors;  i.e.  

the confusion matrix  between land use  classes  of  the field  sample  plots  and corre  

sponding  map information.  A  method to  compute  the calibrated field plot  weights  

was also  presented.  These weights  were in turn  used to  calculate the small-area 

estimates.  In  the second  method,  the /c-NN estimation  was  carried  out  separately  

within each map strata employing  all  the field plots  from all the land use  classes  

within each stratum. 

Comparisons  were  made between the aggregates  of  MS-NFI small-area estimates  

from the two methods and field inventory  estimates  at  the region  level  in order to  

determine the total amount of  correction,  and for  the subregions  (groups  of  mu  

nicipalities)  to  detect  the possible  bias  in  the  small-area estimates.  Although  quite  

different in nature, both methods corrected the bias in the FRYL area estimates.  

The  FRYL estimates  of  the calibrated MS-NFI are  consistent  with  post-stratified  

estimates  at  the region  level. When  compared  to  the field inventory  based esti  

mates  of  tree species  volumes for  subgroups  of  municipalities km
2

), 

the stratified  MS-NFI performed better  than the original  MS-NFI and calibrated 

MS-NFI. Some of  the estimates  from  the  two  latter  methods differed by  more  than 

two standard errors  from  the field inventory  estimates  in  the  subregions  of  the  test  

data. 

The parameter  selection methods and the small-area  estimation  map  error  correc  

tion methods, together  with  the field inventory  estimates  and their standard errors,  

provide  a  method for  reducing  the  estimation  error  and a  reference of  the accu  

racy  of  the MS-NFI results. However,  if  there is  a  significant  systematic  error  in 

the small-area estimates  of  a  certain  subregion,  it  may not be possible  to  remove 

the error  by  varying  the estimation  parameters.  Other  methods or  auxiliar  data is 

needed to  do this.  

Keywords:  multisource  forest inventory,  /c-nearest  neighbours,  cross-validation,  

Landsat TM and ETM+,  stratification, training  data selection,  prediction  error,  

statistical calibration 
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1. Introduction  

1.1. The objectives  of national forest  inventories  

There are  three main types  of  forest  inventories:  the operational,  the management  

and the national forest  inventories (Cunia  1978). The  objective  of  national forest  

inventories  is  to produce  statistically  unbiased,  reliable forest  resource  information 

for  large areas  for  strategic  planning,  primarily  by  decision makers.  Estimates  of  

both  current  values  and rates of  changes  of  forest  resources  are  required  (Cunia  

1978). Periodic national forest  inventories  can  provide  information on trends in 

the state of  forests  (Lund  1993). The estimates  are  required,  e.g. of  the  forest  

resources,  growing  stock,  growth, health of  forests  and,  increasingly,  of  the biodi  

versity  in  the forests. The national forest  inventory  methods should  be  statistically  

valid,  cost-efficient  and flexible (Cunia  1978). 

In recent  years, there has been a  growing  interest  in  obtaining  national forest  in  

ventory  results  for  smaller  areas  than had previously  been possible  based on field 

samples  only,  e.g.  for  municipalities  and even  for  single  forest  stands, for  for  

est  planning,  timber procurement  and biodiversity  assessment  purposes (Tomppo  

1987, 1991,  Schreuder et  al.  1993,  Kangas  1996,  Tokola  &  Heikkilä  1997,  Nilsson  

1997,  Tomppo  et  al. 1998,  Franco-Lopez  et  al. 2001).  The remote  sensing  data 

from airborne  and spaceborne  sensors  has  been the  key  to  a more efficient  use  of 

forest  inventory  data. Some of  the advantages  of  remote  sensing  data are  that  they  

offer  a  synoptic  view of  the study  area, the data can  be obtained rapidly  for large  

areas  and they  can  be processed  digitally  (Schreuder  et  al.  1993). Traditionally,  

the remote  sensing  data has  been used as  a  part  of  the  sampling  design,  in  order to 

decrease the cost  of  field work  rather  than to try  to  obtain results  for  significantly  

smaller areas  than normally  used in  strategic  forest  inventories (Loetsch  &  Haller 

1973).  The classification  based on remote  sensing  data has been used in  stratified  

sampling  (Tomppo et  al. 2001),  multistage-sampling  (Schreuder  et  al. 1993)  and 

multiphase-sampling  (Poso 1972,  Schreuder et al.  1995). The post-stratification  

may also  provide  an  effective  means  to  decrease the variance in  the estimates  after  

the actual  sampling (Mcßoberts  et  al.  2002). The concept  of  multisource  forest in  

ventory  employing  remote  sensing  data and digital  map data has  been introduced 

to forest  inventories. One prerequisite  for  a  multisource  inventory  method is that 

it  should be  possible  to  estimate  all  the  variables measured in  the field (Kilkki  & 

Päivinen 1987). 
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1.2. Multisource  national  forest  inventory  

Multisource  national forest  inventories employ  various sources  of  geo-referenced  

data, in  addition to field inventory  data, to obtain  more  reliable estimates  or  esti  

mates for  smaller  areas  than when employing  the  pure field plot  data only.  Holm  

gren & Thuresson (1998)  list  the following  types  of  forest  inventory  applications  

employing  remote  sensing  data: land cover classification  of  timber types,  esti  

mation  of  the forest  variables for  forest management planning  purposes,  segmen  

tation to determine stand and other boundaries,  landscape  ecology  analysis  and  

large-scale  forest  inventories. Continuous variables,  such  as stand volume,  vol  

ume by  tree  species,  age  and mean breast  height  diameters have been estimated 

for  forest  management  planning  purposes employing  optical  area remote sensing  

data and field plot  data. Sampling  based  methods,  parametric  and non-parametric  

regression  methods and neural  networks have been used,  occasionally  in  conjunc  

tion  with segmentation  techniques  (Poso  et  al.  1987,  Tomppo  1987,  1991, Tokola  

et  al.  1996,  Hagner  1997,  Mäkelä &  Pekkarinen  2001).  In small-area estimations,  

indirect estimation methods are  used and support  is  obtained from similar  compu  

tation  units  by  applying  methods to  link  the field plot  data and the auxiliary  data 

(Schreuder  et  al.  1993). Non-parametric  regression  has  been  used for small-area 

estimation in the  Scandinavian countries and  the United States (Tomppo  1991,  

Tokola  et  al. 1996,  Nilsson  1997,  Gjertsen  et al.  2000,  Franco-Lopez  et  al.  2001).  

The non-parametric  regression  methods are  relatively  easy  to use  and require  no  

assumptions  about the  shape of  the model. 

In multisource  forest  inventories,  both airborne and spaceborne  imagery  from  ac  

tive  or  passive  sensors  may be  employed,  although  optical  area remote  sensing  data 

has mainly  been employed.  Aerial  photography  has demonstrated its  applicabil  

ity  for  both large area  and management  inventories (Poso  1972,  Loetsch  &  Haller 

1973,  Schreuder et  al.  1993).  Airborne laser  instrument  and radar data applications  

in the  mapping  of  forests  are still  at  the development  stage (Hyyppä  et  al.  1997,  

Naesset 2002).  

The earth  observation satellites provide  continuous image data for large  areas  

(Campbell  1996)  and the increase in the number of  satellites  may help  to  over  

come the  problem  of  cloudiness in  the  image  data. The high  resolution image  data 

from Landsat and SPOT satellite programs have been  used frequently  in  large-area  

land-use or land-cover classification,  as  well as  for multisource forest inventories 

(Campbell  1996,  Eisele  1997,  Nilsson  1997,  Tomppo  et al.  1998,  Franco-Lopez  

et al. 2001). The medium resolution satellites  have shown potential  in estimating  
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volume and biomass,  by  covering  large areas  at  low cost  (Tomppo  et  al.  2002). 

The radar satellite  imagery  (SAR)  has yielded  less  accurate  forest  parameter  esti  

mates than high  resolution optical  satellite data (Tomppo et  al.  1996). The spectral  

and spatial  resolution of  the remote  sensing  data has  been enhanced in  multisource  

forest  inventories by  employing  multitemporal  or  multiple  instrument image data 

(Poso  et  al.  1999, Mcßoberts et  al.  2002).  New,  very  high  resolution satellite  data 

with 1-5 m pixel  size  is  now available,  but  it  is  costly  and requires  new estimation  

methods due to  the scale of  the target,  i.e.  forest  stands and trees (Woodcock  & 

Strahler  1987,  Hyppänen  1996,  Pekkarinen  2002).  

Topographic  databases,  digital  elevation  models and other map data are readily  

available in digital  format (National  Land Survey  of  Finland 1996). However,  the 

map  data may include  location errors,  it may be out-of-date and the attributes  may 

not correspond  to  the ones  used in the  multisource  forest  inventory.  Despite  the 

possible  inconsistencies  between  map data and remote  sensing  data, the map data 

can  be used to  improve  an estimation either  as  ancillary  information or  together 

with remote  sensing  data in  the analysis  (Wilkinson  1996). 

The  Finnish  multisource  National Forest  Inventory  (MS-NFI)  utilises  optical  area  

satellite images and digital maps,  in  addition  to field  plot  data, to  produce geo  

referenced  information,  thematic maps and small-area statistics.  A  non-parametric  

/c-nearest neighbour  method  (fc-NN)  is  used in  the estimation  of  forest  variables 

for  single  pixels  and to  define weights of  field  plots  to  a particular  computation  

unit,  e.g.  a municipality  (Tomppo  1991). One advantage  of  the /c-NN  method is  

that all  the inventory  variables can  be estimated simultaneously.  Field  data from 

surrounding  computation  units  (municipalities),  in  addition to the unit  itself,  are  

utilised  when  estimating  results for  the particular  unit.  It  is  therefore possible  to 

obtain estimates  for  smaller  areas  than would be the case  when employing  sparse 

field data only  (Kilkki  &  Päivinen 1987,  Tomppo  1991).  

1.3. Aim of  the  study  

This study  concentrates on the assessment  and minimising  of  the error  in the 

Finnish MS-NFI and the  /c-NN estimation method. The  errors are studied at the 

pixel  level,  for  small  areas,  i.e.  municipalities  and at the region  level. First,  the dif  

ferent sources  of  error  and their significance  in  the MS-NFI estimation are  studied. 

The  general  outlines  of  small-area estimation  and the non-parametric  regression  

methods are discussed and the application  of  these methods in the MS-NFI is  in  
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troduced. 

In the fc-NN  estimation,  the  overall  error  is minimised by tuning  the estimation  pa  

rameters.  Leave-one-out cross-validation,  a resampling  technique,  is  used to  guide 

the parameter  selection  at  the pixel  level.  These techniques  are  applied  to choose 

the parameters  for  the Finnish  MS-NFI. The  remaining  variation in the error  is 

studied and potential  explanatory  variables are  sought  to model the prediction  er  

ror. 

Two methods are  developed  to  decrease the error  in the small-area estimates  caused 

by  the  forestry  land (FRYL) area delineation based on erroneous  map data. FRYL 

consists  of  forest land,  other wooded land and  waste land. A statistical  calibration 

method posterior  to the fc-NN  estimation  is compared  to the fc-NN estimation 

applied  by  map strata. The MS-NFI small-area  estimates  are  validated by  groups 

of  municipalities  -subregions-  and at  the region  level  against  the  field inventory  

based key  forest  variable estimates  and their standard errors.  
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2. Error  sources  in  multisource  national  forest  inventory  

In multisource forest inventories,  the number of  errors  increase with the number  of 

data sources.  Explanatory  models or standardised rules  must  be applied  at various 

phases  of  data production  (Freden  & Gordon 1983,  Tomppo  et al.  1997,  Burrough  

&  McDonnell  1998),  e.g.  a  definition of  land use classes,  volume models for  sam  

ple  trees and calibration equations  for  the  satellite  imagery  exo-atmospheric  radi  

ances.  Various types  of  error  taxonomies can  be  used to  describe the error  structure 

of  the MS-NFI. The error  components  of  a  forest  inventory  are  measurement  er  

rors,  sampling  errors  and model estimation errors  (Cunia  1965). The  accuracy  

of  the  spatial  data can  be  grouped into  thematic,  positional  and temporal  accuracy  

(Burrough  &  McDonnell 1998)  or thematic and non-thematic errors  (Foody  2002). 

The measurement errors  in  remote sensing  procedures  can  be  divided into  errors  in 

the measurement of  field data, errors  in  the measurement of  remote sensing  data, 

and the  misregistration  in space  or  time between field variables and remote  sensing  

variables (Curran  & Hay  1986).  The  main sources  of  error  in the Finnish MS-NFI 

are considered  to  be  the representativeness  of  the  field sample  with respect  to  the 

estimation problem,  the  low dynamic  range of  spectral  channel values on  FRYL  on 

high  resolution optical  satellite  data, the small  size  of  the NFI  field plots  compared  

to  the pixel  size  in  image  data and the locational errors  in the image  and field plot 

data (II; Halme & Tomppo  2001).  In  the Table 1, several  sources  of  error in the 

MS-NFI data are  presented.  They  are  grouped  according  to spatial  data and forest  

inventory  error  types.  Some  estimates  of  error  magnitudes  are  given,  based on  the 

literature and practical  experiences  in the Finnish  MS-NFI. 
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3. Small-area  estimation  and  k-nearest  neighbour es  

timation in  multisource  national  forest  inventory  

3.1. Small-area  estimation  

Small-area  estimation  refers  to  the calculation of  statistics  for  a small  subpopula  

tion (domain) within  a  large  geographical  area.  Sample  sizes  are  often too small  to 

provide  reliable direct estimators for  a  small area  (Rao  1998).  Small-area estimates  

gain  support  from related areas  that are  nearby or similar  according  to auxiliary  in  

formation (Schreuder  et  al.  1993). The indirect  estimation methods are  grouped  

into  estimators  based on implicit  models and model-based estimators  (Rao  1998).  

The former  group contains  a  synthetic  estimator,  for  which it  is  assumed that the 

small  areas  have the  same characteristics  as  the large  areas  (Gonzalez  1973). A 

reliable direct  estimator  for  a large  area is used to  derive an estimator  for  a small  

area  (Rao  1998). In the model  based methods,  either  non-parametric  or  parametric  

methods are  applied  to  the auxiliary  information in order  to derive the small-area 

estimates.  Because the small-area estimators are,  at least  partially,  model-based,  

the  estimates obtained are  usually  biased. However,  the biased  estimator  can  still  

be  useful if the mean square  error  (MSE) of  the estimator  is smaller  than that of  

the  unbiased estimator  (Kangas  1996).  

Kangas  (1996)  employed  several  parametric  and non-parametric  models in a  small  

area  estimation of  municipality  level volume estimates  using  NFI  field plot  data 

and their coordinates as  auxiliary  data. The mixed model  estimator was  found to 

be  the  most reliable of  the tested models. In  general,  models that can  be  corrected 

for  their observed residuals were recommended: mixed models,  the Mandallaz 

estimator  and kriging  estimator  (Kangas  1996).  The area interpretation  of  weights  

for  field plots  used in  a  small-area estimation  for  a  particular  computation  unit is  

useful,  e.g.  for  management  planning  systems.  To obtain  this  interpretation,  all  the 

weights  must  be  positive,  the weights  must  be same for  all  the target  variables and 

add up to the total area of  the calculation unit  (Tomppo 1996,  Lappi  2001).  The 

weighting  approach  retains  the natural covariation  between the field plot  variables 

within  each field  plot.  

In  the multisource  inventories,  non-parametric  regression  methods have been  widely 

used to estimate  the forest  variables by  associating  the field plots  directly  to the 

pixels  of  satellite image  data in order  to  produce  thematic maps (Kilkki  &  Päivi  

nen 1987,  Tomppo  1991,  Nilsson  1997,  Franco-Lopez  et al.  2001).  Area inter  
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pretation  is  used at  least  in  the reference sample  plot  method (Kilkki & Päivinen 

1987)  and Finnish  MS-NFI (Tomppo  1991). Lappi  (2001)  argues  that the chosen 

nearest  neighbour  field plots  may not  add up  to statistically  unbiased or  statisti  

cally  optimal  estimates  for  the  region  to be  estimated. He  presented  a small-area 

calibration estimator  that minimises  the sum  of  distances between prior and poste  

rior  weights  of  field plots  for  a  distance function while respecting  the calibration 

equation  based  on spectral  values of  satellite  image. A spatial  variogram  model 

was  applied  for calculating  the variances  of  the  calibration estimator.  

The bias  in  the Finnish  MS-NFI small-area estimators  has been assessed  by  apply  

ing  the standard error  estimates of  the field inventory  estimates  at  the region  and 

subregion  level  (III), because an explicit  error  variance estimate is not  available.  

Some small-area estimation methods have estimators for variances.  The resam  

pling methods are  useful in  the estimation  of  the error  for  small  areas, but  unlike 

in the kriging  methods,  it  is difficult  to  take into  account  the possible  autocorrela  

tions in  the data (Davison  &  Hinkley  1997). 

3.2. k-nearest  neighbour  estimation  method  

Nonparametric  regression  methods are  a  collection  of  techniques  for  fitting a  curve 

when there is  little  a  priori  knowledge  about the shape  of  the true  function, and the 

form of  the function is  not  restricted. These methods  are  applied  in exploratory  

analysis  and,  increasingly,  as  stand-alone techniques  (Altman  1992,  Linton &  Här  

dle 1998). Nonparametric  regression  methods can  be considered to belong  to  the 

group of  generalised  additive models (Hastie  & Tibshirani 1997). The general  

formula for  nonparametric  regression  for  a simple  bivariate  dataset (Xl . =1 is 

where e,  is  a random error  independent  over  observations,  E(ei|X; = x) = 0 

and Var(ej|Xi  =  x) a
2
(x). m(-) is  the regression  function of  Y on  X and 

m is estimated at  the group of  observations  covering  some subset  X in  support  of  

X.  It  is  a  linear  smoother of  the form W
n
i{x)Yi  for  the weights  Wrn

(x)"
=l  

depending  only  on  X\,
...,

 X
n
 (Linton  & Härdle 1998). The kernel  and the k  

nearest-neighbour  estimators are among the most common smoothers in  forestry  

applications.  

Yi = m(Xi)  +  ei, i = n, (1) 
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The kernel  estimate is  a weighted  average of  the response  variable in a  fixed neigh  

bourhood,  bandwidth h,  of  x\  the Nadaraya-Watson  kernel  estimate  is 

where K(-)  is  any  kernel  function. The fc-NN  estimate  is  a  weighted  average of  

the response variables  in a  varying  neighbourhood,  defined by  those X that are  

among the fc-NNs of  a point  x  

where M{x)  is the set  of  indices  of  the fc-NNs of  x. Eq.  3 is comparable  to a 

kernel  smoother applying  a  uniform kernel  and  a variable bandwidth h  (Linton & 

Härdle 1998). 

The NN  algorithms have been extensively  used in  the statistical  pattern  recogni  

tion  since  the paper by  Fix  &  Hodges  (1951)  in which they  presented  the simple  

nearest neighbour  classifier.  The  pattern  recognition  system  typically  consists  of  a  

feature extraction and classification  phase.  Dasarathy  (1991)  reviews  several  stud  

ies  concerning  the classifier  risks  for  finite and infinite samples,  the asymptotic  

performance  of  the  classifiers,  selecting  the  training  data, choice of  k  and metrics.  

The nearest  neighbour  distances are  also  used  in  geostatistics  (Bailey  & Gatrell  

1995). Apart  from the multisource  inventories,  the  /c-NN method and  kernel  meth  

ods  have been used in  other fields  of forest  inventory,  such  as  basal  area  diameter  

distribution estimation  (Haara  et  ai.  1997,  Maltamo &  Kangas  1998), generalising  

sample  tree  data (Korhonen  &  Kangas  1997)  and generalising  detailed stand char  

acteristics  from stand  databases employing  less  accurate  stand information (Moeur  

&  Stage  1995,  Malinen  2003).  

The  choice of  k  affects  the shape  of  the regression  function;  when k  increases a 

smoother fit is  obtained with  a  smaller  variance but  larger  local  bias  for  rhk(x)  with 

given  x  and a fixed sample  size  (Altman  1992). The mean squared  error  (MSE) 

is  a commonly  applied  optimality  criterion  for  error  minimisation. The quadratic  

loss  by  MSE can  be studied at  a  single  point  x  or globally  (Linton &  Härdle 1998),  

which may alter the selected smoothing  parameter k. 

The question  may arise,  how to  select  k  as  the  sample  size  n  increases?  In  pattern  

recognition,  the /c-NN  classifier  has  the asymptotic  property  that  when a sequence 

of  k n satisfies  kn —> oo and kn /n —» oas  n —>  00,  the classification  error  ap  

proaches  the optimal  rate  of  Bayes  decision rule  for discrete  variables (Stone  1977, 

-M.) = ra  
2_/t=l  Kh\ x Xi)  

TlfeW  = T , (3)  
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Keller  et ai. 1985).  However,  in  practical  problems  with  moderate n,  the optimal  

selection depends  largely  on the distributions of  the variables (X,  Y) (Kulkarni  

et al.  1998). 

The fc-NN estimates are  potentially  biased if  the  true  function has substantial  

curvature (Altman  1992); e.g. the convex  relationship  between satellite  digital  

numbers (DN)  and field  plot  volume should yield  a  positive  bias in the estimates  

(Nilsson  1997).  The weighting  of  the  neighbours  can  be used to  decrease the  bias  

(Altman  1992). 

Resampling  techniques,  the most  popular  of  them being  cross-validation,  are  fre  

quently  applied  to  the error  quantification  and parameter  selection  for  classification  

and estimation  problems.  Bootstrap  methods can  be used to  estimate the general  

isation  error  and also  confidence limits.  Efron & Tibshirani (1997)  introduced the 

.632 bootstrap  method and  improved  .632+  bootstrap  method for classification  

problems.  These are  smoothed versions  of  cross-validation,  partially  correcting  

the bias  in the bootstrap  variance estimates.  

Mcßoberts et  al. (2002)  pointed  out several  weaknesses in the fc-NN estimator  

compared to parametric  linear regression:  the small  k  value may result  in  RMSE 

values larger  than the standard deviation of  the observations,  and unrelated pre  

dictor  variables included in  the  subset  of  covariates  may increase the MSE. The 

latter case  is  related to the 'curse  of  dimensionality';  the rate  of  convergence for 

optimal  solutions  to non-parametric  regression  is  slower  in multidimensional cases  

(Linton  &  Härdle 1998). In the  fc-NN  estimation,  the  observations  from  large  fea  

ture  space  distances may be  negatively  correlated,  whereas observations  separated  

by  large geographic  distances are  expected  to  be  uncorrected (Tokola  et  al.  1996,  

Mcßoberts  et  al.  2002).  The  fc-NN estimates may  be biased  near  the boundaries 

of  the feature space, because the nearest neighbour  distances tend to  be  greater  and 

the  neighbours  may be  concentrated in  one direction only.  The spatial  distribution 

of  the neighbours  in  the feature space can  be taken into  account  in the estima  

tion.  Local  adaptation  of  non-parametric  methods models may help  to overcome  

the  edge  effect problem  as  well  as the bias  caused by  strong  curvature in  the true 

regression  function  (Malinen  2003). 

The standard techniques  for  bandwidth selection  may fail  in  a  situation where the  

ei  satisfy  E(e t \Xt =  x) = 0 but are  autocorrelated.  Altman (1990)  studied the  

selection of  bandwidth for  the  kernel  estimator  employing  data with  correlated er  

rors.  Cross-validation  produces  parameters  favouring  undersmoothing  in  this  kind  
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of  situations (Altman  1990). A simple  way  to  correct  the effect  of  autocorrelation 

in cross-validation  is to leave out more than one observation.  Altman (1990)  sug  

gested  either  adjusting  of  the selection criteria  or  the  transformation of  residuals.  

The  correlation function should be estimated from the data. However,  when the 

form of  the function  is  not  known,  the wrong choice of  smoothing  parameter  can  

induce false serial  correlation in  the  residuals  (Opsomer  et  al.  2001).  

3.3. Parameter  selection  in  the  MS-NFI  k-NN  estimation  (I)  

In the fc-NN  estimation,  the overall error  (or  other  selected  criterion)  is  minimised 

by  tuning  the estimation  parameters.  The  selected  parameters  are  the  features of  in  

terest  and their weighting;  the  distance metric  and the smoothing  parameter,  value 

of  k  (Malinen 2003). The  MS-NFI also  has parameters  related to  the selection  of  

training  data: stratification  of  the  image and field  plots  on  the basis  of  digital  map  

data; and the geographical  reference  area  from  which the  nearest  neighbours  are  

selected (Tomppo  1996,  Tokola 2000). 

The aim  in (I) is  to examine the selection  of  the estimation  parameters  employing  

the  error estimates  obtained from leave-one-out cross-validation. There were  two 

objectives  in  the selection  of  parameters:  to  minimise  the MSE of  the key variable 

estimates  and at the same time to  retain some of  the variation  of  the original  field 

plot  data in the  spatial  variation of  the estimates.  The statistical  significance  of  

the global  bias  in the fc-NN estimates  was  also  examined in  (I). Only  one set  of  

parameters  per  satellite  image  is  preferred  to maintain the covariation  between  the 

field plot  variables in  the  estimates,  consequently  a  weighting  (Tomppo  &  Halme 

2004)  or  other  compromise  is  required  in the operative  MS-NFI between the set  of  

parameters  obtained for  different variables.  

The original  features of  the  Landsat TM spectral  channel values and Euclidean 

distance measure were  used. The weighting  of  the Euclidean distance had only  a  

slight  effect  on  the  global  MSE in (I),  (c.f.  Tokola et al.  1996). A mild  topographic  

correction  was  carried  out  for  the DN  values of  satellite  image spectral  channels 

using  a modification of  the  Lambertian surface  reflectance  assumption  employing  

digital  elevation model.  Outside  of  northern Finland,  the  topographic  correction  

had only  local significance.  

The  two somewhat  contradictory  objectives  -minimising  the MSE and retaining  

variation- have led  to  heuristic  rules or subjective  selection of  k  in MS-NFI ap  
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plications  employing  Landsat TM or  ETM+ image data. Several  values of  k 

have been applied:  one  (Franco-Lopez  et al.  2001),  5-10 (Tomppo  1996), 10- 

15 (Tokola  et  al.  1996,  Nilsson  1997),  a  minimum relative  decrease RMSE  k  in (I) 

and an  'objective  criteria'  (minimum MSE)   

the objectives  defined earlier  were  met under the condition of  minimum decrease 

of  0.5 %  between k  and k+  1  sought  from  a window ranging  from k+  1 to  k  + 5.  

This  criterion  was  needed when different geographical  reference areas  were  used 

to select  the  training  data. It  yielded  k  values 7-11  for  the total volume estimates.  

Landsat images  cover  geographically  large  areas  that may contain  edafic and  cli  

matic  variation both horizontally  and vertically.  The atmospheric  conditions and 

the radiometric  properties  of  the  image  data may also  vary  within  the image  (Helder  

et al. 1992,  Tomppo  et  al.  1998).  The MS-NFI estimates  will  be  biased  for  a  forest  

area if  there is locational dependency  in  the spectral  values of  pixels  within the 

training  data (Kilkki  & Päivinen 1987). Kilkki  & Päivinen (1987)  proposed  the 

use  of  the same training  data (locationally  uncorrelated)  covering  the particular  

surveyed  forest  area. On  the  other  hand,  the training  data should be large enough  

to cover the true  range and variation in the inventory  area. A  fixed size  moving  

geographical  horizontal (and  vertical)  reference area  windows  (HRA  and VRA)  

have been used in the Finnish  MS-NFI (Tomppo  1996). Because the locational 

dependencies  are  difficult  to  model explicitly,  the  global  unbiasedness is  checked 

using  the cross-validation  method. 

The  RMSE of  the total volume and volume by  tree species  were  studied against  the 

geographical  HRA  radii.  The  mineral and peatland  strata  were  analysed  separately  

because there is high  moisture content  and moisture  variation in  the peatland  soils  

compared to mineral  soils. A  near  minimum MSE for  volume estimates  was  ob  

tained for  mineral land already  with  a  20  km  radius and for  peatland  with  a  30  km  

radius,  or employing  150-300 field plots.  The maximum radius was  sought  by  

estimations  based on field plots  outside different geographical  HRA.  Significantly  

biased estimates were  obtained for spruce and pine  volume in some subregions  

that employed field plots  from 40-60 km  and larger  radii.  On mineral stratum,  the 

40-50 km  geographical  HRA  radius  yielded,  on  average,  400-600 field plots  to  the 

training  data and did not  increase the RMSE  or  decreased the bias  in  some  cases.  

Nilsson (1997)  in  a  simulation study  recommended the same number of  field plots 

for  the estimation of  total volume. 

The  area  of  peatlands  is smaller  than for  mineral  soils  and their proportion  varies  

across  the country;  generally  larger  geographical  HRA radii,  60-90 km,  are  re  
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quired  to  obtain a sufficient  number of  field plots.  However,  if  the average number 

of  field plots  in  the peatland  stratum falls  below  300,  an estimation in two strata 

may not be  justified.  This  map-based  stratification  is  not  very  accurate  and there 

are  also  differences within the peatland  forests  (Tomppo  1996). However,  it  was  

demonstrated in (I)  that the stratification  significantly  decreased the global  bias  of 

the volume estimates within both  strata. 

Tokola (2000)  found a  20  km  geographical  HRA  radius  to  be  optimal  for total  vol  

ume and pine and a  30 km  radius for  spruce  and deciduous volume estimates  in  a 

study  with  NFI  data in  Eastern  Finland applying  cross-validation  for  error  estima  

tion. However,  the  decrease in the  degree  of  determination was  slow  and the study  

material  enabled radii  only  up to 40 km.  Lappi  (2001)  in a small-area estimation 

study  that used a  calibration  estimator  and NFI  field plots,  concluded that  500 field 

plots  outside  the county  to which the timber volume was  to  be  estimated was  rea  

sonable in  addition to  the field plots  of  the county  itself.  To an average size  county  

in the particular  study  area  this  would  yield  an  approximately  35 km  geographical  

HRA  radius fixed to  the centre of  the  county,  assuming  circular  counties.  However,  

the  field plots  outside the  county  obtained less weight  in  the estimation.  

The  parameters  obtained are  generally  suitable for the  MS-NFI,  but a  significant  

global  bias  in  the results  may still  remain. Local bias  may occur  in  the  small-area 

estimates, especially  in  the  edges  of  satellite  image  data or  inventory  area, when 

trend-like large-scale  changes  occur  in  the forest.  The NFI  sample  is  too small for  

reliable error  estimation  in small  areas.  The  bias  in  the key field plot  variables can  

be studied  in  the  parameter  selection  phase  or posterior  to  the fc-NN  estimation by  

comparing  the MS-NFI estimates  in the  subregions  (groups  of  municipalities)  to  

the NFI  field inventory  estimates.  

3.4. Error  variations  at  the  pixel  level  in  the  k- NN estimates  of  the  
MS-NFI (II)  

There are  several  sources  of error  in  the multisource  forest  inventories because 

they  employ  measurement  data and models of  different natures and scales.  These 

errors  contribute to the uncertainty  in the k-NN  estimates.  At  the pixel  level,  the 

prediction  errors  measured with  relative RMSE are  usually  high,  e.g. 50-80 % for 

field plot  volume (I; Tokola et al.  1996). These error  estimates  are obtained by  

cross-validation.  
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The aim  in (II)  has  been to study  the  variation in  the  error  (residuals  of  the  fc-NN 

estimation by  cross-validation)  and to  see  whether there is  a  functional dependency  

between observable covariates  and the prediction  error.  The potential  explanatory  

variables for  which the values could be obtained for  every  pixel  were  tested: i.e.  

estimated values of  forest  variables,  variables of  the selected nearest neighbour  

field plots  and the spectral  channel or  digital  map data values of  pixels.  The field 

plots  in the training  data were  studied as  an independent  sample,  ignoring  the  

possible  spatial  autocorrelation between the  field plots  within the same cluster.  The 

focus  was  on pixel-level  prediction  error  of  field plot  volume and weighted  mean 

of  basal area (BA)  observations  in  the fc-NN  estimation.  The possible  cumulation 

of  systematic  error  in small  areas  was  beyond  the scope of  the study.  

The effect  of  locational error, which is  quite  significant  in the MS-NFI training 

data, was  minimised by  employing  a  procedure  to  reassign  the  satellite  image  in  

formation to the field plot  data (Halme & Tomppo 2001),  or  by  restricting  the 

number of  mixed  pixel  field plots in  the training  data. The  weighted  mean  of  BA 

observations in and  near  the field plot  was  used instead of  pure field plot  BA to 

decrease the sampling  error in the dependent  variable. The use  of  weighted BA 

decreased the random variation (coefficient  of  variation) in the  training  data, as 

well as the MSE in the  cross-validation.  These results  suggest  that the optimum 

field plot  size for MS-NFI purposes is  larger  than that currently  applied  when high  

resolution optical  satellite  data is  used. 

The standard deviation of  the k  neighbours'  field plot  variable was  found to be a 

good  measure  of  uncertainty.  The  estimated volume and BA correlated  with the 

standard deviation  and  can  be  potentially  employed  in the analyses  of  uncertainty.  

The  residuals  were  studied against  the spatial  neighbourhood  spectral  variables,  

numerical map data (3x3  window)  values and variables  describing  the spatial  dis  

tribution, direction and clustering  of  neighbours  in the Euclidean feature space. 

The  first  principal  component  of  the field plot  pixels,  the spectral  brightness  fea  

ture  (Horler  &  Ahern 1986),  strongly  correlated with  the volume and BA estimates,  

and with  their residuals  from the  fc-NN estimation.  Concerning  the spatial  neigh  

bourhood,  the bias  in the estimates  increased close  to the non-FRYL map mask.  

This result supports  the use  of  map data to stratify  the MS-NFI in (IV).  At the 

edges of  the feature space,  there should be more error  in the fc-NN estimates,  but 

the variables describing  the spatial  distribution of  the k  neighbours  did not corre  

late  with  the volume or BA residuals.  The distances in  DN  for  the majority  of  field 

plot  pixels  in the feature  space  are  quite  small  compared  to  the possible  magnitude  
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of  error  in  the Landsat TM  data (Curran  &  Hay  1986). 

The effect  of  the  first  principal  component  was removed  from the residuals by  

using  a model  of  field plot  volume residual variances. The remaining  variation  

was  weakly  correlated with the other potential  explanatory  variables. The  random 

error  component  remained considerable in  the  fc-NN residuals.  At  single  field plot  

level,  the cause of  the error seemed to be case sensitive:  mislocation of  the field  

plot,  the  radiation from the  surrounding  land use  classes or  stands,  the  deviation 

of  the target  field plot  from the surrounding  forest  and extreme field plot  variable 

values. 

3.5.  Correction  of  map  errors  in the  MS-NFI  small-area  estimates  

(III,IV)  

The  delineation of  the inventory  area  is one of  basic  steps in  planning  and execut  

ing  a  forest  inventory.  The forest  area estimate  can  be  based on  the sample  and the 

remote  sensing  and map data can  be  employed  as  auxiliary  data, e.g. in  stratifica  

tion (Loetsch  &  Haller  1973). The error  component  of  the estimate  of  the area  of  

FRYL is  included in  the  total error of  the estimate. In the Finnish NFI, the land 

area is  assumed to  be known,  and the  estimates,  both for  mean and total values,  are  

based  on  ratio  estimators  of  field sample  plots  (Tomppo  et  al.  1997).  The  standard 

errors  are  estimated using local  quadratic  forms  (Matern  1960). In the MS-NFI,  

the FRYL  area  has  been delineated based on the numerical map data and in some 

cases  from satellite  image  data (Tomppo  1991).  More precisely,  other  land use  has 

been estimated from the map data and the rest  has  been considered to  be  FRYL 

consisting  of  the forest  land,  other  wooded  land and waste  land. The problem with 

the  current  MS-NFI map  data is  that it is  not necessarily  up-to-date,  there  are  lo  

cational  errors  and it  does not correspond  exactly  to  the NFI land  use  classes.  The 

aim  in (III) and (IV) has  been to  reduce the  map error  in  the MS-NFI small-area 

estimates:  to obtain better  FRYL  area estimates  and to  correct  the effect  of  map 

error  in  the forest  resource  estimates.  

The error  probabilities  from the  cross-tabulation (confusion)  matrix  of  a classi  

fication can be used  to correct  or  calibrate for misclassification  bias in (remote  

sensing  based)  statistical  estimates  of  class  proportions  (Hay  1988,  Czaplewski  & 

Catts  1992).  The confusion matrix  must  be based on  a statistical  sampling  scheme  

(Card  1982). In (III), a  calibration method is  introduced to reduce the map errors  

in MS-NFI small-area estimates. The method is based on the confusion matrix  
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between land use  classes  of  the field sample  plots  and corresponding  map  infor  

mation,  estimated from a large  region.  If  the  map strata can  be expected  to be 

reasonably  homogeneous  with respect  to the map errors  and land use  class dis  

tribution, the proportions  estimated for  large  region  can be used for small areas  

(synthetic  estimation)  (Gonzalez  1973). In the  calibration  literature, the method 

is  identified as  "inverse  calibration for  classification  error" (Brown  1982),  intro  

duced by  Tenenbein (1972).  In (III), the aggregates  of  the estimated  land  use  class  

areas  over  the large region  agree with unbiased post-stratification  estimators  (Holt  

& Smith 1979). 

In (III), a  method is  found to calibrate the field plot  weights  cltjj  for  computation  

unit U in such  a  way  that the sum of  the calibrated weights  over  all  training  data 

plots  is equal  to the calibrated FRYL area estimates when applying  the confusion 

matrix  and the above method.  The  calibration of  the weights  is  not  straightforward  

because there are  only  FRYL field plots  in  the training  data and there is  a  lack  of  

correspondence  between the NFI land use  classes  and the map strata. In addition,  

the calibrated MS-NFI may produce  negative  weights  ch u  for  some field plots.  

In (IV),  the fc-NN estimation  was  employed  by  map strata. All  the field plots  

within each map  stratum,  irrespective  of  the field measurement  based land use  

class,  were  used for  estimating  the areas  of  land use  classes  and forest  variables of  

the particular  stratum. The  applied  strata were  formed so  as  to  be  as  homogeneous 

as  possible  with respect  to  the NFI  based land use  classes.  However,  the number 

of  strata was restricted  by  the  fact  that  there should be a  sufficient number of  field 

plots  for  the fc-NN estimation  (IV). The aim of  the method was  to  obtain simulta  

neously  the FRYL area  estimate and accurate  forest  variable estimates within  each 

stratum. A compromise  was  made in the parameter  selection between the high  

overall  accuracy  of  FRYL classification  and minimising  the MSE of  the key  forest  

variables. The stratified  MS-NFI resembles the field inventory  estimation in the 

sense  that all the  field plots  within a stratum  are  retained  in the training  data. The  

final estimates are  obtained by  combining  the stratum-wise  estimates.  

In (III) and (IV),  the stratified and calibrated MS-NFI reduced the error  in the 

FRYL area  estimates  caused by  errors  in  the  map data. Comparisons  were  made 

between the aggregates  of  MS-NFI small-area estimates  and field inventory  es  

timates at  the region  level in order to  determine the total amount of  correction,  

and at the subregions  (groups  of  municipalities),  to  detect the possible  bias in 

the small-area estimates.  At  the region  level,  the  calibrated FRYL area estimates  

were by  construction,  equal  to the  post-stratified  FRYL area estimates, and the 
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post-stratification  efficiently  reduced the  standard error  of  the estimate in  land  use  

classes  that  were  homogeneous  with  the map strata (III). For  the stratified  MS-NFI,  

FRYL area correction  remained between  the original  MS-NFI and the calibrated  

estimates.  The calibration typically  increased the volume  estimates  at  both the  re  

gion  and subregion  levels.  The original  MS-NFI estimates  were calibrated upwards  

or downwards more or  less  systematically.  The stratified  MS-NFI small-area es  

timates,  especially  for  volume and volume  by  tree  species,  varied more compared  

to the original  MS-NFI estimates.  The calibrated and stratified  MS-NFI estimates 

of  FRYL  and total volume did not differ significantly  from the field inventory  es  

timates  in  subregions  of  size  ranging  from 1728 to  4238 km 2
. However,  only  

the stratified  MS-NFI estimates  of  tree species  volumes were  within two standard 

errors  of  the field inventory  estimates  in  the subregions  of  the test  data. If  the orig  

inal  MS-NFI estimates  are  clearly  biased in the subregions,  the calibration  method 

alone can not correct the bias.  

In  the calibration  method,  the  confusion matrices  were  calculated for  large  regions,  

where several  thousands of  field plots  were available.  The assumption  of  constant 

misclassification  probabilities  within the  strata  may not have held. The confusion 

matrices  could be formed for  subregions:  according  to  Czaplewski  & Catts (1992)  

improvement  in  the estimation precision  of  the  classes  starts  to  diminish after 500- 

1000 sample  plots  in a simple  random or  systematic  sample.  However,  in  (III) the 

smallest  strata  had less  than 50  field plots.  

Formation of  the strata  is  more simple  in  the  stratified  MS-NFI,  but  the estimation 

parameters  must  be sought  for  all  the  strata applying  cross-validation.  The FRYL 

area estimates  for  each stratum were  not very  sensitive  to the values of  k  or  geo  

graphical  HRA in (IV). The field  plot  weights  wi
]Ph to pixel  ph in stratum h, i.e.  

the fuzzy  membership  values  of  field plot  i,  retain the variation in the training  data 

in the  estimates.  The classification accuracy  for FRYL and non-FRYL was  not  

very  high  in  (IV); the number of  field plots  within minor strata may be too small  

for efficient classification. 
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4. Discussion  

In (I), the most important  parameters  for  minimising the estimation error of  the 

total  volume and volume by  tree species  at  pixel  level  were  the value of  k, the 

geographical  HRA  radius to select  the training  data and the stratification  of  the 

field  plot  pixels,  and training  data  employing  the  site  class  map.  With  the parameter  

selection  criteria  employed,  the parameters  obtained were  quite  similar  in  the four 

different study  areas  that  represented  different geographical  areas of  Finland.  This 

indicates a consistency  in the quality  of  Landsat  TM image data  and in  the NFI 

field plot  data. The selection of  k  was  based on  the  the condition of  minimum 

decrease of  0.5 % between k  and k  + 1 on a smoothed prediction  error  curve  

in (I). According  to  Mcßoberts et al.  (2002),  the threshold percentage  should be 

taken from the  minimum RMSE.  In  general,  if there is more  than one  criterion  for 

selecting  the estimation parameters,  e.g.  minimising  the  MSE and retaining  some 

of  the original  variation in the field plot  data in  the estimates, it  would be more 

objective  to  state  and apply  them in  an  analytical  way.  The use  of  a  small  value  of  

k  may be appealing  because it  retains  the  original  variation of  the  field plot  data in 

the produced  map data (Franco-Lopez  et  al.  2001). However,  a  consequence may 

be  that  fc-NN yields  a  MSE larger than the variance in the observations  (Mcßoberts  

et  al. 2002).  Secondly,  there is  less  variation in  the forest  variables for  units  the 

size  of  a  Landsat TM pixel  (30x30  m 2)  than in  the NFI  field plots,  c.f.  Nyyssönen  

et al. (1967).  

In (I),  the geographical  HRA radii  for  mineral land and peatland  strata were  de  

termined using  the following  criteria:  to minimise  the MSE of  the key  variables,  

to  exclude  from the training  data field plots  that would  introduce bias  into  the es  

timates (maximum  HRA radius)  as  well as  to  obtain a sufficient  number of  field 

plots  on  average in  the training  data (minimum  HRA  radius).  Tokola (2000)  found 

a  smaller  HRA  radius to  be optimal  when  the criterion  was to  minimise  the MSE 

of  volume and volume by  tree  species  from the cross-validation  estimates.  How  

ever,  Nilsson  (1997)  recommended that the  same number of  field plots  should be  

employed in the  training  data as  were  found to be suitable in  (I)  on mineral stra  

tum. In northern Finland,  there is  more variation in  the altitude and,  according  to  

experiences  in  the operative  MS-NFI,  the use  of  geographical  VRA will  decrease 

the  bias  in the vertical subsets  of  the training  data (Tomppo  et  al. 1998).  

Stratifying  the image  and field plots  for  mineral strata and  peatland  strata signifi  

cantly  decreased the bias  of  the volume estimates  within  those strata in  (I).  In  gen  
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eral,  stratifying  the low radiometric  resolution satellite  data employing  auxiliary  

data that reduces the within strata variation,  e.g.  a  forest  site  quality  map (Tokola  

&  Heikkilä 1997)  or  stand characteristics  data (Nilsson  1997,  Tomppo  et  al.  1999)  

will  reduce the  bias  within  strata  and possibly  the global  MSE in  the fc-NN estima  

tion.  The  fc-NN estimates  of  forest  stand border pixels  have  a  larger bias  than those 

inside  the stand and a  separate  estimation  of  stand boundaries would decrease this  

error  (Tokola  & Kilpeläinen  1999). The  bias  in  the estimates  also  increases  close 

to non-FRYL map strata  in (II). In (IV),  The MS-NFI by  strata was  employed.  

The relatively  large  amount  of  training  data required  limits  the number of  strata  to 

be  formed. Combining  remote  sensing  data and map data will  propagate  different 

types  of  error  in the  output  data (Wilkinson  1996). The stratified  remote sens  

ing  classification may produce  artificial  boundaries on  the output  thematic maps 

(Hutchinson  1982). 

In (I  and II), the cross-validation  has been applied  assuming  independent  sam  

pling,  despite  the  fact that the key  forest  variables between neighbouring  field  

plots  within clusters  are  spatially  correlated. E.g.  the volume for  forest  and other  

wooded land had a  correlation coefficient  greater  than  0.3 up to  a  distance of  ap  

proximately  500 m within the same cluster  in  Central  and Northern Finland in  the  

7th NFI  (Tomppo  et  al.  2001).  Spatial  autocorrelation also  occurs  in  the satellite  

image  spectral  channel values.  This derives  from both the  sensor  spatial  properties  

and the spatial  structure of  the  scene  (Collins  & Woodcock 1999). However,  in  

the cross-validation  it  has not been detected in  practice  that the nearest  neighbours  

would be more often from  the same cluster as  the target  field plot. Nevertheless,  

the spatial  autocorrelation range from the left-out  pixel  in  cross-validation  should 

be taken into  account  either  by  modifying  the cross-validation  (Altman 1990)  or  

simply by  the 'leave-some-out' method (Linton  &  Härdle 1998).  

It  is  inevitable that  the prediction  error  at  the pixel  level will  be  considerable in  an 

MS-NFI that employs  high  resolution satellite  data. The  size  of  the field plot  is  

small compared  to the instant field of  view of  the satellite,  the  amount  of  mixed 

pixels  is  large  and the  image spectral  channel values contain  little  variation for 

well-stocked stands  (Ripple  et al. 1991,  Ardö 1992).  However,  reducing  the  main 

sources  of  error  in the MS-NFI, e.g. in  the field plot  data, should decrease the 

prediction  error  in  the fc-NN estimates.  Reducing  the field plot  locational  error  in 

the training  data not only  decreases the RMSE of  mean volume estimates  obtained 

from the cross-validation,  but  also  retains more  of  the  correct variation  in the esti  

mates (Halme  & Tomppo 2001). It  also  corrects  the typical  shrinkage  towards  the 

mean in the fc-NN estimates  rather more than when a small  value of  k  is  used. The 
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sampling  error  in the training  data is  decreased by  the use  of  weighted  mean of  BA 

observations  from a  larger  area  than a  field plot  (II).  

These results lead to the larger  question  of  the optimal  field sampling  design  for 

MS-NFI purposes.  This  will  include the questions  concerning  the size of  the field  

plot,  the distance between field plots,  the representativeness  of  the sample.  When 

the  field sample  is  used in  a remote  sensing  application,  an optimal  spatial  reso  

lution of  the  remote sensing  data may be selected for the estimation (Hyppänen  

1996) or the resolution -and the sensor-  may be fixed.  Under  budget  constraints,  

a  balance should be found between  the need for a  large  enough  field plot  size  to  

provide  a  good  covariation between  the remote sensing  data and the key  variables, 

and the need for  the training  data  to cover the variation of  field variables within the  

satellite  image  cover  (I).  The spatial  autocorrelation  in the forest  variables and in  

the remote sensing  data should  be  taken into account  in  this  optimisation  process, 

cf.  Wang  et  al.  (2001).  

Further refinement of  the estimation  parameters  could increase the accuracy  of  

the forest  variable estimates.  The predictive  power of  the  feature space variables 

employed  can  be  summarised by  applying  canonical correlation  analysis  (Moeur  

& Stage 1995)  or  weighting  the features  based on optimisation  rules  (Tomppo  &  

Halme 2004).  This is  useful when only  one set  of  parameters  is used for all  the 

forest  variables. The local  adaptation  of  the /c-NN  method could be  used,  based 

on  the selected nearest neighbours  or  on the spectral  features. The larger fc-NN 

estimates  also  had a  larger  residual variation and variation in the selected nearest  

neighbours  in (II) and it might  be possible  to  decrease  the prediction  error  by  

applying  a  stronger  smoothing  for  the pixels  where high  volume estimates  will  be 

produced.  On  the other hand,  the  spatial  distribution of  the k  neighbours  varies  

at  the edges  of  the feature space and the Euclidean distances  in DN are  small  

between the field plot  pixels  of  high  stand volume,  whereas in open land and in 

young forests  the distances can  be  quite  high.  

The confusion matrices  used for  the calibration in (III) were  estimated for entire 

forestry  centres. If  the error  probabilities  in the confusion matrix  vary  signifi  

cantly  within such  large  regions,  the calibration  could be  split  into  subregions.  A 

priori  information  of  the map accuracies,  efficient  stratification  to subregions  and 

the evaluation of  standard errors of  the  misclassification  probabilities,  c.f.  (Card  

1982), could be  used to  determine the optimal  size  and distribution of the subre  

gions  for  calibration.  In  general,  the stratified  MS-NFI was  a  more simple method 

than calibration and provided,  on  average, more accurate  estimates  of  the volume 
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by  tree species  for  small  areas. 

The field inventory  estimates  and their standard errors  for  large  regions  and subre  

gions  (groups  of  municipalities)  are  useful  in  assessing  the systematic  error  of  the 

MS-NFI estimates  within a satellite  image or  some subarea  of  it  (III; Tomppo  & 

Katila 1992). The errors  for  field inventory  estimates  are  large for  areas  less  than 

150 000 ha of  FRYL,  and other methods could be tested to evaluate the accuracy  

of  the MS-NFI results,  e.g.  post-stratified  field inventory  estimates  or  resampling  

methods at  the municipality  level.  There is  both map error  and  forest  variable es  

timation error  in the  aggregates  of  MS-NFI small-area estimates  and this  makes 

comparison  with the field inventory  estimates  more difficult  than in the cross  

validation at  pixel  level,  where only  FRYL field plot  pixels  are  employed.  The 

parameter  selection methods studied in  (I)  and the small-area estimation  map er  

ror  correction  methods in (111  and IV),  together  with  the field inventory  estimates,  

provide  a  method to  reduce the estimation  error  and a reference of  the  accuracy  

of  the MS-NFI results.  However, if  there is  a  significant  systematic  error  in the  

small-area estimates  of  a certain  subregion,  it  may not  be possible  to remove  the  

error  by  varying  the parameters  studied in  (I).  In practice,  the small-area estimates  

are  dependent  upon where the  small area  is located with  respect  to  the employed  

satellite  image  and the training  data. The satellite images  and the large  regions  

covered by  the field inventory  data form  a  mosaic  of  'estimation images' that are  

analysed  separately.  Consequently,  neighbouring  pixels  and small  areas may em  

ploy  training  data from different geographical  reference areas.  This  may cause  bias 

in  the  results.  It  has been found necessary  to  take the tree species  composition  of  

the reference area  into  greater  account
, i.e.  large  scale  trend-like changes  of  forest  

variables (Tomppo  & Halme  2004).  This indicates  that the correlation  between 

covariates  and the  volumes by  tree  species  may not be strong  enough  to  define the 

field  plot weights for  the small  areas,  and the use  of  averages of  variables from 

a  window defined by  large  scale trends around a  municipality,  decreases the  error  

in  the small-area estimates.  The  bias  in the small-area estimator  could be therefore 

corrected,  e.g. by  applying  a  combination of  fc-NN estimator  and a  direct  sam  

ple  estimator,  a  composite  estimator,  weighted  by  some criteria  (Schreuder  et al. 

1993). 

The parameter  selection  in the cross-validation  is  based on the global  MSE and 

bias  criteria.  The  systematic  error  in the aggregates  of  small-area estimates  at  the 

region and subregion  levels are  assessed  by  applying  field inventory  estimates.  

The aim  in the MS-NFI is  to  obtain unbiased estimates for  the  small areas  as  well. 

The question  is  open as to, how much the optimal  parameters for  small areas  or 
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subregions  would differ from the  global  optimum.  

A  spatial  presentation  of  the estimation  of  uncertainty  would be  useful  for  the data 

analyst.  Building  an  error  estimation  method based on sources  of  error  is  a com  

plex  problem (Bastin  et  al.  2000).  The  measures of  uncertainty  studied in  (II) may 

be  far  from the true  prediction  of  error  and more information of  the target  pixels,  

especially  mixed  pixels,  are  needed. The finer resolution PAN images  could help  

to  assess  the representativeness  of  the field plots  and to decrease the estimation er  

ror.  Also, the fact that  pixel-level  estimation  errors  can  be  spatially  autocorrelated 

must  be  taken into  account  in the error  estimation  method (Congalton  1988,  Flack  

1995).  Wallerman (2003)  in  a  study  employing  Landsat TM  and an  intensive  field 

sample,  found the spatial  dependence  of  the  residuals  from a  spatial  regression  

model to be lower  than the residuals  from ordinary  least  squares regression,  but 

only  with  field plot  data sampled  by  distances of  less  than 300 m. 

Although a reliable method for  estimating  pixel-by-pixel  error  could be  produced,  

such  a method would not be  suitable for deriving  the  error  estimates  for larger  

computation  units  such  as  forest stands and municipalities.  The error  estimates  

for  larger  areas cannot be obtained directly  by  combining  the error  estimates  for 

single  pixels  due to spatial  autocorrelation both in the satellite  image and field 

data and,  in the case of  cross-validation  error  estimates,  due to locational errors 

in the field plot  data. The error  variance of  the MS-NFI for small  areas could be 

estimated  employing  models describing  the second order properties  of  the MS-NFI 

error  estimates  for  pixels,  obtained from cross-validation  (Lappi  2001).  However,  

the  field plot  volume prediction  error  of  the MS-NFI estimates depends  not only  

on distance between  pixels  but, e.g. on the true volume. In addition,  the fc-NN 

prediction  errors  may not be treated as  the  residuals  of  a trend surface  of  a  spatial  

model. The  several  sources  of  error  in the MS-NFI, both in  the field plot  data 

and the remote sensing  data, can  reduce the reliability  of  the spatial  modelling  of  

errors.  
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Abstract  

The paper  examines  the selection  of parameters  for  the nonparametric &-NN  estimation method  that is  used  in  the Finnish  multisource  
National Forest  Inventory  (MS-NFI). The MS-NFI utilises  NFI  field  plot data,  optical area satellite images and  digital maps  and  produces 
forest  variable estimates from the single pixel  level up  to the national level. The most  important parameters  to be selected are: the distance 

metric, the number of the nearest neighbours, k, parameters  related to  the digital elevation  model, stratification of the image data, as  well as  

the width of the moving geographical horizontal  and vertical  reference  areas  (HRAs  and VRAs).  The root mean square  errors (RMSEs)  and 

significance of biases  at pixel  level  were evaluated  in order  to  find optimal parameters.  A leave-one-out  cross-validation  method was applied.  
The emphasis is  placed on the search  for  moving geographical HRAs and  VRAs, as well  as in  the stratification  of the field  plots  and  the 

satellite  images on the basis  of auxiliary data. Stratification  reduces  the bias  of the estimates  significantly within  each  strata.  With  the current 

sampling intensity  of the Finnish  national  forest  inventory, a geographical HRA with a radius  of 40-50 km  was found  optimal for  the total 
volume estimates and for  volumes by  tree species in the mineral land map stratum. On the average,  there was a sufficient number  of field 

plots  to cover the variation of forest  variables within the image area to  be  analysed. The  inclusion  of field plot  data beyond this area 

introduced  bias  to the estimates. For  the peatland strata, a wider reference  area,  60-90  km, was needed. A VRA, together with  topographic 

correction  of the digital values  of images, reduced  the standard  error  of the volume estimates in Northern Finland.  ©  2001 Elsevier  Science 

Inc.  All rights  reserved.  

Keywords:  Nonparametric  estimation; Satellite images;  Multisource forest  inventory; Stratification; Cross-validation; Training  data  selection  

1. Introduction 

The  trend  in  large area  inventories  is  towards geogra  

phically  accurately  located information  and  small  area 
estimates. Under  Finnish  conditions  this  means municipal  

ity and  forest holding level estimates  (Eisele, 1997; 

Franco-Lopez et  al.,  2000; Gjertsen et al., 2000; Nilsson,  

1997; Tokola  & Heikkilä, 1997; Tomppo, 1991; Tomppo et 

al.,  1999  a, 1999b). 

The  use of  satellite  images in  forest  inventories  has  been  
studied  since  the beginning of 19705. The  focus  has  been  

on the estimation  of basic  variables,  such  as volumes  by  

tree species, basal  area, age and mean breast height 
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diameter  of stand  (Hagner, 1997; Tokola  et al., 1996; 

Tomppo, 1987, 1991). Parametric  and  nonparametric 

regression, as well as neural  networks, together with  

segmentation techniques, have  been  used.  Forest  inven  
tories involve  high numbers  of variables  measured  in  the  

field, typically  between  100  and  400  variables  concerning,  

e.g., site,  volume  and  increment  of growing stock,  forest 

damages and  forest  biodiversity.  Estimates  for  all  of these  

are usually necessary.  

The  Finnish  multisource  National  Forest  Inventory (MS  

NFI) has  utilised  optical area satellite images and  digital 

maps,  in addition  to  field  plot  data, since  1990.  A  nonpara  
metric neighbour method  (A-NN)  deviates  from  the  

usually applied methods  and  has  made  it  possible  to 
estimate  all  inventory  variables  at  the  same time  (Tomppo, 

1991). Field  data  from surrounding units (municipalities),  in  
addition  to the  unit  itself, are utilised  when  estimating  
results  for  one unit; the  method  is  known  as synthetic  
estimation  in  statistical  literature  (e.g., Rao,  1998). This  
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makes  it  possible  to  obtain  estimates  for  smaller  areas than  

would  be  possible  with  sparse field  data  only  (Franco-Lopez 

et al., 2000; Nilsson, 1997; Tomppo, 1996). The method  

produces georeferenced information, thematic  maps  and  
small  area statistics. The field  plot  data  should, however, 

cover the variation  of field variables within the satellite  

image cover. Consequently,  a large number  of  observations  
is  required. 

The  A-NN  algorithm searches  the  feature  space  for  the  k  

nearest  pixels,  whose  field  data  vectors are known,  applying 

a  distance  measure,  d , defined in the  feature  space.  Field  
data  from the k nearest  pixels is  transferred  to the unknown  

pixel.  The  method  has been  widely studied  in  pattern 

recognition (Cover  &  Hart, 1967; Keller  et al., 1985) and  
statistics  (Linton &  Härdle,  1998).  Altman  (1992) showed  
that  the £-NN  estimator  may  give biased  estimates  as the 
value  of k  increases, but  that  the bias  can be  reduced  with  

weighted averages  of the  k neighbours. The  error  rate  

asymptotically  approaches the optimal rate  of the  Bayes  
decision  rule  for  discrete variables  when  both  the k and n  

(number  of  observations)  tend  to  infinity  in such  a way that 
kin—*  0  (Keller et al., 1985). 

A  set  of  parameters is  chosen  for  the  Ä-NN  method in  the  
operative MS-NFI. Examples  are: (1) the image features; (2) 

the  distance  measure; (3)  the value  of k,  i.e., the  number  of 

the  nearest  neighbours; (4)  parameters  related  to  the  possible 

use  of  digital elevation  model; (5)  stratification of  the  image 
and  field  plots  to  mineral  land  and  peatland on the  basis of  a 

digital site  class  map, produced by  the National  Land  

Survey  (NLS);  and  (6)  the geographical reference  area from 

which  the nearest  field  plots  are selected.  The  geographical 
reference  area is  crucial  for  the  estimation  procedure and  is  
selected  separately for  each  pixel in  the Finnish  MS-NFI 

(Tomppo, 1996). 

Franco-Lopez et  al. (2000) and  Nilsson  (1997) studied  
different  distance  metrics  using the  A-NN  method. Several  
studies  have  been  conducted  for  selecting  the  optimal  value  
of k (Franco-Lopez et al., 2000; Nilsson, 1997; Tokola  et al., 

1996; Tomppo, 1996; Tomppo et  al., 1998b). It is  affected 

by  the  layout and  the  size  of  the  field  plots,  size  of  the  pixel  
and the variation  of the field  variables.  Compromises are 

often  needed  due  to the  fact  that  retaining the  variation  of 
field  variables  in  the estimates  may presume  a low  value  of  

k,  while  minimising of pixel  level  root  mean square  errors  

(RMSEs)  presumes  higher value  of  k (cf.  Franco-Lopez et 

al.,  2000).  Stratification  of  the  study  area and  field  plots  has  
been  studied  on the basis  of supplementary data such  as  site 

quality maps  and  old  forest  management planning  data, e.g., 

by  Tokola  and  Heikkilä  (1997),  Tomppo et  al.  (1999b) and  

Tomppo et al. (1998 a, 1998b). 

The  selection  of the  geographical reference  area  on a 

large scale  has  not  been  systematically  studied, partly due  

to  lack of large scale test  data. The  objective  of  this  paper  
is  to fill  this  gap.  The  paper  addresses  the  selection  of  the  
reference  area, both  in  horizontal  and  vertical  directions  

(horizontal and  vertical reference  area (HRA and  VRA)). 

Another  goal is  to study  the  stratification  of  the field  plots  
based  on supplementary  data: in this  case, the  digital 

peatland map.  The  selection  of the  parameters, especially  
the value of k,  must also  be addressed  in order to  

complete the  reference  area selection  and  stratification  in  

an optimal way.  

There  are several  reasons  for  the use of  pixel-dependent 

geographical HRA  and  VRA  from the possible nearest field  

plots to  the  pixel to be  analysed. A  large forest area,  

covered, e.g., by one Landsat 5 or 7  Thematic Mapper 

(TM) satellite  image (with a size  of 183  x  172 km),  may  
involve  a gradual change in  vegetation structure.  In  Finland, 
the  vegetation  zone may  change, e.g., from South  Boreal  to  
Middle  Boreal. This  often  implies  that  the average  structure  
of  the  growing stock,  as well  as other  forest  variables, also  

change. The  proximity of large lakes  or sea, as  well  as 
elevation  variations, affect the  average structure  of the 

growing stock  and  other  vegetation  composition as  well.  
The  relationship between  growing stock  and image features  

may  vary  because  of  these  changes. Too  wide  an  HRA,  i.e., 

too large a value  for  the  geographical maximum distance, 

may  lead  to  biased  estimates.  On  the other hand, when  field  

plot  layout is  sparse,  a minimum  distance  is  needed  to 
include  all the local  variation  of the forest variables  in the 

field  plots. 

The  high  moisture  content and  large moisture  variation  
make  the  reflectance  of  peatland forests  very  different  from 
that  of mineral  soil  forests, even with a similar  structure  of 

the  growing stock  (Tomppo,  1987). A stratification  of the  

image area and  the field  plots have  been  made  according  to 

the  digital site  class  map  in  the  operative MS-NFI  (Tomppo, 

1996; Tomppo et  al., 1998b). The  proportion of peatlands  of 
the  land  area varies  with  inventory  areas. The  hypothesis 

presented here  is  that  different  geographical HRAs  are 
needed  for  peatland strata  and  mineral  soil strata.  

Developing an analytical  method  for deriving the  
standard error of the estimates of a forest area is a 

challenging task  due to the  spatial dependencies of the  
forest variables  and  the  image data  itself.  A satisfactory  

analytical solution is  still  under  development. However,  

statistically  reliable  error  estimates  of  forest  variables  from  
the pure  field  inventory  data  can be  used  to assess the  
MS-NFI results (Katila et al., 2000; Tomppo &  Katila, 

1992). For  these  purposes,  a  large enough part of the  

image must be  analysed. 

The  leave-one-out  cross-validation  method  is  applied in  

this  paper  to estimate  the average  biases  and  RMSE of 

predictions at  the  single  pixel level  for  different  combination  
of  i-NN  estimation  parameters:  particularly  VRA,  HRA and 

strata. The  parameters  are  chosen in  such  a way that  the 
RMSEs of  the  estimates are minimised  and the biases of the 

estimates  are simultaneously kept  within  twice  the  standard  

error  from  the  value  0. The  procedure is  also applied to 
control  errors  by  strata defined  by  field  variables.  Errors by  

volume  classes  are important, especially  in  map  production 

(Franco-Lopez et al.,  2000). 
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2.  Materials  

Four  areas  in Finland  were  chosen  for  this  study. These 

were located  approximately between  longitudes 21°40'E, 
30°25'E and  latitudes  59°40'N,  68°10'N (Fig.  1). The  land  
areas varied  between  13  878  and  38220  km

2

 (Table 1). The  

test data contains  field  measurements from the  Bth and 9th 

NFI,  and  digital map data  and  satellite  images as applied in  

the MS-NFI. The  study  areas were chosen  in  such  a way  that  
the image  acquisition  and  the  field  inventory  were from the  

same year,  that  the  image quality  was  good and that  the  

image area contained  as  many field  plots  as  possible.  The  
structure  and  average  volume (m

3

/ha) of the  growing stock 

vary  within  study  areas and  especially  between  study  areas. 
The  four  study  areas cover the  greater part  of  the variation  in  

land  use  classes, soil  properties, tree species variation  and 

climatic  in  Finland.  The  Western Finland  study  area: (1) 
contains  large peatland areas,  the  Central Finland  study  

area;  (2)  is  rich  in  fertile  mineral  soils  and  the  southwestern 

image; and (3) has a relatively  high nonforestry land  

Fig. 1. The coverage of the  four  Landsat 5 TM  satellite images plotted  over 

the map of the proportion  of spruce-dominated  forests  on  forest  land  based  

on  the 8th NFI field data. 

proportion. The Northern  Finland  study (4) area is from 

the  north boreal  vegetation zone,  in  which  Scots  pine  ( Pinus 

sylvestris  L.)  dominates, and  has  moderately  high  elevation 
variation.  The  forests  of the  study  areas are either  pine  or  

Norway  spruce  (Picea  abies (L.) Karst.) dominated  with 

birch  (Betula  spp.) and  other  deciduous  species  as a mixture. 

The field  sample of the NFIs were measured  from  

systematically  located clusters  of sample plots.  The  sample 

plots  (14-18 per  cluster) were  located  along a  rectangular or 

L-shape tract  at  200-  to  300-m  intervals,  depending on the  

area. Trees  were measured from field  plots  belonging to 

forest and other  wooded  land  (FOWL) stands. The  tally  
trees  were selected  with  PPS sampling (sampling with  

probability  proportional to  size),  applying a  basal  area factor  
of  1.5 in  the  Northern  study  area  and 2 elsewhere.  The  

probability of  a tree's inclusion  is  proportional to its cross  

sectional  area at a height of 1.3 m; a maximum radius  of 
12.45 m was used in Northern  Finland  and 12.52 m in 

Central  and  in  Western Finland.  Unrestricted  PPS sampling 

(sampling with no maximum distance) was applied in  the  
southwestern  study  area. The  inclusion  of 'border' trees  is  

carefully  checked.  The  distance  of the  nearest forest  stand  

boundary from the  field  plot  centre  point was  recorded  in  
10-m classes from 0 to 40 m. 

The  field  plots  that  are  within  forestry  land  (FRYL)  are  
selected  from the  NFI field  sample for the  following  

analyses.  They are divided  into  forest land, other  wooded  
land  and  waste  land, according  to site  productivity  (Table 2)  

(Tomppo  et  al., 1998 a, 1999b; Tomppo et al., 1997). The  

mean and  the standard deviation  of  the volumes  of the field  

plot  measurements for  the main tree species,  mean basal  

area and  age of  the field  plot stand are  presented in  Table  3. 

The Landsat 5  TM satellite  images employed were 

rectified  to the  national  grid coordinate  system with  

regression models  of first or second-order  polynomials  
calculated  from 35 to 70  ground control  points.  These  

were identified  from topographic maps  and  satellite  

images. The  model  residuals  were checked over images 

to ensure an even distribution  of the rectification  model  

errors.  The  mean square  error of  the model, together in the  
direction  of rows  and  columns,  varied  between  0.6 and  0.7  

satellite image pixels.  Nearest neighbour resampling was 
used  with  a pixel  size  of 25  x  25 m 2  for  intensities  

(Tomppo et al., 1998b). 

3.  Methods 

3. 1. MS-NFI estimation method 

Multisource  estimates  are computed for  FRYL  pixels.  
FRYL  is  separated from  the other  land  use  classes  by  means 
of  digital map  data  in  the  current  MS-NFI. Cloud-free  FRYL 

areas of  a satellite  image are  analysed with  the  FRYL  field  

plots  i  chosen  for  the  training data  set.  Incorrectly  located  
field  plots  and  those  that  contain  non-FRYL  land  use classes 
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Table 1 

Study  areas:  satellite images  of the 8th MS-NFI  and 9th MS-NFI, field inventory  data  

a

 Every fourth cluster had 14  field plots  in  the Central  and Western Finland study areas.  

are excluded from the training data  set,  the proportion is  

usually  in  the  range  of  2-6%.  

The MS-NFI  estimates are weighted averages of  the 

field  plot  variables.  The  i-NN  method  is  used  to calculate  
the  weights (Keller  et  al., 1985; Tomppo, 1991). Data  from 
the k nearest field  plots  in  the  feature  space,  i\(p), ...,  

ik{p) are utilised in  the analysis  of each  pixel p.  More  

precisely,  the  field  plots  are sorted  according  to Euclidean  
feature  space  distance  between  p,  and  p,  and  the  k  nearest  

plots are chosen.  

Stratification  of the FRYL area and  the  training data to 

peatlands  and  mineral  soils  according  to a numerical  map 
data  has usually been  applied in such a way that only 

pixels within  the same stratum as the target pixel are 

accepted  as neighbours. The  geographical distance  to the  

potential nearest neighbours has  been  restricted  to 40-120 
km  due  to gradual changes of vegetation type. Simulta  

neous upwards and  downwards  vertical maximum dis  

tances of 50-150  m have  also  been  applied, particularly 

in North Finland.  Cross-validation-based  error estimation  

and  the large area subregion  estimates  from field  data  have  
been  used  to decide  upon  the suitable  geographical refer  

ence area while keeping in  mind  the  need  for  a  certain 
minimum  number  of field  plots (Tomppo, 1996; Tomppo et 

al.,  1998b). 

The  weight wip of  the  field  plot ito the  pixel  pis  defined 
as 

w'"=4—/ - ' if  and  on'y if '  
PI.P Mh(p) <»(/>)} Pij)-P  

e {i\(p),  ...,ik {p)}  =O, otherwise, (1) 

where  {i'i(p), ...,  /*(£>)} is the  set  of  the  field  plots  whose  

corresponding pixels are the  k  nearest  ones to  the  plot  p.  

A value  t= 1  was applied for the weighting parameter in  

this  study.  A  small  positive value  is  given for  0  distances.  
The  weight wip can be  interpreted as that  share  of the  

pixel p  that obtains  data from  the field  data vector  of the plot 

i. For  a single pixel p, the  estimate of the  average  of a 
continuous  variable  is  expressed by  Eq. (2) 

m
p = w

Lf ,m (2) 
/ €FRYL 

For more details,  see (Tomppo, 1996). 

3.2. Feature  selection  

The  original Landsat  5 TM channels  1  -5 and  7  are used. 

Topographic correction for the  digital number values  of 
channels  has  been  made  on rugged terrain  with  a modifica  
tion  of the  Lambertian  surface  reflectance  assumption. The 

normalised  intensity  value  I* is calculated  from the 

observed  intensity  value  / and  angle a between  sun and  

the  normal  of the  land  surface  (Eq. (3)). 

I*  = I /  cos
r

a (3) 

The exponent r< 1 has  been added  to the  denominator, 

because  the Lambertian reflecting surface  assumption is  not 

necessarily  true  for  a varying forest area. The  value  r=  I  

usually leads  to overcorrection  (Tomppo, 1992). 

3.3. Results  validation  

The choice of  the classification parameters  was tested 

with  a leave-one-out  cross-validation  method:  a  single  field  

plot  pi  belonging to the  ground truth  data  set is  classified 
with  the other plots (Linton & Härdle, 1998). Other possible 

Table 2 

The land use  class  distribution of the FRYL field plots  over  the study  areas, the minimum and maximum  elevation above the sea level and the  proportion  of 

field  plots  in  peatland  and mineral soil strata of  the site class  map 

Field plot  data Satellite image  

Study area  NFI  Land  area  (km
2

) FRYL (%) Year Cluster distance (km) Plots per  cluster Landsat  5 TM  Date 

Southwestern Finland 8 + 38220 69.1 1994  7 x 16 16 189/17- 18 940709 

Central Finland 9 18787 82.0 1996 7x7 18/1 4
a 188/16- 17 960824 

Western Finland  9 13878 73.0 1997 7x7 18/143 191/16 970613 

Northern Finland 8 13687 98.1 1993 10  x 10 15 190/12- 13 930713 

Elevation Forest  Other wooded  Waste  FRYL Peatland  Mineral soil 

Study area  range (m) land (%) land (%) land (%)  (no.  of plots)  stratum (%)  stratum (%) 

Southwestern Finland 0-213  95.1 3.5 1.4 3546  11.7 88.3  

Central Finland  79-301 96.9 1.7 1.4 6220  19.4 80.6 

Western  Finland  0-223  89.2 5.9 5.0 4661 30.1  69.9 

Northern Finland 149-549 67.4  20.1 12.5 2013 29.1  70.9 
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Table 3 

The  mean  and the  standard deviation of  the volume of the growing  stock  of  field plots  by  tree  species,  basal  area  (BA)  of  the field plot stand (three  

measurement points) and the field  plot stand  age on  FOWL of  study  areas  

methods  are  the  hold-out  estimator  (i.e., "data  splitting"),  

jack-knifing and  bootstrapping. 
The  RMSE has  been  used  as a measure of  reliability of 

the  continuous  variables  (Eq.  (4)).  

Uh-yt?  

RMSE  = \ ——- . (4) 

where  yt , i= 1, ..n are  the  values  of  variables  in  the  

training data  set  and  yt  is  the  estimated  value.  Other  criteria  

are  bias (Eq. (5))  and  the  standard  error  of  bias  (Eq. (6)). 

*  =  - (5) 
n 

s(e) (6) 
Vn 

where  s(e) is  the standard  deviation  of  errors  j/, — and  also  
the  variance component of  the  RMSE, which  does  not 
include  the possible  bias.  

The  quantity s(e)  can be  used  for  testing  whether  the  bias  
deviates  significantly  from zero. Deviations  greater than 
2s(e)  from the  field  plot  based  estimate  of mean are here  
considered  to be  statistically  significant. 

The cross-validation  errors  are studied  within  strata of 

variables  or by  location, i.e., as soil  class  and  subareas  of 
the  study  area in  order  to  obtain an idea  of  the possible  bias  
in  subclasses.  

The  options considered  in  the field  plot data selection  

and  stratification  in  the  error  analysis  are: (1) maximum 

geographical distance  (vertical and  horizontal)  from the  

pixel under  analysis  to the potential nearest  neighbours 
and  (2) stratification  of field  plots  and  image area based  

on auxiliary  data  (digital  site class  map). 

4. Results  

4.1. Selection  of  the  number  of  k  nearest  neighbours 

A  practical rule  for the selection  of k was developed in 

the  following tests.  The  RMSE normally decreases  as k  

increases  until  a minimum  RMSE  is reached  (Fig. 2). The 

minimum  may  not  be  reached  before  k=  30,  but  the  decrease  
levels  off between  10 and 15 for mineral  soil  stratum and 

slightly  earlier  for  peatland stratum, where  there  are fewer  
observations  (Table 2). 

Four  different  ways  of  selecting  the  value  of  k  were 
tested  for  geographical HRAs  of  10-200-km  radii:  (1) the  
minimum  RMSE between  1 and  30; (2) the  minimum  

RMSE controlled  by the  significance of  the  bias; (3) a 
choice  under  the condition  of  minimum  decrease  of 0.5%  in 

RMSE  between  k  and  k+  1; and  (4) a fixed  k=  10 (Fig.  3).  

Fig.  2. RMSE (a), bias  and double S.E. of bias  (b)  of total volume estimates 

against number of k  for 40 (mineral  soil stratum and all plots)  and 70 km  

(peatland stratum) geographical  HRA, stratification and no stratification,  

Central Finland study area. 

Variable 

Southwestern Finland Central  Finland Western Finland Northern Finland  

X s X s X s X s 

Volume (nvVha) 131.8 103.0 114.6 99.9 89.0 82.4 35.4 40.9 

Volume of  pine  (m
3
/ha)  41.9  57.4 37.8 54.8 44.3 53.7 21.9 35.3 

Volume of  spruce  (m
3
/ha)  68.3 89.3  53.9 84.3 27.8 57.4 8.7 19.4 

Volume of  deciduous  species  (m
3
/ha)  21.6 40.0 22.8 38.1 17.0 33.9 4.7 11.0 

BA (m
2

) 16.9  10.4  15.7 10.5  13.2 9.9 5.6 6.3 

Age (years) 56.8 37.1 51.7 36.1 58.1 39.6 68.7 83.8 
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Fig. 3. RMSE of total volume estimates for differently chosen k  values 

against  geographical  HRAs  of 10-200 km;  (a)  mineral soil stratum and (b)  

peatland  stratum, Central Finland study area. 

The  biases  of  the minimum  RMSE option were nonsignifi  

cant for  all  HRAs.  The  values  of k were equal to options (1) 

and  (2).  The  values  of k  obtained  with  the  0.5%  decrease  in  
the RMSE rule  were near to 10. Note, however,  that  the test  

is  for the total volume  only. 

Options  (1) and  (2) produced the  smallest  RMSE, but  
since  it was desirable  to retain  some of  the variation  of the 

original  field  plot  data  in the pixel  level  estimates  (cf.  Moeur  

&  Stage, 1995), alternatives  (3) and  (4) were employed in  
the  following calculations.  

4.2. Stratification of  the  field  data  to  peatlands and  mineral  
soils  

The stratification  of the field  plot data according  to (1) 

site  class  map  and  (2) field  plot  main  site  class  was  tested  in  
the  cross-validation.  The  RMSE and  the bias  of the total  

volume estimates from the  cross-validation  were studied  

separately for  each  stratum and  for  the  whole  field  sample 

plot  data  of  the study  area. The  value  of  k  was  selected with  
the condition  of minimum decrease of 0.5% in RMSE 

between k  and  k+  1 in  this  analysis.  

The  advantage of stratification becomes  clear when  the  

average  biases  of  the  volume  estimates  are compared within  

both  site  class  map  strata,  classified  by  all  the  sample plots  
and  by  only  the sample plots within  each stratum. The  
former  estimates  from the  cross-validation  are significantly  
biased  (Fig. 4). The  bias  of the  total  volume  estimate  

changed from -  2.7 to -  6.4  m 3/ha  on the mineral  soil  
stratum and  from 1.5 to  6.0  m 3/ha  on the  peatland stratum 
when  the map  based  stratification  was left out in  Western 

Finland  study area with  a 50-km  radius  of  HRA.  The  site  
class  map based  stratification  decreased  the global RMSE 
value  only  by  approximately 0.5 m

3

/ha, with  40  km  and 
larger radius  of  geographical HRA.  The  use  of  precise  site  
class  information  for the stratification, based  on the  field  

plot  data, did  not  improve  the  accuracy  of  the  estimates.  The  
stratification  is  applied overall  in  the  following tests.  

4.3.  Horizontal  and  vertical  geographical reference area 

Fig.  4. Bias and the significance of bias of total volume estimates for  the 

Western Finland study  area. Target field plot  data stratified to mineral soil 

(a)  and peatland  (b)  according  to the site class  map;  training data: all field 
plots,  particular  stratum field plots  stratified according  to map data and field 

plot  data. 
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training data  and the RMSE and  bias  of the  pixel  level  
estimates  of total  volume  and  volumes  by tree species.  

Geographical reference  areas were sought, which  would  

yield the  minimum  RMSE and  unbiased  estimates  and  
would  have a sufficient  amount of field  plots in the 

training data. 

4.3.1. Minimum size of  the  reference area 

The applied &-NN  estimation  method utilises  a pixel  

dependent geographical HRA.  The  spatial variation  of  field  
variables  affects the  selection  of  the  area: The  larger  the  

geographical area of  the  training data, the better  it  covers  the  
true variation  of  the  values  of the field  variables.  This  can be 

seen from the distribution of the standard  deviations  of 

volume  computed from the surrounding training data of 

each  field  plot  in the  Central  Finland  area.  When  the  HRA  

increases, the standard  deviations  concentrate around  the  

one computed from the whole  field data (volume 103.6 

nvTha)  (Fig. 5).  
A larger geographic HRA  is necessary  for more rare  

combinations  of field  plot  variables,  as can be  seen in  Fig.  6.  

For  example, in  the  training data  for  the  Western  Finland  
FRYL  area on mineral  soil stratum, an average  HRA of 40- 

km  radius  is required to  obtain 10 field  plots from spruce-  

dominated  forests  of volume  250-300 m3 /ha  and age  >BO 

years.  For  the  particular image, the  40-km  HRA  would  seem 

to be  the minimum  for  obtaining a  sufficient  amount of 

nearest neighbour candidates.  

4.3.2. Maximum size of  the  reference area 

The  contribution  to the  volume estimates  of field  plots  
from  different  geographical distances  was  studied  in  order  to  
better reveal  their value in the  estimation  of  volume. A 

cross-validation  test, complementary to the  above  tests for  
selection  of  the  training data, was  made.  Only  the field  plots  

beyond a certain radius  were used.  

The  RMSE  and  the  bias  of  tree species'  volume  estimates  

were calculated  from  the  field  plot  data  outside  geographical 
HRAs  of 0-200  km  (cf.  Tokola, 1998). The  area of South  

western Finland  was chosen  due to its large area and 

variation  in  the  spruce  dominance  of  the  forests.  The  RMSE 
and biases  of the estimates  were studied  for  the whole study 

area and for three  smaller  subareas  (Fig. 7): (1) spruce  

dominated (335 target plots) and  pine-dominated areas (2) 

(515 target  plots)  and  (3) (687 target plots). The  number  of 
field  plots selected for the  training data was  kept  constant 

for  each  sample  plot  (or  cluster). Only  mineral  soil  stratum 
field  plots were applied with  k  = 10. 

Fig.  5.  The  distribution of  standard deviation of  volume in the  training data  for  the target  field plots  of  the Central Finland  study area; (a)  20 km,  (b)  40 km  and 

(c)  100 km geographical  HRAs.  
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Fig.  6.  The  average number  of  250-300 m
3
/ha  field  plots  and subsets  of  sample  plots  (logarithmic  scale)  in  the  training  data in  Western  Finland  study  area  

when  different HRA are applied.  

The  global relative  RMSE, i.e., the  percentage  of  the  
RMSE of  the  mean volume  of  the  field  plot  data, of  the pine  
and  spruce  volume  estimates  increased  by only a few 

percent  and  the biases  were not significant  as the  HRA  
increased.  Naturally,  there was  more  variation  in  the  RMSE  
and  in  the  bias  of  the  estimates  in  the subareas  (Fig.  8).  The  
relative  RMSE of subareas  (1) and  (3) increased  slightly  

both  for  spruce  and  pine volume estimates  as  the  distance  

increased  from 0 to 100 km. The biases e for subareas  

showed  a clear increase  with  the  remoteness  of  the  training 
data. The bias  of the spruce  volume  estimate became  

significant for sample plots  beyond 40 km  geographical 

distance  for the spruce-dominated subarea  (1) (e=— 11.4, 

s(e)  = 4.8) and for subarea  (3) (e = 6.2, s(e)  = 2.6).  The 

Northwest  subarea  (2) did  not produce biased  estimates  

until  the  sample plots were further than 80 km; at this  

Fig.  7.  The coverage of  the Southwestern  Finland study  area  and three  subareas (1),  (2)  and  (3)  plotted  over  the  map of the proportion  of  spruce  dominated 
forests  on forest  land based  on  the Bth NFI field data. 
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Fig.  8. Bias and the significance  of bias  of spruce (a) and pine  (b)  volume 

estimates for Southwestern  Finland area.  A total of 350 sample  plot training  

data  selected beyond  various geographical  distances. 

distance, the  pine volume  estimate  became  significantly 
biased  (e= 4.7, s(e)  = 2.2). There  seems to be  a second 

minimum  in the  error estimates for both  pine  and spruce  

when  applying the  sample  plots  beyond a  distance  of  80  km. 
For subarea  (1), there  is a second  wide  spruce-dominated 

area,  and  for  subareas  (2) and  (3),  the  training data  further 
than  from the neighbouring spruce-dominated areas 
is  applied. 

When the reference area was  defined to contain  all the 

field  plots within  the HRA, only the estimate of spruce 

volume  became  significantly biased;  from  distances  90 and  

130  km upwards for subareas  (1) and  (2), respectively.  

4.3.3. Principle  of  reference area selection  
The  number  of  sample plots  in the  training data  selected  

with  a constant geographical HRA  radius varies  consider  

ably  within  the  image  area;  the  proportion of  FRYL  varies  
between  inventory areas and  within  images. Near  the  image 

boundaries, there  is  lower  number  of  field  plots available.  
An  alternative  choice  for  selecting the  training data  was 
tested. Instead  of a constant  geographical HRA  radius, a 

constant  number  of field  plots HRA was employed, cf. 
minimum  number  of plots criterion (Tokola, 1998). The 

other  MS-NFI  parameters were: (1) k  selected  with  a 
condition  of minimum  decrease of  0.5% in RMSE between  

k  and  k+  1 and  (2)  stratification  of  field  plot  data according 
to  the  site  class  map. 

In practice,  the  geographical HRAs  were calculated  for 
each  cluster  in  such  a way  that  the required constant  number  
of  field  plots  was  approximately  achieved.  For  example, for  

300  mineral  soil  field  plots,  the  geographical distance  was 

on the  average  27  km  and  varied between  21  and  53  km, and  
for  150 peatland stratum field  plots, the  distance  was on 

average,  44  km  and  varied  between  20  and  100 km  within  
the  Central  Finland  area. 

There  were  only  slight differences  between  the  RMSE  
values  of  the  two methods  of  training data  selection  (Fig.  9).  
There  were no noticeable  differences  between the RMSE of 

the  volume  estimates  for  the  subgroups of  volume  classes  of 
the  training data.  

4.3.4. HRA  and  VRA  for total volume estimates 

The relative  RMSE of  the  total volume was tested for 

various  HRAs  between 10 and  200  km.  The  comparison 

was  made  for  all  the  images  and  also  separately  for  both  site 
class  strata. All  the  other parameters, except the  pixel- 

Fig.  9. Relative RMSE of total volume estimates on  (a)  mineral  soil and (b) 

peatland stratum for the Central Finland study  area. Training  data selected 

with a geographical  HRA  and with a constant number of field  plots  HRA. 
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dependent HRA, were fixed: (1) k  selected  with  a condition  

of  minimum  decrease  of 0.5% in RMSE between  k and k+ l 

and  (2) stratification of field  plot  data  according  to  the  site  
class  map. 

With respect to the  mineral  soil, the RMSE of the 
estimates  did  not  change much  beyond geographical dis  

tances  of 30-50  km  (Fig. 10); concerning the number of 
field  plots  available  for  classification,  there  was  only  a  slight 
decrease  after  200-300  field  plots. Sample plots  beyond a 

geographical distance  over  100 km  or 1000 plots gave a 

slight  increase  in  the  RMSE for the  Central  Finland  and  
Western  Finland  areas. The  biases correspondingly  had  a 

decreasing, though nonsignificant,  trend.  
For  the  peatland stratum,  the relative  RMSE of the  

Northern  Finland  area was >lOO% and was not included  

in  Fig.  11. The  number  of field  plots for the  peatland 
stratum was low for  the  Southwestern  Finland  area,  only  
414  (Fig.  11(b)),  which  may  be  insufficient for  the  estima  
tion  of  other MS-NFI variables.  The decrease  in  the RMSE  

of  the estimates  levels  off in  the  peatland-dominated Wes  

tern Finland  area with a 60-km HRA. For the other two  

study  areas,  the decrease  in  RMSE  continues  over a 100-km 

range.  The  proportion of peatlands varies  with  the study  

area: the  RMSE  graphs are more  alike  when  plotted against  
the  average  number  of plots available.  The  decrease  con  
tinues  after 200  plots, but  quite slowly.  It seems that  
different  geographical HRAs  are needed for  mineral  and  

peatland strata due  to different  proportion of the  strata.  
RMSEs close to the minimum level  of RMSE for the 

volume  estimate were obtained  using 200-300  plots for 
both  mineral  and  peatland strata, except  for  the  South  

western  Finland  area where  only  50  plots  were required 

(small proportion of peatlands). 

The  minimum  number  of  plots  required in  training data, 
rather  than a certain  geographical HRA data, was  tested  by 

taking subsamples from the training data  with  k-  10. Two 
less  intensive  sampling designs were  tested:  53%  (nine plots  

per  cluster) and  18% (three  plots  per  cluster) of  the  original 

sample for the  mineral  soil  stratum of Western Finland  area. 

Larger geographic HRA radii  were needed  for the 18% 

subsample (three plot  clusters)  (Fig.  12(a)). The  minimum 
number  of  field  plots required was  approximately 100-200 

plots  for  all  the  different  field  samples. The  smallest  sub  

samples seemed  to  benefit  most  from  the  increasing  number  
of sample plots  (from remote  geographical distances)  (Fig.  

12(b)). This  could  be due  to the poor variance  reduction  

power  of  the sparse  (18%) sample. 
The altitude above sea level  varies  from 150 to 550 m in 

the  Northern  Finland  study  area (Table 2),  and the  VRA 
area was tested in addition  to the HRA.  The elevation  

variation  of  the  terrain  changes the  irradiance  properties of 
the  vegetation and  a  simple modified  Lambertian  cosine  
correction  with  an exponent was  used.  The  parameters from 
the operative MS-NFI were tested: a ± 100 m inclusion  

Fig. 10. Relative RMSE % ((a) and (b)),  bias and significance  of  bias  (m
3

/ha)  (c)  of  total  volume estimates on  the mineral soil stratum. 
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Fig.  11. Relative  RMSE % ((a)  and (b)),  bias  and significance  of  bias  (m
3
/ha)  (c)  of  total volume estimates on the peatland  stratum.  

range  and  the  normalised  intensity  values  /* with  the  

exponents  0.4  and  0.8. The  value  of k was selected  by  

applying a condition  of minimum  decrease  of  0.5%  in  the  
RMSE of the estimate between  k and k+ 1. Both the 100-m 

VRA  limitation  and  the  cosine  correction  with  p = 0A  gave  

the  largest decrease  (5%) in the  RMSE  of  the  total  volume  

estimates  on the mineral  soil  stratum at 50-km radius  of 

HRA. These  parameters also increased  the  bias,  but  not  

significantly (Fig. 13). 

4.3.5. HRA  for estimates of volume  by  tree  species  
The  dependence of  the  RMSE  of  the volume estimates  

were studied  by  tree species  with  the  different  geographical 
HRAs. The RMSE of the volume estimates  for the three  

main  tree  species  groups  were tested  against  geographical 
HRAs  of 10-200  km  in the  Central  Finland  (Fig. 14) and  

peatland-dominated Western  Finland  areas (Fig. 15). The  
other MS-NFI parameters were: (1) k  selected  with  a 

condition  of minimum  decrease  of 0.5  in RMSE between  

k and k+ 1 and (2) stratification  of  the field  plot  data 

according to the  site  class  map. 

The  RMSE of the volume  estimates for  the two main  tree 

species  (pine  and  spruce) decreased  to 20-30-km  radii  of 

HRA on the mineral  soil  stratum but  did  not decrease  much 

after these  distances. The relative RMSE of  the deciduous  

tree species'  volume  estimates had a slowly decreasing 

trend, but  the  explanatory power  R*
2 (Eq. (7))  of the  k- 

NN estimates  was close  to zero (Table 4). 

On  the  peatland stratum, there  was  a  greater difference  in 
the culmination  of the RMSE decrease  against the HRA: 

30-50-km radii  for both  Central  Finland and Western Fin  

land  areas  (Figs. 14(c) and  15(c)). Spruce volume  estimates 

were biased  in  the peatland stratum  in  Western  Finland  (Fig.  

15(d)); the  volume  of spruce  varies  substantially in  the 

particular  stratum (Table 4).  Note  that  the 40-km  geogra  

phical  inclusion  distance, on the  average,  gives 190  and  270  

sample plots,  respectively,  for the  training data  on peatland 

stratum for Central  Finland  and  Western  Finland  areas. The 

inclusion  of all  the field  plots  in  the  training data  causes 

extra variation  in the estimates due to numerous mixed  

pixels.  The  same  graphs produced with  the  sample plots 
selected with  the  distance  to the  stand boundary >2O  m  had  

sharper changes in  the RMSE. 

4.3.6. The  precision of  the volume  estimates at  the  pixel 

level 

The  cross-validation  results  of  the  tree species'  volume  

estimates  were compared with  the sample  plot  statistics.  The  
MS-NFI parameters  were chosen  for  each  tree species,  

stratum and  test  area: (1) k  selected  with  a condition  of 
minimum  decrease  of  0.5%  in  RMSE between  k  and  k+ 1; 

(2) stratification  of  field  plot  data  according to the site  class  
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Fig.  12. RMSE (m
3
/ha)  on  the mineral  soil stratum for  Western  Finland 

study  area, different densities of the original field  plots. 

map;  and  (3)  the  HRA  and  VRA  parameters  producing the  
minimum  RMSE of  the  total  volume  estimate  were applied 
for each  stratum. 

The  mean  and  the  standard  deviation  of the  field  plot 

data, and the absolute  and  relative  RMSE, bias  and the 

standard  error  of bias  of  the estimates, were calculated  

(Table 4). The  RMSE of the  MS-NFI estimates were  

compared  with  the  standard  deviation  s(m)  of  the  field  plot  

data  variables.  A  R*
2 coefficient  was  computed to  compare 

the  predictivity,  the amount of variation  reduced  by  the  

"model", of  different  variables  and  methods  (Eq.  (7)) (cf.  

Tokola  et al., 1996): 

I™ (7) 
s(m)  

As mentioned  above, the volume  estimates of tree 

species  with  highest volumes  have  the  smallest  relative  
RMSE in each  strata.  In the Western Finland  area, two of 

the  tree  species'  volume  estimates  are significantly  biased  
for  mineral  soils,  i.e., larger  than  twice  the  standard error  
of  bias  s(e).  This  indicates  that obtaining unbiased  esti  

mates  for  all  the tree  species'  volume  estimates  is  not  an 

easy  task. 

The  R*
2 coefficient  varied between  0.16  and  0.42 for 

the  total volume  estimates and 0.06 and  0.46 for the 

dominant  tree  species  estimates  of the  different  stratum.  
Estimates  for  the  Northern  Finland  peatland stratum had  a 

poor  explanatory  power.  There  are  many  treeless  mires, for  
which  the variation  of  moisture  is  large and  this  may  cause 

severe misclassifications.  

Of all  three  species,  the spruce  volume  estimates  had the  

highest R* 2.  The  spruce  volume  also  had  the  highest 
variation  among the  tree  species'  volumes  in  the  field  plot  
data.  The  variation  of the spruce  estimates  is  still  signifi  

cantly  reduced, although the  relative  RMSE is over 100%.  
The  R  *  2 coefficients  for  pine are lower, especially when  

pine is not  the  tree  species  with  the highest volumes.  The  
deciduous  tree  species  estimates have  a low R*

2 coefficient.  

These  species  occur mostly  in  mixed  forests  with  coniferous  

species.  The  early summer  satellite  image of the  Western  
Finland  area  gave  the  highest  R*

2 for  the  deciduous  species 

estimates.  For  the peatland stratum, differences in R*
2 

values  by  tree  species  were small.  The  R*
2  values  for  the 

mineral  soil  were approximately  the  same magnitude as 
those  presented  by  Tokola  et al. (1996). However,  the  

Fig.  13. Relative RMSE, bias  and significance  of bias  for total volume 
estimates for the Northern  Finland study area, VRA  and HRA, intensity  

correction,  mineral soil stratum. 
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Fig.  14. Relative RMSE,  bias  and significance  of  bias  for  tree species  volume estimates on  mineral soil stratum ((a)  and (b)) and peatland  stratum ((c)  and (d))  

for the Central  Finland study area. 

Fig.  15. RMSE, bias  and  significance  of  bias  for  tree species  volume estimates on  mineral soil stratum ((a)  and  (b)) and peatland  stratum ((c)  and (d))  for  the 
Western Finland study area. 
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Table 4 

The absolute and relative RMSE, bias  (£),  the  standard error  of the bias  (s(S))  for the volume estimates and variable mean (m ), the standard deviation of the 

variable (s(m))  and  R*
2
 coefficient by  study  areas;  stratification and different geographical  HRA radius  according to the  site class  map.  

stratification  was not applied in  that  study and  the  NFI  

sample  data were from smaller  areas. 

5. Discussion  

The  selection  of  the appropriate geographical HRA  and 

VRA and the effect of stratification  of the field  plots and 

images on the  basis  of  digital site class  map for  the  Finnish  
MS-NFI  method  were studied  applying RMSE  and  biases of 

volume  estimates at pixel level.  The leave-one-out  cross  

validation  method was used  to obtain  average  RMSE and  

biases of estimates for pixels. The main findings with  the  

applied test data  were: (1) The  stratification  of  the  satellite  

image and the  field  plot data with  the site  class  map 

significantly  decreased  the  bias  of the volume estimates.  

(2) The  geographical HRA radius  of  40-50  km  on mineral  
soil  stratum included  a sufficient number  of field  plots 

(400-600) for different variable  combinations, and to 

minimise  the RMSE of the volume estimates with the 

current  sampling intensity in  the NFI.  Field  plots from 

larger  distances  increased  the  bias  of the volume estimates  

in  the  image subareas.  (3)  For  the  peatland stratum, covering 
a minor  part  of the FRYL, larger  HRA radii  (60-90 km)  

were needed.  (4)  The VRA, together with  normalised  

intensity  values, decreased  the global relative  RMSE of 

the total volume estimate on the  mineral  soil stratum in 

Northern  Finland.  

5.1. Sources  of  error  in the  training data 

Errors in the field  measurements  and  in the location of 

the field  plots,  location  errors  of  the pixels,  imaging system  

errors and atmospheric condition  errors cause extra varia  

tion  m the  estimates  (Curran & Hay,  1986; Tomppo et  al., 

1999 a). The  location  errors  decrease  the  precision  of  pixel  
level  estimates  of  the  cross-validation  in  two  ways:  both  the  

pixel to  be  analysed and  the  field  plot pixel  may possess  
location errors. Even  if  there  was no location  error,  the size  

of the NFI  field  plot measured  with  PPS sampling is  much  

Tree m RMSE (*-NN)  RMSE S s(e) s(m ) No.  of 

Study area Strata/HRA species  (m
3
/ha) (m

3
/ha)  (%)  (m

3
/ha)  (m

3
/ha)  (m

3

/ha)  R*
2 plots  

Western Finland mineral 40 km  total 102.4 70.7 (8)  69.0 -2.52  1.24  86.3 0.33 3258  

pine  47.0 52.0 (8)  110.8 1.21 0.91  57.1 0.17 

spruce  36.5 52.0 (6)  142.3  -2.22  0.91  64.3 0.35 

deciduous 18.9 33.5 (9)  177.3  -  1.26  0.59 36.0 0.13 

peatland  60 km total 57.9 48.1 (7)  83.1 -  1.94 1.28  62.4 0.40 1403 

pine 38.1  38.4 (9)  101.0 0.55 1.03 44.4 0.25 

spruce  7.4 21.9 (5)  295.4  -  1.19 0.58  27.4 0.36 

deciduous 12.4 24.2 (10)  194.3 -  1.09 0.64  27.8 0.25 

Central Finland mineral 40 km  total 121.7 84.9 (9)  69.8 0.02 1.20  103.6 0.33 5012  

pine 37.1  54.2 (9)  146.1 1.17 0.77  57.1 0.10 

spruce  60.7 72.3 (8)  119.2  -0.46 1.02 88.4 0.33 

deciduous 23.9 39.0 (9)  163.0 -0.61 0.55 39.3 0.02 

peatland  70 km total 85.1  64.4 (10)  75.7 0.74 1.85 76.0 0.28 1208 

pine  40.7 40.6 (10)  99.6 1.89 1.17 44.2  0.16 

spruce  25.9 49.5 (8)  190.9 0.04 1.42 56.3 0.23 

deciduous 18.5 31.5 (9)  170.5 -0.81 0.91  32.6  0.07 

Southwest Finland mineral 50 km  total 136.0 87.5 (11)  64.4 -0.84 1.56 104.2 0.30 3132  

pine  42.3 56.6 (10)  134.0 1.83 1.01 58.8  0.07 

spruce  71.8 75.5 (10)  105.2 -  1.92 1.35 90.8 0.31 

deciduous 21.9 38.3 (11)  174.7 -0.78 0.68 40.1  0.09 

peatland 90 km  total 100.4 66.6 (9)  66.4 -0.96 3.28 87.6  0.42 414  

pine  39.5 37.3 (10)  94.6 1.43 1.84 45.3 0.32 

spruce  41.7 53.3 (8)  127.8 -  1.23 2.62 72.3 0.46 

deciduous 19.3  37.1 (9)  192.9 -  1.25 1.83 39.3 0.11 

Northern Finland mineral 50  km  total 43.2  34.0 (9)  78.8 1.31 0.90 43.2 0.38 1428 

pine  27.3 33.2 (8)  121.6 1.15 0.88 39.1 0.28 

spruce  10.5 18.1 (10)  172.6 0.17 0.48 21.3  0.28 

deciduous 5.4  11.1 (8)  206.3 -0.05 0.29 11.6 0.08 

peatland  80 km total 16.3 24.2 (8)  148.9 -0.27 1.00 26.4 0.16 585 

pine 8.8  17.0 (8)  192.2 0.24 0.70 17.5 0.06 

spruce  4.3 12.4 (6)  292.2 -0.21 0.51 12.9 0.08 

deciduous 3.2 8.1 (9)  254.7 -0.19 0.33 9.1 0.22 
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smaller  than  the area of  a  single  pixel  (625  m 2);  the  trees  of 

d.b.h. 10 and  20 cm  are tallied from  area of  39 and  157 m  
2,
 

respectively,  when  a basal  area factor  of  2  is  applied. The  
smaller  the  average  size  of the trees, the smaller  is the  area 

of  the forest  stand  covered by  the  field  plot. 

5.2. Distance  metric and  the  value  of  k 

The  original digital values  of  channels  1-5 and  7 of 
Landsat  5  TM were used  as image features, although 

improvement in the  precision of the  estimates  could have  
been  expected with  transformations  or weighting of  the 

original channels  (Franco-Lopez et  al.,  2000; Tokola  et  al., 

1996; Tomppo et al., 1999 a, 1999b). The  Euclidean  distance  

measure was  used  in  the  feature  space.  The  weighting of 

spectral distances  would  be expected  to reduce  the bias  in  

the  estimates (Altman, 1992). Weights  between  0  and  2  have  
been  tested  in  other  studies  when  optical area satellite  data 

and  point  sampling  or  concentric  circular  field  plots  material  
have  been  applied (Nilsson, 1997; Poso  et al., 1999; Tokola  

etal., 1996;Tomppo, 1991). The  weighting of  distance  with  

f  =l-2  was found  to give a smaller  RMSE of volume  
estimates  than  nonweighted distances,  especially  for  smaller 
HRAs  (<5O km).  The  weighting with  t= 1 gave slightly 

better  results  on mineral  soils  and  was chosen  for this  study. 

Two  objectives  have  been  kept  in  mind  when  selecting 
the  value  of  k:  (1)  minimising of  the  RMSE  of  the  estimates  
of  the key variables  and  (2) retaining the original  variation  
of  the  field  plot  data  in  the spatial  variation  of  the  estimates.  
These  objectives  conflict  to  some extent,  the  RMSEs  of the  
estimates decrease  slightly  until  the value  of k  = 20-30, 

wherefore, e.g.,  Nilsson  (1997) and  Tokola  et al.  (1996) 

suggested a  value  k  = 10-15.  For  example,  for  mapping or  
for  forest  planning  purposes,  Franco-Lopez et  al. (2000) and  
Moeur  and  Stage (1995) suggested a much smaller  value, 

even the  value  k= 1, which  retains  the variation  of the 

original data. A  compromise is  necessary for practical  
inventories.  Weighting of contradicting objectives, e.g., 
the  RMSE and  retaining the  variation, would  be needed  to 
select  the value  k  in  an analytical  way.  The  weighting, 

however,  depends on for  what  purposes  the  estimates  are 

used.  A heuristic  rule  has  therefore  been  applied in selecting 
the  value  of  k in  the  Finnish  MS-NFI. The  value  has  usually  
been  between  5 and  10 (Tomppo, 1996). 

A moderate  value  of  k  can also be  argued by  the  fact  that  
the  stratumwise biases  may increase  when the  value  of k  
increases.  A  value  higher than  1 for  k,  on the other  hand,  

can be  argued by  the fact  that the  area of  a  NFI  sample plot 
is  smaller than the  area of  a  pixel.  The  field  plot  data  
involves  also  theoretically more  variation  than  pixel  level  
data should  involve. 

Selecting  the  value  of  k with  minimum  decrease  of  0.5%  
in RMSE between  k and  k+ 1 led  to values  of £=s-12. A  

constant 4=lo was also used. The  value  selection  for  k  was 

not very  sensitive  to the  number  of observations  in  the  

training data when «>lOO. 

When  the  global RMSE  criterion  is  used  the  appropriate 
choice  of  k  depends on several  parameters: (1) number  of 

sample  plots in  the  training  data; (2)  size  of  the field  plots 

compared to the  pixel  size;  (3)  weighting of the  spectral 
distance  in  the  estimation, a higher distance  weight reduces  
the  importance of the last  neighbours; and  (4) the  density  of 
the  training data  in  spectral space.  

5.3. Stratification 

The stratification, which  applied the site  class map  

(peatlands and  mineral  soils), significantly decreased  the  
bias  of  the  volume  estimates (Fig.  4), although the NLS's  

peatland delineation  is  different  from that  of  the  NFI. Maps 
often underestimate  the area of peatlands and  they also  
contain location  errors  (Tomppo et al., 1998b). The  global 
RMSE of the  combined  total  volume estimates  only  

improved by  1%. Contrary  to expectations,  the  use  of the  

precise  sample  plot data  for the  stratification did  not 

significantly  improve the  global RMSE of the  volume  
estimates  compared to the  map  based  site  class  stratification.  
Tokola  and  Heikkilä  (1997)  obtained  a  5% reduction  of  the 

global RMSE in  the  pixel  level  estimates of  total  volume  
with  a stratification  based  on forest site quality maps  and  

NFI data  when  using an estimation  method  similar  to  the  
one used  here. 

The  stratification  of low radiometric  resolution  satellite  

data  with  the  auxiliary data, which is  correlated  with  the  
estimated  variables, will  most often  reduce  the  bias  of  the 

estimates  within  the strata. The stratification  can help to 

avoid  mismatches  in  the  classification  of certain  type of 

forests,  e.g.,  peatlands and  mineral  soils  or  old-growth forest 
stands.  However, the  minimum  number  field  plots  in  the  

training data  for  each  stratum must  be  maintained  (Tomppo  

et al., 1999 a).  

5.4. Geographical reference area 

In the  presence  of spatial trends  in the  forest  variables, 

pixel-dependent geographical HRAs  of  radius  10-200  km  

were tested  for the  selection  of  training data  for  the  Finnish 

MS-NFI. The  RMSE and  the bias of the volume  estimates 

based  on the  cross-validation  were calculated  separately  for  
the  two  strata.  Different  HRAs  were required for  the peat  
land  and  mineral  soil  strata  due  to  the  different  proportion of 
the  strata  (Table 2).  On the  mineral  soil  map, a suitable  HRA  

was  40-50  km  for  total  volume  estimate, although most of 
the  variance  reduction  was  already gained  at  a distance  of  20  
km  (Fig.  10). On  the  peatland stratum, the  suitable  HRA  
varied  more, from 60 to 90 km,  and  the  variance  reduction  

was  slower  than  in  the  case of  mineral  soils  (Fig. 11). When  
the  average  number  of  sample  plots  in the  training  data  was 
studied  instead  of the HRA, a near minimum  RMSE was 

achieved  with  150-300  sample plots.  However,  increasing 
the  number of sample plots  to between  400  and  500  
decreases  the  error of both  strata. Increasing the HRA to 
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100  km  and  over did  not  increase  the  global relative  RMSE  
of the total volume estimate, except for two  images on 

mineral  soil  stratum. 

The  RMSE of the volume  estimates  for spruce and  pine 

reached  a local  minimum  with  a slightly  smaller  HRA  
radius  than that for the total volume.  As the RMSEs were 

not  significantly  higher, if  the  HRA was  the  same  as with  the  

total  volume, the same radius could be  used.  

The  number of sample plots  is more important than  the 

geographical distance  when  subsets  of the original sampling 

design were selected  for the field  plot  data (Fig. 12). 

However, when  the estimation  was made  with  the training 

data  containing sample plots  only  beyond a 50-60-km or  

larger HRA radius, the  spruce  and  pine volume  estimates  

were  significantly  biased in  the  subareas  of  the  South  

western  Finland  study  area (Fig. 8). These  radii  are compar  
able  with  results presented by Tokola  (1998). 

It can be  concluded  that  in  the boreal  forests of Finland, a 

40-50-km  geographic HRA  radius  for  mineral  soil  is  

suitable,  depending on the  intensity  of  sampling. This  also  

yields  a reasonable  amount of  variation  in  the  sample  plot  
data (400-600 sample plots) for subclasses  of variables  

(Fig. 6)  and  does  not  lead  to significant  biases  within  the  
subareas  of  an image. Nilsson  (1997) found  the  same 
number  of sample plots sufficient  for  a  total volume  

estimation  on the FRYL with simulated  forest map and 

Landsat  TM data. 

On  the  average,  the  peatlands account  for  26.6%  of  the  

FRYL in  southern  and  40.6% in  northern  Finland  (Finnish 

Forest  Research  Institute, 1999),  that  is  to  say,  less  than  the  
mineral  soils.  Thus, a geographical HRA radius  of  60 km  for  

peatland-dominated areas and  90-km  radius  for  areas with  
low  peatland proportion is  recommended  for  the  Finnish  
MS-NFI. However,  if  the average amount of  sample  plots  in  
the  training data  falls  below  300,  stratification  may  not  be  an 

appropriate method.  

The  VRA, together with  normalised  intensity  values, 
decreased  the global relative  RMSE of the total volume  

estimate on the mineral  soil stratum in Northern  Finland  

(Fig. 13). Changes in altitude  have  a clear  impact on the  

vegetation in  Northern  Finland  (Seppälä &  Rastas,  1980).  
The VRA distance of ±lOO  m alone  did not, however, 

affect the global RMSE of volume  estimates,  but from 

earlier  experience, it  is  known  that  it  decreases  the bias  of 

the estimates in  vertical subareas.  

The RMSEs of the volume  estimates were high  at the 

pixel  level, but  seem to  be  of  the  same magnitude for  the  

same strata  for  the  different  study  areas and  satellite  images 

(Table 4). The  worst estimates  were obtained  for the mixed  

pixels,  i.e., those  near stand  boundaries.  The  explanatory  

powers  as measured  by  R *  2 increased  to over 0.5  for  the 
total  volume  estimates  when  the sample plots near the  stand  

boundaries  were  omitted from  the cross-validation  (cf.  

Tokola  & Kilpeläinen, 1999). 

The estimates  for the  surveyed area will  be  biased, if 

there is a locational  dependency in the  spectral values  

of pixels within  the HRA  (Kilkki & Päivinen, 1987). 
Kilkki and Päivinen  (1987) proposed the use  of the  

same (locationally uncorrected) training data for each 

pixel  of the  surveyed forest area. In the Finnish MS  

NFI,  a fixed  size  moving HRA is applied and  artificial  
boundaries  are avoided  (Tomppo, 1991). The  locational  

dependencies for FRYL within  the  HRA  satellite  images 

are  quite difficult  to model  explicitly  due  to the com  

plexity of imaging systems,  atmospheric attenuation  and  

target  reflectance  properties.  In the operative inventory,  

the  global and  local  unbiasedness  of the  estimates  were 
checked  using the cross-validation  method  and large area 

forest statistics prior to the  classification. A  knowledge 
of  the range and shape of vegetation cover changes 

(Fig. 1) has  been  used  to define the  appropriate form 
and  size  of  the  reference areas (rectangular or circle) 

(Tomppo, 1996). 

In  this  context of  local  unbiasedness, obtaining a variable  
number  of field  plots in the  training data for each  pixel, due 

to  image boundaries  and  proportion of  FRYL,  seems to  have  

only  minor  effects on the  precision  of  the  MS-NFI results  
within  the  particular image. There  were no significant  

differences  in  the global RMSE and  bias  of  the  total  volume 

estimates between  the  selection  of  training  data with  a 

constant  number  of sample  plots HRA  or using geographic 

HRA (Fig. 9).  The  study of the  biases  by  subareas  also  
failed  to reveal  significant  differences  between  the two 

training data selection  methods.  

These  results  do not cover the problem which  is  present 

particularly  when  trend-like  large-scale changes occur in  
forests. The small  area estimates are highly dependent 

upon  how  the  area is located  with  respect  to the applied 
satellite  image. The satellite images obtained for the  

inventory area of a  certain  year  form an image 'mosaic.'  
Since each  satellite  image will  be analysed separately, 

neighbouring pixels,  or small  areas,  may  employ training 

data  from a different  geographical reference  area depending 

on how the  area is located  with  respect to the applied 

satellite  image. 
Other possible ways  to define  the  geographic HRAs  

could  be  a  combination  of VRA and HRA an ellipsoid, 

or the mean effective  temperature sum  of thermal  season 

and vegetation zones as a surface use of 7  h. However,  

because  the  forests in  Finland  are not in  a natural  state, the 

pure  edafic  and  climatic  factors may  only  partly  explain the  
location  dependent variation  in  the  forests.  In  addition, the  
silvicultural  regimes vary  between  forest owner groups   

private, state and  companies. 

New  and  enhanced  map  data, e.g., soil  and  bedrock  

maps,  could  be  studied  for stratification  purposes  in  the  

future, since  there  will  be  more  digital map  data  available.  
The Finnish MS-NFI is  proceeding in  its 9th cycle  and  the 

independent Bth MS-NFI estimation  result could  also  be 

tested for stratification  purposes.  More  directly, the  succes  

sive  MS-NFI image  cover  intensity  values  could  be  used  as 

multitemporal features. 
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Abstract  

The paper examines the residual variation in  the fc-nearest  neighbour  (fc-NN)  es  

timates of  the Finnish  multisource  National Forest Inventory  (MS-NFI).  In  the 

MS-NFI,  field  plots,  satellite images  and digital  maps are  utilised.  The prediction  

errors  at  single  pixel  level  for  field plot  volume and weighted  mean of  basal  area  

(BA)  observations were  studied applying  leave-one-out cross-validation  method  

and  potential  explanatory  covariates  were seeked. The  standard deviation of  the 

field plot  variable from the k  neighbours  was  a  good  measure  of  the estimation 

uncertainty.  The first  principal  component  (PCI)  of  the Landsat TM or  ETM+  

channel values of  the field  plot  pixel  had  a  strong  relation to the volume and BA 

estimates  and to  the  prediction  error.  The  residual variances  of  field plot volume  

were  regressed  against  PCI  and the model was  used to  remove  the trend compo  

nent of  PCI  from the residuals.  The random error  component  still  remained high  

in  the residuals. 

Keywords:  cross-validation,  /c-nearest  neighbours,  Landsat TM and ETM+,  mul  

tisource  forest  inventory,  prediction  error 
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1. Introduction  

In recent  years, there has  been a  growing  interest  in  obtaining  national forest  inven  

tory  results  for  small  areas,  i.e.  for  municipalities  and forestry  holdings  (Schreuder  

et  al.  1993, Tomppo 1996, Kangas  1996), and even  for  forest  stands (Tomppo 

1987).  For  this purpose, auxiliary  data is  required  in  addition to sparse  field mea  

surements. In multisource  inventories,  remote  sensing  and numerical map data 

is  combined with the forest  inventory  data to obtain  estimates  of  forest  variables 

for single  pixels  (Tomppo  1996,  Tokola et  al.  1996,  Nilsson 1997,  Franco-Lopez  

et  al.  2001).  Since 1989,  the Finnish  multisource  National Forest  Inventory  (MS  

NFI) has utilised  optical  area  high  resolution satellite  images,  numerical map data 

and field  plot  data to produce  thematic maps and forestry  statistics  for munici  

palities.  All the  forest  variables can  be estimated simultaneously  by  employing  

a non-parametric  fc-nearest  neighbour  (fc-NN)  method. A large  number of  field 

plots  is  required  because the training  data should cover the range and variation  

present  in the inventory  area  (Tomppo  1996,  Katila  &  Tomppo  2001).  

Multisource  inventory  methods involve  several  sources  of  error  because they  com  

bine measurement  data and models of  different nature  and scale.  In the MS-NFI, 

the data at  each step  is produced  by  an  explanatory  model  or  standardised rule:  the 

land use  classes  are  defined  by  certain rules,  volume  models are  employed  for  sam  

ple  trees,  the satellite  imagery  exo-atmospheric  radiances are  calibrated to  digital  

numbers using  linear  models.  

There have been various  attempts  to  represent  the  spatial  variation  of  the classifi  

cation error.  Error  maps  have been produced  by  employing  extrapolation  of  errors  

from the training  data set  (Steele  et al. 1998),  magnitude  and partitioning  of  class  

membership  in fuzzy  classification  (Zhang  & Foody  1998)  and geostatistical  ap  

proaches  to  model the  variation in accuracy  (Deßruin  2000). 

In the fc-NN estimation,  the overall  error  is  minimised by  tuning  the estimation 

parameters.  Error  quantification  methods include resampling  techniques  such  as  

leave-one-out cross-validation  and bootstrap  methods (Katila & Tomppo  2001,  

Franco-Lopez  et al.  2001).  The  numerous  error  sources  increase  the uncertainty  

in the  MS-NFI estimates.  The  prediction  errors,  described with  relative  RMSE  for 

mean volume estimates  at  the field plot  level,  have  been high,  50-80 %, and the 

proportion  of  explained  variation in  the field  plot  data has been 30-40 % (Tokola  

et al.  1996,  Katila  & Tomppo  2001).  
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The  spectral  channel values of  Landsat TM and ETM+ satellite  images  contain 

little  variation in the well-stocked  stands (Ardö  1992). It  might  be expected  that 

variation in the estimates  increases,  as  the volume  of  the target  (field  plot)  in  

creases.  If  there  is  a  functional dependence  between observable covariates  and  the 

prediction  error, a  model can  be  estimated for  the  given  form of  heteroskedasticity,  

c.f.  heteroskedastic  linear regression  models (Polasek  et  al. 1998).  

The  objective  of  this  paper is  to  study  the residual  variation in  the fc-NN  estimation  

and  to determine whether there is a functional dependence  between the residuals  

and  covariates  or  other exogenous variables. In addition,  some suggestions  are  

made for  reducing  the random error  in  the fc-NN  estimates.  This  paper is  one step  

in  deriving  an analytical  method for  estimating  the error  of  multisource  estimates  

from pixel  level  to region  level.  The next  phase  will  be  finding  suitable models to  

estimate  the  k-NN  estimation error, taking  into  account  the spatial  dependencies  

of  the errors. The explanatory  variables should be such  that their values can  be 

obtained for  every  pixel.  Potential  explanatory  variables are  target field plot  pixel  

values,  the estimated values  of  forest variables and the variables of  the selected  

A:-NN field plot  pixels  (forest  and spectral  variables).  A simple  empirical  error  es  

timation model is  tested for the MS-NFI data. The leave-one-out cross-validation  

method is  employed  for  the error  prediction  at  the single  pixel  level. The behaviour  

of  the prediction  error  is studied in  a  realistic  setting  created by  two  geographically  

different study  areas  in  Finland. 

2. Material  

The two study  areas  are  located between longitudes  21°40'E  and 31°36'E  and lat  

itudes 61°21'N  and 63°50'N  (Fig. 1). The test  data contains field  measurements 

from the  9th NFI and satellite  image data from the same years (Table  1). The 

Western Finland study  area contains  large  peatland  areas and the Eastern Finland 

study area  consists  largely  of  medium fertile  mineral soils  (Table  2). The forests  

of  the study  areas  are  characterised  by  Scots  pine  (Pinus  sylvestris  L.)  or  Norway  

spruce  (Picea abies  (L.)  Karst.), mixed with birch  (Betula spp.)  and other  decidu  

ous  species.  

The NFI  field samples  were  measured from systematically  located clusters  of  sam  

ple  plots.  The sample  plots  (10-18  per  cluster)  were  located along  a  rectangular  

or  L-shape  tract  at  250 or  300 m intervals,  depending  on the area. The  average 
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Fig.  1. Location of  the study  areas  and path,  row  and time of  acquisition  of  the 
Landsat 5 TM and Landsat 7 ETM+ images  employed.  

Table 1. Study  areas:  satellite  images  of  the 9th MS-NFI and field  inventory  data. 

(a) Every  fourth cluster had  14 field  plots.  

(b)  Every fourth  cluster  had  10  field  plots.  

field plot  location  error  has been estimated to be 20 m  (Halme  & Tomppo  2001).  

This is  caused by map error  and field plot  location applying  precision  compass 

and tape.  Trees  were  measured on  parts  of  field plots  belonging  to  forest  and other 

wooded land (FOWL)  stands.  The  tally  trees were  selected  with PPS-sampling  

(sampling  with probability  proportional  to size),  applying  a  relascopic  factor  of 

two. The probability  of  a  tree's inclusion was  proportional  to its  cross-sectional  

Field plot  data Satellite image 

study  area land 

area 

(km
2

) 

forestry  
land  

(%)  

year cluster 

distance  

(km)  

plots  per 
cluster 

Landsat 

path/row 

date  

Western Fin-  

land  

13920 72.7  1997 7x7 18/14  (a)  Ls5 TM 

191/16 

13.6.1997 

Eastern  

Finland/north  

14660 88.8 2000 7x7 18/14 (a)  Ls7 ETM+ 

186/16-17  

10.6.2000 

Eastern  

Finland/south 

6670 86.9  2000 6x6 14/10 (b)  Ls7 ETM+ 

186/16-17 

10.6.2000 
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area  at  a  height  of  1.3 m; a  maximum radius  of  12.52 m was  used. The distance of  

the nearest forest  stand boundary  from the field plot  centre point  was  recorded  by  

10 m classes  from 0  to  40 m and  the bases  for  stand delineation were  recorded,  e.g.  

land use  class,  site  class,  development  class,  tree species  composition  and storey  

and completed  drainage (Tomppo  et  al.  1998,  2001).  

In addition to field plot  measurements, three basal area (BA)  observations were  

made on forest  land,  in  the stand to  which the field plot  is  located. The first  BA 

measurement was  made from  the field  plot  centre  point,  if the BA  observation  was  

not transected by  another stand. The two  other BA  measurements -or  all  three  

were made at  a  distance of  20 m to the field plot  centre, preferably  from two of  

the four main  cardinal directions (Fig.  2).  The basal  area  factor  two was  applied.  

If  a  field plot  was  cut by  a  stand or land use  class  boundary,  the entire plot  was  

considered to consist  of  two or more parts.  The BA  observations were  made on 

each field plot  part  (stand)  belonging  to  forest  land: more precisely,  on  the field 

plot  centre  part  and on  the other  field plot  parts,  where there  were  tallied trees. 

Fig.  2.  Location of  three basal  area  measurement  points  on  the field plot  stand. 

For field plot  parts  belonging  to  forest  land,  a weighted  mean of  the three BA 

observations G
0b s

 in  each  field plot  part  was  calculated  to  better  estimate the BA 

on  the area  of  a  pixel  (625m
2
).  If  there was  aBA observation  from the field  plot  

centre point,  it was  given  a  weight  of  0.5,  while the other two  observations were 
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given  a  weight  0.25. Otherwise  equal  weights  were  employed.  For  other  wooded 

land,  the BA estimated by  the crew  leader was  used. Finally,  the BA estimates  

from each field plot  part  were  combined for  the whole field plot,  weighted  by  the  

proportions  of  the assessed  areas  of  the field plot  parts.  It must  be noted  that  the BA 

observations contain measurement error  because the border  trees  are not checked 

and observations are  biased towards the centre of  the stands.  

The field plots  that were  totally on forestry  land (FRYL)  were  selected from the 

NFI  field sample  for  the following  analyses.  They  were  divided into  forest  land,  

other wooded land and waste  land,  according  to  site  productivity  (Table  2)  (Tomppo  

et  al.  1997). The  mean and the standard deviation of  the volumes of  the field plot  

measurements and weighted  mean of  BA  observations on  forest  and  other  wooded 

land are  presented  in  Table 3.  

Table 2. The land use  class  distribution of  the forestry  land field plots  and  the 

proportion  of  field plots  on peatland  and mineral soil  strata according  to the site  
class  map, by  study  areas.  

Table 3. The mean and the standard deviation  of  the volume  of  the growing  stock  
and the weighted  mean of  basal area (BA)  observations of  the field plot  parts  on 
forest  and other wooded land by  study  areas. 

The  Landsat 5 TM and Landsat 7 ETM+ satellite images  were rectified  to the 

national grid  coordinate system  using  regression  models of  the  first  order polyno  

mials  calculated from 53 to  71 ground  control  points.  These were identified  from 

topographic  maps and satellite  images.  The  RMSE of  the rectification  model from 

forest  other waste forestry  peatland  mineral 
land wooded land land stratum soil  

land stratum 

study  area (%)  plots  (%) 

Western Finland 89.5 5.7 4.8 4829 39.4 60.6 

Eastern Finland 95.3 2.4 2.3  7492 28.0 72.0 

Western Eastern 

Finland Finland 

variable y s y s 

Volume (rrrVha)  93.7 82.0 110.0 94.6 

BA (m
2

) 13.8 9.3 15.5 10.0 
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the panchromatic  image  data, together  in  the direction of  rows  and columns,  was  

0.63  and 0.18 satellite  image  pixels  (30x30  m 2)  for  the Landsat  7  images  186/16 

and 186/17 respectively.  The  RMSE for  Western Finland Landsat 5  image was  

0.55  pixels.  The channels 1-5 and 7  from Landsat 5  and  all  the  eight  channels  of  

Landsat 7 ETM+,  including  the  thermal and panchromatic  channels,  were  used in 

the fc-NN  estimation.  Nearest  neighbour  resampling  was  used with  a  pixel  size of  

25x25 m  2  for  all  the channels (Tomppo  1996).  

A  multi-criteria  procedure  to  reassign  the satellite  image  information to the field 

plot  data was  employed  in  the  Western Finland study  area (Halme  &  Tomppo  

2001).  A weighted  function  of  the  correlation coefficients  of  the selected image  

and field variables is used as  a  scaling  function in  the multicriteria  optimisation.  

This  procedure  reduces the  effect  of  the locational errors  on the training  data and 

decreases  the prediction  errors,  particularly  for  the total volume estimates.  

A topographic  correction  for  the digital number (DN)  values of  satellite  image 

spectral  channels was  carried  out using  a  modification of  the Lambertian surface  

reflectance  assumption  (Tomppo  1996). 

3. Methods  

3.1. Multisource  National Forest  Inventory  estimation  method  

In  the operative  MS-NFI,  multisource  estimates  are computed for  FRYL pixels.  

Cloud-free  FRYL areas of  a satellite  image are  analysed  using  the FRYL field 

plots  i  chosen for  the training  data set. Field plots  with uncertainty  concerning  

their location,  and those that contain non-FRYL land use classes,  are excluded 

from the training  data set; the  excluded proportion  is usually  in  the range of  2-6  

%.  

The MS-NFI estimates  are weighted  averages of  the field plot  variables. The fc-NN 

method  is  used to calculate  the weights  (Keller  et  al. 1985,  Tomppo  1991). Data 

from the k  nearest  field plots,  i\(p), ...,  it{p),  in the feature space are utilised  in  

the  analysis  of  each  pixel  p. The field  plots  are  sorted  according  to  distance dpup  

between field plot  pixel  pi and p in  the image  feature  space,  and  the k  nearest  plots  

are then chosen. 
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Stratification  of  the FRYL area  and the training  data to  peatlands  and mineral  soils,  

according  to a  numerical map data, has usually  been executed in  such  a way that 

only  pixels  within  the same stratum  as  the target  pixel  are  accepted  as  neighbours.  

The horizontal geographical  reference area  (HRA),  i.e.  the maximum geographical  

distance to  the potential  nearest neighbours,  has  been restricted  to  40 to  90  km  due 

to gradual  changes  of  vegetation  type  and,  is  selected  by  image.  

The weight  u>i^p  of  the field plot  i for  estimating  the value  for  the pixel  pis  defined 

as 

where {ii(p),  ...,ik(p)} is the set  of  the field plots  whose corresponding  pixels  

are  the k  nearest neighbours  to the pixel  p.  Here,  a value t  = 1 is  applied  for  the 

weighting parameter  (Katila  &  Tomppo 2001)  and  an arbitrary constant c  = 1 is  

added to  the Euclidean distances to smooth the weighting  of  0  distances.  

The weight  wip can  be  interpreted  as  the share of  the pixel  p that obtains  data from 

the field data vector of  plot  i. For  a  single  pixel  p,  the  estimate of  the average of  a  

continuous variable is, 

where y;  are  the values  of  variables in  the training data set.  

3.2. Results  validation  and  parameter  selection  

The choice of  estimation parameters,  k  and geographical  HRA  radius,  was  tested  

using  the leave-one-out cross-validation  method: a single  field plot  pixel  pi be  

longing  to the  ground  truth data set  was  estimated with  the other plots  (Linton & 

Härdle 1998).  

The root  mean square  error  has  been used as  a measure  of  reliability  of  the contin  

uous  variables  (eq.  3).  

The estimates  of  biases  and the standard error  of  biases  have been used as  further  

criteria  (Katila  &  Tomppo  2001).  Residuals,  e*  =yt yi, of  the main field plot  

w
.
p=

\  {dpil+cy  / (dp-.p+c) 4 '  lf  1  6  ( 2 i(p)'  -.u(p)}   
JO otherwise,  

Vp i,p '  Uii (2) 

ieFRYL 

RMSE  =  \  /E=2£Zs!
)
 (3)  

V n 
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variables were  produced  for  each observation  i  in  the training  data from the cross  

validation. 

3.3. Indicators  of  estimation  uncertainty from field plot variables  

The values of  total  volume and weighted  mean of  BA  observations for  the selected 

k  neighbours  were  studied in  each validated field plot.  The standard deviation of 

the k  neighbours'  field plot  values for  the variable estimated  was  used to  evaluate 

the uncertainty  of  the  fc-NN estimate  of  each observation.  The greater the devia  

tion between the neighbours,  the greater is  the expected  prediction  error  ,  cf.  class  

membership  probabilities  from statistical  classification  (Canters  1997).  

The  average sampling  error  of  the field plot  BA  Gi  estimated  from tally trees  used 

to estimate  the BA of  a  larger area (a  pixel)  was  studied using  the difference be  

tween  the field plot  centre point  BA  and the weighted  mean of  BA  from the  three 

observations,  G
0t,s G;. For a  single  field  plot,  a  high difference indicates that 

the field plot  measurement  differs  from the average BA of  the surrounding  forest  

stand.  

3.4. Variables  describing  the  spatial  neighbourhood  and  the  Eu  

clidean  feature  space  neighbourhood  

The edges  in  the spatial  neighbourhood  of  the field plot  were  studied employing  

differences of  field plot  pixel  and the  pixel  values in  the surrounding  3x3 window,  

the number of  non-FRYL pixels  in the  3x3 window (from the numerical  map 

data)  and the magnitude  of  maximum change  in  pixel  values in the 5x5 window 

of  Landsat  7 Pan image  of  the Eastern study  area, as defined by  Sobel gradient  

operator  (Gonzales  &  Woods 1993). The  principal  component  transformation  was  

applied  to  the field plot  pixel  spectral  channel values of  the study  areas.  The trans  

formation was made on the  covariance  matrix.  In Table (4),  the first  principal  

component  (PCI)  contains  81 % of  the  variation in  the spectral  channel values in 

the Western Finland study  area. PCI  is  a  weighted  sum of  all  bands and Horler  &  

Ahern (1986)  call it  the spectral  brightness-type  feature. 

The &-NN estimates  may be biased at  the  edges  of  the spectral  feature space be  

cause  the fc-NN  method cannot  extrapolate  beyond  the observations  in  the training  

data. Suitable variables  for  describing  the spatial  distribution,  direction and clus  
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Table 4. The eigenvectors  for  the principal  components,  reassigned  training  data 
Western Finland study  area.  

tering  of  the k  neighbours  in  the  feature space  were tested. 

One measure  of  the spatial  distribution of  the neighbours  around the pixel  value 

to be estimated was  obtained by  dividing  the spectral  feature space into  two half  

spaces  applying  a  hyperplane  that  goes through  the field plot  pixel  spectral  vector  

Pi.  The  difference between  the number of  nearest neighbours  in  the the half  spaces  

was  calculated. The hyperplane  Hi = {p, G  Rn | (wj,pj)  < a}  divides  the 

feature space  R
n

 to  open half  spaces  (Fig. 3).  The  normal vector  w, that defines 

the hyperplane  and is  perpendicular  to  it was obtained by  subtracting  the target  

field plot pixel  spectral  vector  p, from the spectral  value vector  p, estimated for 

the field plot  by  the fc-NN  method. In this  way,  the number of  nearest  neighbours  

was  expected  to  be  distributed as  unevenly  as  possible  into  the halfspaces.  

The polar  coordinates of  the k neighbouring  spectral  values from the target  field 

plot pixel  were calculated on a plane  formed by  the two first  principal  compo  

nents  of  the  training  data set. The mean of  the angles between the adjacent  

neighbours  was  used as a  measure  of  the spatial  distribution of  the neighbours.  

Other variables in  the feature space  of  the k  neighbours  were  the distance to  the 

first  nearest  neighbour,  the standard deviation of  the nearest  neighbour  distances 

and the Euclidean distance dPi^i from the true  pixel  value to the  channel values 

estimated  with fc-NN to  the field plot  pixel.  

Eigenvector  TM channel Variation 

explained  

1 2 3  4 5  7 % 

1 0.14 0.11 0.18 0.34  0.83 0.36 81.4 

2 -0.05 0.00 -0.12 0.93 -0.25 -0.23 15.1 

3  0.83 0.29 0.39 0.03 -0.28 0.02 2.2 

4 -0.41 0.13 0.48 0.09 -0.37 0.66  0.7 

5  -0.31 0.18  0.68 -0.04 0.17 -0.61 0.4 

6 -0.16 0.93 -0.34 -0.05 0.01  -0.02 0.1 
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Fig.  3. Hyperplane  Hi defined by  normal vector  wj  and  field plot  pixel  spectral  
vector  pi. 

3.5.  Specific  error  models  

It  was  soon noticed that the  PC 1,  the  spectral  brightness  value,  of  the target  pixel  is  

a  dominating  explanatory  variable for  the  residual  variation in the £;-NN estimates.  

The pixels  with  low PCI  values obtained the highest  estimates  and also  the highest  

absolute residuals  in the /c-NN  estimation. An attempt  was  made to  remove  the 

effect  of  the  spectral  brightness  value  from the fc-NN volume estimate  residuals  

obtained from  cross-validation.  The effect  of  PCI  on  the volume  residual variance 

was  modelled by  assuming  the variance to be a multiplicative  function  of  two 

components  

with  the trend component  /;  estimated  from E(e?)  =  f  (PC  1).  Generalized lin  

ear  models were  estimated employing  Poisson  regression  with a logarithmic  link  

function. The E(e?)  follows Poisson  distribution and the log  transformation is  

used to  adjust  for  the skewness  in the Poisson  distribution. The PCI  trend was  re  

moved from the field plot  volume residuals and the  remaining  variance component  

öi eit  y/f{PC 1) was  studied against  the potential  explanatory  variables. 

e?  =  M 2 (4) 
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4. Results  

4.1. The  selected  parameters  for  k-NN  estimation  

The estimation parameters for  the  fc-NN method were selected on the basis  of  

the pixel-level  estimates  of  the variables.  The  goal  was  to obtain accurate  volume 

and BA estimations  in the  two strata. The  pixel-dependent  geographical  HRAs,  

which were  found to  be optimal  in  the earlier  study,  were  used because a  sufficient  

number of  field plots  should remain in  the  training  data (Katila  & Tomppo  2001).  k  

values of  5  for  the  peatland  stratum and 10 for  the mineral stratum were  chosen for  

estimating  the field plot  volume and BA.  These values were  near  the ones  obtained 

in  the earlier  study  (Katila  &  Tomppo  2001)  and were  considered sufficiently  large 

because the obtained RMSEs  for  the field  plot  volume were,  in  the Western  Finland 

study  area, only  1 % and 6 % larger  than the minimum RMSE values for the 

mineral soil  and  peatland  strata respectively.  The significant  global  bias  of  the 

volume estimate  in  the Eastern study  area  was  not  considered a  major  problem in 

this  study.  Most  of  the results  presented hereafter have  been estimated with the 

reassigned  training  data (Halme  &  Tomppo  2001)  that includes  all  the FRYL  field 

plots  not intersecting  stand boundaries. The prediction  errors,  and the employed  

estimation parameters  for  the FRYL  field plots  on  mineral soil  and  peatland  strata,  

for the Eastern  Finland (with  minimum  distance of  30  m to  the stand boundary)  and 

Western Finland study  area (using  the  reassigned  training  data)  are summarised in 

Table 5.  

4.2. Visual  inspection  of residuals  

In the following,  the residual pattern  figures  are presented  mostly  for  the Western 

Finland study  area mineral soil  stratum. Figures  from other study  areas and strata 

are  also  presented  if  the  residual  patterns  are  notably  different. 

There is  a negative correlation between field plot  volume and most of  the  re  

flectance values of  the Landsat satellite  images.  The low  dynamic  range of  Landsat 

image spectral  channel values  on  FRYL,  the large  amount  of  noise,  small  size  of  

field plot and other type  of  errors  caused considerable variation  in the scatter  plot  

of  the field plot  volume and PC 1  of  the  spectral  channel values,  although  the loca  

tional errors  in the training  data were  reduced by  reassigning  the spectral  values to 

the field plots  (Halme  &  Tomppo  2001)  (Fig.  4).  
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Table 5. The absolute and relative  RMSE and bias (e),  the standard error  of  the 
bias  (5(ē))  for  the weighted mean of  basal  area (BA)  observations and  field plot  
volume estimates,  mean (ŷ)  and  the standard deviation (s(y))  of  the variable and 
R*2  coefficient.  Stratification  and different geographical  horizontal  reference area  
(HRA)  radius according  to the site  class  map, forestry  land field plots with mini  
mum distance  ≥ 30  m to the nearest  stand boundary  (Eastern  Finland study  area)  
and forestry  land  field plots  not  intersecting  stand boundaries,  reassigned  training  
data (Western  Finland study  area).  

Note:  Significant  bias  is  printed  in  bold font. 

Fig.  4. Field  plot  volume and estimated  volume plotted  against  the  PCI  of  channel 
values for  the field plot  pixel.  Western Finland study  area, mineral soil  stratum,  

reassigned  training  data, k=  10, 40 km  geographical  horizontal reference area. 

The fc-NN  estimation (k  =10) of  the field  plot volume reduced  much of  the vari  

ation, but averaged  the results; high  volume estimates  are  missing  (Fig.  4). Em  

ploying  a  small  value of  k  would slightly  decrease the shrinkage  towards mean, 

and would globally  better preserve  the original  variation in  the field plot  data, c.f.  

study 
area 

strata 

/HRA  

variable y RMSE 

(fc-NN) 

RMSE e s(e)  «(y) R' 2 No. 

plots 

Eastern mineral  BA  (rn^/ha)  16.0 5.9(10) 36.9  (%) -0.20  0.18  10.9 0.71  1026 

Finland  50 km volume  (m3/ha) 114.3  67.3  (10) 58.8  (%)  -4.35  2.10 101.8 0.56  

peatland BA (m
2

/ha) 10.9  4.8 (5) 43.7  (%)  0.36  0.24 9.0 0.72 393 

80 km volume  (m
3

/ha) 64.4 44.4 (5) 68.9  (%)  1.96 2.24 69.9  0.60  

Western mineral  BA  (m2/ha) 14.5  5.0(10) 34.6  (%)  -0.11 0.10  10.2  0.76 2768 

Finland  40 km volume  (m3
/ha) 98.8 45.1  (10) 45.8  (%)  -1.41 0.86  87.9  0.74  

peatland BA (m2
/ha) 9.5 4.0 (5) 42.3 (%)  -0.18  0.11  8.5 0.78 1235  

60 km volume  (m
3

/ha) 54.1 30.1  (5) 55.6  (%)  -1.57  0.85  61.6  0.76 
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Franco-Lopez  et  ai.  (2001).  On  the other hand,  this may yield  a  RMSE  value  larger  

than the standard deviation of  the observations (Mcßoberts  et al.  2002). The esti  

mated volume and  the  variation of  the  residuals  had a  relatively  strong  correlation 

(Fig. 5).  

Fig.  5.  Residuals ei of  the field plot  volume estimate plotted  against  the estimated 
field plot  volume  ŷi Western Finland study  area, mineral soil  stratum,  reassigned  

training  data, k=  10,  40 km  geographical  horizontal reference area. 

Field  plot  variables 

The standard deviation of  the /c-neighbours'  field plot  values  correlated with the 

residuals  of  the variable to  be estimated,  field plot  volume and weighted  mean of  

BA  observations  (Figures  6b and 6d).  The average of  the differences of  field plot  

BA and the weighted  mean of  BA  from the three  observations,  G0b s G
i, in the 

selected k  neighbours  correlated weakly  with  the field plot  volume residuals  only  

at  the extreme values of  neighbours'  average G
0

i
)S
 —Gi  (Fig.  7b).  

Spectral  variables 

The  highest  residuals  for  the estimates  of  field plot  volume and weighted  mean  of  

BA  observations occurred  at the low end of  the PCI  values (Fig. 6a and 6c).  In 

the  spatial  neighbourhood  of  the field plot  pixels,  the variation between the centre 

pixel  and  the surrounding  pixels  is  related to the spectral  brightness  (PCI)  of  the 

pixel  value. The  highest  volume  residuals  had the lowest  variation  in the field plot  
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Fig.  6. Residuals of  the field plot  volume  estimate  and the first  principal  com  

ponent  of  the spectral  channel values (PCI)  (a)  and standard deviation of  the k  

neighbours'  field plot  volume (std_mvol)  (b),  residuals  e,  of  weighted  mean of  the 
basal area observations estimate  and PCI  (c)  and the standard deviation of  the k  

neighbours'  weighted  mean of  BA  observations (std_wba3)  (d).  Western Finland  

study  area, mineral soil  stratum, reassigned  training  data 
,
 k=  10, 40 km  horizontal 

reference area.  

pixel  values as  well as in  the spatial  neighbourhood.  Consequently  this  variable  

was not  useful. 

The  delineation of  stand  boundaries in  the field is  often defined by  criteria  other 

than those visible  on the Landsat  PAN images,  e.g. tree species  composition  or  

site  index. However,  the stand boundaries with other land use  classes  and between 

different development  classes  obtained high Sobel gradient  magnitude  values. On 

average, the k-NN volume estimates  were  biased  downwards on the field plots  

with high  edge  magnitude.  Apart from this  trend,  there was  no  clear  dependence  

between the field plot  volume  estimate residuals  and Sobel gradient  magnitude  

(Fig.  7a). 

The  nearness  of  non-FRYL indicated by  the non-FRYL map  pixels  in the 3x3 

window caused systematic  bias  in the field plot  volume  estimates  in  the two  study  
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Fig. 7. Residuals  e l  of  the field plot  volume estimate  and Sobels edge  gradient  

from a 5x5  window of  Landsat  ETM+ Pan  channel (12.5  x  12.5 m 2) (a)  and the 
mean of  k  neighbours'  G0b s  —Gi (mea_dba3)  (b).  Eastern  Finland study  area, 
mineral soil  stratum,  minimum distance  ≥ 30  m to the nearest stand boundary,  
k-  10, 50  km  horizontal reference area.  

areas.  The  field plot  volume was  underestimated with nearness  of  other land use  

mask  pixels,  e.g.  agricultural  or  built  up land.  However,  when  the number of  other 

land use  pixels  increased to over  six  pixels,  the bias  disappeared,  partly  due to 

the decreased volume of  the target  field plots.  The  few field plots  close  to  water  

obtained overestimates  of  volume (Table  6).  

Table 6.  The average residual  ē  of  the  field plot  volume  estimate  and the  number of  

non-forestry  land pixels  in  a  3  x  3  window according  to  numerical map data,  Western 
Finland study  area, mineral soil  stratum,  all  forestry  land field plots.  

The distance between estimated and the true  channel values dPi^i (Fig.  8a) was  

not correlated with the residuals  of  volume estimates  and weighted  mean  of  BA 

observations estimates.  The distance dPi^t  was  correlated  both with  the distance 

to  the first  nearest neighbour  and the standard deviation  of  the nearest  neighbour  

no. of  pixels  

other land water 

n e 

(m
3
/ha)  

n e 

(m
3
/ha)  

0 2893 0 3210 -3 

1-3 295 -23 39  24 

4-6 45 -28 9 55 

7-9 27 2 2 193 

All  3260 -2 3260 -2 
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Fig.  8. Residuals  e,  of  the field plot volume estimate  and the Euclidean dis  
tance between target  field plot  pixel  and k-NN  estimated  spectral  channel values 

(euc_eoch)  (a),  the difference in the number of  neighbours  between  two halves  of  
feature space  (b)  and the  first  principal  component  of  the  spectral  channel values 
(PCI)  and standard deviation of  the k  neighbours'  field plot  volume (std_mvol)  
(c).  Western Finland study  area, mineral soil stratum, reassigned  training  data ,  
k=  10, 40 km  horizontal reference area. 

distances. These distance measures  were, in  turn, weakly  correlated  with PCI; 

with low PCI values,  the neighbour  distances are  small.  

The difference in  the number of  nearest neighbours  between half  spaces  and the 

small  polar  coordinate angles  between nearest neighbours  should indicate an  un  

even spatial  distribution of  the nearest neighbours  in  the feature space. However, 

there was  no  clear  dependence  between the number of  nearest  neighbours  in  the 

halfspaces  (Fig. 8b) or  the average polar  coordinate angle  o, j  of  adjacent  nearest 

neighbours  and the residuals of  volume or  weighted  mean  of  BA  observations.  
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4.3. Specific  error  models  

The spectral  brightness  value (PCI)  of  the  target pixel  was  a  dominating  explana  

tory variable in the  error  analysis:  low PCI  value  pixels  obtained the highest  esti  

mates and also  had the highest  variation in the  residuals  of  the fc-NN estimation.  

Possible  explanatory  variables based on the spectral  channel values in the spatial  

neighbourhood  or in the nearest neighbours  contained little  variation at  the low 

PCI  field plot pixel  values. For example,  the  standard deviation of  the k  neigh  

bours'  field plot volume was strongly  correlated with  PCI of  the spectral  channel 

values (Fig.  8c).  

Generalized linear models were  used to  regress the  residual variance against  PCI  

of  spectral  features and its  transformations.  The  aim  was  to  remove  the effect  of  the 

spectral  brightness  value from  the volume  residuals of  the cross-validation. The  

Poisson  regression  models had a  significant  goodness  of  fit  and parameter  standard 

errors.  The  models captured  the average trend between PCI  and the variance of  

the  volume residuals.  

The models explained  most  of  the trend in  error  variance correlated with  PCI (Fig.  

9a).  The variation of  the residual  component  had the strongest  correlation  with 

the  standard deviation  of  the  k  neighbours'  field plot  volume (Fig.  9b).  

Fig.  9. Residual component  δi  of  the field plot  volume estimate with variance 

component  of  first  principal  component  (PCI) removed by  Poisson  regression  

(gl_difvol)  and PCI  of  the spectral  channel values  (a)  and standard deviation of  
the  k  neighbours'  field plot  volume (std_mvol)  (b).  Western Finland study  area, 
mineral soil stratum, reassigned  training  data ,  k=  10,  40 km  horizontal reference 
area. 
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5. Discussion  

The residual variation of  the fc-NN estimates  of  the field plot  volume and  the 

weighted  mean  of  the BA observations  was  studied employing  the  prediction  errors  

from leave-one-out cross-validation.  The appropriate  estimation parameters,  e.g.  

k  and geographical  HRA,  were  selected as  a  compromise  between minimising  the 

overall  error and  retaining  some of  the original  variation in the field plot  data in 

the spatial  variation of  the estimates  (Katila  &  Tomppo  2001).  Potential  variables 

explaining  the variation in prediction  error  were  sought,  based on  knowledge  of  

the error  components  in  the MS-NFI estimation.  The standard deviation of  the  k  

neighbours'  field plot  variable was  a good  measure  of  the estimation uncertainty  

and was  correlated with  the fc-NN  estimates  of  the variable. The  nearness of the 

non-FRYL map mask  increased the bias  in  the estimates.  The spectral  brightness  

of  the field plot  pixel  (PCI)  had a  strong  relation to the volume and  BA  estimate,  

and  to  the uncertainty  of  the fc-NN  estimate.  The prediction  errors  were  higher  at 

the lower end of  the spectral  brightness  values,  as  the correlation between the field  

variables and the remote sensing  variables weakened. In a  variance model of  the  

field plot volume residuals,  the PCI  value of  the field plot  pixel  explained  most  of  

the non-random variation. 

In the resampling  methods used  to estimate  the prediction  error,  the observations 

at  the edges  of  the feature  space obtained neighbours  from one direction only.  

However,  the variables describing  the spatial  distribution of  the  k neighbours  in 

the feature space  did not clearly  correlate with the volume  or  BA  residuals  in  this  

study.  Although  this  error  component  was not very  distinct, an  advanced non  

parametric  method could remove a part  of  this  error, e.g. symmetrized fc-NN 

estimator  (Linton  & Härdle 1998)  or  local  adaption  of  non-parametric  methods 

(Malinen  2003).  

The fc-NN estimates  of  forest  stand border pixels  have  larger  bias  than those  in  

side  the stands  (Tokola  &  Kilpeläinen  1999).  Thematic map  errors  frequently  oc  

cur  at patch  boundaries and are  associated  with the misregistration  of  map data 

and mixed pixels  (Foody  2002).  The errors  in  the pixel-level  estimates  are  often 

spatially  correlated (Congalton  1988,  Flack  1995). In this  study,  only  field plots  

with a minimum distance of  30 m to the  stand boundary  or field plots  not  inter  

secting  stand boundaries (reassigned  training  data) were  used. If  all  the FRYL 

field plots  were  applied  in  the cross-validation,  the prediction  error  variation in  the 

results would be higher  and the dependencies  between residuals  and explanatory  
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variables would weaken. The  effect  of  the  neighbouring  pixel  values on the  esti  

mation  errors  was  analysed  using  the DN  values of  Landsat TM and ETM+,  Sobel 

gradient  magnitude  from Landsat 7 Pan  images  and the number of  non-FRYL map 

pixels  in  the 3x3 window. Only  the map data was  demonstrated to be useful in 

the  error  detection (Table  6). Katila &  Tomppo  (2002)  applied  MS-NFI by  map 

strata,  an  idea that is  supported  by  these results.  Furthermore,  new strata should 

be  formed  to estimate separately  the boundary  pixels  of  water, other land use  and 

FRYL. 

The  Euclidean distances of  field plot  pixels  in the feature  space  were  not  directly  

related to  the differences in the  field plot  variable values  (Fig.  4). A distance 

measure  related to  the variation in the field plot  variable might  be more easily  

interpreted,  e.g.  Tokola  et  al. (1996)  employed  differences between the  regression  

estimates of forest  stand  characteristic.  

Since the spectral  brightness  value  of  the field  plot  pixel  was  correlated with the 

residual  variation and also with the other explanatory  variables,  an attempt  was  

made to  remove this  trend from the residuals using  a  variance model (eq.  4).  Pois  

son  regression  models were  fitted to  the residual variance and  PCI.  Although  the 

parameters  of  the  models were significant,  separate  models for  the low and  high  

values of  PCI  might  have worked better. The fc-NN  estimates  themselves,  e.g.  

from  the produced  thematic  map data, can  be used in  posterior  analyses  of  uncer  

tainty  in  the estimates. The  estimated volume could be employed as  a  dependent  

variable and modelling  of  the error  variance could  occur  after  the estimation.  

Explanations  of  the magnitude  and direction of  residuals  seemed to be  case  sen  

sitive. When the field plot  values  and the potential  explanatory  variables were 

studied together  with a  display  on  the numerical map data and the remote  sensing  

data, several  explanations  for  the error  presented  themselves: mislocation  of  the 

field plot,  the radiation from the surrounding  land use  classes  or stands,  the de  

viation  of  the target  field plot  from the surrounding  forest  and extreme  field plot 

variable values (e.g.  BA  40 nr/ha or  greater).  

By  reducing  the main sources  of  error  in  the  MS-NFI,  e.g. in  the  field plot  data, it 

should be  possible  to  decrease the random error  in  the fc-NN estimates.  Reducing  

the  effect  of  the field plot  location error in  the training  data decreases the RMSE 

values of mean volume estimates obtained from the cross-validation  (Halme  & 

Tomppo  2001). It  also  corrects  the  typical  shrinkage  towards the mean in the fc-  

NN estimates  and better preserves  the original variation of the field plot  data in 
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the spatial  variation of  the  estimates. The  use  of  BA observations  from  an  area 

larger  than a  field plot  decreased the random variation  in the training  data; s(y)/y  

provides  the coefficient  of  variation in Table  5.  The relative  RMSE of  the weighted  

mean of  BA  observations was  10 to 25 percentage  points  lower than the relative  

RMSE of  the field plot  volume estimates  (Table  5).  

In  the MS-NFI,  cross-validation  has  been applied  assuming  independent  sampling.  

If  the prediction  errors  from cross-validation are  spatially  correlated the parame  

ters obtained may favour undersmoothing  (Altman  1990). A solution is to apply  

'leave-some-out' cross-validation  (Linton  & Härdle 1998)  or  to  modify  the cross  

validation procedure  (Altman  1990).  

Although  a larger  field plot  size  employing  weighted mean of  BA observations 

and the reassignment  of  the  training  data removed some of  the sampling  error  

and the locational error, the random error  component remained considerable in  the 

estimates  of  this  study.  Since  the larger  fc-NN estimates had  also  a  larger  residual 

variation  and  variation  in  the  the selected nearest  neighbours,  it  might  be possible  

to decrease the prediction  error  by  applying  stronger  smoothing  to the  pixels  where 

high  volume estimates  will  be produced. Again,  a  local  adaptation  of  the non  

parametric  methods could be  used,  based on the selected  nearest  neighbours.  

New  very  high  resolution satellite  data and high  altitude aerial photographs  are  

becoming  increasingly  available for remote sensing  purposes. These data can be 

used to survey  the location and the representativeness  of  a  field plot by  detecting  

forest  stand edges  and mixed  pixels.  

A  future research  task in  the development  of  the MS-NFI method is  to develop  a 

reliable  method for  estimating  the error  at the pixel  level  and a method to  derive er  

ror  estimates for  small areas.  The  error  estimates  obtained for  single  pixels  cannot 

be  directly  combined to  estimate  the error  in  larger  areas due to  locational errors  

in  the field plot  data and the spatial  autocorrelation both in  the satellite  image  and 

field data. The error  variance  of  the MS-NFI for small areas could be estimated 

by  employing  models describing  the second order properties  of  the MS-NFI error 

estimates  obtained from  cross-validation  for  pixels  (Lappi  2001).  However,  the 

field plot  volume  prediction  error  of  the MS-NFI estimates  not  only  depends  on 

distance between pixels  but,  e.g.  on the  true  volume. In addition,  the fc-NN  pre  

diction  errors  may not be treated as  the residuals of  a  trend surface  of  a  spatial  

model. The various sources  of  error in  the  MS-NFI can  reduce the reliability  of 

the  spatial  modelling  of  errors.  
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Calibration  of  small-area  estimates  for  map 

errors  in  multisource  forest  inventory  

Matti  Katila,  Juha Heikkinen, and  Erkki  Tomppo 

Abstract:  A multisource inventory method has  been  applied in the  Finnish National Forest Inventory  (NFI)  since 1990.  The 
method utilizes satellite images and digital map data, in addition to  field measurements,  and produces estimates of  all field  

parameters  for  computation units  as well as thematic maps.  Information from  base  maps  is employed in delineating forestry 
land from other  land use  classes.  The map data are not necessarily  up-to-date and often  contain  significant  errors. This  paper 
introduces  a  statistical calibration method aimed at reducing  the effect  of  map errors on  multisource  forest  resource estimates. 
The correction is  based  on the confusion matrix between  land use classes  of  the field sample plots  and corresponding  map 
information. The proposed method is  illustrated  in a realistic setting using data from the ninth NFI.  

Resume : Une methode d'inventaire multi-source  a ete appliquee  dans le cadre  de l'inventaire national des forets  en Finlande 

depuis 1990.  La  methode utilise  des images satellite et des donnees cartographiques digitales, en plus de mesures prises  
sur  le terrain, et produit  des estimes de tous les  parametres  de  terrain pour  les  unites de calcul aussi bien que pour  les  cartes 

thematiques. L'information des cartes de base  est utilisee pour  delimiter le territoire forestier et le distinguer du territoire 
affecte ä d'autres usages.  Les  donnees cartographiques ne sont pas  necessairement  ä  jour et contiennent souvent des erreurs 

significatives. Cet  article presente une methode  statistique de calibration visant ä reduire  l'effet des erreurs  cartographiques 

sur les estimes multi-source des ressources  forestieres.  La correction est basee sur la matrice de confusion entre les  classes  

d'utilisation des terres  des  places-echantillons sur  le terrain et les informations geographiques correspondantes. La  methode 

proposee est illustree ici  dans un contexte realiste  ä l'aide de donndes provenant  du neuvieme inventaire national des forets.  

[Traduit  par  la Redaction]  

Introduction 

One of the  greatest challenges to today's large-scale forest 

inventories  is  to produce accurate  localized  results.  Estimates 

are required for  small regions, such  as  municipalities or forest  

holdings, using sample sizes  that  yield adequately precise es  
timators  only for larger regions, such  as provinces or forestry 

centres. This problem is  also  familiar, and more widely studied 

in the  context  of  official  and  demographic statistics,  where  var  
ious  strategies  have  been  proposed for small-area estimation, 

usually utilizing supplementary data from censuses or  admin  
istrative  records  (e.g., Rao  1998). 

For  forest  inventories, digital maps  and satellite images are 

the  most  commonly available  useful  sources of supplementary 
data. Typical topographic map  information  is  helpful in  sep  
arating the  area of interest, the  forestry  land, from water  and 
areas of  other  land  use,  though the maps  are  seldom  up-to-date. 
Other common  problems  with map  data  include  location  errors,  
missing or noncorresponding land  use classes,  and errors that 

arise  during data  processing,  when  rasterizing map themes  of 
small or narrow area,  for  example. 

In the National Forest  Inventory of Finland (NFI),  conducted 

by the  Finnish  Forest Research  Institute, digital maps  and  satel  
lite images have  been used  in small-area estimation  since 1990.  

The  applied multisource  method  (MS-NFI;  Tomppo 1991,1996), 
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using the (/c-nn) estimation, has been 

proven  to  yield reliable  small-area  statistics  and  to  be  practical 
for operational use. It has  gained widespread interest  and has 
been experimented in Sweden, Germany, Norway,  China, and 
New  Zealand  (Tomppo et  al.  1999 a).  

MS-NFI is  essentially a  two-stage  procedure, where digital 

maps  are  applied in the first  stage  to delineate  forestry land 

and  to estimate its area.  Estimation  of the  area  of forestry land 
subclasses  and the mean and sum of forest variables are then 

based on field observations  and  satellite  data  within  the  map  
delineated forestry land.  The  reason for this is  that all  non  

forestry land use classes  cannot be  separated from forestry land 

reliably enough with  satellite  image analysis  (Tomppo 1996). 

The  direct  use  of digital maps  typically  yields  overestimates 

of forestry land  area,  mostly because  some land  use masks  (e.g., 

power lines  and railways)  are not  always  available  in  the  ap  
plied digital maps.  On  the  other  hand, nonforestry land  included  
within the  map-based forestry strata  reduces  the mean timber  

volume  estimates.  In practice  it  has  sometimes been  necessary  
to calibrate the  small-area estimates in such  a way  that their 

aggregation into  large regions agrees with  the corresponding 
estimates from pure field measurements.  

In this paper  a statistical  calibration  method is  suggested to  

reduce  the  effect of  map errors  on small-area  estimates  using  
the confusion matrix estimated from a large region.  For the 

land  use class  areas, the suggested calibration  leads  to synthetic 
estimators (Gonzalez 1973), whose  aggregates  over  the  whole  

region agree  with  unbiased post-stratification estimators (Holt 

and  Smith  1979). The  approach is also  found  in  calibration  and  
remote sensing literature  (Brown 1982; Czaplewski  and Catts 

1992) as "inverse calibration for  classification  error," a  method 

introduced  in Tenenbein  (1972). However,  our application  and  
the proposed method  are slightly different from the usual 
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Fig. 1. Location of  the study area, and the municipality  boundaries 
of  the forestry  centres. 

classification  setting, because  the map categories may  differ 
from  the statistics  categories.  

Objectives  of the study 

The  aims  of  this  study  were to  develop a  calibration  method 
that  could  be  implemented into  the  current  operational NFI  and  
to  study its  behaviour  in  a  realistic  setting, using  the  computa  
tion  units and the actual data available from the  ninth NFI of 

Finland,  with all  its limitations.  To fulfill these  aims  we could  

not always  choose the  most  obvious alternatives. For  example, 

different  types  of  map  errors  had  to  be  treated  differently in  or  
der to integrate the  calibration  into the current  MS-NFI.  Also, 

we have  not yet found  a fully  satisfactory method  of assess  

ing the  standard errors of MS-NFI estimators, which  makes it 

rather difficult  to  study  the  properties of  calibrated  small-area  
estimators. 

Standard  enors are available  for  large-area estimators  from  
pure  field  data and  post-stratified land  use  class area estimators 
(the available  map  data  are not useful  as  a  basis  for  poststrati  
fication  in the estimation  of forest variables). Accordingly, the 

main  emphasis  here  is  on the large-area properties: Does cali  
bration  improve the  agreement  of  the  aggregates of  small-area  
estimates  with  unbiased  field  data estimates?  The assumption 

of homogeneous map  errors  over the  large regions may  natu  
rally  lead  to  biases  in the  synthetic  estimators  for  small  regions. 
Their  magnitude in  the  small regions of  interest  is  difficult  to 
determine, but  to  reveal  significant  biases  we examined  regions 
of intermediate  area,  for  which  pure  field  data  estimates  are 
reasonably reliable.  

In  this  study,  large regions are represented by  forestry  cen  
tres  and  small  regions, by municipalities. The  primary  land  use  
classes  are  forestry  land  (FRYL),  arable  land, built-up  land, land  
claimed  by  traffic  and  power  lines, and  water.  Forestry  land  is  
further divided into  subclasses  of  forest land,  other  wooded  

Fig. 2. Satellite image mosaic,  Landsat  5 Thematic  Mapper  path 
and row  and time of  acquisition. 

1186/16 27.5.1992 

|lB7/15 12.8.1994  
|lBB/16 2.7.1994  
|lB9/17 9.7.1994  
;189/16 31.8.1996 

<lBB/17 24.8.1996 

188/16 24.8.1996 

land, and  waste land.  The  union  of forest and  other  wooded  
land (FOWL) is  of particular importance, because  only  trees  on 

FOWL are  included  in  the  NFI timber  volume  estimates; waste  
land consists  of  practically  treeless  open bogs  and  rocks.  The  
statistics considered  in  this  study  are the  area of  the primary 
land use  classes  and  of FOWL (essential in  total  volume esti  

mation), and the  mean and  total  volumes  of growing stock of 

major  tree  species.  

Material 

Field  measurements 

The  study area (Fig.  1)  consists  of the  forestry  centres  of  
Keski-Suomi  (total area 19388  km

2

)  and Pohjois-Savo (total  
area 19953  km2

)  in central  Finland, located approximately  in  
the  area bordered  by  24°  10'-28o5O'E and Wa  
ter  covers  17% of the  study  area and  forest  84%  of the  land  
area.  The  forests are typical  boreal  forests  dominated  by Scots  
pine (Pinus sylvestris  L.)  and Norway spruce  (Picea abies  (L.) 

Karst.),  which  also  form mixed forests  with  birch  ( Betula  spp.)  

and  other  deciduous  species.  
The  study  area contains  54  municipalities ranging from 68  

to 1589 km ;  30 municipalities are located in  Keski-Suomi  and 

24  are in  Pohjois-Savo. The  total  area and land  area of each  
municipality were obtained  from  the  National  Land  Survey  of  
Finland (1997) and  are  assumed  to be  exact  in  this  study. 

The  field  data  are from the  ninth  NFI;  both  Keski-Suomi  and  

Pohjois-Savo were sampled  during  the  1996  field  season. A sys  
tematic  cluster  sampling design was applied, where  one cluster  

consists  of 18  or  14  field  plots  located  along  a  rectangular tract  

2  Three  out of  four  clusters  consist of 18  temporary  plots;  in  every  fourth  cluster,  
14 permanent plots  were established with few additional measurements. 
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Fig. 3.  Topographic database (dark  grey)  and the Base map data 
areas.  

300  m apart  (Tomppo et  al. 1999 c, 19996). The  cluster  refer  
ence points  form a square  lattice with 7  km  between  adjacent 
clusters.  A total of  13 613  field  plots,  of  which  11 275  were on 
land, were measured  within our study  area. 

Trees  were measured  on parts  of  plots  belonging to  FOWL. 
They were picked  up  by sampling  with probability proportional 

to  size,  the  inclusion  probability of a tree  being proportional to 
its  basal  area. Relascopic  factor two  was  applied on the  study  
area. Diameter  and  distance of  all boundary trees  were  measured  
to  judge whether a tree should  be  included  in  the sample. 

Supplementary data  

Seven  Landsat  5  Thematic  Mapper images  were needed  to 
cover the  whole study  area (Fig.  2).  Three  main images  were 
from  the  same year  as  the  field  inventory  data  and  covered  90%  
of the  area. Four  additional  images from years  1992  and 1994  
were used  to  obtain full  cloud-free  coverage.  Each  image was 
rectified to the National  Coordinate  System  using regression 
models  of  first- or second-order  polynomials, fitted  to  30-70  
control points, which  were identified  from  base  maps.  The  
nearest-neighbour method  was  applied for  the  resampling of 
the  images  to  25  m  x  25  m  pixel size.  

The  digital map  data  are mainly from  the  National  Land  Sur  

vey (FNLS) but  vary  in  their  quality and accuracy.  The  Topo  
graphic Database  (TOPO) (National  Land  Survey  of Finland  
1998) is  the  most accurate  and  up-to-date data  source,  but  it  
currently covers only  50%  of our study  area (Fig. 3).  For  the 
rest  of the area (to be  called  'BASE area'), the  map  data  are 
from several  data  sources. For  example,  the arable land mask 
was  scanned  from  the  1 :50  000  basic  maps,  for  which  the  field  
work dates from 1961 to 1985. 

Table 1. Derived  map stratification.  

By  combining the  various  map  data  sources  we produced a 
thematic map (or stratification) that classifies  each  25  m  x 25  m 

pixel  of  the  study  area into  one of  the  11  strata listed  in  Table  1. 
The  stratification  was  designed in such  a way  that  each  stratum 
is  as  homogeneous as  possible  with respect  to the  land  use  class  
distribution.  To  achieve  this,  each  theme, except  for  the  uniform 
road  mask,  was  split  into  BASE and  TOPO  areas. The  forestry 
land  strata  consist  of  the  areas that  are left  outside  all  other  map  
themes. 

As  in  the operational MS-NFI, we also  used  the  digital ele  
vation  model  and a  peatland mask  to  supplement the  satellite  
image data  in  the  £-nn  estimation, and the  digital municipal  
ity  boundaries  (from FNLS),  to delineate  the  computation units  
(Tomppo 1996). 

Current NFI methods 

The method  presented in  this paper  has  been  developed as a 
modification of the  currently operational  NFI  of Finland.  There  

fore  the latter  is  used  as the basis for  comparisons whenever  
possible.  The  large-area  NFI  estimates  for  forestry  centres  are 
based  on  field  data only,  whereas  municipality level  (small  
area)  estimates are computed by  means of the  MS-NFI  method  
using satellite  images and  digital map data. 

Field data method 

Area  estimation  from  pure  field  data  is  based  on ratios  of field  

plot  counts  and  on the  known  land  area of  forestry  centres.  The  
area of  land  use class  /  within  forestry  centre  R  is  estimated  by  

where  rt/?;  is  the  number  of sample plots within  R that  represent  

land  use class  l,  n  R  jand is the  number  of  plots  located  on land, 
and  Ar  land is  the  total  land  area of  R.  The area of  any subclass  / 
whose indicator  is  observed  in  the  field  (e.g., forest  -  other  
wooded -  waste  land  or  pine -  spruce  -  deciduous-dominated  
forest)  can  naturally be  estimated in  a similar  manner. 

rn T n ß>l a 
UJ Ar,l  =   

w /?,land 

Code  

(A)  Stratum Region 

1 Forestry  land BASE 

2  Forestry  land TOPO 

3 Arable land BASE 

4  Arable land TOPO 

5 Buildings  and  urban area BASE 

6  Buildings and urban  area TOPO 

7 Other  built-up land BASE 

8 Other  built-up land TOPO 

9 Roads Whole 

10 Water BASE 

11 Water TOPO 
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The  mean volume  within  forestry  land  subclass  /  of  forestry  
centre  R  is  estimated  by  the  sample average  

where  v, is  the mean volume  (m
3

/ha) in  field  plot i,  Irj  is 
the  set  of  sample  plots  within  R that represents  subclass /, and  

naf  is  the  (random) number  of  such  plots.  The  total  volume  

estimator  Vg is  the  product  of  the  mean volume estimator  ([2]) 
for  / = FOWL and the FOWL area estimator  obtained  using 
[l],  and it simplifies to 

These can all be  considered  as ratio-of-means  estimators. 

However,  because  of  the  spatial  correlation  of  forest variables  
combined  with  the  systematic  sampling design, the usual  vari  

ance estimators (Cochran 1977), based  on simple  random sam  

pling, are not  valid  in  their  accuracy  assessment.  Instead, the 
standard  errors  are estimated  using local  quadratic forms as 
suggested in  Matern  (1960); details  are given in  the  Appendix. 

MS-NFI method 

In  the current  multisource  method, forestry  land  is  separated 
from other  land  uses on the  basis of the  digital map data (strata 
1  and 2 of Table 1; the  term 'forestry land  stratum' will  refer  

to  the  union  of  these  strata).  Forestry  land  subclass  areas and  

means, and  totals  of forest variables,  are estimated  by  weighted 

sums or averages  of field  measurements in  plot  i  belonging to 
the training data  set  J C /fryl. which  includes  all  FRYL plots 

except  for  those  that are  obviously  poorly localized  in the  field  
and  those  that  contain  non-FRYL  parts.  In  our study,  this  set  
contained 9417 field  plots. 

Weights for  plot  i  e  J  are computed as  sums  of  pixel  weights 
over pixels in  the  forestry land  stratum. The  pixel weights, in  

turn,  are  determined  by  the i-nn  method, the details of  which  
are given  in  Tomppo (1991, 1996). The  basic  idea  is  to  use the  
satellite  image and  other  supplementary data to find, for  each  

pixel p within  the forestry land  stratum, the k  most  similar  
in  the  training set. Let  us denote  the field  plots correspond  

ing to  these  "k  nearest-neighbours" of p  by i\(p),
...,

 «*(/>)• 

Non-negative weights uij, p  are defined  according  to the  applied 
similarity measure in such  way  that w^p  >O,  if  and only  if 
i  G ('l(p) 'k(p))  and  

where  a is  the  area of one pixel. The  weight of plot i e J to the 

forestry  land of  municipality U is  then  

where  C/fryl  denotes the  restriction of the  forestry land  stratum 
to U.  Note  that  ci ij  may be positive also  for plots  outside  U, 
which  leads to synthetic  estimators borrowing strength from 
outside the computation unit. 

The sum of weights c ltu  over all  training set plots  is  equal  
to  the  area of  C/fryl-  This  allows  for  the interpretation of  qj  
as that area of  the forestry  land  of U  that  is  most  similar to 

plot  i.  The  natural  estimator for  the  area of  any  forestry  land  
subclass  / within  U is then  

where  J  f  contains  the  training set  plots  that  belong to  sub  
class /. The  MS-NFI estimator  of the mean volume within  

forestry  land  subclass / of  U  is  the  weighted average: 

and  that of the  total  volume is  obtained  by  choosing subclass  / = 

FOWL and omitting the denominator: 

Calibrated  MS-NFI estimators 

It  is obvious that the MS-NFI method  is vulnerable  to the 

failure  of the forestry land map  stratum in representing the 

true forestry land  area.  In practice, this  stratum is usually too 

large,  leading to  the  overestimation  of  the  forestry  land  area.  On 
the  other  hand,  the nonforestry  land  pixels typically add  to the 

weights of  low  volume  plots,  which  leads  to  the  underestimation  
of mean volume. 

Here we propose  a calibration  to the  MS-NFI estimators, 
based  on large-area  estimates  of map  errors. Although the  qual  

ity  of map  data varies, it  is  often  possible to  define  the map  strata 

in  such  a way  that each  one is  reasonably homogeneous with  

respect  to the  map  errors  and  the land  use class  distribution.  
This  enables  the use of synthetic small-area estimation, using 
the  proportions that  have  been  estimated  from a  larger region. 
The stratification  of Table 1 was applied in this  study. The  re  

striction  of stratum h  to forestry centre R or  to municipality U 

will  be  denoted  by  Rh  and  Uh,  respectively. 

Land use class  areas 

Let  us first  consider  the estimation  of the area of land  use 

class  I in municipality U.  Recall that the  (uncalibrated) MS  

NFI  estimator  would  simply  be  the  combined  area of  the  map  
strata  within  U  that correspond  to  class  I.  We  propose  a natural  
calibration  for  errors in the map strata  using the field data from 

forestry  centre R in  which  U belongs. First,  the proportion of 

land  use class  / within  each  map stratum h is estimated  by  the 

corresponding plot count ratio:  

computed over the entire forestry centre (ratios computed by  

municipalities  are too  variable, the  very  reason for  the  need of 
specific small-area estimation). The  calibrated  area estimator 

Ä t—iiele f  vi  
[2] v R ,f = 

**•' 
n R,f 

[3] V
R
 = E' eWL  V'A

r,m
 

«/?, land 

f 4] iif) =a 
i€J 

[s] Ci,u  = wi.p 
peUFRYL  

[6] Äu.f  = ciM 
itJf 

T,ieJ
f
 ciMV, 

[7] vu.f  =  
ZsieJf  C*'U 

[B] Vu =   

»GTFOWL  

[9] P
Rh ,l  =   

«R* 
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is  then obtained  by  summing the corresponding proportions of 

municipality  level  stratum areas: 

where  Au
h  

is  the area of  {//,.  
Note  that  the  aggregate  of  small-area estimates  over forestry 

centre R 

is  equal to the unbiased poststratification estimator: 

Properties of the synthetic  municipality level  estimators  [lo] 

depend highly on the homogeneity of map  strata with respect 
to  land  use class  distribution.  If the  true  proportions Pu

h ,l were 
constant  for all municipalities within R,  then  the estimators 

would  be unbiased. 

Since  the  areas Anh are known  and  proportions PRh ,i  are 
based  on field  data, the  sampling errors  of  the large-area esti  

mators  A*
r  (  can be  assessed  by  combining standard  stratified  

sampling formulae  (Cochran 1977) with the  variance  estima  

tors  for  the field  data method. Again, the details are given in the 

Appendix. 

Calibrated  plot weights 

Map errors  affect MS-NFI  estimators  [6]-[B] through the plot 

weights ci xu ,  which  are defined  as sums over the  forestry  land  

map  strata  [s],  Calibration  of these  weights for  the map errors  is  
not straightforward in the MS-NFI  context,  essentially  because  

nonforestry land  field  plots  are excluded  from  the  training set  
for satellite  image processing  and also  because the  map  strata  

are different  from the  NFI land  use classes. Here we  propose  

a heuristically derived  calibration, which  is implementable in  
the  currently  operational system  and  has  the important property  

that  in  analogy with  the  uncalibrated  MS-NFI, the  sum of the  
calibrated  weights  over all training data plots is  equal to the  

calibrated  forestry  land  area estimate  A*
v  fryl-  

First,  we wish  to  eliminate from  the  sum on the  right hand side  

of [s]  the contribution  of  the  pixels  that  are falsely classified  
as forestry  land on the basis  of map data. Our  proposal is  to 
estimate  the  contributions  separately  for  each  nonforestry land  
use class  / by  the product of the estimates of the number  and 

average  weight of  the forestry  land  stratum  pixels  that  actually  
belong to I. 

Using again the large-area estimate  of the  confusion  matrix, 

the  number  of  such pixels  in  municipality U  can be  estimated  
by  

where  Nuh  is  the  number  of  pixels  in  Ut, . 
We  have  no direct  way  to  reliably assess the  weights (u>j  p ) 

of the  forestry land stratum pixels (p) that  actually  belong to I. 

Table 2. Representative map 
strata for  nonforestry land use 

classes  used  in the plot weight 
correction. 

Therefore  our estimation is  based on the  assumption that they 

are,  on average,  similar to  those  of pixels  in  such  map  strata  that  

best  represent land use  class  I. We selected the representative 

map  strata  for  each  nonforestry  land  use  class  as  shown  in  Ta  
ble 2;  the union of the  map  strata  that  represent land use class  I 
is denoted by  h  (I).  The  pixel weights (id,iP

)  of  training  data set  

plots  i  6 J were computed to  all  pixels  (p)  within  these  strata  
in the  same manner (&-nn) as for  those  within  the forestry land 

stratum in  the  ordinary  MS-NFI. The  average  weight of training 

set  plot  i  to  a pixel,  whose  actual  land  use class  is  /,  was  then  
estimated  by 

Our estimator  for the total contribution  of falsely  classified  

forestry stratum  pixels  to  q j/ is  finally obtained  by  summing the 

products of [l3] and [l4] over all nonforestry land use classes:  

which  can be  considered  to represent the contribution  from  pix  

els  in  the  forestry  land  strata  that  actually  belong to  forestry  
land. The  calibrated  estimator  of the area  of that part  is  

To account  for the map  errors to the other  direction, that  is, 

for  pixels in the nonforestry land  strata that actually belong to 

forestry land, we assumed  that  in each  computation unit  they  

are,  on average,  similar  to pixels  in  the  forestry  land  stratum of 
that  unit.  This  leads  to  scaling the  downwards  calibrated  weights  

c'-  fj  up  by  the  area correction  factor  A*
(J  frylM[/fryl fryl  

a  result  the  calibrated  weights are 

Calibrated  MS-NFI  estimates  are then obtained by  replacing 

c;,i/ in  [6]—[B]  by It  should be  noted  that although these  

weights add  up to  A\, ,  the  positivity  of  individual  weights 
is  not guaranteed. 

[lo] a*
vj = Y.P^a^  

h 

[H] J2 A'u.l  
UeR 

[l2] A"
r  i=  £  PRkJ

A
Rt  

h 

[l3]  N*
UfrylJ  =  £ PR.iNU„  

he{l,2)  

v-v W
'-P  

[l4] w iMh(l)
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i(J

= ]T   
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This  leads to "downwards  calibrated"  weights: 

[!6] c'i V  = ci,u  ~ c~u 

[ l? ] A
UfryI.FRYL  = X!  P «».FRYL AVh  
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Land use Strata 

Arable 3,4 

Built-up 5,6 

Traffic, etc. 9 

Water 10,11  
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Table 3. Land use  class  distribution among field plots by map stratum in the forestry centre of  Keski-Suomi 

Table 4.  Land use class  distribution among field plots by  map stratum in the forestry centre of  Pohjois-Savo 

Table 5.  Land use class  area estimates  and their  standard errors  for  forestry centres with  and without poststratification.  

Note:  Water area  of the field inventory column was  obtained from the official statistics of the National Land Survey  of  Finland. 

Land use class I 

Forestry  Arable Built- •up Traffic, etc. Water Total 

P
«h J  P

*hJ n
Rh.l  PR>J  "R.J  p

Rh. i PRh.l "Rk.l  "*/, 

Stratum h (%)  (%)  (%)  (%)  (%)  

Forestry/BASE 94.6  2763 1.9 55 1.3 37 1.3 39 0.9 25 2919 

Forestry /TOPO 93.8  1766 2.0 37 2.4 46 1.3 24 0.5 9 1882 

Arable/BASE 23.0 49 69.9 149 5.2 11 0.9 2 0.9 2 213 

Arable/TOPO  6.1 13 91.9 195 1.4 3 0.0 0  0.5 1  212 

Buildings,urban/BASE 22.6 7 0.0 0 67.7 21 9.7 3 0.0 0 31 

Buildings, urban/TOPO 10.5 2 0.0 0 89.5 17 0.0 0  0.0 0 19 

Other  built-up/BASE 10.5 2 0.0 0 89.5 17 0.0 0  0.0 0 19 

Other  built-up/TOPO 0.0 0 0.0 0 91.7 11 8.3 1 0.0 0 12 

Roads  39.3 100 7.9 20 20.1  51 32.3 82  0.4 1  254 

Water/BASE 2.3 10 0.0 0 0.4 2 0.0 0  97.3 431 443 

Water/TOPO 0.3 2 0.2 1 0.4 3 0.0 0  99.1 677 683 

Total 70.5 4714 6.8 457 3.3 219 2.3 151 17.1 1146 6687 

Land use class  / 

Forestry  Arable Built- -up Traffic,  etc. Water Total 

p»>j ««t.i PRH.<  "«.J  Pr„.i p
Rh.i  "R„.i  pRh.t "R>, 

Stratum h <%) (%)  (%)  (%)  (%)  

Forestry  /BASE 93.5 1853 2.0 39 1.7 34 1.2 24 1.6 31 1981 

Forestry/TOPO 94.7 2631 1.8 49 1.9 53 1.2 33 0.4 12  2778 

Arable/BASE 25.4 63 69.8 173 3.2 8 0.8 2 0.8 2  248 

Arable/TOPO  4.8 20 93.1 388 1.2 5 0.7 3 0.2 1 417 

Buildings,urban/BASE 9.4 2 4.8 1  81.0 17 0.0 0 4.8 1 21 

Buildings,urban/TOPO 12.5  2 31.2 5 56.3 9 0.0 0 0.0 0  16 

Other  built-up/BASE 19.2 5 3.9 1 76.9 20 0.0 0 0.0 0  26 

Other  built-up/TOPO 10.3  3 3.5  1 86.2 25 0.0 0  0.0 0  29 

Roads 41.6  89 15.9 34 12.6  27 29.9 64 0.0 0  214 

Water/BASE 3.8  20 0.0 0 1.1 6 0.0 0  95.1 503 529 

Water/TOPO 3.8  25 0.0 0 0.0 0 0.0 0  96.2 642 667 

Total 68.1 4713 10.0 691 2.9 204 1.8 126 17.2 1192 6926 

Centre Land  use  

Area (1000  ha) Absolute SE (1000  ha) Relative SE (%)  

Field Poststratification Field  Poststratification Field Poststratification 

Keski-Suomi Forestry  1382 1378 12.6 7.4 0.9 0.5 

Arable 134 128 9.9 4.7 7.4 3.6 

Built-up  64 69 5.7 4.0 8.8 5.9 

Traffic, etc. 44 44 3.6 3.2 8.1 7.4 

Water 314  321 — 2.3 — 0.7 

Pohjois-Savo Forestry  1357 1360 12.4 7.3 0.9 0.5 

Arable 199 187 10.9  4.9 5.5 2.6 

Built-up 59 59 6.7 4.4 11.4 7.4 

Traffic, etc. 36 39 3.6 3.4 9.8 8.8 

Water 344  351 — 2.9 — 0.8 
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Fig. 4. Uncalibrated vs. calibrated MS-NFI estimates  for  each 

municipality: percentage  of  FRYL  of  the total area (%). 

Results 

Confusion  matrices  

The  confusion  matrices  (Tables 3 and  4)  are quite similar in  
the  two  forestry  centres,  thus  indicating  homogeneity in  the  map  
quality. Forest  map  strata  have  nearly 95% co-occurrence with  
field data on both  BASE and  TOPO map  areas. On  the  basis  of  
field  plot  counts,  the  forestry  land  strata  overestimate  the actual  
FRYL  area by 2% in  Keski-Suomi  and by 1% in Pohjois-Savo. 
The  most  notable  differences  between  BASE and TÖPO  maps  
are in the  arable  land  strata,  the  latter  clearly  being more  accu  
rate.  The road  stratum clearly overestimates  the corresponding 

land  use class  and  is  quite inaccurate, as expected.  

Calibrated  area estimates  for  municipalities 

Figure 4 shows  the  calibrated  municipality level  estimates  for  
the  proportional area of  FRYL  plotted against  the  corresponding 
MS-NFI estimates. The calibration  reduces  the  FRYL area in  

most  cases,  although the  changes are  small  compared with the 

absolute  values  (Fig. sa). The stronger correction  in  the  small  
est  municipalities of Pohjois-Savo could  be  due to the  overlay 

operations of  the  original  land  use masks:  roads are on top of 
all  other  masks.  Since  the estimated  proportion of  FRYL  in  the  
road  stratum is  relatively  high, this  may  lead to  the effect of 
"transferring" too much  FRYL  firom the rural  to  built-up areas. 

Calibrated  volume  estimates  for municipalities 

The mean volume in FOWL increases  overall after  calibra  

tion, as expected (Fig.  Sb).  The  decrease  of the  small-area  FRYL  
estimates  compensate  the mean volume  increase,  and on aver  

age,  the  total  volume  estimates  remain  unchanged (Fig. sc).  

However,  the  relative  correction  of the mean volume  increases  

together with the  uncalibrated  MS-NFI estimate vu (Fig. Sb). 
To understand  the  effect of calibration  on the volume estima  

tors,  we must  consider  some  results  of the  classification  of non- 

FRYL  map strata. On  average, other  wooded  land  and waste 
land  field plots  receive  higher weights in  the analysis  of non- 
FRYL  strata  than  in  the  analysis  of  FRYL.  The  mean volume  
estimates  for  non-FRYL strata  were lower  (7-91 m3

/ha) than 

Table 6. Area  of  FOWL and forestry land of  forestry 

centres:  pure  field data estimate,  MS-NFI  estimates with 
and without calibration of  plot weights. 

those  for  FRYL,  except  those  for  water  (160-204 m
3

/ha). The 
high values for  water  are  due  to both  water and  highly stocked 

coniferous  stands  having low  intensities  of  reflectance  on  all of 
the  Landsat  Thematic  Mapper satellite  channels  applied in this 

study. 
Further  analysis  showed that the increase  in the  proportion of  

area covered  by  the  TOPO map  increased  the  relative  correction  
of mean volume on FOWL. The  lower  proportion of water area 

on TOPO forestry stratum leads to smaller  subtraction  of the  

weights of  plots  with high mean volumes.  

Aggregates of calibrated area estimates 

Recall  that  the  aggregates  of  the  calibrated  estimates  of  land  
use class  areas are equal to the poststratified large-area esti  

mates, which are  unbiased  and  more  precise  than the  pure  field  
data estimates. Table  5  shows  that  the  poststratification results  
in nearly half  the standard error  of forestry land  area estima  
tors.  The  variance  reduction  is  smaller  on more  heterogeneous 

classes,  e.g., roads, where  the within-strata  variation  is  large.  
Table 6  demonstrates  how the calibration  draws the aggre  

gates of  FOWL and  FRYL area estimates  towards  the  pure  field  
data estimates  (large-area estimates in Tables 6 and 7 were ob  

tained  by  replacing Uin  [6]—[B] and  their  calibrated  versions, 

by  R).  Note  that  based  on poststratification  standard  errors,  
there is a significant bias  in  the uncalibrated  MS-NFI  estimate 

of FRYL area for Keski-Suomi.  

Aggregates of calibrated  volume  estimates 

Calibration  of MS-NFI  plot  weights gives  the  expected  in  
crease to the  mean volume  in  Keski-Suomi  (Table 7). Pohjois- 
Savo  seems to benefit little  from the  calibration, but  there  was 
little  need  for  the  calibration  in the  first  place.  The  effect of 
the calibration on the volume estimates varies  by  tree species.  

Almost  all  the calibrated  MS-NFI estimates of total volume  are 

within 1 SE of the  field  inventory estimate in  Keski-Suomi, and 
within 2 SE in Pohjois-Savo. There  are noticeable biases in the 
MS-NFI estimates of the volume  of birch  and other  deciduous  

species.  The  discrimination  of these  species  is  not  easy,  because  

they occur mainly as  mixed  species on coniferous  stands. 

Calibrated  weights are negative for  1.5% of the  training set 
plots.  The  negative weights  result  from the  spectral responses  of 

non-FRYL pixels  in the  satellite  image being concentrated near 

those  of a  few  exceptional  FRYL  pixels;  for  example, arable  
land  pixels are similar  to FRYL  pixels with  very  low  timber  

volume  and water pixels  are  similar to high volume  FRYL pix  

els.  The  mean  volume  of the  negatively weighted plots  over 
the  study  area was 142  m3 /ha.  These  field plots  had slightly 

Area (1000  ha) 

Centre Land use  Field MS-NFI Calibr. 

Keski-Suomi FOWL 1368 1389 1368 

FRYL 1382 1403  1378 

Pohjois-Savo FOWL 1333  1349 1344 

FRYL 1357 1372 1360  
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Fig. 5. Percent difference between calibrated  and uncalibrated MS-NFI estimates  for  each  municipality plotted against  the uncalibrated 
estimates: (a)  area of  FRYL (km

2
), (b ) mean  volume (m

3
/ha),  and (c)  total volume (1000  m  3). 

Table 7. Volume of  growing stock on FOWL of  forest  centres: pure  field data estimate with  sampling error, MS-NFI  
estimates with and without calibration of  plot  weights.  

higher pine  volume  estimates  than  the  mean  pine volume  over 
the  whole  study  area. Of  the  negative weights, 29% were on 
other  wooded  land  and  waste  land  field  plots. 

Small-area  bias  

To  study  a possible bias  of  small-area  estimates  the  original 
and  calibrated  MS-NFI estimates  of FRYL area, mean,  and to  

tal  volume were combined  into  five  groups  of municipalities in 
both forestry centres  and compared with  the pure  field  data  es  

timates  (Fig.  6).  The  FRYL  areas of the  subregions  ranged from  
1890 to  4160  km

2.  The  standard errors  of the  field inventory 
estimates  were calculated  and  plotted (Figs. 7  and  8).  The  cali  
bration of MS-NFI  estimates did not cause notable  systematic 

errors to the FRYL area and volume estimates  compared with  

Centre Tree  species 

Mean volume (m 3 /ha)  Total  volume (106  m 3
) 

Field MS-NFI Calibr. SE Field  MS-NFI Calibr. SE 

Keski-Suomi Pine 48.6  47.2 48.0 1.1 66.4  65.5 65.7 1.6 

Spruce  47.7  47.4 48.4 1.5 65.2  65.8 66.3 2.1 

Birch 15.8 15.0 15.0 0.5 21.6  20.8 20.5 0.7 

Other  deciduous spp. 4.2 4.1 4.1 0.3 5.7 5.7 5.6 0.4 

Total  growing stock  116.2 113.7 115.5  1.8 158.9 157.9 158.1 2.9 

Pohjois-Savo Pine 36.7 37.5 37.9 1.0 48.9  50.5 51.0 1.4 

Spruce  52.1 52.5 53.6 1.5 69.5  70.9 72.1 2.1 

Birch 18.5 17.6 17.8 0.6 24.6 23.7 23.9 0.8 

Other  deciduous spp. 6.6 5.5 5.5 0.4 oo 00  7.5 7.4 0.5 

Total growing  stock  113.9 113.1 114.8 1.7 151.8 152.6 154.3 2.7 
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Fig.  6. Groups  of  municipalities 1-10 in the study  area. 

the  pure  field  data estimates, although  in  two groups  neither  of 
the two estimates  of FRYL area were within  2 SE of the  pure  
field data estimates  (Fig. 7).  The  corrections  are, in most  groups 
of municipalities,  towards  the field inventory  estimates.  

Discussion  

We have  presented a statistical calibration  method for  reduc  

ing the  effect of  the  map  errors  in  the  MS-NFI  estimates.  The  
method  uses a  confusion matrix, estimated from two data sets.  

One  of  them is  assumed  to  be  a sparse  sample yielding accurate  
unbiased  estimates  for  large areas,  but  having too few  obser  
vations  for reliable  small-area  estimation.  The other  data set, 

on the  other  hand, is  assumed  to  give complete coverage  of  the  

Fig. 8. Groups  of  municipalities: pure  field data estimates ±2 SE, 
MS-NFI estimates and calibrated MS-NFI estimates; (a)  mean 

volume (m
3/ha),  (b)  total  volume (10  6 m 3). 

study  area,  but  may  contain systematic  errors. 

The method is derived and described  in  a  real  multisource 

forest  inventory setting, applying satellite  images, digital map 

data, and  a sparse  grid  of  field  data  from  the  ninth  NFI  of  Fin  
land. A  normal  large-area forest  inventory  involves  a large num  
ber  of variables, typically  200 to 400. The  presented method  is  

applicable with  all  variables and parameters.  

In  general, the  calibration  method corrects  the  aggregates  of 
MS-NFI estimates  towards  those  based  on field  data (which are 

considered  to be  unbiased). 

In  our application, the  total  numbers  of  field  plots  for  forestry 
centres  were fairly large, 6687  and 6926.  In spite  of that,  field 

plots  were seldom  observed  on the  smallest map  strata,  such 
as urban areas and  other  built-up land. Therefore  the standard 

errors  of the estimates  of PR h j for  these  strata  can be  high. 

Czaplewski  and  Catts  (1992) recommend  a minimum  of 500-  
1000  random sample plots for  categorical data assuming  that  the 

probabilities of misclassification  are constant over the region. 

Well-classified  categories would  need  smaller samples. In our 

case,  the map  stratum of buildings and  urban  areas may  have  
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too  few  observations  compared with  the  accuracies  of maps.  
The method  assumes that  pixels  that  are spectrally  and  ac  

tually similar  to  non-FRYL  pixels can be  found  among  FRYL 
strata pixels.  We  do  not  know  how  much  the  non-FRYL  spec  
tral  values really  differ  from  FRYL.  These  differences  also  vary  
seasonally because  of phenology, and may  cause different  al  
location  of  weights with  images of  different  time points.  For  
instance, the  spectral  responses  of  arable land are more  distinct  
from those  of  forestry  land  in  the  early summer  when  there  is  
no vegetation. 

In  our study  area,  the  mean weights  of  field  plots  correspond  
ing to  non-FRYL concentrated  to  certain  field plots  in  such  a  

way  that  [lB]  gave  negative weights to 1.5% of the  field  plots. 
Methods  for  avoiding negative  weights will be  studied.  

In  general, we have  found  the calibration  to work reason  

ably  well, and  it  has  already been implemented as a part  of  the  
operative MS-NFI. 
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Appendix A: On the estimation of standard 

errors  

Let  us first  consider  the  estimation  of area proportions from 

pure  field  data.  To  be  specific,  let  us choose some regions (R )  
and one land use class  (/), and  define  indicator  functions:  

and 

Then  the proportion 

of land  use class / among  the  land  area of region R can be 
rewritten as 

In large-area NFI, proportion P is  estimated  by  the field  plot 

ratio: 

where  c  refers  to  a cluster  of field  plots,  xc = J îec
x(n) is  

the number of  those  plots  in c  whose  centre  belongs to land 
use class  I  (r,-  is  the  location  of  the  centre  of  plot  /),  and  y c  = 
Siec  y(ri) is  'he  number of those  plots  in c  whose  centre is  
located  on land.  

To estimate the  variance of  P the  cluster-wise  residuals:  

are assumed  to  form  a partial realisation  of a second-order  sta  

tionary stochastic process  on R. Letting n denote  the  number 
of clusters in  I and 

r .
 
„,
 

,
 
„
 f 1 if point re  R belongs  to land use class  I 

[Al] x(r) = 
0 otherwise 

,  , 1 if point r  e Ris on land  
[A2] y(r) = 

0 if it is not 

[A3] P  = Arj 
Ar,  land 

f„ x(r)  dr 
[A4 J p= r h

 
jr  y(r)  dr 

[A5] P  = |kAi£ 
T.cci  yc 

[A6] zc =*c -  Pyc 

i«) *=E* 
cCI  
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the variance  per  cluster  

is  estimated  by  the  average  of quadratic forms:  

in rectangular groups  g  of four  clusters  

The  residuals [A6] are naturally  evaluated  using the estimate P 

instead  of the unknown  true value P. The variance  estimator 

for 

is obtained  by  applying the standard approximation for ratio 

estimators (Cochran 1977): 

Inserting the quadratic form estimator  of a 2 yields 

where  the  grouping factor  q is  the  ratio  between  the  number  of 
clusters and the number of  groups.  Usually  all possible quadru  

ples  are included  so that  each  cluster  appears in four  distinct 

groups and q 1. Estimators  given by  [l] and  [2] are essen  

tially field  plot ratios  similar  to that in [A5], and  the  approach 

described  here  was used  to estimate their standard  errors. 

Let  us then  consider the poststratification estimator  [l2] of 
the area of land use class  / within region R. Using vector  nota  
tion  A  = (A r  j ~..,  Arb )

t,  P  = (PRlj,Prb ,i)
T ,  where  

B is  the  number of map  strata  and  superscript T  denotes  the 
transpose,  we can  rewrite  [l2] as 

and the variance of A*
R  l is  

where X is the  covariance  matrix of P. 

To estimate Z we have  derived a  direct generalisation of 

[Al3] to the multivariate  case. For  a consistent notation  each  

element  of vector  P  (?R
h ,i), h = 1,.... Bis  expressed  as 

where x
c<

h  and  y are the  cluster-wise  plot  counts  within  stra  

tum Rt,,  corresponding to  those in [A5],  and  the  cluster-wise  
residuals are defined  as 

The  elements of  covariance  matrix  E  alh"  h,h'  =  1,...,  B,  
that  is, the covariances  of PRh: \  and Pr

h,,i,  are then estimated 
by  

where  the  "covariance  per  cluster"  is estimated  by generalising 

[A9] to 

The  variance estimator is then  obtained  by  simply inserting 

the  estimated  covariances  to [Al5]. 

[AB] of  =  n  E?
2 

ra
 
m
 

t
 
_

 ~f~  £c4)^ 
[AVJ 7g -  

c 3 c  4  
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cl c 2  
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yc  
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Stratification by  ancillary  data  in  multisource  

forest  inventories  employing k-nearest  

neighbour estimation 

Matti  Katila  and  Erkki  Tomppo 

Abstract:  The Finnish multisource national forest  inventory  (MS-NFI) utilizes  optical area satellite images and digital 

maps in addition to field plot data to produce georeferenced information, thematic maps, and small-area statistics. In the 

early  version,  forestry land (FRYL)  was  taken directly from the numerical map data. Such  data may  be outdated and can 

contain significant errors, for  example, the FRYL area is  typically overestimated and the mean volume is  underestimated. 
A  statistical calibration method has been introduced to reduce  the map errors  on multisource forest  resource estimates. It 
is  based  on large-area estimates of  map errors, a confusion matrix among land-use classes  of  the field  sample  plots,  and 

corresponding map information. The method has some drawbacks:  calculations are more  complicated than in the original 
MS-NFI and some field plots may  have negative expansion factors.  The paper  presents  a new stratified MS-NFI method to 
reduce  the effect  of  inaccurate  map data on the forest-resource estimates.  In this method,  the (fc-NN)  
estimation  is  applied by  strata. All the field plots  within each map stratum,  independently of  their land-use  classification by  
field crew,  are used to estimate the areas of  land-use  classes and forest  variables  of that stratum. The method was  tested on 

two areas containing three Landsat  5 TM  scenes and field-inventory data from the ninth NFI.  The stratified MS-NFI 
is  essentially  a different estimation method compared with the calibrated  MS-NFI, which calibrates the MS-NFI estimates 

more  or less  systematically in one direction. The  stratified MS-NFI was found to be statistically simpler and there were 

fewer  significant errors  in the  estimates  than in the calibrated MS-NFI.  

Resume: L'inventaire forestier  national multisource de la Finlande (MS-NFI)  utilise les images satellitaires optiques 

et les  cartes  numdrisdes,  en plus des donndes provenant  de parcelles terrestres,  pour produire I'information ä rdfdrence  

spatiale, les  cartes  thdmatiques et les  estimations pour  de  petites  surfaces.  Dans  la version antdrieure,  le territoire forestier  
dtait obtenu directement ä partir des  cartes  numdriques. Or ces  cartes peuvent  etre obsoldtes et contenir des erreurs 

importantes :  par  exemple, la superficie  du territoire forestier  est typiquement surestimde et le volume moyen est sous  
estimd. Une mdthode  de  calibration statistique a dtd ddveloppde pour  rdduire les  erreurs d'estimation  multisource des 

ressources forestidres  ä  partir  des cartes. Cette mdthode  est basde sur I'estimation des erreurs des  cartes sur de grandes 

superficies au moyen d'une matrice de confusion  entre  les  classes  d'affectation des terres obtenues ä partir des parcelles 

terrestres et rinformation correspondante provenant  des cartes. Elle comporte certains inconvdnients. Les  calculs sont plus  

compliquds qu'avec le MS-NFI original et certaines parcelles terrestres  peuvent  avoir  des facteurs  d'expansion ndgatifs. 
Cet article prdsente une nouvelle mdthode, le MS-NFI stratifid, pour  rdduire I'effet des donndes errondes dans les cartes 

sur l'estimation des ressources forestidres.  Avec  cette mdthode, l'estimation &-NN  est appliqude ä chaque strate. Toutes  les  

parcelles terrestres dans chaque strate, inddpendamment de leur classification pour  I'affectation du sol par les  dquipes de 

terrain,  sont utilisdes pour  estimer l'aire selon la classe  d'affectation des terres et les donndes forestidres  de cette strate.  
La mdthode a 616  testde  sur deux grandes zones couvertes  par  trois  images Landsat 5 TM et les  donndes d'inventaire 

terrestre du neuviöme inventaire national de la Finlande. Essentiellement,  le MS-NFI stratifid est une mdthode d'estimation 

diffdrente du MS-NFI calibrd qui calibre les  estimations du MS-NFI plus  ou mois systdmatiquement dans une  direction. Le 
MS-NFI stratifid s'est  rdvdld  plus simple du point de vue statistique et les  estimations  component  significativement moins  
d'erreurs  qu'avec  le MS-NFI calibrd. 

[Traduit par  la Rddaction]  

Introduction  

The multisource forest inventories  have  been  subject to in  

creasing research  in  the countries with existing national  for  
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est inventories  (NFI), e.g., the Scandinavian  countries and  the 

United States. The basic  idea  has  been  to combine  objectively 
measured  field-inventory data  with  available  numerical  map 
data and  remote sensing data, most  often from high-resolution 

optical satellites  (Landsat TM, Spot  HRV).  Sampling-based 
methods  (Poso 1972) and  nonparametric estimation  methods  
have  been used  for multisource  forest inventories  (Tomppo 

1991; Tokola  et al. 1996; Nilsson  1997; Franco-Lopez et al. 

2000; Gjertsen et  al. 2000) 

The  amount of  available  numerical  map  data  is  increasing.  In 
forest inventories, the maps  and  remote sensing data have  been 

used to delineate  the  forestry  land  (FRYL)  (Loetsch and Haller 
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1973). The classification  of land-use  or land-cover  classes has  

been  one of the major applications of satellite  image based  

remote  sensing  (Campbell 1996). In the  remote  sensing  ap  

plications,  there  are three  different  ways to incorporate  the  
auxiliary geographic information  system  (GIS)  data  into the  
classification:  stratification, classifier  modification, and post  
classification  sorting (Hutchinson 1982). Examples are strati  
fication of the  image areas prior to estimation (Tomppo 1996), 

application of the map data as a new feature in the conven  

tional  estimation  methods  (Tomppo et  al. 1999;  Poso  et al. 
1987),  and probability- or  knowledge-based models  for  the  mul  

tisource  data fusion  (Benediktsson and  Kanellopoulos 1999). 
In  the  Finnish  multisource  national  forest  inventory  (MS-NFI),  
FRYL has  been  delineated  directly from the  numerical  map  
data (Tomppo 1991). 

The  problem with the current  MS-NFI  map  data is that  it  is 

not necessarily  up-to-date, it  includes  locational  errors,  and  it 

does  not correspond exactly to the NFI  land-use  classes.  Typi  

cally,  FRYL  area is  overestimated, and  consequently  the  mean 
volume  is underestimated  in  the MS-NFI small-area  estimates. 

Land-use  masks  give more accurate  area estimates  than  an es  
timation  from the optical high resolution  satellite  data alone.  

However,  the accuracy  of area estimates can  be  increased  if 

map information and satellite  image information are used  to  

gether. 

The Finnish  MS-NFI utilizes optical satellite images and 

digital maps  in  addition  to field  plot data. A nonparametric 
method  (fc-NN) is used  in  the estimation  

(Tomppo 1991). One of the advantages of the £-NN method  

is  that  all  the  inventory  variables  can be  estimated  at  the  same 
time.  Field  data  from  surrounding  calculation  units  (municipal  
ities), in addition to the  unit  itself,  are utilized  when  estimating 
results  for  that unit.  This  makes  it possible to obtain  estimates 
for  smaller  areas than  would  be  possible with  sparse  field  data  

only (Kilkki  and  Päivinen  1987; Tomppo 1991, 1996;  Nilsson  

1997). The method produces georeferenced information, the  

matic  maps,  and small-area  statistics.  In  the original MS-NFI 
(oMS-NFI), only those  field plots that are located  entirely on 

FRYL,  on the basis  of field  inventory, are used  in  the estimator.  
The estimates of FRYL area are derived  from the digital map 
data (FRYL  mask). Both the FRYL  map area and FRYL field 

plots  are  usually divided  into  two  strata  on  the  basis  of  map  data: 
mineral  soil  stratum and  peatland stratum (Tomppo 1996). 

Currently,  a calibration  method,  denoted  here  by  cMS-NFI, 
has  been  introduced  to  reduce  the  effect of map  errors  on  multi  
source forest resource estimates  (Katila etal. 2000). The  method 

is  based  on the  confusion  matrix  among  land-use  classes  of 
the  field sample plots  and  corresponding map  information.  The  
FRYL  area estimates  of the calibration  method are consistent  

with  post-stratified estimates  for  large  regions (i.e., in  areas 
of 500  000  ha or  greater), while  for small areas the estimator  
is  synthetic (Rao 1998). Despite the rather simple idea  of the 

calibration, it  is quite  laborious  when applied to  the  MS-NFI: 
the  calculation  is more complicated than  in the oMS-NFI and 

some field  plots obtain  negative weights (Katila et al. 2000). All 

weights are in tum used  to calculate  the small-area  estimates, 

e.g., for municipality-level estimates. 

The aim of the research  

The  paper  presents  a new  multisource  forest  inventory method  
that employs  accurate field  plot measurements,  satellite images, 

and  inaccurate  land-use  map  data.  The  method simultaneously 
produces land  use class  estimates  and  forest  parameter esti  
mates and reduces  the  effect of inaccurate  map data. In this 

method,  denoted by  sMS-NFI, the &-NN  estimation  is  applied 

by  strata.  The  whole  area to be  analysed,  including water  and 
all land areas,  is stratified  on the basis  of map  data.  Each  field 

plot is  assigned to its corresponding stratum. All the field plots 
within  each  map  stratum, independently of the field  measure  

ment based land-use class, are  used  for estimating the areas of 

land-use  classes and  forest variables  of the particular stratum. 

The  final  estimates  are derived  by  combining the  stratum-wise 
estimates. It is expected that the  method will give more ac  

curate forest-variable estimates for FRYL than the oMS-NFI 

and  possibly  also  more  accurate  estimates  than  the  calibration  
method. The  number of FRYL plots within  a certain non-FRYL  

map  stratum may  be  small, and the errors  of the forest-variable  

estimates  will  therefore  be  high within the stratum. However,  

the  weight  of  these  estimates  (plots)  on the  final  combined  es  
timates  is small. 

The questions to  be studied are (i)  does  the new method re  

duce the errors of FRYL  area estimates  and  other  forest resource 

estimates  caused  by errors in  land-use  map  data, and  (//) what  
is  the error  of the  forest-variable  estimates  compared with the 

estimates  based  on pure  field  data in  large areas?  
The MS-NFI estimates will be calculated in a realistic set  

ting using data  from the  ninth  NFI. Small-area  estimates  for  
municipalities (68-1577 km2

)  are calculated  using  the three  
different  MS-NFI methods.  The  pixel-level errors  of FRYL  and 

non-FRYL  estimates of  the new method  are compared with  

the  estimates  based  on the  oMS-NFI method  by  applying  a  
leave-one-out  cross-validation  method.  The  estimates  for  large  
and  medium-scale  (group of  municipalities) areas are compared 
with  the  field-inventory  estimates  to  discover  the  magnitude of 
errors of different methods.  

Materials  

Field measurements 

Two study  areas,  central Finland and western  Finland, were 

employed. The central  Finland  study  area was within  the  Land  

sat 5 TM images 188/16 and 188/17  (acquisition date: 24 Au  

gust 1996), and  the  western  Finland  study area within  the image 

191/16  (acquisition date:  13 June  1997). The  NFI field  measure  

ments employed were from the  same year  as the  satellite  images. 
The field plots, used  in  the fc-NN estimation, are located ap  

proximately  between  20°38'E, 28°50'E  and  61°20'N,  64°00'N  
(Fig.  1). FRYL covers 82  and  73%  of the land  area in  the cen  
tral  Finland  and western  Finland  study  areas,  respectively.  The  
central  Finland  study  area is rich  in  mineral soil  forests while  

the  western  Finland  study area contains  large  peatland forest  
areas (Katila and Tomppo 2001). Both study areas consist  of 

typical  boreal  forests  dominated  by  Scots  pine ( Pinus  sylvestris  
L.)  and Norway spruce  ( Picea abies (L.) Karst.).  Birch  ( Betula 

spp.) and other  deciduous species  occur  often  as mixed  species. 
A subset of municipalities that were covered  by  the satellite 

images and field  plots  were selected  for  evaluating the small  
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Fig. 1. Location  of the study  areas  and applied Landsat  5 TM 

path, row,  and date of acquisition. 

area estimates. The  two study  areas contain  56 municipalities, 

29 in central  Finland  and 27 in  western  Finland  (Fig. 2).  The 

municipalities  range in area from 68  to 1577  km
2.  The  total  

areas and  land areas of each  municipality were obtained  from 
the (National Land Survey of Finland  1997) and are assumed  

to be  exact  in  this study. 

The  NFI  field data were measured during the 1996 field sea  

Table 1. Derived  map stratification.  

son  in  central Finland  and in  1997  in  western  Finland.  A system  

atic  cluster  sampling design was  applied. One  cluster  consists  
of 18 (temporary) or 14 (permanent) field plots located along a 

rectangular tract  300 m  apart (Tomppo et  al. 1998). The  cluster  

reference  points  form a square lattice  with  a  distance  of  7  km  
between  adjacent clusters.  A  total  of 6816 and  7695  field  plots  

were measured  within  the central  Finland  and western Finland  

training data areas, of which  4706  and  4832  were on FRYL, 

respectively. 

Trees  were measured  on parts  of plots  belonging to  forest 
and other  wooded land (FOWL). If  a plot  is cut by  a  stand 

or  a land  use class  boundary, the  entire  plot  is  considered  to 
consist  of  two or more parts. Trees  were selected by  probability 

proportional to size  sampling, the inclusion  probability of a 

tree  being proportional to  its  basal  area.  A relascopic  factor  of  
two with  a maximum  distance  of 12.52 m  was employed. The  
diameter  and  distance  of  all boundary trees  were measured to 

judge whether a tree should  be  included  in  the  sample  or not. 

Supplementary data 
The satellite  images were rectified  to the national  coordinate  

system  using  regression  models  of  first-  or  second-order  poly  
nomials, fitted  to  30-70  control  points,  which  were identified  
from  base  maps.  The  nearest-neighbour method  was applied for 
the resampling of the  images to 25 x 25 m  pixel size (Tomppo 

1996). 

The digital map data  comes mainly from the National  Land  

Survey, but it  varies in quality and  accuracy.  For  the  central  
Finland  study  area,  the  topographic database  (National Land  

Survey of Finland 1996) was the most  accurate  and  up-to-date 
data source,  but  it  covered  only 50%  of the  study area. For  the 

rest  of  the  area,  the  map  data  comes from  several  data sources  
(Katila and Tomppo 2001). In the western  Finland study area,  

the areas covered  by  water and  agricultural land  were updated 

from the  latest  topographic database.  
A stratification  of the  study  area and  field  plots was produced 

by  combining the  various map  data sources. Each  25 x 25 m 

pixel of the  study  area was delineated  into  one of the  five  strata 

listed in Table  1. The  stratification  was designed to form homo  

geneous strata  with  respect  to the  NFI-based  land-use  classes.  
On  the  other  hand,  the  stratification  was  done  in  such  a way  that  
a high enough number of field  plots, from the  point  of view of 

t-NN estimation, were included  in each  stratum. A more de  

tailed  stratification  was used  for  the  calibration  method  (Katila 
and  Tomppo 2001). 

A map  of mineral  soils  and peatlands was used  for  stratifying 

the  FRYL  and  the  corresponding  field  plots  already in  oMS  
NFI.  This map  was also  used  for  the  stratification  in  the new  

method.  The  digital elevation  model  was  applied as  in  the  oMS  
NFI. Digital municipality boundaries  were used  to delineate  the 

computation units  (Tomppo 1996). 

Code Stratum, (h)  

1 Forestry  land, mineral soil 
2  Forestry  land, peatland 
3 Arable land 

4  Built-up land and roads  
5 Water 
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Methods 

MS-NFI by strata 

As explained below  in  more detail, new plot expansion fac  
tors,  i.e., plot  weights,  are computed in  the  original multisource  
method  for all  the field plots i  belonging to FRYL (Tomppo 

1991, 1996). In the  modified  method,  the weights are com  

puted by  land-use  map  strata. Some notations  are introduced.  

Let  us denote by  H the set of the  map strata, i.e., FRYL (sub  
divided  into  mineral  soil  stratum and  peatland stratum), arable  
land,  built-up land, and  water,  and  by  h  its element.  In the  no  

tations, no difference  is made  between a stratum,  its ground 

elements, i.e., 25  x  25  m  squares,  and  the  image elements  cor  
responding to the ground elements, i.e., the pixels. The  set of 

pixels  of municipality Uis  thus denoted by U = \JheH £4,  
Uh H Uh'  =o,if  h  / h

l

,  where  Uh  is  the  set  of  pixels  in stra  
tum h. The  set of field plot parts  employed  in  the estimation  

is  denoted  by  J and can  be  presented as a  union  of field  plot 

parts  of different  land-use  classes  within  different  map  strata: 

J = Uash  U/ec where  I  refers  to  land-use  class  on the  
basis of NFI  field  data (true land-use  class), h is on the basis  
of a map  stratum, and G is the  set of land-use classes  on the  
basis  of  NFI  (Fig.  3).  Instead  of  land-use  class,  the  stratification  
/ can  be based  on some  subclass  of FRYL,  e.g., pine-dominated 

forests, and the rest  of J . The area estimation with pure  field 

data utilizes  the  information  from the centre points of the field  

plots only,  while  the volume  estimation uses information  from 
the whole  plot  (Tomppo et al. 1997). The oMS-NFI utilizes  
all  parts  of the plots, also  in  area estimations  (Tomppo 1996). 

However,  the oMS-NFI usually uses only those field  plots  to  

tally belonging to FRYL. A difference  in  the  treatment of the  

plots  by  oMS-NFI  and  NFI  field  inventory  exists  only when  the  
plot is  shared  among two  or more different  land-use  class  or 

forest stands  (when the  plot consists  of two or more plot  parts). 

Plots on  any  land-use  class  and  all  parts  of field  plots  are used  
in  the estimation  in the  new method.  Poorly localized  field  plots 

are,  however, removed  in  both  multisource  methods because  the 

correct  image data  can not be  assigned to those  plots. 

As in the oMS-NFI, a distance  measure d  is  defined in the  
feature space of the satellite  image data.  The field  

plot  pixels  (in terms  of  d), i.e., pixels  which  cover the  centre  of 
some field plot, are sought for  each  pixel  p  under  the cloud-free  

satellite  image area. Contrarily to the  oMS-NFI, the  neighbours 

are sought for  each  pixel  within  each  Ui, not only  for  FRYL  map  

stratum pixels, and  the neighbours can belong to  any land-use  

class  / or FRYL  subclass  /. Note  that  the  neighbours must  
belong to  the  same map  stratum as the  target  pixel. 

The field plots to pixel ph , belonging to map  stra  

tum h, are denoted  by  i\(ph), •••■ 'k(Ph)- 

The  weight u)/ iPJI of  field  plot  ito  pixel  p/,  is  defined  as 

where  t is the  power  applied with  the  distance measure d. 

The  weight Wj,Ph  of  the  plot  i  is  shared  among  the  (possible) 
plot parts  in the proportions of the  assessed areas of the plot 

parts. The  total weight of  a field  plot  part  i;  (belonging to  map  
stratum h), i  e  7/,/,,  to  land-use  class  (or FRYL  subclass)  I  for  
municipality U  is  therefore 

where  a is  the  area of  a  pixel  and  a,, is the  share  of  field plot 
i  belonging to  field  land-use  class  (or FRYL subclass)  I with  

a
>i  = '  ■  

The  area estimator  of (FRYL) class  I within  U is  

and the mean volume  estimator for timber  assortment s of land  

use class or FRYL class /  

where is the volume per  hectare  of the timber assortment  

5 on the plot part  ('/. 

All  field  plots,  regardless  of the  land-use  class,  are used  in  the 

estimation  process.  A subset of the plots, for  example, entirely 

belonging to either  FRYL  or  non-FRYL, can also  be  used. The 
estimates  of the land-use  areas and forest variables  are  com  

puted  simultaneously. 

Calibrated MS-NFI  estimators 

The  oMS-NFI  estimates  are  calibrated  based  on large-area 

estimates  of map errors in  the calibration  method cMS-NFI 

(Katila et al. 2000). The applied map  strata are assumed  to be 

homogeneous with  respect  to  the  "map errors".  The  proportions  
of land-use  classes  for  small  areas U  are estimated  by applying 
the  proportions Pr

h j estimated  from  a  larger area R  (synthetic  
estimation  (Rao 1998)). 

The aggregates  of small-area estimates of land-use  class  ar  

eas over large areas are equal to unbiased  post-stratification 

estimates  (Holt  and  Smith  1979). 
A method to compute  the calibrated  field-plot weights is 

found  in  Katila  et  al. (2000). The  field  plots for  t-NN estima  
tion  are chosen  for  cMS-NFI in  the  same way  as  for  the  basic 
MS-NFI. The  calibration  typically  increases  the mean volume 

estimates  and  decreases  the FRYL area estimates  of small  areas 

when  the  FRYL  is  overestimated  by  the  map  data  (Katila et  al.  
2000). 

Validation of  the results  

The  main  emphasis  in this  study is  in  the validation  of the 

municipal-level estimates.  An analytical method  for estimating 
the standard errors of the  MS-NFI small-area estimates has not 

yet been  presented. The statistically validated  estimates and 

their  standard  errors  based on the field-inventory method are 
therefore  used  for  comparisons. The relative  standard  error  of 

»A**»,.» 
w, 'Pii Y" 1  hi' 

jjj ik(ph)l  ' Phj.Ph  
if i  e {i\(ph) 'k(Ph)) 

=O, otherwise  

[2] Cj,Mh = aa„ Wj,Ph 

PhtUl, 

[3] Äu,i  =Y Y ci
'-u *  

h i£Jl.h  

H/i  YlieJih  c'iMl, v 'I,S 
[4] vu.i  = = 

„
  

cii.Uh 

[s] a
u.l  =YI Pri-'Aul  

h 
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Fig. 3. Training data selection and map strata in the  estimation in three different  MS-NFI versions.  

the area estimates  of a stratum with  an area of 2000  km
2 is  

usually not  more  than 5%  and with  an area of 10 000  km2 is 
not more than  2%  (Tomppo et al. 1998).  The  standard  errors  
are estimated  using the  method of the operative  NFI,  which  

apply local quadratic forms (Mat6rn 1960). The  aggregates  of  

MS-NFI municipality estimates  are compared  with  the  field  
inventory estimates  and  the standard  errors  from the same area 

(Katila et al.  2000). 

Some  estimation  parameters  have  to be  selected  in the  MS  
NFI  method.  Examples  are  the  value  of  k and  the  pixel-dependent 
geographical horizontal  and  vertical  reference  areas,  that is,  the  

area from which  the  field  plots  are  applied in  the  estimation  
(Katila and  Tomppo 2001). A leave-one-out  cross-validation  
method and the root  mean square error  

has  been  applied as a measure of reliability with  the continuous  

variables  in  the selection.  In eq. 6,  yi and y;  (i = 1,...,«) are 

the  observed  and  estimated  values of  the  variables, respectively. 
The estimates  of biases  and the standard  error  of biases  are used 

as further  criteria (Katila and Tomppo 2001). 

The  two main  goals with  the  new sMS-NFI method are to 

yield accurate  FRYL and  non-FRYL  area estimates  and  accu  
rate forest-variable  estimates  within FRYL. Thus  the  effect of 

the  £-NN estimation  parameters on the  estimates  of FRYL  and 

non-FRYL  classes within  each  stratum have  to be  examined.  A 

2x2 confusion  matrix for FRYL  and  non-FRYL  classes is cal  

culated  for  the  cross-validation.  A fuzzy  approach is  used: the  

weights iobtained  for  the  k spectrally  nearest  field  plots  
are considered  fuzzy  membership values of the pixel ph to be 
classified  (Zhang and Foody 1998). The global sum of these  

weights are  used  in  the 2 x 2 confusion  matrices.  

Within  each  stratum, the  estimation  parameters  should  yield 
a high overall  classification  accuracy  (CC) and preserve  the 

marginal distribution  of the FRYL proportion in  the field  plot 

data, i.e., an unbiased  estimate  of FRYL area.  The parameters  

should  also minimize  the MSE and  give unbiased  estimates  of 

volumes.  

Results  

The accuracy  of the  applied land-use  maps 
The  accuracy  of the applied map data in  stratifying different  

land-use classes  is  first  discussed.  The  proportion  of  the  FRYL  
field  plot  centre  points within  each  stratum can be  used  as  a 

measure of  accuracy.  The  proportions and number nR
h of the 

field  plot  centre  points  within  each  stratum  are  given in  Tables  2  
and  3. The  FRYL  area within  the  training data  area  was overesti  

mated  by  1.5 and 2.6%  for  central  Finland  and  western Finland, 

respectively  (Tables 2  and  3). The  water  stratum was the most 

accurate  in  separating the FRYL, while  the combined  built-up 
land and roads stratum was worst  with  20-30% of FRYL  field  

plots. The  new agricultural area mask  for  the western Finland  

training data area increased  the accuracy  of the stratum com  

pared with  the  central  Finland  training data  area.  The built-up  
land and  road  map stratum could  be  divided  into  a more spe  

cific  stratum of houses, urban areas,  and  other  built-up land  and 

a  second stratum for roads  etc.  However,  this  would  decrease  
the number of field plots available  for the  training data set to  

considerably  less  than  500  for  those  strata. 

The pixel-level  accuracy  of forestry-land estimates  
within map strata and the selected parameters  for  k-NN  

estimation  

Parameters  were selected  on the  basis of the  pixel-level esti  

mates. The  goal was to obtain  accurate  FRYL and total volume 

estimations  by strata.  The  parameters  tested  were the  pixel  

dependent geographical horizontal  reference  area radius  (HRA), 
the  number of nearest  neighbours, k,  and  the  power  of spectral  

distances  t. A suitable  HRA was expected to be related to the 

proportion  of  stratum  within  the  image area (Katila and  Tomppo 
2001). The results  for selected  HRA  and  k  are summarized  in  
Tables 4 and 5. 

The  power  of the  Euclidean  distance  measure  dPh t ,  Ph had  
only minor  effects on the results.  Weighting of  the  spectral 

[6] RMSE  = =  i (^  
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Table  2. Land-use class distribution among field plots  by map  strata in the central Finland study area. 

Table 3. Land-use  class  distribution among field plots by  map strata  in the western Finland study area. 

bands  was not used.  The  global estimates  of FRYL and volume 

were not  dependent upon  the value  of  k.  The  overestimation  of 
the  FRYL  area on the  mineral  soil  and  peatland strata  remained  
despite the changes in the estimation  parameters (Tables 4 and 

5).  FRYL  area estimation  within the built-up stratum performs 

better  than  the  pure  map  stratification  based  estimate  in  the  west  
ern  Finland  training data  area (Table 5).  The  selected  estimation  
parameters  for  the  oMS-NFI and cMS-NFI  are presented in the 
Table 6. 

The  errors of the minor  land-use  class  at field-plot level,  for 

either  FRYL or non-FRYL,  within  each  stratum were high (pro  

ducer's  accuracies  were low), though the  marginal distributions  

were more or less  equal. Overall, CC  percentages  of the FRYL 
and non-FRYL classification from the cross-validation  are  2.7 

and 1.3% lower  than  the CC  percentages  from the map-based 
stratification for the central Finland  and western Finland train  

ing  data areas,  respectively  (Tables 4 and 5).  However, the CC  

percentage  of  the  map-based stratification  is calculated  from  the  
field  plot centre points, whereas  all parts  of the plots are used 
in the cross-validation.  The FRYL classification  within  strata is  

in  some cases poor, but  a misinterpretation can be  expected to 
occur  between  open FRYL plots and  non-FRYL plots,  whereas  
the  map-based delineation  may  classify all  kinds of forests to 

non-FRYL. 

An important source of  bias  in the  land use class  estimation  
and other  &-NN  estimation  is  the mixed  pixels  between  FRYL  
and  non-FRYL.  The  cross-validation  of field  plots divided  be  

tween  FRYL and non-FRYL leads to a considerable  overestima  

tion  of  FRYL.  Conversely,  the  mean volumes  are significantly  
underestimated.  (Tokola and Kilpeläinen 1999)  reported slight 

overestimation  of mean volume for NFI field  plots nearest  to 

the  forest-stand  boundaries  in  their  cross-validation  study ap  

plying only  NFI  field plots within  FRYL. However,  the volume 
for  field plots  was underestimated  where  the shape of the near  

est stand edge was sharp. The divided  land-use field plots have  

spectral  values  from mixed  pixels,  and  small locational  errors  

may  change  the  spectral  values  attached  to  the  field  plots.  

Estimates by  municipalities 

Both  the cMS-NFI and  the sMS-NFI slightly decreased the 
FRYL area estimates  compared with the oMS-NFI estimates 

for  all  municipalities,  except  for  the  very  small  ones in  central 
Finland (Fig. 4a). The  relative  decrease  of the FRYL area is 

greater in  the western Finland  study area, -6.5 to  7.0% for 
sMS-NFI  and  -6.5  to  0.3%  for  cMS-NFI (Fig.  sa).  The  land  
use map data also  gives a greater  overestimate  of the  FRYL area 
for this image area. The municipalities with  small areas,  e.g., 

cities  and  towns, have  large proportions of non-FRYL  areas, 

e.g., the built-up land stratum. The map usually overestimates  
this area wherefore the non-FRYL map  strata contain  a large 

amount of FRYL field  plots. Consequently, both  the sMS-NFI 
and cMS-NFI methods  increase the FRYL area estimate in these 

municipalities. 
The  cMS-NFI systematically increases  the mean volume  es  

timates  of FOWL  by  a few percentage  points in  both  study  areas, 

whereas  the  sMS-NFI  changes the  estimates  both  upwards and 
downwards compared with the  oMS-NFI. Changes range  from 
-3.9 to 5.5%  (Figs. 4b  and sb). On  average,  the  sMS-NFI  does 

not increase the western  Finland  study  area mean volumes.  

In the western Finland study area,  a  gradual change takes  

place  from  pine- to spruce-dominated forests in an east-west  di  
rection.  The  mean  volumes  of pine and  spruce  therefore  change 
by  municipalities and groups  of municipalities (cf.  Figs.  9 and 

10).  The  sMS-NFI  seems to follow  these  changes better  than  the  
cMS-NFI and  particularly better than  the oMS-NFI (Figs.  4c, 
4d, sc,  and s d). Total volume estimates  of the sMS-NFI  method 

are,  on average,  smaller  than  the  oMS-NFI estimates  in  the  west  

ern Finland  study  area. This is due to the  fact  that  area estimates  

Stratum, h 

NFI land-use class, / 

Forestry Arable 

% "j,J % "KkJ  

Built-up, etc. Water 

% 

Total  

(1)  Forestry  land,  mineral 92.4 5009 4.1 132 2.4 222  1.1 58 5421 

(2)  Forestry  land,  peatland 98.2 1220 0.4 5 0.7 9 0.6 8 1242 

(3)  Arable 11.5 95 84.6 699 3.5  29 0.36 3 826 

(4)  Built-up land and roads  30.8 148 10.2 49  58.5 281 0.4 2 480 

(5)  Water 2.7  46 0.06  1 0.47 8 96.75 1635 1690  

Total 67.48 6518 9.17  886 5.68 549  17.66 1706 9659 

NFI land-use class,  I 

Forestry Arable Built-up, etc. Water  Total 

Stratum, h % % n
RhJ 

% % "Kt,J 

(1)  Forestry  land, mineral 92.0 3305 2.7  96 4.8 171 0.6 21 3593 

(2)  Forestry  land,  peatland 97.6 1404  0.5 7 1.6 23 0.3 4 1438 

(3)  Arable 3.0 37 95.6 1198 1.4 18 0 0 1438 

(4)  Built-up  land and roads  21.7 81 14.2 53 63.8 238 0.3 1 373 

(5)  Water 0.5 5 0.4 4 0.4 4  98.8 1025 1038 

Total 62.8 4832  17.7 1358 5.9 454 13.7  1051 7695 
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Table 4. Pixel-level errors  by  strata for central Finland: 2x2 confusion matrix and correctly classified 
(CC)  FRYL and non-FRYL  (nFRYL)  percentages  and mean volume (ṁ),  root mean square error (RMSE),  
and  bias  of  mean volume estimate and applied values of  geographical horizontal reference area (HRA)  
and k.  

*Euclidian distance weighting  t -  2 applied.  
+ Estimate is  based  on  map data. 

Table  5. Pixel-level  errors  by  strata for  western Finland: 2x2 confusion matrix and correctly classified 

(CC)  FRYL and non-FRYL (nFRYL) percentages  and mean volume (in), root mean  square error  (RMSE), 
and bias of mean volume estimate and applied values of  geographical horizontal reference area (HRA)  
and k.  

*Estimate is  based  on  map data. 

Table 6. Estimation parameters  for oMS-NFI and  cMS-NFI  in central and 

western  Finland study areas:  geographical horizontal reference  area radius  

(HRA)  and value of k.  

*A rectangular geographical HRA was applied, east-west x north-south distances. 

Stratum NFI land use 

Cross-validation 

FRYL, nFRYL, 

% % 

CC, 

% 

m, 

m
3
/ha 

RMSE,  

m
3
/ha 

Bias, 

m
3
/ha 

HRA (k), 

km 

Mineral soil FRYL 87.0 5.2 88.5 115.2 99.4  0.39 50 (2) 

nFRYL 6.3 1.5 

Peatland FRYL 96.3 1.6 96.3 84.7 69.1 1.01 60(5) 
nFRYL 2.0 0.0 

Arable  land FRYL 4.3 7.1 85.8 9.8 38.0  -0.95 50(3) 

nFRYL 7.1 81.5  

Built-up land,  FRYL 17.1  14.3  70.3  44.3  76.7 2.00 70* (5) 
roads  nFRYL  15.4 53.2  

Water FRYL 0.8 1.5 96.7 5.8 34.1 0.08 50 (6)  

nFRYL 1.7 95.9  

Overall FRYL 62.6  4.7 89.8 

nFRYL 5.5 27.2  

Overall from  map*  FRYL 64.5 3.0 92.5 

nFRYL 4.5 28.0  

Stratum NF1 land use  

Cross-validation 

FRYL, nFRYL, 

% % 

CC, 

%  

m, 

m
3
/ha 

RMSE, 

m
3
/ha 

Bias, 

m
3
/ha 

HRA (k), 

km 

Mineral soil  FRYL 87.5 4.3 90.0  96.5 82.7 -0.46 40(2) 

nFRYL 5.7 2.5 

Peatland FRYL 95.8 1.7 96.0  57.1 52.9 -1.78 60(3) 
nFRYL 2.3 0.1 

Arable  land FRYL 0.2 2.7 95.0 2.1 16.1  -0.75 40(2) 
nFRYL  2.2 94.8 

Built-up land. FRYL 12.9 7.4 84.8 24.2 45.9 1.00 70 (5) 
roads  nFRYL  7.8 71.9 

Water FRYL 0.0 0.6 99.0 0.0 7.7 0.26 50(5) 
nFRYL 0.5 99.0 

Overall  FRYL 59.4 3.2 92.9 

nFRYL  3.9 33.5 

Overall  from  map* FRYL 61.2 2.5 94.2 

nFRYL  4.2 33.0 

Study  area, image Stratum HRA  (km) k  

CF, 188/16 Mineral soil and peatland 75 x 45* 1 

CF, 188/17 Mineral soil and peatland 60 1  

WF, 191/16 Mineral soil 40 8 

Peatland 60 7 
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Fig. 4. Percent  difference between sMS-NFI and oMS-NFI estimates and cMS-NFI  and oMS-NFI estimates for  each municipality plotted 

against the  oMS-NFI  estimates  for  the central  Finland study  area for  (a)  area of  FRYL (km
2

), ( b ) mean  volume (m
3
/ha),  (c) mean 

volume of  pine (m 3 /ha), (d)  mean volume of  spruce  (m
3
/ha),  and  (e)  total volume (m3 , x  10  3 ). 

decrease, while  the  mean volume  estimates  do not increase  cor  

respondingly (Figs. \e  and  se).  

As  a  conclusion, the  sMS-NFI  volume estimates  deviate  from 

the oMS-NFI  estimates more than the cMS-NFI estimates do. 

Figures 9 and  10 show  that  sMS-NFI  is  closer  than the cMS  
NFI estimates  to the field  data  based  estimates. This  suggests 

that the  sMS-NFI performs  better than the cMS-NFI. 

Bias  by  groups of municipalities 

The  subregions (groups of municipalities) are large  enough 
to  enable  a comparison of the  field-inventory error  estimates  
with the  MS-NFI estimates. A possible bias  of the  small-area  

estimates  was  studied in  nine  groups  of  municipalities within  
the  central  Finland  (subregions 1-5) and  western Finland  (sub  
regions  6-9) study areas (Fig. 6).  The size  of the subregions  

varied  from 1738  to  4238  km
2 FRYL.  The  field-inventory  es  

timates and  standard  errors  of  the percentage  of FRYL  area  
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Fig. 5. Percent  difference between sMS-NFI  and oMS-NFI  estimates and cMS-NFI  and oMS-NFI estimates for each municipality plotted 

against the oMS-NFI  estimates  for  the western Finland study  area for  (a)  area of  FRYL  (km2 ), (b )  mean volume  (m 3/ha),  (c)  mean  
volume of  pine (m

3
/ha),  (d)  mean volume of  spruce  (m

3
/ha), and  (e)  total volume (m

3
, x  10  

3
). 

(Fig. 7),  mean  volume,  total  volume  (Fig. 8),  and mean and  to  

tal  volume  for  pine, spruce,  and  birch  (Figs.  9,  10, and  11) were 

plotted for comparison. 
The sMS-NFI  and cMS-NFI did not show notable system  

atic  errors  in the  percentage  of  FRYL,  total volume,  and  mean 
volume  estimates  (Figs. 7, Ba, and  8b).  The  oMS-NFI estimate 

of the percentage  of FRYL was significantly biased  (4.4%) for 

subgroup  2.  The  sMS-NFI and  cMS-NFI estimates  corrected  the 

percentage  of FRYL,  total  volume, and  mean volume  estimates 

towards  the  field-inventory estimates  for  most  subgroups. 

In subregions 4 (central Finland), 6, 7, and 9 (western Fin  

land) significantly biased  estimates  occurred  for the mean and  

total  volumes  of pine and  spruce  with  the oMS-NFI and  cMS  
NFI methods (Figs. 9a, 9b, 10a, and 106). The sMS-NFI  re  

duced  the  biases.  The birch  estimates  were significantly biased 

for subregions 1, 7, and 8 with  the oMS-NFI and  cMS-NFI 
methods (Figs.  1  la and  1  lb), while  sMS-NFI slightly reduced  
the  biases  also  in  these cases. 

The  same systematic  difference  between  sMS-NFI and  the 
other  two methods  is  clearly seen in  the  pine and spruce  volume  
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Fig. 6. The nine groups of municipalities within the central 
Finland (1-5)  and western Finland (6-9) study areas. 

Fig. 7. Percentage of  FRYL (%) of the land area obtained 

from pure  field data estimates (±2 SE)  and oMS-NFI estimates, 
cMS-NFI  estimates, and sMS-NFI  estimates  for  the groups of 

municipalities (Fig. 6) from the central Finland and western 
Finland study areas.  

estimates  for  the  western  Finland  study  area subregions, as well 

as for  the municipal-level estimates  (Figs. 5c  and  s d). The  dif  
ferences  between estimates for sMS-NFI and for oMS-NFI are 

higher than  those  between  oMS-NFI and  cMS-NFI.  This may  
be due to the different  nature of the  methods:  the  cMS-NFI is a 

kind  of calibration  method.  The  sMS-NFI  produces less biased  

estimates  for  the  volumes  by  tree  species  in  the  subregions than  
the oMS-NFI or the cMS-NFI. The mean volume  estimates for 

pine ranged from  32.2  to  62.3  m3/ha  (sMS-NFI)  and  from  33.8 
to  56.8  m 3 /ha (cMS-NFI)  and  those  for  spruce  ranged from 
17.9 to  65.9  m3

/ha  (sMS-NFI)  and from 21.2 to 67.6  m
3
/ha 

(cMS-NFI). 

Fig.  8. Pure field data estimates (±2 SE)  and  oMS-NFI estimates, 

cMS-NFI estimates, and  sMS-NFI estimates  of (a)  total volume 

(m
3

,
 x  10  3 ) and (ft)  mean volume (m

3 /ha)  for the groups of 

municipalities (Fig. 6) from the central Finland and western  

Finland study areas. 

MS-NFI estimates  for large regions 

The estimates  for the entire  study areas based  on the three  

methods  (municipality estimates) were calculated  and com  

pared with  the  field  inventory based estimates.  The cMS-NFI 
and sMS-NFI shifted the area estimates of FOWL and FRYL 

towards  the field-inventory estimate  in  the two study areas: de  

creases were 18000 ha and 30000hawithcMS-NFI and 13000 

ha and 21 000  ha with  sMS-NFI. The cMS-NFI estimates were 

closest to the  field-inventory estimates. Both  the  cMS-NFI and 

sMS-NFI results  were  within  two standard  error  of the field  

inventory estimate  (Table 7).  
The  cMS-NFI increases  the regional mean volume  estimates 

by  2.0  and 1.5  m3
/ha  for  the  central  Finland  and  western  Finland  

study areas,  respectively, compared with  oMS-NFI, as well  as 
increases  the mean volume  estimates  by  tree  species.  The  sMS  

NFI increases  the mean volume estimate in  the central  Finland  



1558  Can.  J. For. Res. Vol. 32, 2002 

©2002 NRC Canada 

Table 7. Area of FOWL and  FRYL for the  central Finland and western Finland study  

areas: pure  field data estimate with sampling error and oMS-NFI, cMS-NFI, and 
sMS-NFI estimates.  

Note: Estimates with asterisks  deviate from the field data estimates by  more than  2 SE.  

Table  8. Mean volume of  growing stock  on FOWL for  the study areas: pure  field data estimate with sampling error  and oMS-NFI, 
cMS-NFI, and sMS-NFI estimates. 

Note: Estimates with asterisks deviate from the field data  estimates by  more than  2 SE. 

Table 9. Total volume of growing stock  on FOWL for study areas: pure  field data estimate with sampling error and oMS-NFI, 
cMS-NFI, and sMS-NFI estimates. 

Note:  Estimates  with  asterisks deviate from the field data  estimates  by  more than  2 SE. 

by  2.0  m3
/ha  and  decreases  it  by  0.6  m3

/ha  in  the  western  Fin  
land  study area. The  sMS-NFI  did not systematically  increase  
the mean volume estimates  by  tree species,  as in  the  case of the 

cMS-NFI. The  sMS-NFI gave  the most  accurate  results  for  the 

broad-leaved  volumes  in the central  Finland  study  area, while  
the oMS-NFI and cMS-NFI produced  significantly biased  re  

sults  for  the  other  deciduous  species  volume  (Table 8). 

The behaviour  of  the cMS-NFI and sMS-NFI  total volume 

estimates followed that  of the mean volume  estimates. The other 

deciduous  species volume estimate  errors  were also  significant 

with the  oMS-NFI and cMS-NFI in the central Finland  study  

area (Table 9).  

Discussion  

A new multisource  forest inventory  method  (sMS-NFI) is  

presented to produce forest parameter  estimates  and  to reduce  

the  effect of  incorrect  map  data  on the  estimates.  Estimates  are 

computed by map  strata.  The  new  method  has  the  advantage of 
including all the  sample plots  within  each  stratum  in  the  training 
data. The method  therefore  resembles  the one used in  the  field  

inventory estimation. Only FRYL  field  plots were employed 

in the  oMS-NFI  and  cMS-NFI  and  the  plots  intersecting FRYL 
and  non-FRYL  boundary were excluded  (Fig. 3).  The  sMS-NFI 

estimates  were compared with the  ones from the oMS-NFI and  
the  cMS-NFI (Katila et ai. 2000). 

The sMS-NFI  reduced  the  bias  in  the FRYL area estimates 

of oMS-NFI that were caused by  errors in  the map data. The 

FRYL  area estimates  from  sMS-NFI  for  large regions  remained  
between  the oMS-NFI estimates  and the  cMS-NFI estimates. 

The cMS-NFI region estimates were equal to the  FRYL  area 

estimates  based  on post-stratification  (Katila et  ai.  2000). The  
sMS-NFI  may either increase  or decrease  the mean volume 

estimates  of large regions compared with the field-inventory 

Centra] Finland area (ha,  x 10
3
) Western  Finland area (ha,  x  103 ) 

Method FOWL SE FRYL SE FOWL SE FRYL SE 

Field inventory 1 
oMS-NFI 1 

cMS-NFI 1 

sMS-NFI 1 

343 13.8 1 

375* 1 

362 1 

362 1 

1365 13.7 736  

1394* 763 

1376 742 

1381 746 

16.9 769 17.3  

797 

767 

776 

Study  area Method 

Mean volume (m
3
/ha) 

Pine SE Spruce SE Birch SE Other decidous SE  Total  growing stock  SE 

Central Finland Field inventory 38.6 1.0 54.3  1.5 18.7  0.5 6.7 0.4 118.4 1.7 

oMS-NFI  39.5 54.8  17.5* 5.6* 117.4 

cMS-NFI 40.1 56.1 17.7 5.5* 119.4 

sMS-NFl 40.1 54.9  18.0 6.4 119.4 

Western Finland Field inventory 49.0 1.4 27.9  1.3 16.1 0.7 2.9 0.3 95.8  1.9 

oMS-NFI 48.6 27.8  15.2 2.4 94.1 

cMS-NFI 49.8  28.1  15.3 2.4 95.6  

sMS-NFI 49.4  26.7  14.8 2.7 93.5  

Study  area Method 

Total volume (m
3

,

 x 10
3
) 

Pine  SE Spruce SE Birch SE Other decidous SE Total  growing stock  SE 

Central Finland Field  inventory 51.8  1.5 73.0 2.1 25.2 0.7 9.0 0.5 159.0 2.8 

oMS-NFI  54.3 75.3  24.0 7.7* 161.4 

cMS-NFI 54.6  76.4 24.1 7.5* 162.5 

sMS-NFI 54.6  74.8 24.5 8.7  162.5 

Western Finland Field  inventory 36.0  1.3 20.5 1.1 11.8 0.6 2.1 0.3 70.5  2.1 

oMS-NFI  37.0  21.1  11.6 1.9 71.6  

cMS-NFI 36.9  20.8 11.4 1.8 70.9  

sMS-NFI 36.8 19.8 11.0 2.0  69.7 
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Fig. 9. Pure field data estimates (±2 SE) and oMS-NFI estimates, 

cMS-NFI  estimates, and sMS-NFI estimates of (a ) total volume 

of  pine (m
3

, x  10  
3
 )  and  (b)  mean volume of  pine (m 3 /ha) for  the  

groups  of municipalities (Fig. 6)  from the central Finland and 

western Finland study  areas.  

Fig. 10. Pure field  data estimates (±2  SE)  and oMS-NFI 
estimates,  cMS-NFI  estimates, and  sMS-NFI  estimates of (a ) total 

volume of  spruce  (m 3,  x  103
) and  (b )  mean volume of  spruce  

(m
3
/ha)  for the groups of municipalities (Fig. 6) from the central 

Finland and western  Finland study areas. 

estimates, whereas  the  cMS-NFI typically increases these  esti  
mates. SMS-NFI volume estimates  are within  the two standard  

error  of the  field-inventory estimates. The  volume estimates  by 

tree species are more  accurate  for  sMS-NFI than  for  oMS-NFI 

or cMS-NFI in large regions and subregions. 

The  municipal-level estimates  of mean and  total volumes, 
and mean  and total volumes by  tree  species  based on sMS-NFI 
differ more from the oMS-NFI estimates than those  based  on 

cMS-NFI;  the  cMS-NFI calibrates  the  MS-NFI  estimates  more 

or less  systematically upwards  or downwards  from oMS-NFI. 
The sMS-NFI is  essentially  a different  estimation  method.  The 

sMS-NFI and  cMS-NFI estimates of FRYL area and volume  

did  not  produce significant errors  when compared with  the field  

inventory estimates  of  subregions (1728—4238 km
2 FRYL). The 

sMS-NFI estimates  of mean and  total  volume  by  tree species 

were  more  accurate  compared with  the field-inventory estimates 

than  the  two other  MS-NFI methods  in  subgroups of munici  

palities: oMS-NFI estimates  and cMS-NFI estimates failed  to 

accurately  follow  the  dominant  tree species changes within  the 

the western  Finland  study  area. 
The field-inventory estimates  and their  standard errors have 

proven to be  useful  in  validating the  MS-NFI  estimates  in  large 
regions and  subregions (i.e., in  areas of  200  000  ha  or  greater) 
(Katila et  ai. 2000; Tomppo and  Katila  1992).  These  estimates 

can be  calculated  for  several  combinations  of municipalities  
to evaluate the  MS-NFI estimates. The relative  standard errors 

of  the  mean volume estimates,  e.g.,  in  the applied subregions, 
varied  from 3.0 to 4.2%. 

Since  the sMS-NFI field  plot  data  set  contained  all  the field  

plots, the small-area  estimates  may be  closer  to the field  in  

ventory based  estimates, even though the  sMS-NFI estimator 

would  not  be  very  accurate.  
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Fig. 11. Pure field  data estimates  (±2 SE)  and  oMS-NFI  

estimates, cMS-NFI  estimates, and sMS-NFI  estimates of (a)  

total volume of  birch (m3 , x  10  3 ) and (b)  mean volume of  birch 

(m3 /ha)  for  the  groups  of  municipalities (Fig. 6)  from  the central 

Finland and western Finland study areas.  

The  sMS-NFI gave  unbiased  results  compared with  large area 

field  inventory  results.  Although it  removed  the  bias  at  the  re  
gion and  subregion levels, it  did  not necessarily improve  the 

accuracy  at field-plot level.  The oMS-NFI (FRYL delineation  

from map) gave  a field-plot  level  FRYL %CC  of 93-94%, but  
it overestimated  the FRYL area. The overall  %CC of FRYL 

and non-FRYL  based on it-NN estimation  and cross-validation  

at the  pixel  level  was  slightly  poorer,  90-93%.  The  producer's  
and user's accuracies  of the  minor land-use  class within strata 

were poor.  However, the marginal distributions  of the percent  

age of FRYL  remained  almost  unchanged in  most  strata.  Also,  
the mean volume estimates within strata were unbiased. In the 

cMS-NFI, the post-stratification probabilities of the  FRYL pro  

portions within  each  stratum  in large areas were used  to correct  
the FRYL area estimates  afterwards  (Katila et  ai. 2000), while  

in  the sMS-NFI  it  is expected that the  k- NN estimation  will cor  

rect  the  FRYL  area estimates  directly in the  estimation  phase.  

The  pixel-level  cross-validation  results  should  be  considered  
in  a comparative way  rather  than in  terms  of absolute  measures 

of reliability. The  doubled effect of the locational  error  of field  

plots  introduces  conservative  error  estimates  (cf.,  Verbyla and  
Hammond  1995;  Halme  and  Tomppo 2001). On  the  other  hand, 
cross-validation  may underestimate  errors in  some  cases (cf.  

Hammond  and  Verbyla 1996). The prediction error  estimates  of 

the  cross-validation  method  may  have  a high variance.  (Franco- 
Lopez et al.  2000) recommended  bootstrap methods  to  obtain 
more stable variances  (Efron and Tibshirani  1997). 

In  this  test, only five  strata in  the  sMS-NFI were employed, 

while  in  the cMS-NFI the number  of strata was 6-11.  The need  

for  a sufficient  amount of field  plots  in the  training data  limits  
the  possibility  to  increase  the  number  of strata  in  the  sMS-NFI,  
whereas  in  the  cMS-NFI, well-classified  categories can have  

smaller  field  samples (Czaplewski and Catts  1992; Katila  et  al. 

2000).  

The  suitable  geographical HRA  for each  stratum was ex  

pected to  be  related  to the proportion of stratum within the 

image area and  the value of  k to  the  number  of  field  plots  in  the  

training data  (Katila and  Tomppo 2001). However,  the  FRYL 
area estimates  within map  strata in the cross-validation  tests  

were not very  sensitive  to the value of k  or the  geographical 

HRA. 

Region and  subregion level  estimates  of sMS-NFI  applying 
k=  1 or  larger values of  k were quite similar. In  the  operative 
inventory, reasonable  small-area  estimates  are often  obtained  
by  estimating only a sample of  pixels,  e.g., every  10th pixel  
along lines  and elements of  satellite  image and  k=  5-10.  Con  

sequently, it  is  most  probable  that  an  unsampled MS-NFI  esti  
mation applying  only k=  1 would  also  yield  a sufficient  amount 
of  estimated  neighbours for  pixels  for the municipal-level esti  

mation of forest variables.  

The  method presented is  statistically sound for  removing the 

effect of the  erroneous map  data.  The  method is also  computa  

tionally straightforward.  It  is  flexible  and  can be  utilized  with 

ancillary data of varying quality. For  instance, if  the  land-use 

map data is  initially created using satellite  image information,  

the  effect  of land  use  class  errors on the  final  forest parameter  

estimates  can be reduced  by  using the method presented. 

Our  first  results  are encouraging. An independent reliable for  

est inventory data  would  be  needed  to  study  the  different  MS  
NFI  methods in  detal The  s,udy 31635 should Preferably cover 

dlfferent  geographical and  land-use  combinations, as contradic  

torV  results  from the  two study  areas were sometimes obtained, 
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