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Distant-independent  individual-tree models were  constructed to predict  tree  basal  area  

growth  and tree  height  for Scots  pine  (Pinus sylvestris  L.),  Norway  spruce {Picea  abies 

(L.)  Karst.),  and  pubescent  birch  (Betula pubescens  Ehrh.)  growing  on drained peatlands.  

Forest  inventory  sample  plots  were  used as  the data. Variation in tree  growth  and height  

was  explained  by  stand,  site and tree  attributes. Yield classes  reflecting  differences in 

growth  were  defined by  species  on the basis  of a  priori  site  types.  Separate  models were  
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Definitions  

Birch  means  pubescent  birch,  Betula pubescens  Ehrh. 

Complementary  ditching means  an improvement  ditching  method in which new ditches 

are  dug  between the old  ditches 
Ditch cleaning  means an improvement  ditching method in which old ditches are  deepened  

to their original  depths 

Drainage  age of a drained peatland site  means  the time (in  years)  elapsed  since the 

drainage  of the site 

Forest  land  means  forest  sites  which  are  capable  of  supporting  1 m
3ha"'  average  annual 

growth  of  stands  in a  100-year  rotation period  

Improvement  ditching means all actions taken to  improve  the impaired  water  regime  in 

previously  drained peatlands;  also called  ditch network  maintenance 

Main site  type  means  either  spruce  mire or pine mire according  to  Huikari's  (1952,  1974)  

definitions 

Pine means  Scots  pine,  Pinus sylvestris  L.  
Pristine  peatland  is  a  peatland  that has  not  been drained 

Pine mire means sites dominated by  dwarf shrubs (Vaccinium uliginosum,  Ledum 

palustre, Betula nana)  and other  species  that are  most common in pine-dominated  

peatland  stands (Räme  in Finnish)  

Site  quality  class  refers  to  Huikari's  (1952,  1974)  six  classes  for  site  fertility  

Spruce  means  Norway  spruce, Picea  abies (L.)  Karst.  

Spruce  mire means peatland  sites dominated by  Vaccinium myrtillus, V. vitis-idaea and 

other species  which typically  occur  in spruce- and/or birch-dominated peatland  

stands (Korpi  in Finnish)  

Stand characteristics refers to attributes such  as mean diameter or basal area calculated 

plotwise  on the basis of  tree  measurements  in the plot 
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1. Introduction 

11. Peatland forestry  in Finland 

Forested peatlands  occupy  large  land areas in the boreal regions and thus  form a 

considerable timber resource  (Jeglum  et al. 1983, Päivänen 1997). However,  the inherent 

timber production  capability  of peatland  sites  is  poor compared  to mineral soil sites  

because  it  is limited by  the excess  water  in the  soil.  In more  southern regions  as  well,  poor 

drainage  of mineral soil  and organic  sites  may limit the growth of  stands (Allen  and 

Campbell  1988).  Using  proper management practices,  the water  regime  can  be  made more 

favorable for trees, and the timber production potential  of  peatland  sites  can be  increased. 

In Scandinavia,  the Baltic countries,  and Russia  forest drainage  has  been widely  applied  to  

forested  peatlands  and  to  some  extent  to  treeless  peatlands  in  order  to  increase tree  growth  

(Päivänen  1997).  In Finland,  this  has been  a successful  means  of increasing  the total 

timber  resources  in the country  (Päivänen  1997).  A total area  of  6  mill, ha of  peatlands  

and  paludified  mineral soils  had been drained for  forestry  purposes  by  1992 (Aarne  1993).  

In the beginning  of the 1980  s, peatland  stands (drained  and undrained combined)  

comprised  18 % and 22 %  of the total volume and growth of  all forests,  respectively  

(Paavilainen  and Tiihonen 1987).  In Sweden,  for example,  the corresponding  proportion  

of  growth  was  17 % and the area  drained was 1.5 mill, ha of  the total of  10 mill,  ha of  

shallow  and deep  peatlands  (Hänell 1990).  Almost all peatland  forestry  in  Finland is  

concentrated on drained sites; undrained peatlands  have only  a marginal  role. The 

opposite  is  the case  in,  e.g.,  Canada and the northern  parts  of the USA,  where undrained 

peatland  stands  are  commonly  managed  by  cuttings  but  without  any  drainage  treatments  

(Jeglum  et al. 1983). 

Following  drainage,  the management practices  applied  to  peatland  and mineral soil  sites  

are  fairly  similar in Finland. Both precommercial  and commercial thinnings  are  carried 
out  to minimize self-thinning  and select the crop trees before the final cutting.  Site water  

and  nutrient regimes  are important factors influencing  tree  growth in drained peatlands,  

because  the storages  of potassium  and phosphorus  in peat  are  low (Paarlahti  et al. 1971,  

Kaunisto and Paavilainen 1988,  Laiho 1997), and impaired  drainage  may  lead to re  

paludification  of the site. By affecting  these factors,  management treatments may  
influence tree growth on peatlands  directly  or indirectly.  In operational  forest  

management, fertilization has  been a  common management practice  on  peatlands,  and  the 

maintenance of  ditch network systems  has been substituted for  the drainage  of pristine  

peatlands.  It is  recommended that ditch network  maintenance be carried out immediately  

after  commercial thinning  in order  to  compensate  for the rise  in groundwater  table level 

and  to avoid permanent damage  to the ditches. 

Because  most of  the Finnish drainage  work took place during the 1960  s  and  19705, the 

trees  in the stands are  achieving  or  have just  achieved the minimum commercial size.  This 

is  generally  the phase  of  highest  growth  rate  and  the time  for  the first  commercial thinning  

and repairing  of  the ditch network. The information needs in practical  forestry  reflect  this  

situation. Proper management of thinning  stands presumes specific  management 

schedules;  accurate  predictions  concerning  the further  development  of present stands in 

long-term forest scenarios are needed, and the basis  for the selection of stands for ditch 

network maintenance treatment  should be identified. In Sweden,  forest  drainage  has been 
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done less  intensively  since the 19305,  and more than  half of the total volume is  in  mature  

stands  at  present  (Hänell  1985). Accordingly,  methods  of  regeneration  of high-productive  

peatland  stands  have been the main focus  in recent  Swedish studies  (Hänell  1991, 1993).  

In Canada and the northern USA, research has been focused on the development  and 

management of undrained peatland  stands (e.g.,  Haavisto et ai. 1988). 

12. Earlier growth  and yield  studies on drained peatlands  

Drainage  of a  peatland  changes  the whole ecosystem  in several  respects.  Because  of  this,  

growth  studies have had varying  aims and  approaches.  In addition to  tree-  and stand-level 

analyses,  attention has also been paid  to temporal growth  dynamics. Generally,  the 

magnitude  of  the response  and the effect  of  different factors  on the response has been 
studied from the very beginning.  According  to Tanttu (1915),  assessments of tree  growth 

response  to  drainage  were  made in Russia  as  early  as  the 1890s. Even though  the results  

were  more  or  less  descriptive,  it  was  concluded that site  quality,  distance to  the ditch,  peat  

thickness,  and tree  size  influenced the response of  a  tree  to drainage.  

Later,  more accurate  tree  analyses  were  done to determine the pre-  and post-drainage  

development  of selected sample  trees  (e.g.,  Multamäki 1923). At stand level,  Lukkala 

(1929)  compared  the periodic  growth  of  stands  before and after drainage  on  the basis of  
the reconstructed stand development  of sample  plots  established in the Jaakkoinsuo area. 

Stand volume growth was shown to increase considerably  after drainage. In  Sweden, 

Malmström (1928)  used information on site  hydrology  and ground  vegetation  to  explain  
variation in the productivity  of  different sites  in Degerö  Stormyr.  

In Finland,  estimates of  the post-drainage  timber productivity  of  peatland  sites  were  given  

by  Heikurainen (1959).  Site quality  indices  ranging  from 0 to 10 were  derived  for  peatland 
site types  on  the basis  of  the average relative  growth  rate of  stands  (5-yr  growth  expressed  

as  a  function  of  the current  stand volume)  and  their geographical  location. The index was  

a rough estimate of the average post-drainage  volume growth and served  as  a tool for  

rating  peatland  sites  in terms  of  timber productivity  in practical  forest  drainage  work.  The 
relative growth  rate  of stands  has  commonly  been used as  a basis  when different site types 
have been compared  in several Finnish studies  thereafter (e.g.,  Seppälä  1969,  Heikurainen 
and Seppälä  1973, Laine and Starr  1979, Keltikangas  et al. 1986, Penttilä 1990). 

Keltikangas  et al. (1986) also investigated  the stability  of  the relative growth  rate as  a 

function of time since drainage  by  comparing  the growth  of  stands drained in various 
decades. 

Seppälä  (1969,  1976) made  a detailed tree-level study  of the response of  pine  and spruce  
to drainage.  The effects  of tree  species, tree  age, site quality, and time on  the growth 

response  were  demonstrated in tabular and graphic  form. Pine was  shown to respond  

immediately  to drainage,  while spruce needed several years before responding.  For both 

species,  the youngest trees  in the most fertile sites  showed  the fastest  and highest  

response. 

Heikurainen and Kuusela (1962)  applied  regression  analysis  when the effect  of  drainage 
on  the height  growth of the sample  tree  data of Heikurainen (1959)  was studied. It was 

shown that the shortest and youngest trees responded  most to drainage.  Huikari et al. 
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(1967)  constructed regression  models to  predict  the stand  volume growth  from the site  

type, stand volume, stand age, species  mixture,  and geographical  location with  data  

collected from northern Finland. Because the best  stands were selected,  the equations  

cannot be generally  applied  to predict  growth  on drained peatlands.  

In Canada, Payandeh  (1973) used multiple  regression  analysis  in evaluating  the effect  of  

drainage  on black spruce  (Picea mariana (Mill.) 8.5.P.)  stands  drained 40 years  earlier. 
At tree  level,  growth  equations  were  derived for the annual diameter and height  growth  
both before and after drainage.  At stand level,  equations  were derived for the average  

annual growth  percentage  of diameter, height,  basal area,  and volume. Growth was  

expressed  as  a function of several  tree, stand and  site  characteristics.  It  was  concluded that 

young trees  with large  initial diameter and large  crowns  growing  on  better sites, and 

young stands  with low initial stocking  growing  on  better sites  responded  most. At tree  

level, the length  of the growth  response period  of  black  spruce has  been  studied by  Dang  
and Lieffers (1989).  

In the southeastern USA, the effect of drainage on the growth of loblolly  pine  (Pinus 

taeda L.)  on poorly  drained mineral soils  and wetlands has  been assessed  as  a  change  in 
the site index following  the drainage  (e.g.,  Klawitter and Young  1965,  Terry and Hughes  

1975). 

Saramäki (1977) derived regression  equations  for birch growing  in drained peatland  sites 

in northern Finland to predict  the height, basal area, and volume growth  percentage of 

individual trees  based on  tree  age, size,  vigour,  and competion.  At stand level, the volume 

and basal  area growth percentage of stands  was predicted  by  stand age, stand volume, 

dominant height,  and the average  length  of the growing  season. Stand-level equations 

were  then applied  to construct  yield tables  for birch. Thinning  models for the same species 

were later developed  by  Niemistö (1991)  on the basis  of stand-level regression  equations  

derived from thinning  experiment  data. 

Hänell (1984,  1988)  made a  comprehensive  growth  study  of  drained peatlands  in Sweden. 
Numerous tree-  and stand-level regression  equations  were constructed to predict  the post  

drainage development of pine,  spruce and birch. The analysis  was based on increment 

core  data collected from old drainage  areas.  Stand-level equations  were derived and used 

in a growth simulator to determine the post-drainage  yield in different sites when the 

composition  of  tree  species  and geographical  location varied.  A  classification scheme for 
undrained sites  was  defined on the basis  of  the expectable  yield  after drainage.  

Miina et ai. (1991)  and  Miina (1994) developed  spatial  individual-tree growth  models for 

pine  growing  on a drained poor peatland.  Competition  indices were used  together  with 

tree  and stand characteristics to describe the growth  of the target tree. Simultaneously,  

using the distance to  the nearest  ditch as  an independent  variable,  the variation in  growth 

caused by  the ditch openings,  as  well as  that caused by  the varying depth of the ground  

water  table level,  was  accounted for (Miina  1994, Miina and Pukkala 1995). The models 

were  used to  study  the effect  of  different thinning  methods  and  clustering  of  trees  on  stand 
volume growth, and to develop  optimal  thinning  schedules for  pine  stands in drained 

peatlands  (Miina  1996  a, 1996b).  Penner et  al. (1995)  studied the effect  of  competition,  as  
indicated by  stand  basal  area  and different competition  indices,  on single  tree  growth  of  

pine  with a spatial growth  model. 
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13.  Aims of  the study  

Several growth  studies  conducted in drained peatlands  in Finland have  produced  valuable 

information on  tree  growth  and its dependence  on different growth  factors.  However, they  
have  been somewhat scattered and have not  given conclusive results  for the whole country 

and for  all  the relevant tree  species:  i.e.,  pine,  spruce, and birch. 

In  Finland drained peatlands  form a  remarkable timber resource  which is under intensive 

utilization and management in practical  forestry.  This  resource  can  be used on  a 

sustainable basis only  when management planning and decision making  are based  on  

reliable information about the present  status of  the forests and forecasts  concerning  future 

timber resources.  Growth models are generally  used as tools to forecast future forest 

resources  in growth simulators such as  MELA (Siitonen  et ai. 1996). In general,  growth 

models  should give  unbiased  and  reasonable predictions  concerning  stand development  on 
the basis  of various input  data,  and they  should be applicable  to the management planning  

system.  In drained peatland  forests,  valid forecasts  presume that simulators are  using  

models  that are  specifically  derived for  drained peatlands.  Previously,  the MELA growth  

simulator has used  specific  models  for drained peatlands,  but only  a  few properties  of  

drained peatland  stands  and  sites  have been accounted for  (Ojansuu  et  ai. 1991).  

The aims of this study were: to develop  a new set of individual-tree growth models to 

describe the effect of different growth factors,  as  well  as  stand and site  management, on  

the growth  of pine,  spruce,  and birch in drained peatland  sites  with commonly  measured 

site,  stand,  and tree  attributes  (study  I),  and to  specifically  quantify  the growth  response of 

pine  to different ditch network maintenance methods, and to  construct  a model for 
simulator use (study  ID).  To give  a  reliable basis  for tree  volume calculations,  height  
diameter models had  to  be developed  for the same species  (study  II). This approach  will 

allow the models to  serve  as the basis in growth simulators when growth  forecasts  of  the 

most  common tree  species  in drained peatland  stands are  made. 

2.  Materials  and  methods 

21. Basal area growth  models  and height-diameter models 

The data  for the basal area growth models (I) and for the height-diameter  models (II)  

consisted of two  inventory  data sets  covering  the whole area  where forest  drainage  has 
been  applied  in practical  forestry  (Fig. la).  For southern Finland and southern parts  of  
north Finland, the permanent sample  plots  of the  Bth  National Forest  Inventory  (NFI8) 

were  used.  For  northern Finland, permanent growth  plots  (SINKA)  were  used (see Penttilä 
and Honkanen 1986, Mielikäinen and Gustavsen 1993). Due to the more intensive sample  

in the SINKA data, the northern parts  of Finland were  more  represented.  
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Figure I.(a-c).  Location of  the data  used  in  
studies  l-111.  

The NFIB plots  were  established in 1985,  

and a remeasurement  was carried out in 

1990. The plot  establishment was based 

on  systematic  sample  tracts. Each tract 
contained a cluster of 3 to 4 plots, the 

distance between tracts being  16 km.  The  

NFIB sample  plots  were  composed  of  
two circular plots:  a greater  plot  with a 

radius of  9.77 m and a smaller plot with 

a  radius of 5.64 m superimposed  on the 

greater plot. All trees with diameter 

exceeding  10.5 cm were measured in the 

area of  greater  radius, and trees with 

diameter of 4.5 - 10.5 cm in the area of 

smaller radius. If the diameter was less 

than 4.5 cm, only  a limited number of 
selected trees  were measured. 

The SINKA  plots  were established in 1984 - 88 (Penttilä  and Honkanen 1986) for the 

purpose of studying  the growth of peatland  forests. The first  remeasurement  was  done in 

1988 - 1994 following a period  of 5 growing seasons on  each plot.  The plots  were 

sampled  by stratified systematic  sampling  from those 7th  National Forest Inventory  
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sample  plots  that were  located on  drained peatlands.  Sampling  units were  stands  that were  

considered to  be in satisfactory  silvicultural condition and homogeneous  with respect  to  

site  and stand developmental  stage.  Birch-dominated stands  were sampled  only  from  the 

southern part  of  northern Finland and spruce-dominated  stands from northern Finland. 

The SINKA sample  plot  was  composed  of  three circular subplots  located 40 m apart.  The 

size  of  the subplots  was  adjusted  according  to  the stand density.  The whole SINKA plot  

contained approximately  100 tally  trees.  The minimum diameter at breast height  was  4.5 
cm  if  the stand was  past  pole age,  and  2.5  cm  otherwise. 

The NFIB data  and the SINKA data were  combined to form one data set  for each tree  

species.  All tally  trees  the diameter of  which was  recorded in both  measurements  were  
used as  the basal  area  growth  model data (I).  Sample  tree data were  not  used because  of  
the low number of  sample  trees  and small area  of  sample  plots in the NFIB data. For the 

height-diameter  models (II),  only  sample  tree  data  were  used because  both  diameter and 

height  measurements  were  needed. From the SINKA data, only one sample  plot  out  of  

three from each stand was  chosen,  in order to give more emphasis  to the NFIB  data. 

Considerably  smaller data sets  were  thus  available for  the height-diameter  models than for 
the basal area  growth  models. 

The  number of  pine  and birch stands and trees  was  considerably  greater than that of  

spruce  (Table  1) in both modelling  data (I,  II).  The data sets  for  both the basal  area  growth  
models (I) and  height-diameter  models (II) consisted of  advanced sapling  stands,  pole  
stands of  non-commercial size,  thinning  stands  and mature  stands,  all located  on drained 

peatland  sites  that were  classified as  forest land. On  the basis  of  the measurements  in the 

field,  stand characteristics were  calculated for each plot.  The  means showed that the data 

sets  mainly  originated from stands with low  stocking  (Table  2). 

Table  1. Number  of stands and  trees  in different data  sets by  species (P =  pine, B =  birch,  

S =  spruce). 

Species 

Study  P S B 

I Stands  555 382 503  

Trees 20644 5645 16593 

Test  data Stands  32  4 4 

Trees 2644 2640 1857 

n Stands 458 131  279 

Trees 3450 769 2133 

HI Stands 9 

Trees 1995 
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Table 2. Mean  tree, stand and  site  characteristics  in  different  studies by  tree  species  (for  

notations,  see Table 1). 

22. Test data for basal area growth  models 

Independent  data concerning  permanent sample  plots  located on drained peatlands  in 
Northern Carelia (Fig.  lb)  were used to test  the performance  of the pine  growth model. 

The sample  plots  were laid out  in 1981 following  a procedure  similar  to that used later 

when the SINKA stands  were  set  up. The remeasurements  were  done in 1986 and 1991. 

Altogether,  2644 pines  in  32  stands with 3 plots  in each stand were included in the data. 

With respect  to the average stand characteristics,  the stands were  rather  similar  to those in 

the modelling  data (Table  2). 

To test the spruce and birch models, the data from four thinning  experiments  established  
in 1986 -  1991 in mixed stands of  spruce  and birch  on drained peatlands  in northern  
Finland were  used (Fig.  lb). In the experiments,  3-5 different thinning  treatments, 

including  a  control,  were  arranged  in a  randomized block  design.  Two of the stands  were  
in the phase  of first  commercial thinning  and two  in the phase  of second commercial 

thinning.  The total number of plots  was  48. Compared  to  the modelling  data, these  stands  
were  more  stocked  (Table 2).  

23. Growth model for improvement  ditching 

The data used in  constructing  the growth model for improvement  ditching consisted  of 

nine  field experiments  that were set up  in 1982 -  85  in drained poor  pine  mires considered 
to be in  need of improvement  ditching  (Fig. lc,  Table 1). The experimental  design  
included the following  treatments:  ditch cleaning,  complementary  ditching,  a  combination 
of ditch cleaning  and  complementary  ditching,  and untreated control (Ahti  and Päivänen 

1997).  The number of replicates  varied in the  different experiments  from  one to five. 
Within each experiment,  permanent sample  plots  representing  different treatments  were  
delimited from ditch to ditch. 

Study Species  d 

Stand characteristics 

G D
gM dd 

I P 9.4 10.2 12.0 1074 

S 9.7 15.4 13.9 964 

B 8.4 15.3 11.9 1000 

Test data P 7.6 7.6 10.3 1029 

B/S  11.8/13.3 19.1 15.1 948 

n P 11.2 11.8 11.9 1004 

S 11.8 17.1 14.9 1015 

B 10.4 15.4 12.2 1017 

m P 10.8 8.9 11.2 1045 
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In  each  plot, 20  -  25  trees  belonging  mostly  to  the dominant canopy layer were  cored and 

calipered  in 1989 or  1990 in order  to  determine the annual growth  rates.  At  the time of  the 

core  sampling,  the  age of  treatment  varied between 5  and 8  years.  The annual diameter 

growth  of  the sample  trees  within a  13-year  period  (5  years  prior  to  and 8  years  after the  

treatment)  or  an 8-year  period  after the treatment  were  used in  the growth response  

analysis.  As  in studies  I  and  11,  the stands were  understocked and characterized  by  small 

average size  of trees  at  the  time of  the set  up  of the experiments  (Table  2).  

24.  Approach  and assumptions  

241.  Growth models 

Several  factors related to  site  conditions, tree vigor, inter-tree competition,  stand  

management, and annual climatic variation influence the growth  of  a  tree  in a stand. 

Common tree, stand,  and site  attributes,  such as  tree  diameter, stand basal area, and site 

quality  classes,  have been used to describe the effect  of  these factors  on tree  growth  in 

growth models (Vanclay  1994).  Excluding  the drainage  treatment  to which the site is  

subjected,  the factors  influencing  tree  growth  in drained peatlands  and  in mineral soil sites  

are essentially  the same. It can be assumed that  in drained peatlands,  the 'site factor' 

includes two  components:  nutrition,  which is  more or  less  constant  over time (or  changes  
take place  slowly),  and moisture, which is  expected  to cause  temporal variation in  growth 

due to the ditching treatment. 

The  factors affecting tree  growth on drained peatlands  can thus be grouped  as  follows:  

those determining  the basic  level of growth  of stands and trees,  and those that are  related 

to  the growth  response  to the treatment.  When constructing  the models,  both of  these 

aspects  can be accounted for by deriving a basic growth  equation  and by  adding a  

description  of  the growth  response to the treatment. 

In studies  I and HI, basic  growth models were constructed,  in which different growth 

factors,  as  indicated by  various stand,  plot  and tree  attributes,  were  assumed to  influence 

growth in a  multiplicative manner (Jonsson  1969). The models were linearized with a 

logarithmic  transformation. At plot  level,  tree  growth  was  expressed  as  a function of the 

tree's  diameter,  and this  relationship  was  allowed to  vary  randomly  from plot  to  plot  in 
terms of the intercept  and  slope.  Variation in intercept  and slope  was modelled by 

assuming  these parameters to  be composed  of  a  fixed mean function and random plot 
effects  with mean  zero  and constant  variance. The  mean was  expressed  as  a function of 

stand and site characteristics (stand  characteristics  were calculated for each plot). Thus, 

differences in both the growth  rate  and pattern in relation to tree  diameter were accounted 

for. 

The random parameter model approach  (Lappi 1986)  was  used in model construction in 

order to  account  for the correlations that  arose from the hierarchically  structured data. It 

also made it possible  to study  the decomposition  of  the residual variance at different levels 

of hierarchy.  In study  I,  tree  and plot  levels were distinguished,  while in study  HI,  four 

hierarchical levels  -  stand,  plot,  tree,  and the successive  growths  of  the same tree  -  were  

distinguished. 
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Since the growth response of  a  tree  is  a  change  in growth  over  time, detailed modelling  of 

the response was  limited by  the data available. In study I,  the temporal dimension was  

obtained from stands of varying  drainage  ages; i.e., no information on tree-level response 

was  available. Thus,  the growth response was  defined at stand level as  a  change  in site  

productivity  and was  expressed  as  a function of  time. The  use  of cross-sectional data to  

determine changes  over time in the basal area growth  models (I) was based on the 

assumption  that,  on the average, stands follow a similar pattern in their  post-drainage  

development.  Thus,  recently  drained stands  represented  the immediate growth dynamics  

after  drainage,  and the same pattern of growth  was  assumed to  have  taken place in areas 

drained much earlier. However,  this assumption  may  not  be valid in all respects  because 

the sample  was  concentrated in areas  drained 10-20 years  ago,  while stands  with  higher  

or  lower drainage  ages were not  as  well represented.  It was  further  assumed  that annual 
climatic variation did not  influence growth significantly,  because  the five successive  

growing  seasons  between the measurements  varied from stand to  stand;  in all,  10 different 

growing  seasons  were  represented  in the data. 

In  study  111, the actual  time  series  of  the annual diameter growth  of  sample  trees  permitted  

detailed modelling of the growth response. This presupposed  that annual climatic 

variation, as  well  as  local differences in climate,  were  accounted for in the model. 

Factors  affecting  growth  were  grouped  according  to  their contribution  to  the basic  growth  
or  to  the growth response (Section  3). Within these groups, factors related to site, and 

those related to  tree  vigor  and competition,  were further distinguished.  Site factors  caused 
variation among stands  (and  plots), and tree  vigour  influenced tree  growth within a stand. 

Competition  may exist  at both levels. 

242. Height-diameter  models 

To provide  a  basis  for  tree  volume calculations in growth  simulators,  either height  growth  
models or  static height models were  needed. Since height  growth data for the whole 

country were  not  available,  height-diameter  models  were  constructed for each species.  
Because  of  the  great variability  of  peatland  stands  and the considerable change  in stand 
structure following  drainage,  it was  considered essential to make the height-diameter  
models flexible so  that they  can be applied  to different stand structures. 

In the models,  tree  height was  assumed to depend  on tree  diameter according  to the 

following height  formula,  the exponent  c  being  specific  to  each  species;  

where h,j  =  height  of tree i  in plot  j 

cij  =  intercept  for plot  j 

bj slope  for  plotj  

dy  =  diameter of tree  i  in plotj 

e
y  

=  random error  

Another basic  assumption  was  that height-diameter  curves  vary  randomly  from stand to 

stand with respect to both intercept  and slope (Lappi  1997); tree, stand and site 

In(hjj 1.3) ~~aj ~bjd:
c

 +e
fj (1)  
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characteristics were then  used to explain  this variation. As  in the growth models, the 

random parameter model approach  was  used in the analysis.  

3.  Results  

31.  Factors  affecting  tree  growth  on  drained peatlands  

311. Basic  level of  growth 

3111. Site factors 

In  the basal  area  growth  models (I),  the site  quality  classification  system  of Huikari (1952,  

1974)  was  applied.  Using  the main site  types and site  quality  classes that Huikari (1952)  

has defined to characterize peatland  vegetation,  it was  possible  to distinguish 6  -  10 a 

priori  sites,  depending  on the species.  Variation in the growth  rate  and growth  pattern  

among these sites  was  studied by  detecting  differences in both the intercept  and slope  of  
the relationship  between tree  growth  and tree  diameter among plots.  

For  all species,  sites  of  different fertility, as  indicated by  the site  quality  classes,  showed  

differences  in growth.  For pine  and birch,  the differences in growth  between pine  mires 

and spruce mires were  significant.  From the a priori sites,  four,  five,  and three yield  

classes  were  formed for  pine,  birch,  and spruce,  respectively  (I).  Birch appeared  to  show  
the most variation in growth as  indicated by  the yield  classes,  even though  pine  covered  

the widest range in  site quality.  In  study  DI,  meso-oligotrophic  pine  mire sites  differed 
from poor oligotrophic  and ombrotrophic  sites. Huikari (1952,  1974) has  also given 

supplementary  definitions for more detailed classification. These definitions refer  to site 
conditions that reflect poorer or  better  site quality in terms of timber production.  In study  

I, sites  showing  either a dominance of Sphagnum  fuscum hummocks in the ground  

vegetation  or  extreme moisture in the substrate  as  indicated by  the occurrence  of  flarks,  or  

both,  showed a  lower average growth  of pine.  

The average temperature sum  was  used in  studies I and 111  to express  growth as  a function 

of the geographical  location. The growth  of birch was  less  dependent on the temperature 

sum  than  that of conifers. For  pine  and spruce, the  temperature sum  influenced the slope  

between growth  and tree  diameter (I).  Peat thickness  (expressed  with continuous values 
down to  1 m  depth)  correlated negatively  with the growth of  pine  in study EI,  while no  
trend was observed with any of the three tree species  in study  I. In the immediate 

proximity  of the sea coast, as  indicated by  a variable defined by Ojansuu  and Henttonen 

(1983), the basal  area  growth  of birch was  higher  (I). In study 111 wider ditch  spacing  
showed up as  lower diameter growth  of  pine  in the control treatment.  

The  average productivity  of sites  drained more than 15 yrs  earlier may  be  affected  by  the  

present  status of  the site drainage  (Heikurainen  1980). This effect  was  assessed  in the field 

as a need for improvement  ditching.  A dummy variable showing  lower  growth was  used 

to refer to  sites  where such  measures  were  suggested  (I). 
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3112. Tree vigor  and competition  

Tree size was used as  an indicator of tree  status and vigor  in studies I and HI. The 

logarithm  of tree  diameter and  tree  basal  area  were  used in study  I  to  explain  the basal  area  

growth  of pine  and  birch.  Basal area  growth  increased  with increasing  tree  diameter until 
the negative  component related to  tree  basal area  caused a  decrease in growth.  For  spruce, 

the square root  of the tree  diameter gave a  better fit than  logarithmic  transformation. In 

study  HI, the logarithm of the tree  diameter and the second  power of the logarithmic  

diameter were  used correspondingly  to  explain the annual diameter growth  of  pine.  

The effect  of inter-tree competition  on  basal area  growth  was accounted for at plot  and 
tree levels in study  I. Plot basal area  and the diameter of the tree of median basal  area 

decreased the growth  of  pine  and spruce,  respectively,  while neither  of these influenced 
the growth  of birch.  At tree  level,  the basal area  of trees larger  than  the target tree  (BAL)  

decreased the individual-tree growth  of all species.  The relationship  was nonlinear, 

suggesting  that  BAL was  more important  in decreasing  the growth  of  small trees.  If  plot  
level competition  had been reduced by  a  thinning  treatment  during the  past  five  years, the 

growth  of  all species  was  higher (I).  

In study  111, the diameter growth  of  pine  was  lower in  plots  where the basal area  was  

higher.  No tree-level measure  of competition  was  applied,  but the plot  basal area  

explained  the slope  between tree  diameter and diameter growth.  The basal  area  changed  

the relationship  in such  a  way  that in well-stocked  plots  growth  was  strongly  allocated to 
the biggest  trees.  Thus,  this effect served also  as  a  tree-level measure  of  competition.  

The basal  area  growth  of birch and  spruce  was  influenced by  the mixture of  other species  
in the stand as  indicated by  the proportion  of  spruce or  birch  of the total  plot  basal  area  (I). 
Both species  showed higher growth  in mixed than in  pure stands. 

312. Growth response to the drainage  treatment 

3121. Site factors 

In the basal  area  growth  models (I),  the effect  of  site  treatment  on growth  was  accounted 
for by  expressing  the average growth  rate  of  stands  as  a  function of  time since  drainage.  
Stand-level categorical  variables were  used,  referring  to  drainage  age classes  1 -  5,  6  -  10, 
11 -  25,  and >25 years  since  drainage  (I).  It  was shown that the basal area  growth of  all 

species  was  at the lowest  level during the first  5-year  period  after drainage.  For  pine  and 
birch,  growth  was  higher  for  the second  5-year period,  and the highest  growth  was  found 
between 11 and 25 years  since  drainage.  After 25 years  had passed,  the growth  rate  was  

equal to  the period 6-10 years  after drainage.  There were  differences in growth  among 
the drainage  age  categories  for spruce  as  well, but  only  the youngest  age  class  differed 

significantly  from the others. 

The diameter growth  models for  improvement  ditching showed that pine  responded  

immediately and  increased  its  growth  continuously  for  the whole study  period  (III). In the 

models,  the temporal  response  was  expressed  as  a  continuous nonlinear function of  time. 
The magnitude  of the growth response  varied according to the different treatments, with 
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ditch cleaning  giving  the lowest  average response  and the combination of  ditch cleaning  
and complementary  ditching giving  the greatest response. A higher  response to ditch 

cleaning  was  obtained for  plots  with narrower  ditch spacing.  

3122. Tree vigor  and competition  

The effects  of  tree  vigor  and  competition  on  the growth  response to  improvement  ditching 

in study  EH were  modelled by  expressing  the response as  a function of the initial tree  

diameter and plot  basal area.  This was  possible  because  the temporal  change  in  growth  
was  described with  a  continuous function. It turned out  that the largest  trees  responded  
most to all  improvement  ditching  treatments. Plot basal area  also had  a significant  

increasing  effect  on  the response to  ditch cleaning  and  complementary  ditching,  while no 
effect  on the response to the combination treatment was  found. Thus, inter-tree 

competition,  as  indicated by  plot basal area,  did not  limit the response. As  a  result,  the 
effect  of improvement  ditching on the growth  response was different depending  on  the 

method applied,  the initial tree  size,  and the initial plot  basal area. 

32. Factors  affecting  tree height  

The shape  of the height-diameter  curve  may be different for different species,  as 

determined by  the value of the exponent c in Equation  1. On the basis of the sum  of  

squared  residuals  produced  by  alternative parameter  values,  the  appropriate  values were  
determined to  be  0.3,  0.4  and  0.7  for  spruce, pine  and  birch,  respectively.  Thus,  the curves  

were  most linear for spruce, while more non-linear curves were  obtained for pine  and 
birch.  Consequently,  the range in predicted  heights  for  small trees was  narrower  for  spruce 
than for the other  species.  

For  all species,  the most important  stand and site  characteristics explaining  variation in 

the intercept  of the height-diameter  curves  were the diameter of the tree  of median basal 

area  (DgM), the plot basal  area,  and the north  coordinate. For  birch,  plot  basal area  was  
substituted for  the basal  area  of  birch in  the plot. In  more stocked  stands  the intercepts 

were  higher.  At high  elevations the intercept  was  lower for birch. A dummy  variable 
which had value 1 if the stand had  been  thinned during  the past  five  years  increased  the 

intercept  for  pine  and  birch.  For  pine,  a  dummy  variable referring  to  Huikari's (1952)  site 

quality  classes  2-4 produced  higher  intercepts  than  classes  1, 5,  and 6. 

For  all  species,  variation in the slope  was  explained  by  tree  diameter and  DgM .  For  birch 
and  pine,  plot  basal  area  also explained  the slope.  The slope  was  steeper in stands where 
the average size  of  the trees  was  larger. 

Because tree-level variance of  birch and pine  appeared  to be non-constant, a  variance 
function was  applied  to account  for the change  in variance as  a  function of tree  diameter. 
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4.  Examples of  stand-level  simulations  

41. Basis for  calculations 

411. Drainage  of  a  pristine  peatland  site 

To predict  the effect  of  drainage  of  a  pristine  peatland  site  on  stand development,  the basal 

area  growth  models  (I) and height-diameter  models (II)  were  used simultaneously  in the 

MELA growth  simulator (Siitonen  et ai. 1996). As  a  starting  point,  a  sample  stand was  
described with a diameter distribution in which trees were divided into 1-cm  diameter 

classes.  Tree heights  were  predicted  from the diameters and the corresponding  stand and 

site characteristics  (II).  Tree volumes were  obtained from stem  curve  models as  a  function 

of tree  species,  diameter and height  (Laasasenaho  1982). Single tree  volumes  in each 
diameter class  were  multiplied  by  the number of trees  in the class,  and the stand volume 

was calculated by  adding  up the volumes in each diameter class.  Basal area growth 

models were  then  applied  to  predict  the basal area  growth  of  each  tree  (=  diameter class)  
for  the following  five-year  period.  Tree diameters  were  then  updated  and  new heights  and 
volumes and subsequent  stand characteristics predicted.  To predict  self-thinning, the 

MELA growth  simulator used the respective  models  derived for  stands  growing  in mineral 

soil  sites  (Hynynen  1993). 

Fertilization of drained peatlands  has been a  common management practice  during the 

past  decades,  and the modelling  data also included fertilized stands  because it was  not  

possible  to  omit them (I).  In  order  to  avoid growth  predictions  that were  too  high  for  non  

fertilized stands,  the effect of fertilization on growth  in the modelling  data was  estimated. 

The total area  of  peatlands  which were  under the influence of fertilization during  the data 
collection was  obtained from fertilization statistics.  Estimates concerning  the distribution 

of  fertilization among different site  types have  been given  by  Keltikangas  et al. (1986).  
The growth  response  of  pine,  birch,  and spruce to  the fertilization treatment in different 

yield  classes and in different parts  of  the country  was  estimated on the basis  of  results 

obtained from numerous fertilization experiments  conducted by  the Finnish Forest  

Research Institute. Using  this information, the relative basal area growth without 

fertilization was  calculated by  species  and site  types  separately  for northern and southern 
Finland. Depending  on the tree  species,  yield class,  and  location,  growth  in nonfertilized 
stands was  estimated to be 0 -  14 % lower  than  the average in the modelling  data. 

Before the basal area  growth  models (I) and height-diameter  models (II) were applied  in 

MELA, they  were  calibrated with the sample tree  data of the Bth National Forest  Inventory  

to give unbiased estimates on growth and height with respect to  tree diameter, 

geographical  location,  and site  quality.  

Only  one initial stand representing  one site for each  species  in northern  (1050  dd°C) and 

southern (1200  dd°C)  Finland  was  simulated for  a  50-year  period following  drainage.  The 

pine  and birch stands were  located in a  tall-sedge  pine  fen (Laine and Vasander 1990) 
which corresponded  to  yield  classes  p3  for  pine  and  b4  for  birch  (I). The spruce  stand was 
located  in a  Vaccinium  myrtillus spruce swamp (yield  class  s2).  These are  typical  of sites  
which have been subjected  to drainage  treatments  in  practice. The spruce stand was 

generated  on the basis  of  the average diameter distributions and stand characteristics given 

by  Gustavsen and Päivänen (1986)  for pristine  peatland  stands in  Finland (Fig.  2a,  Table 
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3).  The site  type chosen  for  pine  and birch was  a  sparsely  forested  composite  type which 

was  not  studied by  Gustavsen  and Päivänen (1986). Thus a low-stocked stand with  

reversed  J-shaped  diameter distribution and low  initial basal  area  was  produced  for  pine,  
and a  slightly  denser and more  even-sized stand for birch (Fig.  2a,  Table 3).  No stand  

management was  carried out  during the simulation period,  and for the sake  of simplicity,  

only  pure stands were  simulated. The condition of  drainage  was  assumed  to  be  satisfactory  
for 30  and 40 years  following  drainage  in pine  mires and spruce  mires,  respectively.  No 

ingrowth  was  assumed.  

Table  3. Stand  characteristics at the time of drainage in  stands used in simulating stand 

development after  the  drainage of a  pristine  peatland site.  

412. Improvement  ditching 

To simulate the effect of improvement  ditching on  the growth of pine,  a new version of 
the prediction  model given in  study m was  derived,  in which the year effects  were  

estimated as  random at stand level and ditch spacing  was  not  used to explain  the growth 

response  to  ditch cleaning.  Because  the growth  response  to  improvement  ditching  varied 

according  to  initial tree  diameter and initial stand basal  area,  three stands  with  different 
diameter distributions and basal areas (Fig. 2b)  were simulated in two  locations 

representing  southern (1200  dd°C) and  northern  Finland (1050  dd°C).  The site  type chosen 
was  an oligo-mesotrophic  pine mire (tall-sedge  pine  fen).  The development  of  the non  
ditched stands  was  simulated with the common basic growth  model  of  the treated stands 
without the growth  response  (see  III):  i.e.,  no  time-dependent  decrease in the growth  of the 
untreated stand was  assumed.  Since the data in study  111 covered only the initial response, 
the simulations were  limited to  the first  15 years.  The simulation step  was  one year. Tree 

heights were  predicted  with height  models for  pine  (II).  The corresponding  volumes  were 

predicted  as  a function of diameter and height using  the following volume equation  for  

pine  derived by  Laasasenaho (1982):  

Stand volumes were obtained by  adding  up the volumes in each diameter class. No 

ingrowth  or  self-thinning  was  assumed for  the simulation period.  

In(v)  = -3.32176 +2.01395-ln(d)  +2.07025-ln(h)  -1.072091  n (h-1.3) (2) 

Stand dd N V G D H 

Pine 1200 1260 13.9 3.9 9.8 6.0 

1050 1260 13.0 3.9 9.8 5.6 

Spruce  1200 2300 66.7 14.0 12.5 9.5 

1050 2300 61.2 14.0 12.5 8.9 

Birch 1200 1660 14.4 4.1 8.2 6.8 

1050 1660 13.4 4.1  8.2 6.2 
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Figure  2.(a-b). Diameter distributions of pine, spruce, and birch stands used in simulating the 

post-drainage  development  of a  pristine  peatland  (a),  and three pine  stands used  in simulating  the 
effect of  improvement ditching  on stand volume development (b).  

42. Effect of  climatic region  and tree species  on post-drainage  stand development  

In  the  pine  stand  in  southern Finland,  stand  volume increased from 14 m
3 ha"'  at  the  time 

of drainage  to  220 m
3 ha"'  after  50  years  (Fig.  3).  This  corresponded  to  4.1 m

3ha"'  average 
annual volume growth  after drainage. In northern Finland,  the total volume was 122 
m

3 ha"'  at  50 years  drainage  age,  and  the  average  annual volume growth  during  the  50-year  
period  was  2.2  m

3
ha"'yr" .  At  stand-level,  both  basal  area  and  volume growth  peaked  at  20 

-  30  years  drainage  age in both regions.  During  the last  two  decades growth  was  limited by 

poor drainage. The difference in the volume increase  between southern and northern 

Finland was  almost  100 %. 
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Figure  3.  Development of  stand volume, basal area,  mean height, mean diameter, volume  growth, 
and basal  area  growth in  northern  and  southern  Finland as  a function of drainage age in a pine 
stand. 

The volume of  the spruce stand in southern Finland increased by  300 m
3ha"'  in 50 years 

(Fig.  4).  The average annual volume growth  was  6  m3 ha"'.  In northern Finland, the total 
increase in stand volume was  178 m

3ha"',  which corresponded  to  3.6 m
3ha"'yr"'  on  the 

average. Since the stand was  initially well-stocked,  self-thinning  considerably  affected the 

stand development  during the  two  last  decades in southern Finland. Stand volume growth 

peaked  between 20  -  30 years  after drainage and basal area  growth  ten  years  earlier.  In 
northern Finland, growth peaks  occurred ten years later than  in southern Finland. The  

difference in the volume increase  between northern and southern Finland was  60 %. 
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Figure  4.  Development of stand  volume, basal  area,  mean height,  mean diameter, volume growth,  
and basal area  growth  in  northern and  southern  Finland as  a  function of  drainage age  in a  spruce  
stand. 

In  the birch  stand in  southern Finland,  the volume increased by  225  m
3ha~'  during  the  50-  

yr period  (Fig.  5).  The average volume  growth  was  4.5 m3ha"'yr" 1 .  In  northern Finland,  the  
increase in volume was  137 m

3 ha"',  corresponding  to  an  average  growth  of  2.7  m3ha~'yr  '•  
Stand basal area  growth  peaked  at 25 -  30 years drainage  age. In northern Finland, volume 

growth showed an increasing  trend during the whole period,  while in southern Finland 

volume growth  peaked  about 20 years  after drainage.  Because the development  of birch  in 

southern Finland was  heavily  affected by  self-thinning between the period  30 -  50  years 
after drainage,  only  the beginning  of  the period  was  comparable  with, e.g.,  pine.  Despite  
the same site type, birch showed faster growth  than pine.  
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Figure 5. Development of stand  volume,  basal area,  mean height, mean diameter,  volume growth 
and basal area  growth in northern and southern Finland as  a function of drainage age in a birch 
stand. 

43. Predicting  the response of  pine to ditch network maintenance 

The first  simulated stand was  considered full-stocked (2300  ha" 1
,
 10.4 m

2ha"') with a 

typical  diameter distribution for  drained peatlands  (Fig. 2b). After a fifteen-year  growth 

period  in  southern Finland,  the stand volumes were  9.9,  20.8 and 26.0  m3ha"'  greater in  
stands treated with ditch cleaning,  complementary ditching and the combination 

treatment, respectively,  than in the non-treated stand  (Fig. 6). In  northern Finland,  the 

differences were  smaller:  6.8,  14.4 and  17.9 m
3
ha"\  The  increase  in  annual growth  varied 

from 0.7  -  1.7 m
3
ha"'yr"

1
 in southern Finland and  from 0.5  -  1.2 m3

ha"
I
yr"

1  in  northern  
Finland. 
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Figure 6.  Development of stand volume after  different improvement ditching treatments  in pine 
stands 1 -  3 in southern and  northern Finland. 

In stand  2, the  basal  area  was slightly  higher  (11.8  m
2ha"'),  but  the  number of stems  was  

much lower (1500  ha"
1
): i.e., the stand was  composed  of fewer trees  with greater 

dimensions (Fig.  2b).  In this  case,  ditch cleaning  increased volume more  (14.4  m
3ha"')  

than in stand 1 (Fig.  6).  The  combination treatment and complementary  ditching  produced  

almost equal  increases  in stand volumes; after a fifteen-year  simulation,  the total 

differences,  compared  to  the non-treated stand,  were 26 and 27 m
3 ha"'. In northern 

Finland,  the corresponding  values were  9.8,  18.9,  and 19.3 m
3 ha"'  for  ditch cleaning,  

complementary  ditching and the combination treatment, respectively.  The annual volume 

growth  increased 1.0 -  1.8 m
3
ha"'yr"'  in southern Finland and  0.7  -  1.3  m

3
ha"

I

yr"
1
 in 

northern Finland. 
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Stand  3 was composed  of a low number of small trees  (Fig.  2b)  and was  clearly  
2 1 

understocked  with respect  to  both stand basal  area  and stem number (5.9  m ha" ,  1200 

ha" 1).  Fifteen years  after improvement  ditching,  only  the combination treatment  had 
increased  stand volume considerably:  21.7 and 14.5 m

3ha"'  in southern and northern 
Finland,  respectively  (see  Fig.  6). Complementary  ditching  produced  4.7 and 7.0  m

3ha''  
higher  volumes than were  produced  in the non-ditched stand,  while the effect of ditch 

cleaning  was  insignificant.  The increases  in the annual growth  for  complementary  ditching  
and the  combination treatment, respectively,  were  0.5  and 1.5  m

3
ha'

I

yr"
1
 in southern 

Finland and  0.3  and 1.0 m3ha"'yr"'  in northern Finland. 

In all simulations,  the differences in stand volumes  did  not  become apparent until 5  years 

had  passed  after ditching.  This  was due to  the nonlinear growth  responses.  Assuming  that 

similar conditions prevail, the differences in volumes  among treatments  can  be  expected  

to increase  in the future in all stands. 

5.  Discussion  

51. The quality  of the data 

The quality  of the data can be judged  according  to two  criteria: 1) how  well the data 

represent the population  of  trees  and  stands  to  which the models should be  applied,  and  2)  

how well  the essential features and processes  in growth  dynamics  can be  described on  the 

basis  of measurements  made in the field. Because generally  applicable  models were 

intended, the growth dynamics  had to be described with common and easily  measurable 

variables. 

Aiming  at valid and unbiased models, an objective  random sample  representing  drained 

peatland  stands all over the country  was used as  the data  in studies I and 11. Actually  these 

were the only  data covering  the whole country.  Even though  the data sets  were  large  and 

represented  different regions,  they  were  not  ideal  for modelling  purposes.  Because  of  the 
concentration of practical  forest drainage in the  1960 s  and  19705,  most stands in the 

sample  were  composed  of small-sized trees  on the average:  in studies I  and 11, more  than 

90 % of the trees were  under 20 cm in diameter. Especially  in the NFIB data, the fixed  size 

of the sample  plot, irrespective  of stand density, produced  numerous small  trees in 

recently  drained and dense stands, but  only  a  few trees  in more advanced stands. Problems 

were encountered in model construction when the growth or  height of large  trees was  

predicted.  Because the poorest sites or  stands that were in unsatisfactory  silvicultural 

condition were  lacking  from the SINKA data,  overestimates  concerning  growth  may occur 
in such sites  and stands. In general,  these sites  may be unsuitable for timber production, 

and their importance  may thus be only  marginal.  

In study  HI,  data  from experimental  stands  were  used. The trees in these data  were  mainly  

small as well, but more evenly distributed over the diameter range. The problems  were 
related to the short observation  period,  the experimental  design  and the distribution of the 

trees into site types.  The trees in the control plots could not  be considered as  a basis for 

comparison,  because  they  showed a slight response to the ditching of the other plots.  
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Because  only  nine stands  located on  poor  sites  were represented,  the effect  of site  quality  

on  the response  could not be  properly  studied. 

In study  I,  the effect of drainage  treatment  was  expressed  in a  simple  way  on the basis  of  

the differences in drainage  ages  among the  stands.  The method was  rather  imprecise,  and 

it  was  not  possible  to  account  for  all  effects  of  the drainage  treatment.  In order  to  obtain a  

better view of the temporal growth  dynamics,  the age of  drainage  should  have been  

determined more accurately  (e.g., in 5-year categories) for the whole data. 

Correspondingly,  any  thinnings  which had been  carried  out  in the previous  15 years 

should have  been dated in order to  better cover  the  growth  response period.  In study  m,  

the actual  time-series permitted  more effective modelling  of  the growth  response to 

improvement  ditching  with common stand and tree  attributes. 

In order to avoid overestimates in basal area growth  models (I) in non-fertilized stands,  

the effect of fertilization on growth  was  estimated in the modelling  data and correction 

multipliers  were  calculated. Although  biased results  may  have been  obtained for single  

stands,  it  was  considered the only alternative, because  fertilization has been widely  

applied  to  drained peatlands  during  the past  decades,  and it  was  not  possible  to  omit  the 

fertilized stands from the modelling  data. 

52. Site factors  in basic  growth  equations  

Site fertility  causes  between-stand variation in  growth  rate  and pattern.  In  Finland,  ground  

vegetation  has  generally  been used as  an indicator  of site  quality.  Drained peatlands  are  

complicated  objects  to classify  on  the basis  of ground  vegetation,  because their  

composition  is  dependent  on  both the site  moisture condition and  the nutrition. In  study  I,  

an assumption  was  made that site quality  referred to  nutrition, and the differences in 

growth  due to varying  site  moisture following  drainage  were expressed  as a  function of  

drainage  age. 

It has been shown that the botanical classification systems of undrained peatland  sites 

(Cajander  1913, Heikurainen 1959) explain  tree  growth  poorly  prior to drainage  

(Heikurainen  1971, Gustavsen  and Päivänen 1986),  while differences in growth  can  be 

found after drainage  (Heikurainen  1959,  Hänell 1984).  However, systems  which include 

numerous site types  do  not  provide  a  good  basis  for  classifying  sites  in terms of  post  

drainage  timber productivity.  Hänell (1984)  distinguished  eight  site  types that showed 

differences in post-drainage  timber yield.  Laine (1989)  has  proposed  a  scheme of  seven  
drained peatland  site types, in which differences in moisture were  not  considered (c.f.  
Sarasto  1957). 

The yield  classes  defined in study  I on  the basis  of  Huikari's  (1952, 1974) site types  were  
different for each  tree  species.  For pine and birch,  the better average  growth in spruce 

mires compared  to that in pine  mires could be explained  by  the ecological  differences 
between these main site  types (Eurola  and Huttunen 1990, Eurola et al. 1995).  In study  I, 

Laine's (1989)  drained peatland  site types did not  show clear differences in growth,  which 

may be partly  due to the inaccurate definition of the  types based on the information 

provided  by the  data. However,  several  yield classes  formed groups that corresponded  

closely  to Laine's (1989)  drained peatland  site types.  The  yield classes  appeared  to be 
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most important  in explaining  the variation in the growth of birch due to varying  site 

quality. 

When sites  were defined for each tree  species,  the classification had the advantage  of 

accounting  most  flexibly  for  the variation in growth:  e.g.,  a  yield  class  for pine  might  

contain two  yield  classes  for birch,  thus allowing  a  better adjustment  of  the growth  of  

birch.  However,  the disadvantage  of the method was  that  the growth  of  different species  
could not  be compared  within the yield  classes.  

The average temperature sum  is  commonly  used  to describe the effect of  geographical  
variation on tree growth because  it summarizes the effect  of latitude and elevation. 

However, either of  these attributes may have additional effects  on tree  growth  (Hänell  

1984).  The effect  of temperature  sum on growth  was  different for different species  in 

study  I. This may be due to the physiological  differences between the coniferous and 

deciduous species  and subsequent  differences in the determination of growth. Huikari et 
al. (1967)  used the length  of the thermic growing season  (the  number of days  when 

temperature exceeded +5  °C)  to  describe the effect of geographical  location on  growth.  

Increasing  peat  thickness  decreased the growth  of  pine  in study  EI.  Shallow peat  (<0.5  m) 

has  been shown to  increase  tree  growth  (Hänell  1984,  see  also  Payandeh  1973).  Huikari et 

al. (1967)  concluded that, in general,  stand growth was lower in sites  where peat  was 
thick. Hänell (1984)  and Payandeh  (1973)  also used the degree of humification of the 

surface  peat  to  explain  stand growth.  Peat properties  were  not  determined in the data sets  

used in studies I-111.  

The growth of pine  was  lower with  wide ditch spacing  if improvement  ditching  was  not  

done (III). In the NFIB  data,  ditch spacing  was  not  recorded,  and the variable was  not used 
in study I.  According  to  Seppälä  (1972),  increasing  ditch spacing  decreases stand growth,  
and  the effect  is more evident the poorer the site.  He  also  found regional  differences due 
to  variation in large  scale  topography.  However,  Heikurainen (1980)  concluded that ditch 

spacing  has  no  effect  on  stand volumes  or  growth.  The effect  of  ditch spacing  is  important  
in areas where regular  ditch  spacing  has been established. Even in areas  where ditches are 

set  up irregularly,  the ditch spacing  or  distance to  the ditch may  influence growth,  but  the 
effect becomes more complicated  to determine (Payandeh  1973). 

Site moisture,  as  indicated by  the drainage  age, was  the most  important growth  regulator  
in recently  drained peatlands  (those  drained less  than 15  yrs earlier). In areas drained 

decades ago, the site moisture condition influences tree  growth too, but  the growth is 

mainly  determined by  other factors  than the drainage  age. The effect  of  stand stocking,  site 

quality, previous  management measures, and intensity  of the  original  drainage  (ditch  

spacing  and  ditch  depth)  may  become more  important.  The  need for  improvement  ditching  
was used as a  dummy  variable in the basal area growth models (I), and it decreased 

growth in stands where poor  drainage condition at present was  noticed (see  Payandeh  

1973). The variable reflected the current  properties  of the  site  and was  not  expressed  as  a 

function of time,  although  it has a temporal  aspect.  Stand growth  rate  can be adjusted  in  
simulations if  the information collected in the field suggests  that site drainage  is  in poor  

condition;  and  later,  if  improvement  ditching  is  carried out,  it  is  possible  to  account  for  its  
effect.  However, when long-term  stand simulations are  done, the time when improvement  

ditching  should be  carried out  cannot  be  predicted  with the models.  
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53. Tree vigor  and competition  in basic  growth  equations  

Because  the  post-drainage  succession  generally  initiates  from stands  growing  in pristine  

peatland  sites,  the particular  properties of  the stands  influence tree  growth  after drainage.  
In pristine  peatland  stands,  uneven-aged  stand structure,  as  indicated by  a reversed  J  

shaped  diameter-distribution of the trees, is  prevalent  (Heikurainen  1971, Gustavsen  and 

Päivänen 1986). It  has been suggested  that  this is  due to  the high  potential  of moist peat  to 

regenerate, but the low  capability  of  undrained sites  to  support further growth of seedlings 

and saplings.  Because grown-up trees  are  located in the least  wet  sites,  their spatial  
distribution is  uneven,  and the stands  are  thus  more or  less  understocked. 

In general,  tree growth  is  dependent  on  age,  and  tree  size  is  thus  a  function of  age. Due to 

this,  tree  growth  is  usually  expressed  as  a function of  tree diameter in growth models 

(Vanclay  1994).  The correlation between tree  age and size is  not  so  good  for trees growing  

in drained peatlands  because some of the trees  were  already  growing  in the site, for a  

varying  number of years, before the drainage  (Seppälä  1969).  There was great variation  in 

the relationship  between growth  and diameter in studies I and HI.  Both tree age  and 

drainage  age  have been used to  better describe tree  vigor  in growth  models (Hänell  1984,  
Miina 1994), but these variables have limited use  in predictions  because the age is  

generally  not  determined for all trees  in forest inventories. The characteristics  of  the tree  
crown could be  used to  better describe the growing  potential  of an individual tree  in 

drained peatland  sites  (Payandeh  1973). It  is  presumed that,  e.g.,  crown  ratio could  be 

predicted  for all trees  (Hynynen  1995  a).  

Stand age, as  determined from the dominant trees,  has  been used to  explain  stand  growth  
after drainage  (Payandeh  1973). However,  the mean age of the dominant trees  may not  be 

a good  indicator of the average growth  potential  of an uneven-sized stand. Huikari  et al. 

(1967)  used the so-called  'economic age', which was calculated by  correcting  the 

biological  age downwards,  to explain  stand  growth.  No information on tree  ages  was  
available in this study.  

When the average growth,  was  expressed  as a function of tree  diameter, spruce showed 

lower growth rates,  when small,  than birch and  pine  (I).  Subsequently,  large  spruces  grew 
better than birches and pines  of similar  size.  This was  in accordance with the differences 

in the growth  dynamics among these species:  pine  and birch grow fast  when  small,  while 

spruce may show good growth  when large,  too  (Mielikäinen  1985). To some extent, the 

lower growth  of  small spruces  was also due to the structure  of the data: they  were  growing  

in more stocked stands on the average, and their growth  was thus limited by  competition  

from larger trees.  

The basal area of the trees larger  than the target tree  (BAL)  allowed higher  growth for 

trees  that were  in a  favourable competitive  position:  i.e.,  it  diversified the size  distribution 

within a  stand as a  function of  competition.  The nonlinear relationship  suggested  that  co  
dominant and intermediate trees were only  slightly  affected, while the growth of small 

trees  decreased rapidly  as  competition  increased. This was  interpreted as  a  consequence of 
the uneven-sized structure  and low stocking  found in drained peatland  stands  (Hökkä  and 
Laine 1988). The low  inter-tree competition  in uneven-sized stands is  due to the fact  that 
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the largest  trees  occur  one by one with a low total number per hectare. They  do not  

compose a uniform canopy layer, which could affect the growth  of smaller trees 

considerably.  As  an increasing  number of  trees  formed a  more even  canopy layer,  BAL 

increased,  and the decreasing  effect on  growth  became  more apparent. 

Stand basal  area  has  commonly  been used as  a  measure of  competition  at stand (or  plot)  
level (Hänell  1984,  Miina 1994,  Penner et al. 1995).  The  growth  of pine was  lower in 

stands where the basal area  was  high  (I  and III), while the basal area  appeared  not  to affect 

the growth  of birch and spruce  in study I.  The growth  of  spruce was  limited by  the large  
diameter of  the tree  of median basal  area  (I).  These results  raise  several  relevant points.  

First,  it does not  seem realistic  that the growth  of birch would not be limited by  the  

increasing  site  occupancy.  However, the growth of  young pubescent  birch trees  has been  
shown not  to  be limited by  high  density  (Niemistö  1991),  probably  because  of  their good  
tolerance of shade (Ferm 1990). In older stands, competition  decreased growth, as  

indicated by  the response of birch to  the thinning treatment  (Niemistö  1991). While the  

data mostly originated  from young stands,  competition  did  not  yet  show a significant  

decreasing  effect  on growth.  Another important  point  is  the dependence  between site 

drainage  and stand stocking  in  drained peatlands.  As  an effective  transpirator,  birch may  

compensate for poor drainage  conditions with a  high  transpiration  rate in  a  dense stand. 

Consequently,  growing  conditions generally  become better the denser the stand is (see  

Penner et al. 1995).  Because the data were  a sample  of practical  forest drainage  areas,  

which,  on the average, were  not  in optimal state with  respect  to site  moisture,  the 
interaction between density  and  site  drainage  on  growth  may  have been important. In well  
drained areas,  the negative  effect  of  competition  could be  more apparent. A third  point  is  

that drained peatland stands are  generally  understocked,  due to  the fact that pristine  
peatland  stands are  generally  initially sparse. Considerable ingrowth  takes place after 

drainage  (Hökkä  and  Laine  1988),  suggesting  that competition  may  not  limit tree  growth.  

Even in older drainage  areas,  self-thinning  due to excess  density,  may be  insignificant  
(Miina  and Pukkala 1995)  and the basal area  growth  of  single  trees  may  still increase  

(Seppälä  1969).  Nevertheless,  the lack  of a  stand-level competition  factor may lead to  

overestimates when the growth  of  dense advanced birch stands is  predicted.  For large  
birches,  gradually  decreasing  growth  due to  increasing  tree  basal area  was  the only  effect  

limiting tree  growth. 

Thinnings carried out  during the past  5  years increased the growth  of  all tree  species  
studied (I).  For  pine,  the response  to  thinning  was  not  limited to  the first  5-yr  period  after 
the treatment, because lower competition  due to the decreased stand  basal area  permits  

higher tree  growth  for  a  longer  time. For  birch,  the thinning  response  was  limited to  the 

first  5-yr  period.  For  spruce, the decreasing  effect of larger  median diameter on tree  

growth  partly  compensated  for the effect  of  thinning  from below, because  in thinnings  
median diameter increases,  which,  in turn, decreases  tree  growth  after the treatment.  

Because thinning  decreases interception  and transpiration,  thus increasing  site moisture 
(Päivänen  1982),  the actual  growth  response  may  be less  than what could be expected  on 
the basis of decreased competition.  In these data, the growth response may  be 

overestimated,  because  stands  growing better initially  may  have been  exposed  to  thinnings  
more often than other stands. Furthermore,  the response may also be partly  due to 

improvement ditching,  which is  generally  carried out  simultaneously  with thinning.  

Altogether,  the thinning response should also be studied in more detail in thinning  

experiments  (see Hökkä  et al. 1996). 



31 

The growth of  birch and spruce was  higher  in mixed than in pure stands,  suggesting  that  
both species  benefit from competition  from another  species  (I).  The  results  may  partly  
reflect the effect  of site  on growth,  because pure  birch  stands  tend be found  in sites  that  
are  problematic  in terms of nutrition. Similarly, in  spruce mires, pure spruce stands  are 

common in less fertile sites,  while the proportion  of birch is greater in  better sites 

(Gustavsen  and Päivänen 1986).  According  to  Hanell (1984),  the stand basal  area  growth  

was  higher  in stands where the  combined proportion  of  spruce and birch was  higher.  

Huikari et al. (1967)  concluded that the higher  proportion  of birch of the total volume 

decreased the stand volume growth  in spruce mires in northern Finland. In mineral soil 

stands,  Mielikäinen (1985) observed that the  growth  of  pubescent  birch decreased as the 

proportion  of spruce  increased,  while the proportion  of  birch  did not  influence the growth  
of spruce. 

54. Site  factors  in predicting  the growth  responses 

The observed differences in growth among the age categories  describing the response to 

drainage  were  assumed  to  be due to  the temporal  changes  in site  moisture (I).  Digging  the 

ditches causes  an immediate lowering  of the groundwater  table and a rather quick 

subsidence of  the surface  peat  (Hillman  1997).  Soil aeration  is improved,  which increases 
microbial activity  (Lieffers 1988) and the subsequent  growth of tree  roots and rooting 

depths (Paavilainen  1966, Laiho and Finer 1996). Although  most of the change  in the 

water  level draw-down and  peat  subsidence takes  place  within a  few  years  after drainage, 
the diameter growth response of trees shows an increasing  trend for a  much longer time: 

i.e.,  10 -  15 and 15 -  25  years  for Scots  pine  and Norway  spruce, respectively  (Seppälä  

1969),  and 13-19 years for black  spruce (Dang  and Lieffers 1989). 

In general,  the temporal  changes  in growth  obtained in study  I  were  in  accordance with the 
results given  by  Seppälä  (1969).  Spruce  showed a  clearly  lower growth rate  only  for  the 

youngest drainage  age class,  which corresponded  to  the slow  response  of  spruce  (Seppälä  

1969),  while the insignificant  differences among the other age categories  may  have  been 

due to  insufficient data. For  pine,  the distribution of  the basal  area  growth  response  over  
time was  more  similar  to  the radial growth  response  given  by  Seppälä  (1969,  1976)  than it 

was to Seppälä's basal area growth. For birch, the temporal  response has not been 

described earlier. Seppälä's  (1969)  data showed continuously  increasing  basal  area  growth  

during the whole 50-year  study  period  for both spruce  and  pine.  This may  be  explained  by  
the concentration of  the data  in well-drained sites.  In a  random sample  of  drained peatland  

stands,  the deterioration of the drainage network is expected  to  become  visible in tree  

growth 15-20 years  after drainage of a pristine peatland  (Heikurainen  1980). The 

temporal  differences in stand-level growth  in this study  were  also similar to those  obtained 

by  Keltikangas  et al. (1986):  with a given stand volume and site type, the volume growth 

was  generally  lowest in sites  drained less  than 10 yrs  ago and highest in sites  drained 10 - 

20 yrs  ago. In areas  drained more than  20 yrs  ago, stand volume growth  gradually  
decreased as  drainage  age  increased.  

The most distinct changes  in growth  rate  take  place during  the first  15 yrs  after drainage  

(Seppälä  1969).  It is  probable  that the growth  of the first  two five-year  periods  was  
described reliably, especially  in the growth models  for pine  and birch (I). After the 10th 
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year, a 15-yr period  was  used because the  NFIB data  did  not  permit  more detailed 
classification. The growth  rate  of  this  period  was  the highest,  which was  in accordance 

with  the lag  between maximum diameter growth  and  corresponding  basal  area  growth,  but  

it  is probable  that there is  temporal  variation within the period  which the models are  

incapable  of describing.  

It can  be  assumed that the mechanism causing  the growth  response to improvement  

ditching  is  similar to that causing  the response  to first-time drainage,  because the site 

water  regime  and subsequent  soil aeration are affected in both  treatments.  Trees are  

probably  in better shape  to respond  to improvement  ditching  than to the drainage  of a  

pristine  peatland.  In the data  for  basal area growth  models (I),  the effect  of  ditch network 
maintenance treatments  on  tree  growth  proved  to  be  insignificant.  In study  HI,  the growth  
of pine showed  a response to different improvement  ditching  treatments, and it  was  

possible  to express  the growth  increase as  a continuous function of time. There were  

differences  between the treatments  in  the  pattern  and  magnitude  of  the response, the most  
distinct  growth  impact  being  connected to  the heaviest treatment.  The negative  effect of  

wider ditch spacing  on the response  to ditch cleaning  showed that  in initially poorly  
drained sites  trees  responded  less.  

Even  though  it has been suggested  that the growth response to forest drainage is 

dependent  on site quality (Seppälä  1969) and geographical location (Heikurainen  and 

Kuusela 1962, Laine and Starr 1979), these effects were not  accounted for in study  I, 

because  it was  not  possible  to express  the temporal response as  a continuous function of 

time for all data. Furthermore, site  quality was described with categorical  variables. 

Including  interactive effects  would  have resulted in more complicated  models: several 
new  variables referring  to  each age category would have to  be  defined and the response 

would have  to  be  described for  each  class.  In  the model  for  improvement  ditching  (III), the 
variables related to  site  quality  and geographical  location showed erratic  correlations due 
to  the small sample,  suggesting  that it was  not  possible  to estimate their effect on the 

response correctly.  

55. Tree vigor  and competition  in predicting  growth  response 

It was not  possible  to determine the  effect  of  tree  vigor  or  competition  on the growth  

response  to  the drainage of  a  pristine peatland  due to the insufficient data in study  I. In  

study  HI,  it was  shown that the temporal growth  response  to  improvement  ditching  was  
dependent  on tree  diameter and stand basal area.  Within a  plot,  the response  effect  was  

concentrated in  large trees,  which increased their growth  most.  Large  trees  are generally  
located  close to the old ditches and have the highest  growth  potential  due to their good  
competitive  status.  The combination treatment  resulted in the most  equal  response  of  trees  
of  all sizes,  which can  be  explained  by  the spatially  even  treatment  that improved  the 

growth  of  both  large  trees  and small trees  located close to the new ditches.  

Plot basal area  influenced the growth  response to ditch cleaning  and complementary  
ditching  treatments positively.  This  result  may  be related to  the  interrelationships  among  
the properties  of the peat, site drainage,  stand stocking,  and growth  in  drained peatland  
sites.  According  to  Päivänen (1982),  the effect  of  stand volume on the groundwater  table 

depth is  greater the deeper  the groundwater  table initially is.  Greater changes  are due to 
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the higher  groundwater  coefficient in deeper  peat layers (Heikurainen  1964). Because  the 

groundwater  table is  influenced by  the tree  stand through  interception  and transpiration,  
stands  with higher  basal areas are expected  to have  lower groundwater  tables (Laine  

1986).  Thus,  it can be  assumed that the effect  of ditch cleaning  or  complementary  ditching 

on  the groundwater  table is  greater  in areas  where the groundwater  table has  been initially  

deeper.  With improved  growth  the stands  are  able to  better control  the groundwater  table 

(Maki  1971, Duncan and Terry 1983, Laine 1986, Penner  et al. 1995). In poorly  stocked 

stands  with  a  higher  initial groundwater  table,  ditch cleaning  and  complementary  ditching  

do  not  change  the ground  water table considerably,  and  the sparse  stand is  not  capable  of 

contributing  to the drainage  significantly.  Consequently,  the effect  of  ditching  may be 

limited to  the proximity of the ditches, and the  response may remain lower. In 
combination treatment  areas,  sparsely  forested stands  also  responded  because  the intensive 
treatment  caused a considerable change  in site drainage,  as  indicated by the changes  in 

groundwater  table levels  (Ahti  and  Päivänen 1997).  In order to  better explain  the variation 
in the growth  response, data from water  table fluctuations before and after treatment  
should be studied. 

Some of the effect  could be explained  by site quality: in well-stocked stands  the site 

quality  may  also  be  better thus  permitting  a  higher  response. All in all,  the growth  model 

allowed stands with higher  initial basal area  to respond  equally well to both 

complementary  ditching  and to the combination treatment. 

56. Annual variation in growth  of  pine  

In constructing  the basal area  growth  models (I), the effect of annual climatic variation on  

growth was assumed to be insignificant, because  the 5-year  growth periods  were 

distributed over ten years. However, a five-year  period is so short that several 

exceptionally  good  or  poor growth  years may  have influenced the average growth.  
Information about the effect  of  annual climatic variation on  growth  of pine  in drained 

peatland  sites in the years  1979 -  1989 was obtained from the increment core data 

analyzed  in study  HI. The data  were  concentrated only  in nine locations, but they  

permitted  some interpretations  of  the results. The estimated index series  was  compared  to 

two  independent  indices  defined from NFIB pine  sample trees  growing in both pristine  

peatland  sites  and mineral soil  sites  in middle parts  of  Finland (Henttonen,  unpublished).  

The indices obtained from study  111  (the  growth  model in Table 3 in study  HI) showed 

growth fluctuations resembling  both mineral soil indices and undrained peatland  indices 

(Fig.  7).  During  the years 1979 -  1983,  the pattern  of  growth  of pine  in all these sites  was  

rather similar, but  the level of growth  in drained peatlands  was more similar to that 

observed in mineral soil sites.  During  the  years 1982 -  1989, tree  growth  in drained mires 

followed a pattern that  was closer to that  of pristine  peatlands,  and in  1988 and 1989 the 

growth  index completely  differed from that observed  in mineral soil sites. In  general,  the  

variation over  the years was greatest in pristine peatlands.  It can be assumed  that the 

average growth during the 5-year  period  that covered the years 1979 -  1983 was lower 

than the long-term average. Because the NFIB  data were  measured in 1985 and 1990, the 

average growth  is  probably  close to  a  long-term  average.  This holds true also for  part  of  
the SINKA data, but the index series was  too  short to  cover  the whole period  when the 
SINKA data  were measured (1984-1994). 
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Figure  7. Growth indices  
obtained  in study 111 for  

pine growing in drained  

peatland sites  (dp), and  
two  independent indices  

defined from NFI8 sample 

pine trees  growing in both  

pristine  peatlands  (pp)  and  
mineral  soil  sites (ms) in  
the middle parts  of  Finland  

(Henttonen, unpublished). 

A detailed analysis  of  the climatic  parameters affecting  the growth  index in study  111 was  
not  carried out, but the lower growth in some exceptionally  poor years (e.g., 1985 and 

1987)  suggested  that cold and wet  growing  seasons  limited tree  growth on both pristine  
and  drained peatlands.  Joensuu (1980)  has  obtained rather  similar growth  indices for  pine  

growing in  drained peatland  sites  and those  growing  in mineral soil  sites  in middle parts 
of Finland. Dang  and  Lieffers (1989) assumed that  the same parameters are  important  in 

determining  growth  variations both  in drained and undrained peatland  sites. 

57. Height-diameter  models 

For  all species,  the shape  of the height-diameter curve  was  rather linear as  determined by  

low values  for the exponent c  (II), if compared  to  other studies (e.g., Lappi  1997).  The 

reason  for this was  assumed to  be  that  the structure of  stands growing  on  drained 

peatlands  is more uneven  than that of stands  growing  on mineral soil sites (Hökkä  and 

Laine 1988,  Hökkä  et  ai. 1991). Clumped  spatial  distribution of trees  permits large  
variation in tree  height.  Furthermore, inter-tree competition  does not  affect height  
distribution considerably  in low-stocked stands. The exponent  was  highest  for birch,  
which may  form denser and more even-aged  stands than  pine  or  spruce on drained 

peatlands  during the first  rotation (Saramäki  1977). 

For all three species,  the  height-diameter  curves  became more flat towards the north (see 

Korhonen 1993)  and  for  birch towards higher  elevations. Average  tree  height  increased as  

the plot  median diameter or  plot  basal  area  increased. The average size  of  the trees  (D gM) 
has also been shown to determine the shape  of the  diameter distribution in drained 

peatland stands (Hökkä  et ai. 1991).  Thinning  increased the intercept,  because the shortest 

trees of equal  diameter have the highest  probability  of being  removed in thinning  from 

below. The  level of the curve was  lower in ombrotrophic  and  eutrophic  sites, probably  due 
to the poorer stem form. The slope  of the average  height-diameter curve  changed  as the 

median diameter or basal area changed:  i.e., the  height of trees of the same diameter 

increased as  the average size  of  the trees  or  stand  stocking  increased. 
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Very  flat curves  were  obtained,  especially  for pine  and birch,  if both the slope  and 

intercept  of  the curve were  low,  as  determined by  low values of  stand attributes.  These 

curves referred to recently  drained, sparsely  forested mires in which the stand was 

composed  of trees  that were  growing  in the site  prior  to  drainage.  At  that stage,  generally  
the large trees  are  not  much taller  than the small ones due to  their stunted height  

development.  In pristine  peatlands,  it is  common that the dominant trees  may be more 

than a  hundred years old,  but  the dominant height  is  only  10 - 11 m (Gustavsen  and 

Päivänen 1986), suggesting  that trees increase their  diameter even though  the height  

development  has  ceased  (Heikurainen  and  Kuusela 1962).  

The property  of the height-diameter  models is  that the slope  is  predicted  standwise as  a  
function of  the average  size  of  the trees  and stand basal area.  This makes the models more 
flexible to fit a  variety  of stand structures, which is  useful in long-term  forecasts  when 

changes  in stand structure  are expected.  

58. Accuracy  of the equations  

In all models, trends between the mean residuals and different explanatory  variables were 

removed during  the model construction. The  performance  of  the models was  tested in the 

modelling data  by  estimating  the model bias as  the difference between the observed  and 

predicted  growth/height  at the original scale  of the response  variable. All basal area  

growth  models (I) appeared  to  produce  slight  overestimates  of  growth  on the average,  but 

the main problem  was  related to  the increasing  trend in the estimated bias  as  tree diameter 

exceeded 15 cm. This was most evident for spruce.  The result was similar both in the 

modelling  data  and in  independent  test  data. It was assumed that when the models were 

estimated with data sets  that  were  concentrated in small trees, the models would be biased 

for the larger  ones.  The estimated mean biases  of the  height-diameter  models in the 

modelling  data  were insignificant  on the average, but  the  models for  pine  and  birch also 

showed biased predictions  as  tree  diameter exceeded 20  cm.  

The biases may cause problems  in long-term simulations,  when trees eventually  become 

large. Because  the predicted  values are  used as  input  values to predict  future growth,  a 
small systematic  bias  in predictions  may  result  in a  considerable error  in,  e.g.,  a  100-year  
simulation period.  

One  possibility  to  reduce the trend  in bias  could be to  express  the tree-level variance as  a  
function of tree  diameter instead of using  a constant  value. This was  done in study 11, but 

the effect of this correction was only  marginal. In general,  the residual variances were 

fairly  large  for  the basal area  growth  models, resulting  in large correction terms for  the 

exponential  transformation (I).  The  estimated biases  in both modelling data and test  data 

suggested  that predictions  given by  the spruce basal area growth model should be 

corrected by  diameter classes  to avoid negatively  biased (too  high) growth  predictions  for  

trees  greater than 15 cm in diameter. 

In  order  to avoid unreliable predictions  in simulations,  the models were  calibrated with  the 

sample  tree data of NFIB  with respect to tree  diameter, geographical  location,  and site  

quality  before applying  them to the MELA growth  simulator. However, there remains  a 

need to update  both the growth  models and height-diameter  models when future 

inventories provide  more data about larger  trees. 
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The growth  model for improvement  ditching  showed no  trend in bias  as  a function of tree  

diameter (III). When average bias was  estimated in the modelling  data at stand level, the  

model appeared  to be unbiased. As  the stands were selected for the experimental  

purposes, the average growth  response  may  be  biased  for  all peatland  pine  stands  where 

improvement  ditchings  are  carried out. 

In describing  the growth response to drainage in specific  stands,  the basal area growth  

models are inaccurate, because variation in the response between trees (Heikurainen  and  

Kuusela 1962,  Seppälä  1969, Hänell 1984)  could not  be accounted for  (I).  In addition to 

drainage  age,  other  stand-level attributes,  such as site  quality  (Seppälä  1969),  have  been 

shown to  influence the response. Thus, single  stands  and  trees  may  show  deviations from  

the post-drainage  growth  pattern  predicted  by  the models. The  growth  dynamics  will  be 

correctly  described  only  for the mean of  a  greater  population  of drained peatland  stands. In 

this respect,  the growth  model for  improvement  ditching  is  more accurate.  

59. Stand dynamics  

591. Post-drainage  stand development  

In addition to  the growth  models  and  height-diameter  models,  the models for  self-thinning  
used in the MELA growth simulator also influenced the stand-level simulations. Because 

the simulated pine  and  birch  stands  were  generally  low-stocked,  the effect  of  self-thinning  

was  considerable only  when the development  of  the birch stand  in southern Finland was 

simulated. Due  to  the higher initial stocking  in the spruce stand,  self thinning  slowed the 

volume development  in  southern Finland. In general,  the predicted  rate of  self-thinning  

was  probably  too  high.  Self-thinning  models may not  act  properly  in drained peatland 

stands,  because of the wide range in tree  diameters and clumped  spatial distribution of 

trees.  However, without the self-thinning,  the growth  model may  result  in stocking  which 
is  too  high,  especially  for birch stands,  due to the lack  of  the stand-level competition  
factor in the model. 

In general,  a  slow  initial development  of stand  volume for all species  was  expected  after 

drainage.  This  could be  explained  by  the lower growth  of trees  during  the first  10 years,  as 

determined by  the growth  models, and by  the low  initial stocking  (the  trees  were  mainly  
small and the number of  stems was  low). Hänell (1984)  has  given similar results  from 
Sweden. At  stand level,  the higher  relative responses  of  pine  and birch,  compared  to  that 
of spruce, could be explained  by  the different growth dynamics  of the species  

(Mielikäinen  1985) and the greater  temporal  changes  in the growth of pine  and birch 

following  drainage  (I).  The volume  growth  of  spruce  was  initially  higher  due to  the greater 
stand volume. 

The development  of  the basal  area  growth  obtained in  this study  in southern Finland can 

be  compared  to  that presented  by  Hänell (1984)  for  the pine-dominated  tall-sedge  type  and 
the spruce-dominated  bilberry-horsetail type in unthinned stands in southern Sweden. For 

the pine  stand,  the post-drainage  behaviour of growth  was similar,  while in the spruce  

stand,  the basal  area  growth  curve  in this  study  showed a  heavier decrease 30 years  after 

drainage  due to the self-thinning.  Stand volumes achieved 40 years after drainage  were 

higher  for both pine  and spruce in this study  than  those obtained by  Hänell (1984).  
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The development  of volume growth of pine  and spruce stands as a function of stand 

volume can also  be compared  to the relative growth  rates  given  by  Keltikangas  et  al. 

(1986)  for  a  tall-sedge pine  fen and a  Vactinium myrtillus  spruce  swamp in middle parts  
of  Finland. The  pine  stand showed equal  growth  rates  until the stand volume exceeded 
150  m3

ha"
1 .  A lower growth  rate was  obtained for greater volumes in this  study.  For  the 

Vaccinium myrtillus  spruce swamp, the volume growth  as  a function of volume was  
similar in  both studies  up  to  200 m  ha"

1

,  but  for  greater  volumes growth was  lower  in  the 
present  study. 

The pine  and birch stands  showed rather  similar  development  of  stand volume following  

drainage.  The faster  development  of the birch stand can  be  explained  by  differences in site 

quality:  the yield  class  for  pine  also  included oligotrophic  sites, which were  missing  from 

the yield class  of birch. Furthermore,  the initial stand was slightly  denser for  birch. 

Keltikangas  and Seppälä (1977) have suggested  that pine  and birch grow equally  well in 

mesotrophic  and oligo-mesotrophic  drained peatland  sites  in Ostrobothnia,  while 
Saramäki  (1977)  concluded that the growth  of  pine  was  clearly  higher  than that of birch in 

equal  sites in northern Finland. More simulations should be done to  compare the 

development  of  these species  on  the basis  of  the developed  models. 

Even though  the difference in temperature  sums  used for southern and northern Finland 

was  not  considerable (150  dd°C),  the difference in stand volumes at the end of the 

simulation period was  almost  two-fold  for  pine  and birch.  Hänell (1988)  concluded that 

the difference in the average productivity  of a site during the post-drainage  rotation was 

generally  more than  three-fold within a much wider range (600  - 1600 dd°C) in 

temperature sum.  According  to  Hänell (1984),  the change  in site  productivity  as a  function 

of temperature sum which he presented  was  somewhat smaller  than that presented  earlier 

by  Heikurainen (1972).  Compared  to mineral soil sites, the variation in growth  as a 
function  of  temperature  sum  may  be greater  on drained peatlands  because  of  the higher  

humidity  in  the north,  which may  affect  tree  growth  on  peatlands  more  than the change  in 

temperature sum alone  would suggest.  

It  should  be  remembered that the results  were  based  on  simulations with one  sample  stand  
for  each  species,  and  different results would have  been  obtained with different initial stand  

conditions. 

592. Stand-level response to  improvement  ditching 

Because  the growth  response was  higher  the greater  the tree  diameter or  initial stand basal 

area, full-stocked stands composed  of large trees responded  most to  improvement  

ditching. If the stand was composed  of mainly small trees, the stand-level volume 

development  was  different, depending  on the method applied.  In an under-stocked stand, 

only  the combination treatment  gave a notable growth  response.  The average response was 

clearly  highest  for the combination treatment, but in stands  with a  high basal area 

composed  of  large  trees, complementary  ditching  occasionally  produced  even  higher  stand  

volumes than the combination treatment, which appeared  non-realistic. This was due to 

the unbalanced data and initial differences in the growth rates  of the trees  to which the 

different treatments  had been applied.  All these effects  could not  be accounted  for  in the 
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model construction and were  thus included in the  model parameters.  Consequently,  the  

model may give  too  high  a response to complementary  ditching  in extreme circumstances. 

The  model assumes  higher  response in stands with high  basal  area. This may be the case 

when average low-stocked stands are considered, but in well-stocked stands  the 

groundwater table is  kept  down as  a result of interception  and transpiration  (Maki  1971, 

Duncan and  Terry 1983,  Laine 1986).  Thus,  a  limit  could be  found  where the effect  of  any  

ditching treatment on growth remains marginal  because these kinds of stands are not  

actually suffering  from excess  water. It is also realistic to assume that improvement  

ditching is not  needed in all drained peatland  stands before the final cutting and 

regeneration.  However, Laine (1986) has shown that the relationship  between the 

groundwater table and stand growth  rate  is  linear as  far down as  a  depth  of 70 cm. 

It was  possible  to determine the effect of different improvement  ditching  methods on 

stand growth with the model,  but reliable comparisons  to the non-treated stands  could  not  

be made,  because  it was  not  possible  to determine the long-term behaviour of growth in 

the non-treated stands. It is  probable  that a  decreasing  temporal trend is  needed to  describe 

the effect of continuously  impaired  site conditions on tree  growth, especially  in low  

stocked stands. Furthermore,  mortality may  increase in such conditions. The  stand level 

volume development  of non-ditched stands may  be much poorer than that assumed here. 

The results  suggested  that when improvement  ditching  is  planned,  the method applied  can 

be selected on the basis of stand conditions: the additional growth obtained from the 

combination treatment  compared  to complementary  ditching in stands where basal area 

exceeds  a  certain limit (e.g.,  10 -  12 m
2
ha

_1
) is only  marginal.  It would be more 

economical to  carry  out  complementary  ditching  or, if the original  ditch spacing  is  narrow,  

ditch cleaning.  Correspondingly,  in a poorly  stocked stand, only the combination 

treatment can give a notable response. However,  this kind of measure is the most 

expensive  and may not  be economical in sites  with low initial stand volumes. 

Because the experimental  stands  in the data were low-stocked,  no  stand treatments  were 

carried out. In practice, improvement  ditching is generally  connected with  commercial 

thinning,  because  transpiration  and  interception  decrease abruptly  due to  the reduced stand 
basal  area  which results from thinning,  and  a  subsequent  increase  in the groundwater  table 

may  follow (Päivänen  1982).  Furthermore,  old ditches may become blocked  in timber 

transportation. To compensate for the negative  effects of these conditions on stand 

development, improvement  ditching  needs to be carried out.  The combined effect of these 

measures on tree  growth  may  not be the same as the sum of the separate effects. 

6. Conclusions  and prospects  for  future  research  

By  constructing  growth models, the effect of different growth factors  -  e.g., site quality,  

inter-tree competition,  tree  vigor, and ditching  treatment  -  on individual-tree growth  in 
drained peatland  sites  in Finland was  described. Using the models,  it was  possible  to 

predict  the development  of  pine,  spruce,  and birch in drained peatland  sites  with growth  
simulators. The models were  fairly  similar to  those derived for  the various tree  species  

growing in  mineral soil sites. It was  concluded that the uneven size  distribution of trees 

(Hanell  1984, Hökkä and Laine 1988),  the low  stocking  of  stands  on  the average, and the 

temporal  variation in growth (Seppälä  1969, Hänell 1984) due to drainage treatments  
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(both  the drainage  of  pristine  peatland  stands  and improvement  ditching carried out  in 
drained peatland  stands),  were  important factors  in  determining  tree  growth.  These are the 
main features that  distinguish stands  growing  in drained peatland  sites  from those growing  
in mineral soil sites. 

Due to the uneven size  distribution of trees, the effect  of inter-tree competition  on 
individual-tree growth was  described with  a nonlinear relationship  in the basal area  
growth  models (I). In the height-diameter models (II), relatively  linear curves  were  
obtained due to the  low competition  and subsequent  great within-stand variation in tree  

height  as  a  function of tree  diameter. In  the basal area  growth  models,  the average growth  

at stand level was  expressed  as  a  function of stand drainage  age as  described by  the age 
classes. The temporal  variation in growth  was  in accordance with the results  given  by  

Seppälä (1969).  With the height-diameter  models,  different curves  were  obtained for 

recently  drained stands  composed  mainly  of  small trees  and  those drained a  long  time ago 

and  composed  of  large  trees.  Improvement  ditching influenced the annual diameter growth  
as a  function of  the ditching  method applied,  the time elapsed  since treatment, the initial 
tree  size,  and the initial stand stocking  (III). 

The stand-level  simulations showed  that stand volume increased slowly  for all species  

during the first  10-20 years  after the drainage  of  a  pristine  peatland  site,  while more  rapid  
volume development  occurred between 20 -  40 years  after drainage.  In the pine  stand,  the 
increase in stand volumes  during  the 50-year  period following  drainage  was almost two  
times greater in southern (1200  dd°C) than  in northern (1050  dd°C)  Finland. Pine and 

birch stands showed a  fairly similar  pattern of  post-drainage  development.  The relative 

growth increase of  the spruce  stand was  lower  than  that of  the pine  and  birch stands.  The 

volume growth  peaked  between 20-30 years after drainage  except  in the birch  stand in 
northern Finland. 

The stand-level response to  improvement  ditching was highest  in well-stocked stands 

composed  of mainly  large  trees. In an understocked stand with  small trees,  only  the 
combination of ditch cleaning  and complementary  ditching caused an increase in stand 

volume growth. 

Even though  the models gave a  basis for predicting  the development  of  pine,  birch and 

spruce following drainage  and  the effect  of  stand management measures like thinning  and 

improvement  ditching  on  the growth  of pine,  they  did not  form a  comprehensive  system  
for  predicting  tree  growth  in drained peatland  sites.  Ingrowth  and self-thinning  influence 
stand-level growth  dynamics,  but were not  specifically  described for drained peatlands.  

Ingrowth  following  drainage  may be substantial in understocked stands with  easily  

regenerable  sites  (Hänell  1984,  Hökkä  and Laine 1988),  and,  if ignored,  underestimated 
stand-level growth may be obtained. However,  the importance  of ingrowth  in predictions  

is  decreasing,  because  the drainage  of pristine peatlands  has  practically  ceased, and there 

is  no  need to predict  the growth  of  newly  ditched peatlands.  Specific  self-thinning  models 

(Hynynen  1993)  are applied  in  growth  simulators to  prevent  non-realistic development  of  

stand stocking  (Ojansuu  et ai. 1991).  The self-thinning  models derived for even-aged  

stands growing  in mineral soil sites may be incapable of predicting  self-thinning  in 
drained peatland  stands,  which are  characterized by  uneven  size  distribution and clumped  

spatial  distribution of  trees.  Furthermore,  it is  probable  that  in drained peatlands  self  

thinning,  or  mortality, is  to some extent a  function of  site drainage, which, in turn, is  of no 
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importance in models derived for mineral soil sites.  Thus, models predicting  self-thinning  

in drained peatland  sites  should be  capable  of  accounting  for  these aspects.  

The  modelling  of  management options  and their effect  on growth  could  be improved.  

While thinning  has been observed to increase growth  for  10 -  15 yrs  following  the 

treatment (Hynynen  1995b),  there is  a  need to  develop  a  more complete  model to  predict  

the thinning  response in drained peatland  stands.  For the  purposes of long-term  

simulations,  a  model should be developed  to predict  when and where improvement  

ditching is  needed.  Developing  a  system  to  describe site  quality  with a  continuous variable 

instead of categorical  ones would permit more efficient use of site quality in growth 

modelling (see  Ojansuu  1996).  The growth  response  to  improvement  ditching should be 

evaluated during a longer  observation period  and by  collecting  information from more 
fertile sites  and from birch and spruce.  Furthermore,  the combined effect  of  thinning  and 

improvement  ditching  needs to  be  described. 

When information on tree  growth  in drained peatland  sites is collected,  especially  for 

modelling purposes, some additional measurements  should be considered. The drainage 

age is  the most  important  variable in determining  the growth  of recently  drained stands.  
There are processes  in the soil (e.g.,  nutrition) that show  a correlation with the drainage 

age even in older drainage  areas and which may be important  for growth, too  (Kaunisto  

and Paavilainen 1988, Laiho 1997). Furthermore,  the timing of improvement  ditching  is 

most probably  a function of drainage  age. Consequently,  the  drainage  age should be 
determined more accurately  for all stands  (e.g., in  5-yr  classes  estimated on  the basis of  

increment cores).  Ditch spacing  is  important  in areas  where regular  spacing  is  established. 

It  partly  determines the method that should  be chosen if improvement  ditching  is  to be 
carried out, and it  is  also correlated with stand growth. 

The fact  that the data were  somewhat unbalanced with respect  to  regionality  and clearly  
unbalanced with respect  to tree  size  caused problems  in studies I and 11. In study  111 well  

stocked  stands  were  lacking.  Despite  the fact  that the proportion  of stands  with large  trees  
was  weighted  in the SINKA data,  large  trees  were  still  under-represented  in the modelling 
data. Thus,  there is a need to update  and validate the models when data from more 

advanced stands become available. In  data collection,  more stands and trees -  but fewer 

plots  within stands -  should  be measured,  because it has been shown that, in growth  

studies,  the variation between stands is  more important than the variation among plots  

within stands  (Penner  et  al. 1995).  And perhaps  the most  important  requirement  is  that in 
drained peatlands,  where considerable changes  in site  and  stand  conditions take  place  over  

time, several successive  measurements  of the same plots  and trees are  needed in order to 

obtain a  better understanding  of  growth  processes  even  though  it  will be  more  expensive.  
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Models for individual-tree basal area  growth were constructed for Scots pine  ( Pinus 

sylvestris  L.),  pubescent birch  (Betula pubescens Ehrh.)  and  Norway spruce ( Picea 

abies (L.)  Karst.)  growing  in  drained  pcatland stands.  The data consisted  of two  separate 
sets  of  permanent sample  plots  forming  a  large sample of  drained peatland stands  in 

Finland.  The  dependent variable in all models was  the 5-year  basal area  growth of  a tree.  

The  independent  tree-level  variables were  tree  dbh, tree  basal  area,  and  the sum  of  the  
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stand  basal  area,  the diameter of  the  tree of median  basal  area,  and  temperature sum. 

Categorical variables describing the  site  quality, as  well as  the condition  and  age  of 

drainage, were used.  Differences  in  tree growth were used  as criteria in  reclassifying  the  
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1  Introduction  

In Finland,  the area  of peatlands  and paludified  

forests drained for  forestry  up to 1991 was 6  
million ha (Aarne 1993).  In the beginning  of  the 

1980  s,  the percentage of the growing stock  and 

the total volume which was in  peatland  forests 

was 18 % and 22 %, respectively  (Paavilainen  

and  Tiihonen 1987).  The  proportions  are proba  
bly  increasing  because most drained peatland  

stands  are  about to reach or  have just  reached the 

commercial size.  Drained peatland  stands  differ 
from those growing  on mineral soils because  of 
the skewed age-  and size distributions and 

clumped  spatial  distribution of the  trees  (Hökkä 
and Laine 1988, Hökkä  et ai. 1991, Miina et ai. 

1991). Furthermore, drainage  causes  long-term 

changes  in site  properties.  Because these factors  

most probably influence tree  growth, specific  

growth  models taking  them into account  should 

be applied  when growth  predictions for drained 

peatlands  are  made. For the  purposes of timber 

management planning,  the need for  accurate  pre  
dictions of growth is evident because drained 

peatlands  represent such a large  proportion  of  

the total forest land. 

At  stand level,  post-drainage  growth  has  been 

examined in several Finnish studies since the 

1920  s  (Lukkala  1937,  Heikurainen 1959, Huika  

ri et ai. 1967, Heikurainen and Seppälä  1973, 

Laine and Starr 1979, Keltikangas  et ai. 1986, 

Penttilä 1990). Site quality indices in terms of 

the relative post-drainage  timber productivity  of 

peatland  site types  in different parts  of  the coun  

try  were  defined by  Heikurainen (1959).  A com  

mon method has been to evaluate the timber 

production  potential of different sites  on the ba  

sis  of  the relative growth  rate (growth  expressed  

as  a  function of  present  stand volume)  of  stands. 

Tree-level growth  analyses  have become more 

common  during the last decades. In Finland, 

Saramäki (1977)  constructed growth  and yield 
tables for pubescent  birch ( Betula pubescens  

Ehrh.)  stands growing  on drained peatlands  in 

northern Finland with stand-level  equations,  but 

also derived tree-level growth equations.  Sites 

were classified on  the basis of stand  dominant 

height  development.  In Sweden, Hänell (1984, 

1988) developed a  site type classification for 

peatlands  on the basis  of individual-tree basal 

area  growth models for Scots  pine  (Pinus sylves  

tris  L.), Norway  spruce (Picea abies (L.)  Karst.) 
and pubescent  birch (Betula  pubescens).  To ob  

tain the post-drainage  forest productivity  of the  

distinguished  sites,  stand-level equations  were 

developed  and used to simulate stand develop  

ment  after drainage.  In Canada, Payandeh  (1973)  
used  both tree- and stand-level approaches  when 

studying  the post-drainage  growth  of black  spruce 

{Picea  mariana (Mill.) 8.5.P.) stands. The pat  

tern  of response of annual tree  ring  growth of 

black  spruce  following  drainage  has  been ana  
lyzed by  Dang and Lieffers (1989).  In Finland, 

spatial  individual-tree growth models for Scots  

pine  growing  on drained peatland  have been  de  

veloped by Miina et ai. (1991),  Miina (1994,  

1996)  and Penner et ai. (1995). 

When growth  models  are  applied  to  forest man  

agement planning  systems  and used primarily 

for inventory  updating,  the models should meet  

specific  requirements  (Burkhart 1993). The in  

put variables should be common and easy  to 

measure. The models should describe growth  in 
a simple  and logical  way.  Furthermore, the mod  
els should be unbiased,  which requires that the 

modelling  data  be a representative  sample  of  the 

forests  where the models will be  applied.  Dis  

tance-independent  individual-tree growth mod  
els  are  most commonly  used. Most  forest man  

agement planning  systems  in Finland operate 
with the MELA growth  simulator (Siitonen et ai. 

1996). The growth  models in MELA for drained 

peatland  stands have been constructed using  in  

ventory data collected from drained peatlands  

(Keltikangas  et al. 1986). A common  basic  mod  

el is  applied  to stands  growing  in mineral soil 
sites  and peatlands,  but in the peatland  growth 

models, specific  parameters related to site  and 

its post-drainage  succession are incorporated 

(Ojansuu  et al. 1991). 

In this study,  individual-tree basal area  growth 

models for Scots pine,  Norway  spruce and  pu  

bescent  birch (hereafter  pine, spruce and birch,  

respectively)  were constructed  to substitute for 

the present models in MELA. Simultaneously,  

the present  peatland  site type classification was 

reformed with the aim  of  determining a reasona  

ble number of yield classes  that significantly  

differ from each other in terms of tree  growth. 
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2  Materials  

2.1 Modelling  Data 

The modelling  data consisted of two separate 

inventory  data sets covering  the  whole area  where 

forest drainage  has been applied in  practical  for  

estry  (Fig. la).  For  southern Finland and  south  
ern  parts  of  northern Finland,  the permanent  sam  

ple  plots  of the Bth National Forest  Inventory  

(NFI8)  were used. For northern Finland,  a spe  

cial set  of  permanent growth  plots  (SINKA)  was 
used (see  Penttilä and Honkanen 1986,  Mielikäi  

nen and Gustavsen 1993). 

The NFIB plots  were established in 1985 to 

produce  information concerning  changes  in the 

Finnish  forests. The remeasurement  was  carried 

out  in 1990. The plot  establishment is  based on  

systematic  sample  tracts. Each tract contains a 

cluster of 3 to 4 plots, and the distance between 

tracts is 16 km.  

The  SINKA plots  were  established in 1984-88 

in order to produce  data for stand- and  tree-level 

growth models for  drained peatlands  (Penttilä  

and Honkanen 1986). The first  remeasurement  

was  done in 1988-1994 following  a period  of 5 

growing seasons  on each plot. The plots  have 

been sampled  by  stratified systematic  sampling  
from those NFI7 plots  that were located on 

drained peatlands.  Sampling  units were stands 

that were  in satisfactory  silvicultural condition 

(i.e., not  undeiproductive  according  to the defi  

nitions given  in the NFI field guide  (Valtakun  

nan metsien... 1977)) and homogeneous  with re  

spect  to  site  and stand developmental  stage (Pent  

tilä and Honkanen 1986).  Birch-dominated stands 

were  sampled  only  in the southern parts  of  north  

ern  Finland and spruce-dominated  stands in La  

pland.  

The  NFIB  sample  plot  was  composed  of two 

circular plots:  a  greater plot  with a  radius of  9.77 
m and a smaller plot  with a radius of 5.64 m  

superimposed  on the  greater plot.  All trees  with 

dbh exceeding  10.5 cm were measured in the 

area  of  greater  radius and trees  with dbh  of  4.5-  

10.5 cm in the area of smaller radius. If the dbh 

Fig.  1. Location of  the  modelling data  (a) and  test  data  (b)  by  tree  species.  
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was  less  than 4.5 cm, only  a limited number of 

selected  trees were measured. The SINKA sam  

ple  plot was composed  of three circular  sub  

plots  located 40 m  apart. The size of the  sub  

plots  was  adjusted  according  to the stand  densi  

ty.  The whole SINKA plot contained approxi  

mately  100  tally  trees.  The minimum diameter at 
breast height was  4.5  cm if  the  stand was  past  

pole  stage, and 2.5 cm otherwise. 

Some plots  were deleted from both data  sets 
due to  the following  reasons.  All accepted  plots  

were  classified as productive  forest land and lo  
cated  on  drained peatland.  Plots where any  cut  

ting  or  drainage  treatments  had taken place  dur  

ing  the period  of 5  growing  seasons  were  omit  

ted. Plots  including  parts  of more  than  one stand 

and plots  with severe or  complete  damage  were 
left out. Furthermore, small  sapling  stands or 

sapling  stands  with an overstorey were exclud  

ed. Altogether, the data sets consisted of ad  
vanced sapling  stands, pole  stands  of non-com  

mercial  size,  thinning  stands and mature  stands. 
Several site  attributes indicating  the drainage  

condition were  recorded: the phase  of  post-drain  

age succession  according to Sarasto (1957),  the 

time passed  since drainage,  previous ditch clean  

ings or  complementary  ditchings  and their esti  
mated dates and suggestions  for improvement  

ditching measures.  The site type classification 
was  based on Huikari's (1952,  1974) extensive 
classification system.  The thickness  of  the peat 

layer was  measured down to 1 meter. Previous 
stand treatments  (< 5  yrs) were  recorded. It was 

not  possible  to detect whether fertilization treat  

ments  had been carried out. 

All tally  trees of which dbh  was  recorded on 
both occasions  were included in the data. Sam  

ple tree  data were not  used because of the low 

number of sample trees and small area  of the 

sample  plots  in the NFIB  data. For  pine,  spruce 

and birch,  separate data files were formed by 

combining both the NFIB data and SINKA data 
in such  a way  that  a  stand was  included if at least 

one tree  of  the species  of interest was  growing  in 
the stand.  Due to  the overall occurrence of dif  

ferent tree species  on drained peatlands,  the 
number of pine  and birch stands and trees was 

considerably  greater than  that  of spruce (Table  

Table 1 
.
 Site, stand, and  tree  attributes  in  the  modelling data  by  tree  species.  

a  average temperature  sum, degree  days,  with threshold value +5 °C 
b peat  depth  measured  up to 100  cm  
c  tree diameter at breast  height  
d stand basal  area 
c  diameter of the tree of median basal  area 
f average  height of  100  thickest  trees per  hectare  

Scots  pine Pubescent birch  Norway spruce 

min. mean  max.  min. mean  max.  min. mean  max.  

N  (km) 6714  7015  7291  6714  7188  7504  6714 7247  7504  

E  (km)  2130 4526 7250 2130 4384 7090 2130 4379 7090 

Elevation  (m) 10 126 270 1  91 300 1 91  300 

Tsum  (dd)
a
 826 1074 1341 712  1000 1341  712  964 1341  

Peat  depthb  (cm)  1 73  100 1 59 100  1 51  100 

d c (cm) 2.5  9.4 44.5 2.5 8.4 40.9  0.5 9.7  44.8 

ig (cm2) 0.2 25.2  228.2 0 14.2  166.6 0 19.6 186.1 

G d (m2 ha~'>  0.1 10.2 35.3 0.8  15.3 45.1  0.7 15.4 45.1  

D
gM

e

 (cm)  2.7  12.0 38.8 3.7 11.9 36.7 4.3 13.9 35.8 

Hdom
r  (in)  1.5 8.0 21.8 2.0 11.4 21.8 3.2  11.8 21.9 

% of  pine of  G  1.4 83.4 100 0 27.4 99.6 0 23.9 99.6 

% of  spruce  of G 0 4.8 95.2 ' 0 9.7 99.0 0.2 44.7 100.0 

% of birch  of G 0 12.0 97.8 0.4 61.9 100.0 0 30.3 99.4 

Trees 20644 16593 5645 

Stands 555 503 382 
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Fig.  2.  Diameter distribution of  the  trees  in  the  model  

ling data  by  tree  species.  

1). Pine  stands and birch stands were  most  com  

mon in Ostrobothnia, while spruce stands were  

more evenly  distributed around the country  (Fig.  

la).  

Plotwise stand  attributes at the first measure  

ment occasion were calculated on the basis of 

tree  tally.  Means indicated that the data sets  con  

sisted  of stands with low  stocking  (Table  1). 

Diameter distributions for different species  

showed that most of the trees were less  than 10 

cm in  diameter (Fig.  2). 

2.2 Test Data 

Independent  data concerning  permanent sample  

plots  located on drained peatlands  in Northern 

Carelia (Fig. lb) were  used to test the perform  

ance of the pine  growth  model. The establishment 

of these sample  plot  data was  carried out  in  1981 

following  a similar procedure  that was  used later 
when the SINKA  stands were established. The 

remeasurements  were done in 1986 and 1991. 

Altogether,  2644 pines  in 32 stands with 3 plots  in 
each  stand were  used for testing.  With respect  to 

the average  stand  characteristics,  the stands were 
rather similar to those in the modelling  data: i.e.,  

young stands with low stocking  (Table 2). 

To  test  the spruce  and birch models, tree  growth 

data from thinning  experiments established in 

drained peatland  stands in southern Lapland  (Fig. 

lb)  in 1986-1991 were  used. In  the experiments,  
3-5 different thinning treatments, including  con  

trol,  were arranged  in a randomized block de  

sign.  Two of  the stands  were  in the phase  of first 
commercial thinning and two  in the phase  of 

second commercial thinning.  These sets  of data 

consisted of 2640 spruces  and 1857 birches in 48  

plots representing  four different stands (Table  

2). Compared to the modelling  data, these stands 

were,  on average, more stocked.  

3  Methods  

3.1 Modelling  Approach 

In the modelling  data, trees within stands were 

mutually  correlated and thus cannot  be regarded  

as  an independent  sample  of  the basic tree  popu  

lation. Random parameter models have been ap  

plied to this kind of nested data  structure  (e.g.,  

Lappi  and Bailey  1988).  Random parameters  are  

parameters  whose values  vary  randomly  from unit 

Table 2.  Mean  stand  characteristics in  the  test data  sets.  For  notations, 

see Table 1. 

Characteristic  Scots  pine Pubescent  birch  and Norway spruce  

min. mean max. min. mean max. 

Tsum 966 1029 1076 900 948 990 

G (m 2 ha-1
) 0.7  7.6 22.3 11.3 19.1 25.8 

DgM  (cm)  4.7  10.3 20.6 8.0  15.1 28.3 

Hdom  (m)  3.8 8.4  14.5 10.8 13.9  18.1 

Stands 32 4 4 

Trees 2644 1857 2640 
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to  unit. In this study,  between-stand differences in 

tree  growth  were  accounted for by  a  random stand 
effect. This variance component model can be 

described by  the following  equation:  

where yy  is  the value of  the response  variable for  
the ;th tree  in the jth stand,  b\,

...,  bp
 are fixed 

parameters, x\y, x2y, ..., xp y  (x\y  =1)  are  the val  
ues of  the explanatory  variables for  the fth tree  in  

the  jth  stand,  uj a  random stand variable (error),  
and  E,j  a  random tree  variable (error).  All  u's  and 
e's  are  assumed to be independent  of each other 

and follow the normal distribution, with zero  

expectation  and  variances  cr 2  and g~ .  The fixed 

part is composed  of the explanatory  variables 

X\ 
~

 as  well  as  their estimated coefficients b\  
p

.  
Variation not  accounted for  by  the fixed part  is  

expressed  by  the random part  and decomposed  

between the two  random parameters uj and Zy.  

In estimating  the fixed and random effects,  

restricted  maximum likelihood (REML) estimates 

produced by  the MIXED  procedure  in the SAS  

statistical software  (SAS 1992)  were  used. Two 
variance terms  were  estimated: the variance com  

ponent au
 of the  random stand  effect and the 

component oe of  the random tree  effect (random  

error). In the SINKA data  set,  the data structure  

was  actually  three-level (trees  within plots  with  
in stands) because all  stand characteristics  were 

produced for the sub-plots.  Thus, the random 

stand  effect was  a combination of  plot  effect  and 
stand effect,  although  it  will hereafter be called 

stand  effect. 

The explanatory  variables in the fixed  part  
were either measured or estimated tree, stand 

and site  attributes. They  were  added  to the mod  
el on the basis of  several  criteria. The MIXED 

procedure  produced tests to determine whether 

the coefficients of the alternative explanatory  

variables  deviated from zero  as  a  guide  for eval  
uation. Depending  on whether the variable was 

explaining  growth at tree  level or  stand  level,  a 

reduction in  the variances of the random error  or 

random stand effect  was  detected (see, e.g., Pen  

ner  et al. 1995).  The value of-2 x  log-likelihood  

was  used as  an indicator of the overall  goodness  
of-fit  measure  of  the nested model. Transforma  

tions were made in order to linearize the rela  

tionship  between the response variable and ex  

planatory  variables and to homogenize  the vari  

ance.  For  alternative models, residual plots  were 

produced  to  check  any  trends in residuals against  

different independent  variables. 

Essentially,  the factors influencing  tree  growth 

on  drained peatlands  are  the  same as in mineral 
soil sites,  even  though  there are  differences in  

their importance.  Thus, variables used in the 

models are  mostly  the same ones used in upland  
site  growth models. The basic  assumption  was 

that  tree  growth  is  determined by growth  factors  
related to  the quantity  and quality  of living  tree  

biomass,  site quality  and other environmental 

factors,  and that they  all  act  multiplicatively  

(Baule  1917, Jonsson 1969). Hence, the loga  

rithm  of  the basal  area  growth  of a  single  tree  
was  used as the response variable. It was  chosen  
because it is  widely  used and because basal area 

growth  models are  unbiased in relation to tree 

volume growth. Growth was calculated as the 
difference between tree  basal areas  (cm 2) in suc  

cessive  measurements.  Before taking  logarithms,  
1  cm

2 was  added to the basal area  growth  of  

every  tree.  This  was  done to permit  the logarith  
mic  transformation for trees whose  basal area 

growth  was  coded as  0. 

At tree  level,  basal area  growth  was explained  

by  tree  diameter. Age  is  commonly  used to char  

acterize the phase  of development  of trees or 

stands. Due to the unstable relationship  between 

tree  age and size on drained peatlands,  neither 

tree  nor stand  ages were measured in the field. 

Thus, tree  diameter summarized both the quanti  

ty  and quality  of the growing  biomass. 
Other independent  tree, stand, and site attributes 

were  used to describe the competitive  status of  a  

tree  and the average growing  conditions in the  
stand and site. 

Variables related to the drainage  properties  of 
the site are  characteristic of  peatland  growth mod  

els. In order to indirectly  assess  each site's  drain  

age condition, the site was evaluated by two 

dummy variables indicating  whether  the condi  

tion of drainage  had recently  been affected by 

any improvement  ditching  measures,  or  whether 
alternative improvement  ditching  methods need  

ed to be carried out in  the near future. In addi  

tion,  the time since  drainage  was classified  ac  

cording  to four categories:  0-5, 6-10, 11-25, 

yij =  bixuj  +  b  2x 2ij +...+  bpXpij  +uj  +  e, y (1)  
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Table 3.  Summary  of the  application  of  Huikari's  (1952, 1974)  classification of forested peatland  site  types  used  

in this  study,  and  the  occurrence  of  tree  species  (b  = birch, p  =  pine,  s  =  spruce) in  different sites.  

and over 25  years. Using  these classes,  it was 

possible  to  account for the temporal  trends in 

tree  growth due to the specific  growth increase 

pattern  of trees  responding  to drainage.  

3.2  Site  Classification  

The site  type classification used in data collec  
tion  was based  on Huikari's (1952,  1974)  exten  

sive system.  According  to Huikari (1974),  the 
classification  reflects  differences in average tree  

growth  after drainage.  Pristine peatland  sites  are 

divided into three 'main site groups'  on the basis  
of  the composition  of the field vegetation  spe  
cies:  1. Sites  dominated by  Vaccinium myrtillus

,
 

V. vitis-idaea and other species  which typically  

occur  in spruce-  and/or birch-dominated peat  

land stands (Korpi  in Finnish);  2.  Sites dominat  

ed  by  dwarf shrubs  (V.  uliginosum,  Ledum palus  

tre, Betula nana) and other  species  that are  most 

common in pine-dominated  peatland  stands 

(Räme);  and 3. Treeless sites (Neva).  Based on 

the composition  of ground  vegetation,  Huikari 

further distinguished  five 'site quality classes'  

for the first  main group and six  for the others to 

reflect  the differences in site  nutrient status. The 

site  quality  classification is  closely  related to  the 
more  widely  used trophic  classification. Penttilä 

(1990)  has proposed  the correspondence  of  these 

two classifications (see also Paavilainen and 

Päivänen 1995). Huikari (1952)  also  gave sup  

plementary  definitions for a  more  detailed clas  

sification. 

In the following,  the 'main site groups'  are 

termed K-  and R-sites  ('K'  for Korpi  and 'R'  for 

Räme). (In  NFI  routines,  treeless sites  that have 

become tree-covered following  drainage  are in  
cluded in either  K-  or  R-sites  depending  on the 

species  composition  of the ground  vegetation  

and the dominating tree  species).  Site quality  
classes  are referred to by  the Roman numerals I  
VI. The possible  combinations of the 'main site 

groups'  and the site quality classes,  as well as 

the occurrence  of  the tree  species  in different 

sites,  are  given  in Table  3. Altogether, the total 
number of a  priori sites  was  10 (4  K-sites  and 6 

R-sites).  When sites  were  reclassified during the 

model construction,  the leading  principle  was  to 

keep  the number of yield  classes  low,  because  it 

is  difficult to  apply  too  many classes  to manage  

ment  planning  systems.  

4 Results  

4.1 Growth Models 

At tree  level,  the logarithm  of basal area  growth 

was  explained  by  tree  diameter and basal area  in 

the beginning  of the growing  period.  For pine 

and birch,  logarithmic  transformation was made 
for tree  diameter in order to linearize the rela  

tionship  (Tables  4 and 5).  For  spruce, the square 

root  of tree  diameter was  used (Table 6).  

At tree  level,  between-tree competition  was  
accounted for by the total basal area  of trees 

larger  than the target tree (BAL). For all tree 

species,  high  BAL resulted in the significantly  

Main site  group 

K-sites  (Korpi) R-sites  (Räme)  

Site  quality class  Code 

(this  study)  
Trophic class 

s, b,  (  P) p.  b,  (s)  Eutrophic  KI, RI Eutrophic  

s,  b,  f  ) p, b,  s Herb-rich KII, RII  Mesotrophic 

s, b, f  ' P, b,  s V.  myrtillusltal\  sedge Kill, RIII Oligo-mesotrophic  
s,  b,  f  ) p, b,  (s)  V.  vitis-idea/low sedge KIV,  RIV Oligotrophic 

-  P Dwarf-shrub/cottongrass  RV Poor  oligotrophic/ombrotrophic  
-  P S.  fuscum RVI Ombrotrophic  
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Table 4.  Model for  the  basal  area  growth (ig,  cm
2  in  syrs)  of  Scots pine.  

For  notations, see Table 1. 

a  tree basal  area  (cm2) 
b total  basal  area  of  trees larger than  the  target  tree (m 2/ha)  
c  denotes a dummy variable 

lower growth  of a tree. The  relationship  was 
described with a linear and quadratic  component 

for pine and birch,  while the linear component 
was insignificant  for spruce. At stand level,  a 

stand attribute indicating  the level of stocking  
-  stand basal area,  median diameter -  served  as  a 

broad measure of competition.  In stands with  

high basal area  (after logarithmic  transforma  

tion),  pine  growth  was  significantly  lower (Ta  
ble 4).  The diameter of the tree  of the median 

basal area  had a similar effect  on  the growth  of 

spruce (Table  6).  Neither of these  indicators of 

competition  was  significant  in explaining  the 

growth  of birch. For  spruce,  the greater propor  
tion of  spruce of  the total basal  area  showed up 
as lower growth. For birch,  both the proportion  

of birch and  the proportion  of  spruce of  the total 
basal area had a similar decreasing  effect on 

growth (Tables 5  and 6).  

In all models, tree  growth  was  higher  with a 

higher  temperature sum, but for birch the linear 

coefficient was  considerably  lower  than  for con  
ifers. For  pine  and spruce  models, the tempera  

ture sum was included as an interactive effect 

with the square  root  of  tree  diameter. Thus, the 

slope  of the relationship  between tree  growth  

and tree diameter varied according to the aver  

age growing  conditions. The immediate proxim  

ity  of  sea  coast  as  defined by  Ojansuu  and Hent  

tonen  (1983)  significantly  increased the growth  
of birch. 

A stand-level dummy variable indicating  the 

need for complementary  ditching  or  ditch clean  

ing  was  included in all models. Stands with good  

drainage  conditions had a  higher  level of  growth. 

Previous  ditch cleanings  or  complementary  ditch  

ings  did not  affect growth  significantly.  Thin  

ning treatment  during the past  5  yrs,  indicated by  

Response variable In(ig  + 1) 

Variable Coefficient std. error p-valuc  

Intercept  -1.24500576 0.16012220 0.0000  

g
a
 -0.00186652  0.00011498  0.0000  

BAL b -0.00891664 0.00392539 0.0231 

(BAL)
2 -0.00152785 0.00014132 0.0000 

ln(G)  -0.24680408 0.02625567 0.0000  

(Tsum  x  d 0- 5) 0- 5 0.06914986 0.00497900 0.0000  

Site pi (0/1 )
c
 -0.61)49979 0.10818864  0.0000  

Site p2 (0/1) 0.30142512 0.05305042 0.0000  

Site pi  x ln(d)  0.66433889 0.07410497 0.0000  

p2 & 4  x ln(d)  0.31461604 0.06257624 0.0000  

p3  x ln(d)  0.38896748 0.05878569  0.0000 

Time (0-5 yrs  since 

drainage) (0/1)  -0.23774480  0.08343985  0.0044  

Time (11-25  yrs) (0/1)  0.09396252 0.02977907 0.0016 

Good drainage (0/1)  0.15556923 0.02829060 0.0000 

No thinning (0/1) -0.12766472  0.03452112  0.0002 

No S.fuscum/f\arks  (0/1)  0.25821529 0.06924475 0.0002  

Variance components 
al 0.16889356  0.00870556  0.0000  

Oi 0.33184759 0.00336283 0.0000 
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Table 5.  Model  for the  basal  area  growth of pubescent birch For  nota  

tions, see Tables 1 and 4. 

a  proportion of  spruce  of  total basal  area  (%) 
b proportion of  birch  of  total  basal  area  (%)  
c  proximity of  sea  coast as  presented in Ojansuu and Henttonen (1983)  

a dummy variable, significantly  increased the 

growth  of  trees  of  all  species.  

The effect of  time since drainage  was  different 

for each  species.  Stands drained less than  6  yrs 

earlier had the lowest level  of growth for all 

species  (Tables  4-6). For pine  and birch,  the 

highest  growth  rate  occurred  in stands that  were 
drained 11-25 years earlier.  In age  classes  6-10 

years since drainage  and more than  25 years 
since drainage,  the level of  growth  was  equal,  so  

these classes were combined. For spruce, there  

were  no significant  differences among the other 

age classes  (Table 6).  

A dummy variable related to the supplementa  

ry  definitions of the site  (Huikari  1952, 1974)  
and indicating  the significant  occurrence  of ei  

ther Sphagnum  fuscum  hummocks or  flarks or 

both resulted in a significantly  lower  growth  rate  

for pine.  Peat thickness was tested for  all tree  

species  both as  a  continuous variable and a dum  

my variable using  several  different threshold val  

ues,  but  it was  not  significant  in any of the mod  

els.  

In all  models, the random stand effect  was  

significant,  indicating  that the level of growth 

varied randomly  from stand to stand. The vari  

ance of  the random stand effect  was  greatest for  

spruce and lowest for pine.  

4.2 Yield Classes  

The yield classes  were defined after the other 

independent  variables had been  included in the 
models.  The classes  were  formed on the basis  of  

the site types that  were  initially  identified for 

yield  classification (see Table 2). In addition,  

ideas proposed  in recent  literature concerning  

Response variable  ln(ig  +  1) 

Variable Coefficient sld. error p-value  

Intercept  -0.02517417  0.18499226  0.8918  

a 
e> 

-0.00173410 0.00015860 0.0000 

BAL -0.04153247 0.00341583 0.0000 

(BAL)2 -0.00028995 0.00011052 0.0087 

Tsum 0.00071201 0.00018916 0.0001  

G
s

a  -0.00265387 0.00084260 0.0016 

Gbb  -0.00421752  0.00058577  0.0000  

Sea  index c  0.00867079 0.00227142 0.0001  

Site bl (0/1)  -0.08261346 0.04883984 0.0908 

Site bl  &  4  x ln(d)  1.29994635 0.02829603 0.0000 

b2  x  ln(d) 1.25433569 0.03089656 0.0000 

b3  xln(d) 1.33101593 0.03106435 0.0000 

b5 x  ln(d)  1.19105053 0.0306634  0.0000  

Time (0-5 yrs  since 
drainage) (0/1)  -0.18653365 0.08558892 0.0293  

Time  (11-25) (0/1)  0.07412365  0.03001742  0.0135  

Good drainage (0/1)  0.12915862  0.02956094 0.0000  

No  thinning (0/1)  -0.21468275  0.03548466  0.0000  

Variance components 
0.16697506  0.00934985 0.0000  

0.43568523 0.00494602 0.0000 
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Table 6.  Model for  the  basal  area  growth of  Norway spruce.  For  nota  
tions, see Tables 1,4 and  5. 

the classification of peatland  sites  (Reinikainen  

1988, Laine 1989, Eurola and Huttunen 1990, 

Eurola et al. 1995) were  utilized. 

Several tests with different combinations of a 

priori sites  resulted in a  system  that was  specific  

to each species.  Plotting  observed  growth  against  

diameter curves for each a priori site suggested 
that not  only  the intercept  but  also the  slope  of the 

relationship  varied. Consequently,  a  specific  yield 
class was  distinguished  if either the intercept  or 

the slope  differed significantly from the others. 

For  pine,  four  different yield  classes  were  de  
fined (Table  7). Yield classes  pi and p2  had a 

different intercept compared  to the others (dum  
mies indicated by  variables site pi  and site  p2  in 

Table 4). Different slopes  were determined for 

yield classes  pi and p3,  while yield  classes  p2  

and p4 had equal slopes.  
For birch,  the K-sites  were divided into two  

yield classes:  bl included sites KI-KII, and b2 
sites KIII-KIV  (Table  7).  Only  yield  class bl 

had a  different intercept  (dummy  variable site b  1 
in Table 5).  Classes  b2,  b3 and b5 all had differ  

ent  slopes,  while the slope  was equal  for classes 
bl  and b4. 

For spruce,  only  three  yield  classes  (sl-s3)  
were formed (Table 7). For yield class si,  the 

intercept  was  higher than  for s2  and s3 (Table  6). 
Yield class s3  had a lower slope  than the others. 

5  Model  Validation  

In the final models, there was  no  discernible 

trend between the residuals (_y  -y, in  log-scale)  

and tree  diameter (Fig.  3)  or  any  other independ  

ent  variable. The great variation in  mean residu  

als  in the largest  diameter classes  (>  25 cm)  was  
assumed to be due to the low  number of observa  

tions. The bias of the models in the modelling  

data was  estimated as  the difference between the  

observed  growth and the growth predicted  by 

the fixed part  of  the models. Relative bias was  

estimated by  dividing the absolute bias by  the  

predicted  growth. Before making  the exponen  

tial transformation for the predicted  growth,  a 

variance correction term ((a2 + a 2)  /2) was  add  

ed to the intercept.  
The average bias  for the models at the original  

Response variable ln(ig  +1)  

Variable Coefficient std.  error p-valuc 

Intercept  -0.58803177 0.23238229 0.0114 

g -0.00069729 0.00018861 0.0002 

(BAL)2 -0.00062162 0.00007297 0.0000 

(Tsum x  d 0'5 )0  5 0.05357616  0.00735395 0.0000 

DgM  -0.01480889  0.00554127 0.0076 

G
s  -0.00732456  0.00079733  0.0000  

Site si  (0/1)  0.14520852 0.04759067 0.0023 

Site si  &  2 x  (d)0- 5 0.31576897 0.07907760 0.0001 

s3  x (d)0- 5 0.21092505 0.07891453 0.0075 

Time (> 5  yrs  since 

drainage)  (0/1)  0.26072199 0.11949977 0.0292 

Good drainage (0/1)  0.13043157 0.04174418 0.0018 

No  thinning  (0/1)  -0.27073405 0.05129760 0.0000  

Variance  components 
o2 0.20301884 0.01572177  0.0000  

0.35791851  0.00719921  0.0000  
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Table 7.  Yield  classes  for  different tree species.  For  

initial sites, see Table 2. 

Table 8.  Estimated average  absolute  and  relative bias  

of the  models  in the  modelling  data.  Standard  

errors  given  in  parentheses  are  biased downwards 
due to the correlated  observations.  

scale of growth was -1.99,  -1.31, and -2.17 

cm
2/5 yrs  for  pine,  birch  and  spruce,  respectively  

(Table  8).  For pine,  there was  virtually  no  trend 
in  bias as a function of tree  diameter. For  birch,  

the bias showed a slight  negative  trend as tree  

diameter exceeded 15 cm (Fig. 4).  For spruce,  

this trend was even more evident. On the aver  

age,  the bias  was  lower  when the constant  vari  
ance correction was applied  than in the non  

corrected predictions.  Overall,  the models pro  
duced slight overestimates of  growth  in the mod  

elling  data. Due to  the unsatisfactory  perform  

ance of the constant  correction term, an alterna  

tive procedure  was  tried in an effort to reduce 

the bias. First,  the noncorrected  predictions  were 

Fig. 3.  Mean residuals  (in  log-scale)  of  the  models as  a  

function  of  tree  diameter (dashed lines  indicate  

the  standard error  of the  mean). 

estimated as a function of tree  diameter in the 

modelling data. Then, the estimated bias  was 

corrected to zero with a correction term which 

was  calculated for each 2-cm diameter class for 

all models as follows: 

To  test the pine model in an independent  data 

set,  a  new  version was  estimated, where the  time 

Mean  exp(_y)  =  c  x  Mean  exp(s>) (2) 

Tree species Yield class Initial sites 

Scots  pine pi K-sites  

p2 RI-RII 

p3 RIII-RIV 

p4 RV-RVI 

Pubescent  birch bl KI-KII 

b2 KIII-KIV 

b3 RI-RII 

b4 RIII 

b5 RIV 

Norway  spruce  si KI-KII, RI-RII 

s2 Kill, RIII 

s3 KIV, RIV 

Tree  species 

Bias Scots  pine Pubescent  birch  Norway spruce  

Absolute  -1.9933 -1.3053 -2.1686 

(cm 2/5yrs) (0.0938) (0.0843) (0.1857) 

Relative -0.0632 -0.0591  -0.0854  

(0.0042) (0.0207) (0.0080) 
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Fig.  4.  Estimated  mean bias  of  the  models  as a  function  
of tree diameter in  the  modelling data (dashed 

lines indicate the  standard  error  of  the mean). 

Fig.  5.  Estimated  mean bias  of the  models  as a function  

of tree  diameter in  the  independent test  data sets 

using  constant  variance correction (solid lines)  or  

a correction term for each  2-cm diameter  class  

(see  Eq 2,  dashed  lines).  For  Scots  pine,  bias  was 

estimated for two successive  5  yr. periods.  

since drainage  was excluded because it was  not  

known  for the test data. Using tree, stand and 
site attributes recorded at the time of plot  estab  

lishment in 1981,  basal area  growth  for the fol  

lowing  two  growth periods (1-5,  6-10 yrs) was  

predicted.  Bias  (with  a constant  correction term) 

was  estimated for both periods  and was  expressed  

as  a  function of  the initial diameter. The  average  

bias in the test data was positive  for the first 

period  and  negative  for  the second  period  (5.766  
and  —4.216 cm

2/syrs  with standard errors  of  0.324 
and 0.299,  respectively).  No trend in bias  as  a 
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function of tree  diameter was  detected (Fig.  5). 

For  the first growth  period,  diameter-dependent  

correction was  also tested. The result was  slight  

ly  lower estimates of  growth, which was  practi  

cally  the only  difference between the two  mod  

els,  because  neither  showed clear  bias  as a  func  

tion of  tree  diameter. The positive  bias  (underes  

timated growth) in the first period  may be ex  

plained  by  the large  proportion  of  fertilized plots  
in the test data. Consequently,  the levelling  out 

of the fertilization effect together  with the re  

gressive  development  of drainage  conditions in 
several  stands may explain  the negative bias  in  

the second period.  

Models for  birch and spruce were used in a 
similar manner to predict  growth  in the test  data. 

The average bias in basal area  growth  for  birch 

was  1.79 cm
2/5 yrs  (s.e.  0.361),  and  -2.72  cm

2/ 
5  yrs  (s.e. 0.385)  for  spruce.  When expressed  as  

a function of tree  diameter, the birch model pro  
duced both under- and overestimates of growth  

(Fig.  5).  The spruce model was  almost unbiased 

up to 15 cm, but  produced  overestimates  for the 

larger  trees. Using  diameter-dependent  correc  

tion for birch and spruce improved  the predic  
tions in this respect.  The trend in mean bias as  

diameter increased became slightly  smaller for 

birch and was  completely  removed for spruce.  

However, one should be careful when interpret  

ing  the results,  because the test data are  actually  

composed  of two good-growing young stands 
and two  older  stands with lower growth  rates.  

6 Discussion  

Models constructed to predict  tree  growth in 

growth  simulators should give  reliable forecasts  
of stand  development  in the future. Thus, the 

main emphasis  in this study  was to develop  logi  

cal  and  simple  models based on a  large  objective  
random sample  of  trees  and stands. Compared  to 

the earlier growth  models for trees  growing  on 
drained peatlands,  the new models are expected  

to produce  more accurate  growth predictions,  
because they account for,  e.g., inter-tree compe  

tition more explicitly.  Furthermore,  specific  mod  

els  for birch are  now availabe (c.f.  Ojansuu et ai. 

1991). 

Both modelling  data  sets  had some  limitations 
which caused problems  in the modelling work 

and may also  affect  the model predictions.  The 

lack of the poorest sites as  well as stands that  

were considered to be in unsatisfactory  silvicul  

tural condition (Valtakunnan  metsien... 1977) in  

the SINKA data may  result in overestimated 

growth when the models are applied to these 

kinds  of stands. Similarly, the models may  pre  
dict too high growth in non-fertilized stands, 

because it was not  possible  to omit fertilized 

stands from the modelling data. In the NFIB 

data, the fixed size  of the sample  plot  irrespec  

tive of stand density  produced  numerous small 

trees in young and dense stands but only  a few  

trees in older stands. Although  the high  propor  

tion of  small trees  probably  reflects  the structure 
of peatland  stands in situ (Fig.  2, see  Hökkä  and 

Laine 1988), the models should be able to  pre  

dict the growth of  the largest  trees as well. In 
these data,  purely  stochastic  factors may influ  

ence the observed  growth  rate  of  the largest  trees 
and the predictions,  as  well. In the data sets  of 

pine, birch and  spruce, 96,  98, and 94 % of the 

trees were  under 21 cm in diameter, respective  

ly.  In estimating  the models,  the shape  of  the 

growth curve  is  determined mainly  by  the small 

trees within a narrow diameter range, and the 

models may be biased for  the larger  trees. 

One possibility to reduce the trend in bias 

could be to express  the  tree-level variance as  a 

function of tree  diameter instead  of using  a con  

stant value. Furthermore,  the constant  correction 

term is  improper,  if  the assumption  of normally  

distributed errors  is  violated, which may be the 

case  here. In general,  the residual variances  were 

fairly large,  which resulted in  large  correction 

terms for  the  exponential  transformation. With a  
smaller correction,  less  biased predictions  could 

be obtained especially  for pine  and birch. The 

estimated biases in both modelling  data and test  

data suggested  that predictions  given by  the 

spruce model should be corrected  by  diameter 
classes  in order to avoid  negatively  biased (too  

high)  growth  predictions  for  trees  greater than 

15 cm in diameter. 

The nested data structure  was  accounted for in 

the model construction  by  the  mixed  linear mod  

el  technique.  By  separating  tree, plot  and stand 
levels,  unbiased tests for the  independent  varia-  
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bles  were  produced.  The models have the stand  

ard advantages  of random parameter models. If 

any  measurements  of the response variable are  

available,  the models can be calibrated into spe  

cific  stands and more accurate  predictions  can 
be  obtained (Lappi  and Bailey  1988). 

Relatively  high  residual variances suggested  
that additional tree-level explanatory  variables 

could be  considered. It  is  obvious  that the  growth  
potential  of a tree  is not  fully indicated by the  

diameter, because the correlation between tree  

age  and size  in drained peatlands  is  complicated  

by  the interrelationship  between the initial size 
of the tree  and its  response to drainage.  Howev  

er,  age characteristics  have  been shown to corre  

late with the post-drainage growth  rate  of trees 

(Seppälä  1969,1976, Hänell 1988, Miina 1994). 

For  birch,  the biological  age  could be used in 
models,  because  birch trees  usually  initiate after 

drainage.  For  conifers,  Huikari et al. (1967) used 

the so-called 'economical age',  which was  deter  

mined as a function of tree  diameter at the time 

of drainage  and its  post-drainage  growth  rate.  In 

addition to the variables that were related to 

competition,  the growth potential  of a  tree  could 
be  better evaluated if a variable indicating  the 

amount  of  living  crown  were  available (Hynynen  

1995 a).  

The observed  nonlinear effect of BAL on 

growth  may  be explained by the uneven size  
distribution of trees in drained peatland  stands 

(Hökkä  and Laine 1988, Hökkä  et al. 1991).  The 

low  values of BAL in uneven-sized stands result 

from the biggest  trees,  which occur  one  by  one  
with a low  total number per  hectar.  These do not  

compose  a uniform canopy layer, which could 

affect  the growth  of  smaller trees  considerably.  
As  BAL increases,  an increasing  number of  trees 
form a  more even canopy layer,  and the decreas  

ing  effect on growth  becomes more apparent. 

The results showed that in well-stocked stands 

stand-level competition  (as indicated by  high  ba  
sal  area  or  DgM ) limits the growth  of pine  and 

spruce.  Increasing  site occupancy  appeared  not  

to limit the individual tree  growth  of  birch prob  

ably  because  the birch data were most concen  

trated in small trees and stands with low stock  

ing.  
When the models are  applied  in  growth simu  

lators,  specific  self-thinning  models are needed 

to prevent  unrealistic development  of stocking  
(see Hynynen  1993). In drained peatlands,  the  

pattern of self-thinning  may differ from that ob  

served in mineral soil stands because the size 

and spatial  distribution of trees  is  uneven and the  
factors  limiting  tree growth  are  partly  different 
from those on mineral soils  (Hökkä  et ai. 1996, 
Penneretal. 1995). 

According  to  Seppälä  (1969),  the  development  
of diameter growth  of spruce and pine  as  a  func  
tion of time since drainage  can be described by  

nonlinear curves  which have a  phase  of growth  
increase,  a  peak  point  and a  phase  of  growth  
decline. Applying  a continuous nonlinear func  
tion for the  relationship  in these data would have  

required accurate  determination of the year of 

drainage.  Since this  was  not  possible  for  all the 
data, drainage  age classes  were used. This may 

have resulted in  underestimating  the growth  rates  

during the period  11-15 yrs  after drainage,  be  

cause the peak  of the growth  response generally  

occurs  at that  time (Seppälä  1969,  Miina 1994). 

In the models for pine  and birch, the temporal  

growth trend was described by three drainage 

age classes with different growth levels. For 

spruce, there were similar kinds  of differences 

between the age classes,  but only  those  stands 
that had been drained less  than 6  yrs  earlier had a 

significantly  lower level of growth. This  may be 
due to insufficient data. 

As  Heikurainen and Kuusela  (1962)  and Sep  

pälä  (1969)  have shown, the growth  response to 

drainage  varies according  to tree  size  and age, 
site quality,  and geographical  location. In the 

models constructed in this study,  complicated  

interactive effects  were not  included because  sim  

ple  formulations were expected  to  result  in  more 
realistic and stable models. Furthermore,  the 
cross-sectional  data did not  support  the determi  
nation of causal relationships  over time. The 

stands were mostly concentrated in  age class 

11-25 yrs since drainage.  The structure  and qual  

ity  of stands drained in the 1980 s  and  1950  s  may 
differ considerably,  because generally  the best  

stands tend to  become drained first. Furthermore, 

ditching technique  has changed  considerably  

since the 19505. Thus, the interactions might 
have led to erroneous interpretations.  Dummy  
variables  indicating  previous  thinning  treatments 

and the condition of drainage  may also include 
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components that  are  not  related to thinning re  

sponse or  to the water  regime  of the site. One 

may  suspect  that  the higher  growth  rate  in thinned 

stands  comes  partly from the fact  that thinnings  
had been carried out  in stands  that naturally  grow 
better. Similarly,  the best  sites  and well-growing  
stands may have drainage  networks in good  con  
dition. 

A  variable indicating  the need  for  complemen  

tary  ditching  makes  it  possible  to  adjust growth  

predictions  according  to  the current  drainage  con  
dition of the site. However, it  may  cause prob  

lems in long-term  simulations because  its appli  
cation in  the future need to  be predicted  some  
how. This  could be overcome,  e.g.,  by construct  
ing  a  probabilistic  model to predict when this  

variable should be taken into use.  

The development  of 3-5 yield  classes  by  spe  
cies  was  basically  a  reclassification of the a pri  

ori  K-  and R-sites  of different site quality (Hu  

ikari 1952)  according  to the observed differenc  

es and similarities in tree  growth. Evaluating  

sites  in terms  of  productivity  is  one  purpose of  
site type  classification. To develop  a compre  

hensive site type classification system  for drained 

peatlands, other aspects  should be included as  
well. However,  if sites  are  classified in practice  

according  to Huikari (1952),  the corresponding  

yield  class  can  be determined and used in model 

applications.  

The  yield  classes  for pine (pl-p4) and birch 

(bl-b5)  were  rather similar with respect  to  the 
initial sites  that were  included in each yield class. 

For  these species,  K-sites  (yield  classes pi  and 
bl-b2)  differed significantly  from R-sites.  Yield 
classes  p2 and b3 included a  homogeneous  group 

of originally  treeless  or  sparsely  forested com  

posite  mire sites  RI-RII with high  timber pro  

duction potential  when drained. Sites RIII  and 

RIV are of  medium productivity  and formed one 

yield  class  for  pine  (p3)  and two  for  birch (b4,  

b5). Sites  RV and RVI are poor pine-growing  

sites  giving  only  a  modest growth  response  to 

drainage.  For  spruce, the 'site  quality  classes'  

(trophic  levels)  reflected differences in growth,  
and no significant  difference was  observed be  

tween K-sites  and R-sites.  

Evaluating  the relevance of the yield  classes  to 

the recent  discussion on the classification of 

drained peatlands  is  difficult, because tree  spe- 

cies  have not  been considered in other  proposals.  

Eurola and Huttunen (1990) and Eurola et al. 

(1995)  have emphasized  the need to distinguish  

spruce-birch  mires which correspond  to the  K  
sites. Laine (1989)  has emphasized  the differ  

ences  between forested and initially  sparsely  for  
ested composite  types and differences in site 

nutrition among the seven  peatland  forest  types.  
The initial K-sites  and the three spruce  yield  
classes  cover  three of Laine's (1989)  peatland  

forest types.  Only  one pine  (pi)  and two  birch 

yield  classes  (bl, b2) were separated  from the 

initial K-sites  in this study.  The Vaccinium myr  

tillus type II and V.  vitis-idaea type 11, as  defined 

by  Laine  (1989),  correspond  quite  closely  to  sites  
RI-RII  and  RIII-RIV,  respectively,  which were  
included in this study  as  yield  classes  p2  and p3 

for pine  and b3-b5 for birch. Laine's (1989) 

dwarf shrub type and Cladina type correspond  

to sites  RV and RVI, which formed the poorest 

yield class  site  for pine  (p4).  

Because the effect of thinning  treatment  and 

stand  drainage  condition was  included through  

simple  dummy  variables,  there remains a need  to 

develop  separate models to describe the tempo  

ral thinning  response (e.g.,  Hynynen  1995b)  as 
well as the response  to ditch network mainte  
nance  in drained peatland  stands. Both measures 

are common practices  in the management of 

drained peatlands  and have  a  considerable im  

pact  on  further stand  development.  
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Abstract 

Models for predicting  tree  height  were  constructed for Scots  pine  (Pinus  sylvestris),  

Norway spruce  (Picea abies)  and pubescent  birch (Betula pubescens).  The data consisted 

of two separate sets  of  permanent sample  plots  forming  a  representative  sample  of  drained 

peatland  stands  in the whole country. A logarithmic height-diameter  curve  with one non  
linear parameter specific  to each tree  species  was  applied.  It was  assumed that the 

intercept  and slope  of the curve  would vary  randomly  from stand to  stand. Stand 
characteristics were  used to  predict  the mean intercept  and slope.  A nonhomogeneous  

variance of the residual error  was  modelled as a  function of tree diameter. A mixed linear 

model technique  was  applied  to  fit the models.  The  diameter of the tree  of  the median 

basal  area,  stand basal  area,  geographical  location of  the stand, and site  quality  were  used 

as  fixed independent  variables  in explaining  the variation in the intercept.  The diameter of 
the tree  of  the median basal area  and the stand basal area  were  used in explaining  the 
variation in the slope. 

Key words: Betula pubescens,  peatland  forest, height-diameter  curve, Norway  spruce,  
Pinus sylvestris,  random parameters 

Introduction 

According  to  forestry  statistics,  the  area  of peatlands  and paludified  forests  drained for 

forestry  in Finland is  5.9  mill,  ha  (Yearbook  of  Forest Statistics  1993). In  the  beginning  of 
the 1980 s  the  proportion  of peatlands  was  about 24 % of the total forest  land area  and 

about 22  % of annual growth  (Paavilainen  and Tiihonen 1987).  In northern Finland,  the 

importance  of peatland  forestry  is  even greater, because  peatlands  are  concentrated in 

areas  that are  topographically  and  climatically  most  suitable for  paludification.  

Tree stands growing  on  drained peatlands  differ from those growing  on mineral soils 

because  the age, size,  and  spatial distributions of  trees  are generally  more  uneven  (Hökkä  
and Laine 1988, Hökkä  et  ai. 1991,  Miina et ai. 1991).  The basic  reason for this is  the 

initial uneven  structure  of  the virgin  peatland  stands (Heikurainen  1971, Gustavsen  and 

Päivänen 1986).  After drainage,  the dependence  between tree  age and tree  size  is variable. 

If not  regenerated  at the time of drainage,  only  pubescent  birch (Betula pubescens ) can 

form stands  that become relatively  even-aged  during  the first  rotation (Saramäki  1977).  

The range of variation in tree  height is  obviously  greater than on mineral soils due to the 

uneven spatial distribution of  trees.  Consequently,  the relationship  between diameter and 

height  may also vary  more than in  stands with even  structure. 
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Except  for Scots  pine  (Pinus sylvestris),  the same height  models  have been applied  

previously  to  mineral soils and drained peatlands  (Veltheim  1987).  The data behind the 
models consisted  mainly  of mineral soil sites. It  can be assumed that these models give  

biased results  when  applied  to stands on drained peatlands.  Constructing  separate  models 

for drained peatlands  and mineral soil  sites  can be justified  by  the differences in stand  
structure.  Furthermore,  considerable changes  in stand structure  take  place  with increasing  

time since  drainage  (Hökkä  and Laine 1988).  This  is  due to the  differences in the post  

drainage  growth  potential of trees  of  different size  and age  (Seppälä  1969).  Changes  in 
stand structure  influence the form of the height-diameter  curve.  Thus,  one requirement  for 

a  model predicting the curve  is  flexibility.  

The aim of this study  was to construct  height-diameter  curves  for Scots  pine  (Pinus 

sylvestris),  Norway  spruce  (Picea abies)  and  pubescent  birch  (Betula pubescens ) growing 

on drained peatlands.  The models  should  give  accurate  predictions  of tree  height  using  

common tree, stand,  and site characteristics measured in forest inventories.  

Materials  and methods 

The data 

The data consisted of  two  separate  inventory  data sets, covering  the whole area where 

forest drainage  has been applied  in practical  forestry.  For  southern Finland, the permanent 

sample  plots  of  the  Bth  National Forest  Inventory  (NFI8)  were  used. For  northern Finland,  

Permanent Forest  Inventory  Growth plots  (SINKA)  were  used. The former  is  a systematic  

subsample  of the sample  plots  of NFIB. The latter is  a  random stratified subsample  of the 

sample  plots  of  NFI7. All plots  in the data  sets  were  classified as peatlands.  The  data  sets  

overlapped  in the southern part  of  northern  Finland. A more  detailed description  of  the 
data sets  is  given  in Penttilä and Honkanen (1986)  and Mielikäinen and Gustavsen  (1993).  

In the NFIB data, each stand was  represented  by  only  one plot,  while in the SINKA data, a 

cluster  of three sample  plots  was  situated in each  stand. Because  the data sets  were  finally 

combined,  and because within-stand variation was not  the main interest in this study,  only  

one  plot  out  of three was  taken from the SINKA data. This was  the plot  which was  located 
closest  to the original  NFI7  sample  plot. 

Only  sample  tree  data were  used because  tree  height  was  not  measured for  the other trees.  
In  the NFIB data, sample  trees  were  collected from a  circular  subplot,  the radius of which 

was  either 2.82 m or  4.89  m, depending  on whether the tree  diameter was  less  or  greater  

than 10.5 cm.  The minimum measured diameter was  generally  4.5 cm. In the SINKA data, 

the radius  of the sample  tree  subplot  varied from stand  to stand, giving  on average 30-35 

sample  trees.  Minimum measured diameters were  4.5 cm if  the stand was  past  pole  age, 
2.5 cm otherwise. In the NFIB  data,  the number of sample  trees in a stand  was  consistently  

lower. 

Some trees  or  stands were removed from the data for various reasons.  Stands with only 
one tree  were deleted because at least two  sample  trees per  stand were needed to fit the 
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height-diameter curve  standwise. Some sample  trees of exceptionally  poor stem form 

were  removed. Some stands were  removed if the sample  tree  diameters were  small 

compared  to the stand's mean diameter, making  it  obvious that all sample  trees  were  

suppressed  trees  belonging  to  a  younger tree  generation.  

Based on the average stand characteristics,  most  stands  could be characterized  as  being  in 

the phase  of shifting  to commercial size  (Table 1). Stand  ages were  not  determined 

because their connection to  the developmental  stage of the stand is  vague. The average 
tree  size  was  greatest in the  spruce data and smallest in the pine  data. The number of trees  

was  smallest in the spruce data because  spruce-dominated  stands were  concentrated in 
southern Lapland  in  the SINKA data. Outside this  area,  the spruces  mainly  came from 
mixed stands.  Furthermore,  in  southern Finland,  spruce  mires  are  much less  common than 

pine  mires. For all  tree species, the  data were concentrated in Ostrobothnia,  where the 

proportion  of  drained peatlands  compared  to the total  forest land area  is at its  maximum 

(Fig.  1). Site quality  classification was based on Huikari's  (1952,  1974)  system  of  six  site 

classes,  which has  been  used in NFI.  The distribution of  trees  into different site  quality  

classes  was  uneven  and  differed by  species  (Table  2).  

Figure 1. Location  of  the  sample  plots  by tree  species.  
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Scots  
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4.89  

3.7  

12.2 

26.4  

4.33 

2.7 

11.9 

27.5  

4.30  

Pine,
 % of 

G

 

0.0 

21.1 

97.1  

25.3 

0.0 

25.5  

94.6  

27.1  

4.1  

78.8  

100.0  

24.5  

Spruce, 
"

 

2.5 

46.9 

100.0 

26.9 
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Trees  

769  

2133  

3450  



5 

Table  2.  Distribution  of trees  into  site  quality classes  (Huikari  1952,1974) by  tree  species.  

Methods 

The height  formula used here was  the exponential  model, used also by  Flewelling  and de 

Jong  (1994)  and Lappi  (1997):  

where h is  the total  height  of  a  tree  and d is tree  diameter at breast  height  (dbh).  After 

transferring  1.3 to  the left side  and taking logarithms,  the model is  linear except  for 

parameter c:  

where a =  InA.  When the parameters  of  the height  model can  vary  from stand to  stand,  the  

height  of tree  i in stand j can be described with model: 

where e,y  is  an  error term. With respect  to  parameters aj, bj  and tree diameter,  the model 
was  parametrized  according  to  Lappi  (1997):  

h=\3+Acxp(-bd~
c

) (1) 

ln(h-1.3) -  a -  bd
c

 (2) 

ln(h
ij

-l3)=a
j

-b
J
d-

e
+e

ij (3)  

ln(hij-1.3)  = Aj -  BjXij  +  e l} (4)  

where Xij  =  ((^
c

)-(30
c

))/(( 10
C

)-(30
C

)) (5)  

Site Tree species  

quality 

class Spruce  Birch Pine 

SI 160 164 219  

Eutrophic  mires 

S2 173 837 479 

Herb-rich mires 

S3 355 847 888 

Vaccinium  myrtillus  and tall-sedge  mires 

S4 81 262 1499 

V.  vitis-idaea and  small-sedge  mires  

S5 -  23 362 

Cottongrass  and  dwarf shrub mires 
S6 -  -  3  

Sphagnum  fuscum  mires 
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Using this  expression,  Aj  can  be interpreted as the expected  value of ln(/i-l  .3) for trees 
with a  diameter of  30 cm  and Bj  as  the expected  difference of 1  n(/z- 1.3) between trees  with 
diameters of 30 cm  and 10 cm  (Lappi  1997).  The  appropriate  value for parameter c  was 
determined by  tree  species.  Alternative models (Eq.  4)  with exponents  varying from 0.2  -  

1.5 were  fit for  each  stand by  the ordinary  least squares  (OLS)  method. The minimum sum 
of squares of  the residuals was  used as  an indicator of the best  exponent. The values 

chosen were 0.3, 0.4 and 0.7 for Norway  spruce,  Scots  pine  and pubescent  birch, 

respectively.  

Due to the two-level data structure  -  trees  within stands -  the mixed linear model 

technique  as implemented  in ML3 software (Prosser  et al. 1991) was  applied.  The model 

principle can be described by  a simple  example  generated  by  any two-level data  set. The 

dependence  of  the response  variable Y on the first-level explanatory  variable X and the 

second-level explanatory  variable Z is  expressed  using  a simple  first-level regression  

equation  for Y and X (see  Prosser  et al. 1991), 

and equation  that  describe the variation of the random coefficients (boj  and  b,j,  which are  
the intercept  and the slope,  respectively)  as  a  function of  the second-level variable Z: 

combining  Eq.  (6)  -  (8)  the following  equation is  obtained: 

Variables in the fixed  part are:  the intercept,  first-level explanatory  variable  Xy,  second  
level explanatory  variable Z,  and cross-product  ZjXnj.  The  random part  (in  parentheses)  
consists  of three random effects  that are  the intercept  (u oj),  the slope  (u u)  and the residual 

error (Prosser  et al. 1991). 

Tree height  was  assumed  to  depend  on tree  diameter according  to  Eq.  (3),  the exponent c 

being  specific  to  each  species.  Another basic  assumption  was  that height-diameter  curves 

vary  randomly  from stand to  stand with respect  to  both intercept  (A)  and  slope  (B) (Lappi  

1996).  This variation was  modelled by  assuming  these parameters  to  be composed  of  a 
fixed mean function and random stand effects  with mean zero  and constant  variance. The 

mean was  expressed  as a function of stand  and site characteristics. When estimating  the 

mean function for  parameters B,  and using  a  stand-level variable Zj  in explaining  Bj,  a 
variable ZjXy  must  be included in the fixed part  of the model. In the following,  the 

variances of the random intercept  and slope are termed c
2

u0 and a2
u , (and  the 

corresponding  standard deviations are termed ouo and a
ui). The covariance between the 

random intercept  and slope  is  termed auoui.  

The models were  estimated  using  the restricted iterative least square (RIGLS)  method 

recommended for small samples  (Prosser  et al. 1991). It is an iterative method producing  
restricted maximum likelihood estimates for the parameters.  The model evaluation was  

Yij  -  b oj + bijXij  +ey (6) 

boj Too +  YoiZj  +u0j (7) 

t>ij  =  Yio + YnZj  + u,j (8) 

Yij =  Yoo  + YioXij +  YoiZj  +  YnZjXij  + (uoj  + u.jX, + e,j) (9) 
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done according  to several criteria. Comparing  the parameters  and their standard errors 

indicated whether the parameters  were significant.  Model improvement resulted in 
decreased values of the variances of the random parameters as  well  as  lower value for the 

-2xlog-likelihood.  Transformations were  made to linearize the relationship  between the 

response and explanatory  variables. 

Results  

Norway  spruce 

For spruce,  the covariance  between slope  and  intercept  (aUOui)  was  not  significant,  and the 
correlation was relatively  low (-0.24).  However,  the variances of random stand effects 

(a
2

uo
 and a2

U i) indicating  between-stand variation in parameters  A and B,  which refer to 
the intercept  and slope  in Eq.  (4),  were significant  (Table  3).  The number of independent  

variables explaining  the variation in intercept  was  small,  probably  due to  the low number 

of  stands  and  trees.  The  logarithm  of  the diameter of the  tree  of  median basal  area  (DgM), 

logarithm of stand basal  area,  and north coordinate (divided  by 1000) explained  the 

variation in  intercept.  D
gM and tree  diameter explained  the slope  of  the curve.  

Table 3. Model for the height-diameter curve  for Norway spruce. In the random part, estimated 

variances of  the random  effects  are  given. Standard errors  are in parentheses. For  notations,  see 

Table 1. 

1
 tree diameter as expressed  in  Eq.  (5)  

Pubescent birch 

For birch, the covariance of the stand-level random effects  was  significant  (Table  4), and  

correlation was considerably  higher  than for spruce (0.579). Fixed stand-level variables 

explaining  intercept  A were  the logarithm  of  DgM ,  north coordinate (divided  by 1000),  
elevation above sea  level,  the logarithm  of the total basal area  of  birch,  and a  dummy  
variable which had value 1 if the stand had been thinned during the  past  five 

Parameter Fixed part  Random part 

A 6.154(±0.4065)  

0.1058  (±0.05155)  lnD
gM 

0.1683 (±0.02182)  InG  

-0.025 18(±0.004846)  Ncoord 

Stand level 

o
2

u0
 0.003633(±0.00 1507) 

a
uo 0.060274 

B 0.6648(±0.09735)  

0.1045 (±0.03671)  lnDgM -x
;
 

a
2

ui
 

CTui 

0.0022 13(±0.00 1056) 

0.047043 

Tree level  

a
2

c
 0.02431 (±0.001375)  
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years,  or  0  otherwise. The slope  of the curve  (5)  was  explained  by  tree  diameter,  D gM,  and 

stand basal area.  

Despite  logarithmic  transformation, the variance  of the OLS residuals  was not  constant  at 

the tree  level. When plotted  against  tree  diameter, the squared  residuals indicated that the 

variance  of tended to  decrease as  tree  size  increased (Fig. 2).  It is  possible  to  express  the 

variance of the residual error  as  a function of some independent  variable if  constant  

variance  cannot  be assumed. The following  variance function was  used to  describe tree  

level variance: 

The search  for  the appropriate  values for  the parameters  p and q was  done with trial-and  

error  method based  on  two  criteria: the value of  the -2xlog-likelihood,  and  the graphic  fit 
with the group means  of squared  residuals in diameter classes  (Fig.  2)  and the  alternative 

models produced  by  different parameter  combinations. Values were  determined to be 9  
and -2 for p and q, respectively.  The variance function was  included in the model 

following  the way  it  is  implemented  in the ML3 software (see  Woodhouse 1993),  and  the 

linear parameters  (a
2

eo
 and  o

2

e)) were  estimated simultaneously  with  the  whole  model. 

Table  4. Model  for  the  height-diameter curve  for pubescent birch. Gu ou i denotes  covariance and p 
correlation between  the random  stand effects. For other  notations, see Tables 1 and 3. 

Nonhomogeneus variance  at the  tree  level  is  accounted  for.  

var(e,y  )  =  {Max{d
ij

,p)
q

 )a
2

 +a
e

2

0 (10)  

Parameter Fixed part Random part  

A 6.465 (±0.417) Stand level 

0.4743(±0.03084)  lnD
gM 

0.1339(±0.01302)  ln((Gb/100)+l)  

-0.04331 (±0.005426)  N coord 

-0.0004369(±0.0001349)  Elevation c
2

u0 

0.06447(±0.01824)  Thin (0/1) au0 

0.01772(±0.002417)  

0.133116 

B  -0.05942(±0.04247)  

0.2123(±0.01955)  lnD
gM -x  

-0.004922(±0.0008383)  Gx  

a
2

UI
 

CTui 

CTuoui  

PuOul 

0.004265(±0.0008604)  

0.065307 

0.005031 (±0.001283)  

0.5788 

Tree level  

a
2

 co  0.003595(±0.0007539)  
G

2

e  i 0.852(±0.09086)  
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When compared  to the model with constant  tree-level variance,  modelling  the variance as  

a  function  of  tree  diameter produced  a  considerably  lower value  for  the -2xlog-likelihood  

and  also  decreased the  variance of  the  slope  c
2

ul .  Furthermore,  the  correlations between 
the random terms at  stand level were  lower.  However,  incorporating  the variance function 

into the model changed  the estimates of the fixed  part only  slightly;  therefore,  only  the 
model with variance function is  presented  here. 

Figure 2. Mean squared 
residuals and respective 

standard errors of model 

(4) for birch by  tree 
diameter  classes,  and the 

estimated variance 

function (10).  

Scots  pine  

The  positive correlation between the random stand effects  was  the highest  for pine  (0.655,  

Table  5). The intercept  was  explained  by  the logarithm  of  D gM,  the  north coordinate, the 

logarithm  of the stand basal area,  and the dummy variable for thinning.  In contrast to the 

other  models,  a  dummy  variable indicating  site quality  according  to  the classification 

system  of Huikari (1952),  was significant. The curve  was higher  for sites S2  -  S4. For 

pine,  tree  diameter, the logarithm  of D
gM,  and the logarithm  of  the stand basal area  

explained  the variation in the slope  of  the curve.  

Also  for pine,  a  variance  function for the  residual term similar to  that for  birch (Eq. 10) 
was  used.  The same values for  parameters  p (9)  and  q (-2)  resulted in good fit with  pine  as  
well. A  significantly  better model in terms  of the -2xlog-likelihood  resulted, but  the fixed 

parameter estimates remained almost the same. 

Model validation 

During  the model construction,  residual plots  were used to examine any trends between 

response and  explanatory  variables  after fitting a model. Tree diameters were classified,  

and plots  were  produced  to check any  trend in the average values of the residuals in these 
classes  (Fig.  3). The figures  were  produced  from the tree-level  residuals,  and  the effect  of  

stand-level variables cannot  be seen. No systematic  trend in residuals was  detected for any 

species.  
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Figure  3. Means of  the model  residuals and  

their standard errors  by  diameter  classes  
and  tree species.  

Table 5. Model for the  height-diameter curve for Scots pine. Site is  a dummy variable including 
sites  S2-S4 in Table 2. For  other notations, see Tables 1, 3 and  4. Nonhomogeneus variance at 
the tree  level  is accounted  for.  

Parameter Fixed part  Random part 

A 5.369(±0.3139)  

0.3566(±0.03451)  lnD
gM 

0.1 177(±0.0 1672) InG 

-0.02638(±0.004088)  N coord  

0.051 15(±0.0 1649) Thin  (0/1)  

0.0984(±0.01719)  Site (0/1)  

Stand level 

a
2  

uo
 0.02407(+0.002547)  

a
u0
 0.155145 

B 0.3742(±0.03857)  

0.141(±0. 01831)  lnDgM-x  
-0.01263(±0.00 1274)  Gx  

_2 
O ul 

<7ui 

a
uoui 

Puoul  

0.005395(±0.0009467)  

0.07345 

0.007469(±0.001438)  

0.6554 

Tree level 

Q
2  eo 0.005 175(±0.0008566)  

a
2

Ci 1.93(+0.1243) 
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The models were tested in the modeling  data by calculating  the model bias as the 

difference between the observed heights  and those predicted  by  the fixed part  of the model 

at  the original  scale  of  height.  Before applying  the exponential  transformation,  half of the 

model variance was added to the logarithmic  predictions  in order to correct  bias in the 

transformation (Flewelling  and Pienaar 1981). In these models,  the correction was  

proportional  to  tree  size  according  to  the following  formula: 

where xy  is tree  diameter as  expressed  in  Eq.  (5).  The average bias  of  all models was  low, 

especially  when the correction term was  applied  (Table  6).  With spruce, the bias  did not 

depend  on diameter (Fig.  4).  The  model for birch slightly  underestimated the height  of  

trees  10 -  20  cm  in diameter,  and  overestimated the height  of  the largest  trees.  The model 
for  pine  was  virtually  unbiased  up to  20 cm dbh.  The height  of  trees  larger  than  20  cm  in 
diameter was  systematically  underestimated (Fig.  4).  The most  probable  reason  for the 
bias  in large  trees was  the high  proportion  of  small trees  in the data: e.g.,  93% of  pines  and 

97% of birches were  less  than 20 cm in  diameter. 

Figure 4. Bias (logarithmic correction 

included) of  the models in the  modelling  data 
as a function of tree diameter. Bias is 

presented at  the original  scale  of height. 

0.5  a  J  =  0.5((a  2 0  +2a +a )  +(a  
c

2

O +a  
*

 ((Max(d„ ,  9)"'  )
2

))) (11)  
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Table  6.  Average bias  (standard errors  given in  parentheses are  biased downwards due  to the  

correlated observations)  of  the  models  in  the  modelling data and  the  effect of the correction  term. 

Figure  5  gives  an example  of the height curves  predicted  by  the models. The model for 

spruce  seems  to  produce  curves  of rather  linear shape,  while the models for birch  and  pine  

produce  more nonlinear curves.  Consequently,  the range in predicted heights  for  small 
trees  is  narrower  for  spruce than for the other species.  With respect  to  the accuracy  of  

height  measurements, the effect of the logarithmic  correction term appears to be trivial. 

Figure 5. Height-diameter curves  predicted 
by  different models using the  mean values 
(middle curve)  and using either  5 (low  curve) 
or  25  (high curve)  for stand  basal area  and  
diameter  of the tree  of median  basal area,  
and  74000  (low  curve) or 68000  (high curve)  
for the north coordinate. Curves indicated 

with  dashed lines  have been produced 
without  the  logarithmic  correction  term. 

Discussion 

The basic,  present  use  of  the  models  developed  will be  as part  of  a  growth  simulator  used 
in forecasting  the development  of  large-scale  forest resources  (MELA  system,  Siitonen 

1983). This fact presupposes that  the modelling  data are regionally  representative.  

Spruce  Birch Pine 

Bias, not corrected  (cm) 12.79  (4.36) 14.46 (2.68) 12.43 (2.05) 

Bias, corrected  (cm) 1.94 (4.36) 4.75  (2.68) 1.40 cm (2.04) 
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Another important  requirement  for models of  this  kind of use  is  that they  should  give  
reliable predictions  when applied  to various data sets. For  these reasons,  an objective  

random sample  from all  kinds  of drained peatland  stands  all over the country  was  used as  

the data in the modelling  work.  Undrained peatlands  were  excluded from these data.  

Actually  these were  the only  data  covering  the whole country.  Although  representative,  

the data were  not  ideal for modelling  purposes, because the stands were  mainly  young and 

the trees  were  small.  As suggested  by  Figure  4,  the predictions  given  by  the models may  

be  biased for  large  trees, which may  cause  problems  in long-term  simulations. In order  to  

avoid unreliable predictions,  there remains a  need to  validate  and  update  the models when 
future inventories  provide  more  data  from older  stands.  

After the logarithmic  transformation, the form of  the height -  diameter relationship  is  
determined by  the exponent  c.  The values obtained here (0.3,  0.4,  0.7)  can  be  considered 
low compared  to  other studies.  For  example,  the values for  Jack pine  (Pinus banksiana)  

stands at  different ages  varied between 0.6  and 1.6 (Lappi  1997).  Flewelling  and de Jong 

(1994)  defined the lower limit  of  c  to  be 0.5 for  western hemlock (Tsuga  heterophylla 

(Raf.)  Sarg.).  The  reason  for the low values in this  study  may be that the structure  of  
stands growing  on drained peatlands  is more uneven than that  of stands growing  on 
mineral soils. The diameter distribution at the time of drainage (Heikurainen 1971, 

Gustavsen and Päivänen 1986)  and during several  decades following  drainage  (Hökkä  and 

Laine 1988,  Hökkä  et ai. 1991)  is  usually  reversed  J-shaped  or  extremely  right-skewed.  

Clumped  spatial  distribution of trees  permits  great variation in tree  height.  Inter-tree 

competition  affects  height  distribution to  a  lesser  extent  than in more  homogenous  stands.  

The exponent was  highest  for birch,  which may form denser and more even-aged  stands 

than pine  or  spruce on  drained peatlands  during  the first  rotation. 

In the models,  the fixed stand variables explaining  the intercept  are  logical.  The north 
coordinate takes into account  the change  in stem  form which occurs  as  a function of  

latitude (Korhonen 1993). For  all three species,  the height-diameter  curves become more 

flat towards  the north. Elevation above sea  level has a similar effect. Average  tree  height  

increases as  the stand median diameter or  stand basal area  increases.  Thinning  increases 

the intercept,  because  the shortest  trees  of  equal  diameter have  the highest  probability  of  

being  removed in low  thinnings.  In the same way,  the level of the curve is  the highest  for 

the most  productive  sites. 

The interaction between tree diameter, stand median diameter and stand basal area  

indicated how the slope of the average  height-diameter  curve  changed  as  the median 

diameter or  basal area  changed.  The  same kind of relationship  has been  presented  

previously  by  Lappi  (1997)  for  Jack pine.  Thus,  the height of a  tree of the same diameter 
varied as  a  function of  the average size  of  the trees  or  stand stocking.  The average size  of  

the trees  (DgM) has also been shown to determine the shape  of  the dbh-distribution in 
drained peatland stands (Hökkä  et ai. 1991). 

Stand-level random parameters indicated that both the intercept  and slope  of the curves 

varied randomly  from stand to stand. The  correlation of the stand-level random effects 
described how intercepts  and  slopes  are  related to  each  other. The positive  correlations in 

these data mean  that in stands where the intercepts  are  high  the slopes  are  steeper than in 

stands  where the intercepts  are  lower (see  Woodhouse 1993);  i.e.,  the slopes  are steep in 
more advanced stands. Accordingly,  if both  slope  and intercept  are  low,  as  determined by  
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low values of stand attributes,  the  resulting  curves  seem very flat,  especially  for pine  and 

birch (Fig.  5).  These curves  refer to  recently  drained sparsely  forested mires,  in which the 
stand is  composed  of  trees  that were  growing  in the site  before drainage.  At  that stage,  the 

largest trees are not much taller than the small ones due to their stunted height 

development,  but they  may recover  their growth  after drainage  depending  on their vigor  

(i.e.,  age and size)  (Seppälä  1969). 

The models have  the standard advantages  of  random parameter models. By  explicitly  

taking  into account  the nested structure  of  the data, unbiased tests  for the parameter  

estimates were  produced.  The models can  be  calibrated with only a  few measurements  of  
the response  variable, and more accurate  predictions  can be obtained for specific  stands 

(Lappi  and Bailey  1988).  In inventory  data, logical  height  curves can be obtained with 
fewer height  measurements.  The property  of these models is  that the slope is  predicted  
standwise as  a function of  the average size  of the trees and stand basal area.  This makes 

the models more  flexible to fit a  variety  of stand structures, which is  useful in long-term 

forecasts  when changes  in stand structure  are  expected.  These models form one  element of  

a  growth  simulator,  which can  be used as  a  tool for managing  drained peatland  stands.  

Together with diameter growth models and models for ingrowth  and self-thinning,  

predictions  on  stand development  can  be  made as  a  basis for  management decisions. 
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Predicting  the  initial  growth  response of  Scots  pine  to ditch network  

maintenance  with an individual-tree  diameter  growth  model  

Hannu Hökkä 

Abstract  

Models were  developed  for Scots  pine  {Pinus sylvestris  L.)  growing on  drained peatlands  

to predict  the growth  response of individual trees  to different improvement ditching  

methods. Increment  cores  corresponding  to the first  5  to 8  years  of growth after treatment 

and a  five-year  period prior  to  treatment  were collected from experimental  stands  where 

ditch cleaning,  complementary  ditching,  a  combination of the two, and a  control were  

included. Site characteristics  and  tree  and stand attributes at two occasions  (5  yrs  prior to 

and  at  the time of  treatment) were  used to  explain  the annual diameter growth  of  a  tree in 
a mixed  linear model. To describe the growth response to the three ditching  treatments, 

the time since treatment was included first  through  dummy variables, and then  growth 

responses  were  expressed  as a  nonlinear function of  time. Annual growth  variation -  i.e.,  
the growth index for the study  period  -  was  accounted for by  fixed year effects. Variation 

around the mean response  to  each treatment was  further explained  by  tree  and stand 
attributes. 

Introduction  

Peatlands have  a  remarkable role in Finnish forestry  because  they  constitute over  30% of  
the total land area.  Peatlands have been  drained for  forestry  on a  practical  scale since  the 

19305,  but the most  intensive drainage period  was during  the late 19605, i.e.,  25-30 yrs  

ago. At  present,  improvement  ditching  -  ditch cleaning,  complementary  ditching,  and  a 
combination of  the two  -  has been  substituted for the drainage of pristine  peatlands.  On 
the basis  of  field inventories  where  the condition of  the ditch networks  has been evaluated 

(Keltikangas  et al. 1986),  the annual  need for improvement  ditching  was  estimated at 120, 

000 ha during  the years  1986-2005 in order  to  maintain good  conditions for  tree  growth  on 
drained peatlands  (Metsä  2000... 1985;  see also  Keltikangas  et al. 1986,  Paavilainen and 

Tiihonen 1987). 

Drained peatlands  are  labile ecosystems which tend  to return  to peatland  succession if the 

lowered water  table rises again (Heikurainen  1980).  Previous studies have shown that 

drainage  ditches become considerably  shallower in the 20 yrs following drainage  

(Heikurainen  1957).  Decreased tree  growth  observed  in 15-20 yr  old  drainage  areas  has 
been assumed to  be  due to  the deteriorated ditch networks  (Heikurainen  1980).  In  growth  
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models, the poor condition of  ditches has been used to  explain  the lower growth  of  trees  
(Hänell  1984, Hökkä et ai. 1997). 

The condition of ditches and the site does not  entirely  determine the growth rate  of trees,  

because  fast  growth  and  great volume may  prevent  the water  table from rising  due  to  high  

transpiration  and interception  (Heikurainen  and Päivänen 1970,  Duncan  and Terry 1983,  
Ahti and Päivänen 1997).  Based on a study  of competition  and growth, Penner et al. 

(1995)  suggested  that there is  an  interrelationship  between stand stocking,  tree  growth  and 
site drainage  conditions in  drained peatland  sites.  Therefore,  increasing  competition  may 
influence individual tree  growth positively (see also  Laine 1986). Due to this effect and 

the various factors that affect the rate  of deterioration of ditch networks (Paavilainen  and 

Päivänen 1995), great variation (both  temporal  and spatial)  in growing  conditions in 

drained peatland  sites  can  be expected.  

Different improvement  ditching  methods  are  applied  in practical  forestry  in order  to  repair  
the ditch networks (Paavilainen  and Päivänen 1995). The decision making  is based on  

rough  information on site  quality,  the age of  the original  drainage,  original  ditch spacing,  

and average stocking  (e.g.,  Kangas  et al. 1996).  For  the purposes  of  forest  management 

planning,  and  in order to  estimate the  economic benefits of the measures,  it  is  important  to  
quantify  the growth response of  trees  to improvement  ditching. 

While the growth  impact  following  the drainage  of a  pristine  peatland  stand  has been 
demonstrated in several  studies  (e.g.,  Seppälä  1969, Payandeh  1973, Hänell 1988, Dang  

and Lieffers 1989), the effect of improvement  ditching  on tree  growth is  not  well known. 

Päivänen and  Ahti (1988)  and Ahti  and  Päivänen (1997)  have  shown that changes  in  the 

groundwater  table  take place  due to treatment, but  the effect  of  ditching  on tree-level 

growth  has  remained unclear  (Ahti  1995, Ahti and Päivänen 1997).  Differences  in,  e.g., 
tree  vigor,  stand and site  conditions,  and  annual climate,  which were  not  considered in 
these analyses,  may have  caused significant  variation in growth,  making  it  difficult  to 
observe the effect of the treatments. Stewart (1958)  concluded that the effect  of ditch 

cleaning  on the growth  of Sitka  spruce  (Picea  sitchensis (Bong.)  Carr.) was  insignificant.  

The aim of this study  is to assess  the effect  of different ditch network maintenance 

methods on the diameter growth  of Scots  pine  (Pinus sylvestris  L.),  which is  the most  
common tree  species  in drained peatland  sites  in  Finland. The approach  is  based on  the  
simultaneous analysis  of different factors influencing  individual tree  growth.  The  data 
were  collected  from  permanent experimental  stands  located  in different parts  of  Finland. 

Materials 

The data consisted  of nine field experiments  that were  established in pine  mires drained 
for forestry purposes 17-56 yrs earlier. The  experimental  design included the following  
treatments:  ditch cleaning,  complementary  ditching,  a  combination of ditch cleaning  and 

complementary  ditching,  and  untreated control. In  ditch cleaning,  the old  ditches were  dug  
to  their original  depths;  and in complementary  ditching,  new  ditches were  dug  at a  point  

midway  between the old ones.  The data were  clearly  unbalanced because  the number of  
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replicates  varied from one to  five in different experiments,  and all treatments  were  not  
included in all experiments  (Table 1). Within each experiment,  sample plots  representing  

different treatments  were  delimited from ditch  to  ditch, and all trees  were  calipered  and 

mapped.  Tree height,  height growth  and upper diameter measurements  were  taken from 

sample  trees. Stand characteristics were  then calculated plotwise  (Ahti  and Päivänen 

1997). 

Table  1. Number of  plots,  sample trees, and growth years for each  experiment. 

In each  plot,  20-25 trees  belonging  mostly  to  the dominant canopy layer  were  cored and 

calipered  in 1989 or  1990 in order to  determine the annual growth  rates. At the time of 

core  sampling,  the age  of the ditching  treatment  varied between 5 and 8 yrs.  The 

increment cores  were  used  to  calculate plotwise  growth  during the 5-yr  period prior  to 

treatment, and  stand characteristics  corresponding  to  that time were  produced.  The annual 
diameter growths  of  the sample  trees  within the whole 13-yr period  were then  used as the  
basis of the growth  response analysis.  

When the experiments  were  set  up,  the stands  were  understocked and characterized  by  a  
small average size  of trees  (Table  2).  Site type and the average peat thickness were  
determined for  each  plot.  According  to  Huikari's  (1952,  1974)  site  quality  classification,  

low-sedge  pine  mires, dwarf shrub pine  mires, and cottongrass  pine mires  were  most  

commonly  represented;  i.eM  most  sites  were  considered oligotrophic  or  poor oligotrophic.  
Due  to  the concentration of  the data on  poor pine  mires,  the widest  original  ditch  spacing  
used in practice  (70-100  m) was  poorly  represented  or  missing.  

The  date of  establishment varied  within four years  (1982-1985)  for  the  experiments.  This 

helped  to separate the growth  response  from the annual climatic variation in growth.  

Plotting  the average annual growth  by  time  and  treatments suggested  that complementary  

ditching,  and ditch cleaning  and complementary  ditching  combined,  resulted  in  higher 

growth  than ditch cleaning  or  untreated control  (Fig.  1). There appeared  to  be a  strong 

decreasing  trend  in  growth  during the last  three years in  the data as  a whole. 

Experiment  

1 2 3 4 5  6 7 8 9 All 

plots  9 10 6  16 6  4 22 14 8 95 

trees 180 197 120 320  120 107 405  413 133 1995 

growth 

yrs (13  yrs) 2160 2364 1320 3519 1200 1391 4050 5369 1330 22703 
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Table  2.  Mean, minimun and maximum  values  of  tree, stand, and  site  attributes  in  the data  at the  

time of  set  up.  

d = tree  diameter (over  bark) 
id =  diameter growth  during  the whole period  (13  yrs) 

DgM  =  diameter of  the tree of  median basal  area  (over  bark)  
G = stand basal  area  (over  bark)  
a
 temperature sum  in  degree  days (threshold  value  +5)  

Figure 1. Average  annual  diameter  growth of  
the sample trees  by  treatments  (0 = control, 
1 = ditch cleaning, 2 = complementary 

ditching, 3 =  combined ditch cleaning and  

complementary ditching) and time since 
treatment. 

The differences in groundwater  table depths  observed during the pre-treatment  calibration 

period  and those calculated as  an average  from observations  of a  three-year  period  

following  the treatment  were  4.2,  5.6,  and 10.0 cm for ditch cleaning,  complementary  

ditching and the combination treatment, respectively  (Päivänen  and Ahti 1988).  Even 

though  the ditches bordering  the control plots  remained untreated, it is  possible  that the 

trees  in the control  plots  also  responded.  This  may  be  due  to  the fact  that the water  table 

was  slightly  influenced by  treatments  carried out  on  the lower parts  of the ditch  system.  

Attribute Minimum Mean Maximum 

d (cm) 2.70 10.83 25.50 

id  (mm  yr"
1

) 0.12 2.15 10.64 

D
gM  (cm)  6.97 11.24 17.44 

G  (m
2  ha

1
) 3.43 8.89 18.32 

Ncoord. (km)  68647 70658 72767 

Ecoord. (km)  2758 4571 5707 

tsum
a  (dd°C)  867 1043 1178 

peat thickness  (m) 0.35 89.59 1.00 

time since  drainage  (yrs)  17 35.15  56  

original  ditch spacing  (m) 24 47.01 73 
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Methods  

Approach  

Trends  in annual tree  growth due to the drainage  of a  peatland  stand have  been analyzed  

by  determining  the change  in tree ring  index (Dang  and Lieffers 1989),  and by  studying  
the deviation of the observed  residual series from that predicted  by  a climatic  model 

(Zarnovican  and  Laberge  1994).  In neither of these studies  were  the effects  of  tree  vigor  
and stand and site conditions on growth  explicitly  quantified. 

Henttonen (1990)  described the effect of tree size, age, and competition  on the diameter 

growth  of  Norway  spruce ([Picea abies L.  Karst.)  in mineral soil  sites  with a growth 

model. The residual variation was  decomposed  among plot-, tree-, and year effects. The 

trend  in  the predicted  annual growth  indices  was  then studied. Because the aim of the 

present  study  was  to  develop  a  model for  prediction  purposes,  the growth  model  approach  
was chosen. 

A  random coefficient model was used as  the method. It  was  assumed  that  within a  plot  the 

following  model described the observed  data for  the trees: 

where Xi is  the n;  x  r  matrix of  regressor  variables  for tree  i,  b, is  p  x 1 parameter vector  

for tree  i, and  e*  is  the m  x 1 vector  of random errors (see  Prosser  et al. 1991,  Lappi  and 

Malinen 1994).  It  was  further assumed  that bj  was  a random vector  with unknown mean (3.  

Thus the model can be  written as follows: 

where  P + Ui  = fy.  Here,  u; is  a  random vector  with  zero mean and variance covariance 

matrix X.  The term Xip  is  the fixed part  of  the model and XjU,  + e,  the random part, i.e., 

the error  term. 

Model 

In order to distinguish  the growth response to  the ditching treatment  from other effects  

influencing  individual-tree growth,  the effects  of  all  growth  factors  -  the tree's vigor,  
inter-tree competition,  treatments, varying  site and weather  conditions -  were  analyzed  

simultaneously  in a  growth  model. The logarithm  of  the annual diameter growth  of  a  tree  
was  used as  the response variable,  and at plot level,  growth  was  expressed  as  a  function of 

tree diameter (Vanclay  1994)  as  follows: 

yj  = Xjbj  +  e;, [l] 

yi =  Xi(J  +  XjUi  +  ei, [2] 

l n(idjkh+  oi)  -  öjki  +  bjkdjki +  CjicK, [3] 
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where idjklt =  the diameter growth  of tree  1  in year t  on  plot  k  in stand  j 
a = a small  constant  added to every  growth observation  to correct  the skewed  

distribution of the response variable 

flju = the intercept  for  tree  lin plot  kin stand  j 
bj k -  the slope  for  plot  k  in stand j 
djki =  the diameter of  tree  lon plot  kin  stand j 
ejku = the random  error 

Thus,  the relationship  between tree growth  and diameter was  assumed to  vary  randomly  
from  plot to  plot with  respect  to  the intercept  (a)  and  slope  (b )  (Lappi  1997).  At  plot  level,  

parameter  bjk in Eq.  [3]  can  be  re-expressed:  

where  bis  the unknown mean slope, and  parameter £>
jk  denotes the random plot  effect  (see  

Eq.  2).  Random variation around the mean intercept  was  assumed at stand (experiment),  

plot,  and tree  levels. Furthermore,  annual variation in growth  among stands  may be 
different (Henttonen 1990): therefore, a random cross-classified effect  (see  Rasbash  and 

Woodhouse 1995)  of  year and experiment,  ajt,  was  also needed. Thus,  the parameter  a]U 
was  re-expressed  as  follows: 

where  ais  the unknown mean intercept,  and parameters ap  aJt ,  a ]k , and are  random 
effects  at  stand,  plot,  and  tree  levels. 

The model implied  that tree  growths  within a  plot  were  correlated,  thus  accounting  for  the 
nested effects  that resulted  from the arrangement  of  the data into four hierarchical levels: 

experimental  stands,  plots  within stands,  trees within plots,  and the successive  annual 

growths  of individual trees. The crossed  effects  in the data  were  connected to time, which 

reached across  the hierarchical levels. It  was  further implied  that a  constant  correlation 

between the growths  in successive  years of the same tree  arose from the hierarchical 

structure  of  the data: i.e.,  no special  autocorrelation structure  was  assumed (see  Prosser  et 
al. 1991).  However, the values of  the error  term ekju  were  assumed to  be  uncorrected. 

Variables related  to growth factors from different levels of hierarchy  were elaborated to 

explain  mean parameters a and b. Because tree  size  and stand stocking  increased  with  
time, values determined for the tree and plot attributes (stand  attributes were  calculated for 

each  plot)  both at the beginning  of the  study  period  and at the time of  treatment were  used.  
In the model for the whole study  period  (13  yrs  altogether), the  mean intercept and mean 

slope  were  estimated for both periods:  a  and  b for the pre-treatment period,  and  a ir  and  b u 
for the post-treatment period.  Expressing  the slope  as  a function of plot-level  variables 

made it necessary  to include the product  of  tree  diameter and the variable of interest in the  

fixed part (Prosser  et al. 1991). Accordingly,  random slopes  were assumed for both  

periods  at plot  level. 

In  conclusion,  the following  combined equation  for  the whole study  period,  arranged  into 

fixed  and random parts,  was  obtained:  

b
lk

-b  +  bjk [4] 

tfjki  =a + + a Jt  +  fljk  + fljki [s] 
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where subscript  tr  refers  to  the post-treatment period.  In the random part, variances and 
covariances of  the random effects,  var(aj),  var(a Jt), var(a jk), var(fcjk), var(£> trjk ), cov(aj k ,  

fejk),  cov(ajk,  i>lr ,jk),  var(ajki),  and var(ejku)  were unknown constants  (variance  components).  

All random parameters  were assumed to follow independent  multivariate normal 

distributions with zero mean and constant  variances and covariances at each level. 

In the fixed part, variables  referring  to tree  and plot  attributes and having  values that 

corresponded  to  the date 5  yrs  before the treatment  explained  the pre-treatment growth.  
When the post-treatment  annual  growths  were  explained,  the values of these variables 

corresponded  to  the time of  treatment. To analyze  the change  in  the relationship  between  

growth  and  the explanatory  variables due to  the ditching  treatment, the same tree  and  plot  

variables were included in the model a second time.  These variables explained  only  the 

post-treatment  growths:  i.e.,  their values were  set  to  zero  for  the pre-treatment period.  The  
variables measured at two  occasions  and their estimated coefficients indicated the models 

for  the mean intercept  (a)  and  mean slope  (b)  for  the pre-treatment period.  The models for  
the post-treatment period were  obtained by  adding the estimated coefficients  of the 
variables which explained  both a and a,r or  both  b and b,r together.  Attributes that had 
constant  values over  time -  like site  quality  -  explained  both a and a,r.  

The fixed time effect consisted of two  components:  the annual variation in  growth, and 

the time since  treatment.  These will be  termed hereafter the year effects,  referring  to the 

fixed calendar years,  and  the time-treatment effects,  referring  to  the number of  years  since  

the treatment.  The time-treatment effects  explained  only  the post-treatment growths.  

Because of the different hierarchical levels in the data, MLn software (Woodhouse  1995) 

was used in the analysis.  The estimates of  the fixed parameters and the variance 

components  related to the random effects were  estimated simultaneously  with  the 
restricted iterative generalized  least square (RIGLS)  method,  which produces  restricted 
maximum likelihood (REML)  estimates for the  parameters (Goldstein  1989). 

Determining  the basic  growth  model 

For  the pre-treatment period,  separate  models were  constructed for  each  treatment  to  study  

whether the treatments differed from each other initially  in  terms of growth dynamics.  

Parameters for the tree  and plot  variables related to  tree  vigor and stand stocking  (the  

logarithm  of tree  diameter and the second power of  the logarithm  of tree  diameter, the plot  

basal area,  and the product  of the  plot  basal area and the logarithmic  tree  diameter) were 

estimated simultaneously  for  each treatment.  Dummy  variables  were used to estimate the 

year effects. Site variables (temperature  sum, site dummies for the a priori sites)  were 

common for all treatments  within each stand. The  random part  consisted of a random 

intercept  at all  levels  and  the year-experiment  cross-classification  term at  stand level.  The  

treatment-specific  parameters were fairly  similar,  producing  similar  models. 

For the post-treatment period, treatment-specific  models were constructed  

correspondingly.  Additional dummy variables were  used  to account  for the  time-treatment 

In(idjkit)  ={a+ au  +  fcdju  +  bird^u)  
+  (öj  +  öj,  +  öjk +  öjki  + +  Vjkdtrjk]  +  ejklt)> [6] 
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effects. When the models  were  compared,  the control treatment  differed from the others 

due to  its higher  growth  rate, as indicated by  the smaller  coefficient of  the second power 
of lnd  (lnd

2

). Since there was  no reason to  assume  higher  basic  growth  for the control 
treatment  only,  the difference was  assumed to be  attributable to the missing  treatment  

effect for the control. This  was  supported  by  the initial plottings,  which  suggested  that  the 

trees  in the control plots  had also responded  in several  experiments.  Attempts  to  model 

this  slight  response  were  unsuccessful  due to  the problem  of overparameterization.  

In conclusion, the whole model, with responses  to  the improvement  ditching  treatments, 

was  estimated by  assuming  no time-dependent  response  for  the control treatment and the 

same basic  growth  function with equal  parameter values for  all  ditching  treatments.  This  

basic function was considered as the reference growth to which the other  treatments 

should be compared  when the growth  response  was  evaluated. For  the control treatment, 

the  parameter  for  lnd
2
 was  allowed to  be  different in  the basic  growth  function  in order  to  

account  for the obvious increase in growth  due to the unintentional 'treatment'. 

Results  

Model with discrete time 

The growth responses were  first  accounted for by  dummy  variables. Site,  plot,  and tree  
variables in the fixed part  were  grouped  according  to  their contribution  to  the intercept  (a,  

a,r) or  slope  (b,  b,
r
) in Eq. [6]  (Table 3). The temperature sum was  the only  variable 

indicating  the geographical  variation in the data and explaining  the intercept  at stand level. 

Huikari's (1952,  1974) site  quality  classes  were  used in re-grouping  the sites  into two  
classes. The combined poor oligotrophic  and ombrotrophic sites showed lower average 

growth  than the combined mesotrophic  and oligo-mesotrophic  sites. 

At  plot  level,  the intercept  for  both periods  (a,  a„•)  was  explained  by  plot  basal  area, which 

had a  decreasing  effect  on  individual tree  growth  (Table  3).  After the treatment, high  basal  
area  limited growth  more  than before the treatment.  Neither of  the tree-level measures  for 
inter-tree competition  (lnd/D gM or  lnd-lnDgM) affected growth  significantly.  

The relationship  between tree  diameter and  growth  was  different in different periods.  Tree  

growth  was  lower the greater the tree  diameter was  during  the pre-treatment period.  After 

treatment, the slope  between growth  and  diameter became almost zero,  as  indicated by  the 
sum of the coefficients of  lnd and lnd

tr.  The second power of the logarithm of tree  

diameter was  insignificant  in the pre-treatment period,  but  the same  variable decreased  
individual tree growth after the treatment  when its value corresponded  to the time of 

treatment.  Different values were  estimated for the non-treated control and the ditching  
treatments. The  slope  between growth  and tree  diameter after the treatment (bu) was 

explained  by  the plot  basal area  at the time of treatment  (Table  3).  The positive  coefficient 

increased the slope  as  plot  basal area  increased. 

In the random part,  all variance components defined in Eq.  [6],  except  the covariance 
between the intercept  and the slope  during the pre-treatment  period,  were  significant 

(Table  3).  The  greatest variance component was  found at tree  level. 
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Table  3. Model  for predicting  the  growth of  Scots  pine before and  after  improvement ditching. The  
response variable is  In(id+l).  Variables with subscript  tr refer  to  tree  and plot  attributes observed at 
the time of treatment. Temporal treatment  response is included  with dummy variables. For  
notations, see Table 1. 

3 Site  dummy referring to  Huikari's  (1952, 1974) site  quality  classes  4  and  5.  
k  2.2  has  been  subtracted  from all  ln(d)  to  center  the  variable.  

Fixed  oart 

Intercej  n  (a. a, r
) 

Variable Darameter s.e. Variable  parameter s.e. 

a G -0.0244 0.0039  Time-treatment  effects  

t-'ir -0.0247  0.0069  1.clean  0.0354  0.0313  

2.clean  0.0537  0.0313  

a, atr  constant -0.2995  0.7456  3.clcan 0.094 0.03131  

tsum 0.00180  0.0070  4.clean 0.0985 0.03133  

peat -0.00168  0.0006  5.clean 0.1061  0.03134  

site
3 -0.0997 0.0315  6.clean  0.145 0.03299  

7.clean  0.1667  0.03468  

Year  effects  8.clean  0.119 0.03634  

1979 -0.0202  0.0566  l.compl  0.0614  0.03151  

80 -0.1237  0.0542  2.compl  0.109 0.03152  

81 -0.1719  0.0535  3.compl  0.1432  0.03155  

82 -0.1392 0.0535  4.compl 0.1468  0.03157  

83 -0.0169  0.0582  5.compl  0.1863  0.03157  

84 0.0328  0.0617  6.compl 0.2007  0.03359  

85 0.0005  0.0660  7.compl  0.2404  0.03597  

86 0.0943  0.0683  8.compl  0.1899  0.03791  

87 -0.0346  0.0684  l.comb 0.0261  0.03225 

88 -0.0834  0.0687  2.comb 0.0604  0.03226  

89 -0.0869  0.0689  3.comb 0.1381  0.03228 

90 -0.2587  0.0807  4.comb 0.1792  0.0323 

5.comb 0.2356  0.0323 

6.comb 0.2733  0.0344  

7.comb 0.3142  0.0368 

8.comb 0.2208  0.0413 

SloDe  (b.  btr) 

Variable  parameter s.e. 

b lnd
b  -0.1914  0.0247  

*>tr > nd
tr  0.1715  0.0439 

(lnd/contr  tr)  -0.0553  0.01272  

(lnd/ditchedtr)  -0.0677  0.01272  

lnd  trxGtr  0.007567  0.003026  

Random  cart 

Variable Darameter s.e. 

Intercept  (a) experiment 0.04101  0.02002  

ex peri  men txy  ear 0.007299  0.001125  

plot  0.002932  0.001059  

tree 0.06064  0.002098  

time 0.03631  0.000359  

Slope ([b)  at  plot  level  
lnd  0.02373  0.006818  

lndtr  0.001674  0.000277  

Covariance  between  intercept and  slope 

plot/lndtr  -0.001599  0.000428  
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The growth response showed an  increasing  trend up  to  year 7 and a clear drop in the Bth 

year (Fig.  2). The model produced  a slightly  higher  level of growth response to  

complementary  ditching,  probably  because the average  diameter growth  prior to the 
treatment  was  the highest  for  that treatment.  If  it  is  assumed  that growth  responses  in the 
first  year after treatment  are  about the same for all treatments, the treatments  follow the  

expected  ranking  from lightest  to  heaviest as  follows: ditch  cleaning,  complementary  

ditching,  and the combination treatment  (Fig. 2).  Adding  the effect of ditch cleaning  and 

complementary  ditching together  resulted  in approximately  the same effect as  the 
combination treatment. Assuming  that variation in growth  caused by varying  stand and 

tree attributes was controlled by  the model, the fixed year effects can be interpreted  as  

growth  indices for the study  period  (Table  3). 

Figure 2. Growth response  to different 
treatments (see Fig.  1 for notations). Time  

treatment effects are predicted by  dummy 
variables (Model in Table 3).  

Determining  trend functions 

In the second  phase,  the dummy variables referring  to the  time-treatment effects were 

replaced  by  continuous functions of  time for the  three ditching  treatments.  The following 

sigmoidal  model was  chosen  as  the growth  response curve (Ratkowsky  1990):  

where parameters  p2  and  p3  were  determined by  treatments  (Table  4).  The graphic  fit and 
the minimum value of  the -2xlog-likelihood  of the whole model,  when different parameter 
values were  tried,  were  used as  the criteria. The  parameter p :  indicated the asymptote  of 
the growth curve  of  each treatment  and was  estimated simultaneously  with other model 

parameters.  Because  the basic  growth model was  otherwise similar  to  that given in Table 
3,  only  the growth  curve  parameters  are  presented  in Table 4. 

/(0  = /V(l-exp(-(/-p 2 )")) [7] 
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Table 4.  Growth curve  parameters for each  treatment. 

Prediction model for improvement  ditching 

The third model was  intended as  a  tool for  making  predictions  concerning  the expected  

growth  response  to different improvement  ditching  methods  using  site,  plot, and tree  
attributes measured at the time  of treatment.  Thus the pre-treatment data  were  removed. 
Bark  functions (Heinonen 1994) were used to remove  bark  from the overbark tree  

diameters,  producing  the corresponding  underbark diameters and  plot  basal  areas.  

The intercept  was explained  by  plot  basal  area,  temperature sum,  and two  site  dummies 

referring  to  Huikari's  (1952,  1974)  site  quality  classes  4 and 5  (Table  5).  The slope  was  

explained  by  tree diameter and plot basal area. The random part  was simplified by 

estimating  only  the random intercepts  at each level,  and the random cross-classification 

between plot  and  year at plot  level.  Changing  this  term from stand level to  plot  level was  

justified by  the treatment  that most  probably  increases annual within-stand variation of  

growth after ditching.  This was  also supported  by  the clearly  lower value for the -2xlog  

likelihood. In  Table 5, the  fixed year  effects  were included. In order to determine a  value 

for the constant  for the prediction  model,  the year effects  need to be removed from the 

fixed part  and estimated as  a  random effect at stand level. Because the other model 

parameters remained the same,  this model version was  not  presented  here. 

The  time trends were estimated for the three treatments using  the values presented  in 

Table 4 for  parameters  p2 and p3, and allowing  parameter pi to be estimated with the 
model run.  The variation in parameter  pi  was  then explained  by  tree diameter,  plot  basal 

area, and  ditch spacing  (Table  5).  For  all  treatments,  the largest trees  responded  most.  Tree 

size  influenced the response  most in complementary  ditching,  while the effect was  of  

equal  magnitude  for ditch cleaning  and  the combination treatment.  Increasing  plot  basal  
area increased the response to  ditch cleaning  and complementary  ditching, while an 

insignificant  negative  effect  was  obtained for  the combination treatment. For  well-stocked 

stands,  the model produced  almost equal  response  to complementary  ditching and the 
combination treatment (Fig.  3).  Wider ditch spacing  had a  significant  negative  influence 

on the response to ditch cleaning  and a negative  influence on the mean intercept  at plot 

level for the control treatment. 

Treatment Pi (s.e.)  P2 P3 

Ditch cleaning  0.134 (0.018)  0.17 2.5 

Complementary  ditching  0.174 (0.018)  0.23  1.7 

Combination 0.294 (0.018)  0.2 2.5 
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Table 5. Model for  predicting  the  response  of Scots  pine to improvement ditching with  current 

stand, site,  and  tree  characteristics.  The  response variable  is  In(id+0.7), d and  G correspond to 
values excluding bark  at the  time  of treatment. Temporal treatment  response is  expressed as  a 
continuous function of time (f(t),  see Eq. 7  and Table  4).  For  notations,  see Tables 1 and 3. 

a

 Site dummies  referring  to  Huikari's  (1952, 1974) respective  site  quality classes.  
b
 2.18  has  been  subtracted  from  all  ln(d)  to  center  the  variable.  

c

 Ditch  spacing. 

Fixed  part 

Intercept  a 

Variable parameter s.e. Variable  parameter s.e. 

Time-treatment  effects  pi  
constant  0.3889 0.8875  f(t)  clean  -0.4431 0.1446 

tsum 0.002057  0.0008  f(t)  compl -0.5818  0.1303 

site4  -0.1355 0.0389 f(t)  comb -0.0305 0.1285 

site5 -0.2587 0.0587 f(t)  xlnd  clean  0.1604 0.0334  

G -0.05485  0.0059  f(t)  xlnd comp  0.2113 0.0345 

c 

dspc contr  -0.00391  0.0015 f(t)  xlnd  comb  0.152 0.0363 

Year  effects  f(t)  xlnG clean 0.2179  0.0604  

1984 0.0193 0.0190 f(t)  xlnG comp 0.1772  0.0627 

85 -0.01647 0.0190 f(t)  xlnG comb  -0.0267 0.0568 

86 0.1048  0.0206 f(t)  xdspc°  clean  -0.00448  0.0018  

87 -0.0378  0.0230 

88 -0.1106 0.0260  

89 -0.1149 0.0260 

90 -0.3016 0.0333  

Slope b  

lnd
b  0.4361  0.1926 

(lnd/control)^  -0.1469 0.0473  

(lnd/ditched) -0.1827 0.0469 

lnd
b

xG 0.03712 0.010 

Random  part  

Variable  Variance s.e. 

a experiment 0.05612 0.02703 

plot  0.002156 0.001287 

plotxyear  0.006282 0.000498 

tree 0.1035 0.003529 

time 0.03238 0.000453 
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Figure 3. Some examples of  growth 
responses  of a tree with  diameter  7 cm 

(under bark)  to different treatments as a 

function of plot  basal area  (G,  under  bark),  

and time  since  treatment  as  predicted  by the 
model in Table 5. For  the  combination 

treatment, plot basal  area did  not  influence  
the response.  

Model  validation 

No  trends were detected in the residuals of the different models when plotted  against  

various explanatory  variables. Only the residuals of the prediction  model (Table  5)  are  

presented  here (Fig. 4).  For this  model,  residuals at the original  scale of  growth  were  

produced  and plotted  against  tree diameter. Generally, a  logarithmic correction term is 

added to predictions  (Flewelling and Pienaar 1981) before  transforming  growth to the 

original  scale. Here, the correction was  as  follows: 

It  turned out  that  the mean residuals deviated from zero (-0.223  mm/yr,  Fig.  4)  when 

averaged  at observation level. Only  the growth  of the smallest trees  (diameter  under bark 

<  scm)  became slightly  underestimated when the average residuals were  compared  to  
those of the bigger trees,  which showed no trend as a  function of  tree  diameter. It  was  

possible  to  obtain zero  mean residuals  by excluding  the stand-level variance component 
from the model,  but this also changed  the coefficients of lnd and plot basal area  

considerably.  Additional stand-level variables also reduced the bias, but only  the 

temperature sum was  kept  in  the model because nine observations did not  support  a  

complex  model at stand level.  The non-zero  mean  residuals  were  connected to  the  small 

sample  of experimental  stands and,  moreover,  to the fact that large  experiments  were  

established in poor sites. There was  a negative  correlation between the  number of  trees  in 

a  stand and the average growth of the stand.  When the mean residuals were  calculated at 
stand level as an  average of the stand-wise averages, the model appeared  unbiased (-0.079,  

with  s.e.  of  0.228).  

05  •a=os2  •  (a  2
tan(,

 +a  )louyear  +  a  \ lot  +o]
m  +o )) [B]  
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Figure 4.(a-c) Mean residuals  and 

corresponding standard  error of mean  of the  
model in  Table  5 in  a logarithmic  scale  as  a 

function of tree  diameter  (a) and  plot basal  

area (b), and the mean residuals in  the 

original scale of growth (logarithmic  

correction term included) in the modelling 

data as  a  function of  tree  diameter (c).  

The  reliability  of  the models was  evaluated by  comparing  the estimates of  the fixed year 
effects  produced  by  the models to the growth  indices obtained from an independent  

growth index series. For undrained peatland  sites in the  middle parts  of Finland 

(Ostrobothnia),  growth indices have  been derived from the sample trees  of the Bth 

National Forest  Inventory  (NFI8)  permanent sample  plots  (Henttonen,  unpublished).  In 

general,  the minima and maxima occur  in the same years  (Fig.  5).  The indices obtained 
from the models of this study  deviated from the independent  index due to the lower 

average growth  prior to the treatment  and the higher growth  after the treatment.  
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Figure 5. Growth index  based on the  Bth 
National  Forest Inventory (NFI8) sample 
trees growing on undrained  peatlands in  
middle parts of Finland (Henttonen, 

unpublished; mean of the period  1979-1989  

= 100) and the indices produced by the  
models given in Tables 3 and  5. 

Discussion 

The  growth  model approach  was  used to  study  the effect  of ditch network maintenance on  
the individual tree  growth  of  Scots pine  on peatland  on the basis of tree  ring data. The 

analysis  was  concentrated at plot  level because improvement  ditching  is  a stand-wise 

treatment  which  was  here carried out  on the plots.  It should be emphasized  that the results  

presented  are  tentative because the data covered only  5  -  8  yrs  of growth  after  the 
improvement ditching. 

Within the data, larger  experiments  were  established in the poorest  sites, as  indicated by  

the negative  trend between the number  of  observations and the average growth  of  the 
stand. To some extent this is  the case  in situ,  where better sites  cover  smaller areas  than 

sites  of  medium or  poor productivity,  but  one  cannot  draw this  conclusion on the basis  of 

only  nine stands.  It  can  be assumed that the model will give unbiased predictions  when 

applied  to  predict growth  in a  random sample  of  drained peatland  stands. 

The analysis  was  carried  out  with the mixed linear models technique,  which is  commonly  

applied  to hierarchical and complex  data sets  (Lappi  1986).  Nested,  crossed and cross  
classified effects  were  accounted for. The method has the advantage  of  providing  valid 

tests  for  the model  parameters.  In growth  forecasts  with  measurements  from the response  
variable available,  the random effects  can  be predicted  and models calibrated in  specific  
stands or  trees  to  obtain more accurate predictions.  Random  variation around the mean 

intercept  at different levels and  around the  mean slope at  plot  level was  explained  by  the 

site, stand (plot)  and  tree  attributes in the fixed part  of  the model (Lappi  1997).  

The approach  was  similar  to  that used by  Henttonen (1990)  when studying  the trend in 

growth  indices of Norway  spruce  in southern Finland. In  the present  study, by  explicitly  

describing the effect  of  tree  size,  competition,  and site  quality  in the growth  model,  it  was  

possible  to  distinguish  the temporal variation in growth  and decompose  it between  the 
annual variation and  the trend. Even  though  it was  possible  to  detect the effect  of different 
factors influencing  tree  growth,  the estimated parameters  were  clearly  correlated. Because 
of the problem  of  overparametrization,  not  all components  could be  accurately  estimated, 
and error  in single effects  may be included. However, the method has  an advantage  in 

evaluating  the effect  of drainage  on  tree  growth:  the basic  growth  and  the growth  response  
can be predicted  in varying  conditions  in absolute terms (cf.  Dang  and Lieffers 1989,  
Zarnovican and Laberge  1994).  The same method can be applied,  e.g., to fertilization 
studies to estimate  the growth response of  trees. 
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The effects  of  tree  size,  competition,  and site  quality  on  growth  were  accounted for by  
common tree, stand (plot), and site characteristics. When increment cores  were sampled,  

all trees were  not  calipered,  so it  was  not  possible  to produce  accurate  plot  basal areas  for  

each year. Subsequently,  tree  diameters and plot  basal areas  at two  occasions were  used to 

predict  the  annual growths.  Tree  diameter was  the only indicator of the growth potential  of  

the target  tree.  In drained peatland  stands,  inter-tree competition  influences growth  in a 

complex  manner,  and both negative  and positive  effects  may be found,  as  discussed  by  

Penner et al. (1995).  In these data, tree-level measures  of competition  were insignificant,  

but individual tree growth  was  lower in plots  where basal area  was  great. The  lack  of tree  

level competition  may be due to the very  low average stocking  in these  stands or  the 

incapability  of  the variable used to  describe competition  between trees  (cf.  Hökkä  et al. 

1997).  The relationship  between a  tree's growth and its diameter varied  according  to  stand 

stocking.  Generally,  the higher  growth  of the  larger trees  resulted in stands  with a  higher  

basal area. Thus, this effect served partly as  a  tree-level measure  of  competition.  

Because most  of  the sites  were  medium- or  low-productive,  only two  or  three classes  
formed from the a priori  sites  showed different growth  rates.  Due  to  the narrow  range in 

temperature sum and the small sample  at stand  level,  there was great variation in the 

dependence  between growth  and temperature sum. In the model given  in Table 3,  there 

was  a  negative  trend  with respect  to  peat  thickness  and  tree  growth,  which reflects  the 

impairment  of  average site  quality  as  peat  depth increases  (see  Hänell 1984).  

The fixed year effects  were  used to describe the annual variation in growth.  As  in  all time 

series,  the beginning  and end of the  period  were most uncertain (Henttonen 1990).  The 

year effect and time-treatment effect  may  have  been  confounded in the last year because 

only  a  few experiments  were  involved and the variables were correlated. Consequently,  
the growth  decline in  year 8 was probably overestimated in Figure  2, because the three 

experiments  represented  were all located in the  north. The year effects  showed  the same 

kind of  behavior as the independent  growth  index series  from undrained peatlands  in  the 
middle parts  of  Finland (Henttonen,  unpublished).  Since indices from  drained peatlands  

were  not  available,  all differences between indices could not  be explained. 

Sigmoidal  growth curves  were  fitted to  describe the temporal  growth response  (Laird  and 
Ware 1982,  Goldstein 1986). The growth rate  after the Bth year was  not  available in  the 

data, but  the sigmoidal  curves  made it  possible  to  attain the maximum growth on  the basis 
of  the observed  initial response. The growth  response of  Scots pine  to  site  management -  

e.g., drainage  and fertilization of peatlands  -  varies.  If the forest drainage  of  pristine  

peatland  sites  is  considered,  the response  is  shown to  peak  between 10-15 years  following 

drainage  (Seppälä  1969,  Miina 1994),  depending  on  site  quality;  decreased growth may  be 

expected  after that. The growth  response to  the fertilization of  peatlands  may  last  for 20 

yrs (Moilanen  1993).  In this  study,  the sigmoidal  growth curves  assume  that the achieved 

growth  level will be  maintained,  which may  be  too  optimistic.  As  a  consequence of  the a  

priori assumption  of poor drainage  of  these sites, a  decreasing  growth trend of unknown 

magnitude  for  the control treatment could be  expected.  The detection of  a  time trend in the 

post-treatment data was disturbed by  the effect  of unintended 'treatment'. On the other 

hand, the pre-treatment period  was  so  short (5  yrs)  that attempts  to detect any  trends were 

unsuccessful. 
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It was  shown that the temporal  growth  response varied among trees and plots,  and it was 

possible  to  express  this  variation as  a  function of  treatment, tree  diameter,  plot  basal  area  
and ditch spacing.  The diameter growth  response was  concentrated in  the largest  trees, 
which are  generally  located close  to  the old  ditches  and have the highest  growth  potential 

due to their  good  competitive  status. The largest  trees  on the control plots  also responded  

because  it  was  the  lower  negative  coefficient of  lnd
2
 which caused  the difference between 

the control treatment and the other treatments. The combination treatment  resulted in the 

most  equal  response  in trees  of all sizes, which can be explained  by  the spatially  even 
treatment  that improves  the growth of both large  trees (close  to old ditches)  and smaller  

trees  (far  from the old  ditches but  close to the new ones).  

Plot basal  area  had a  positive  effect  on  the response  to  ditch cleaning  and  complementary  

ditching  treatment, while the effect on the response to the combination treatment  was 

insignificant.  This result  may  be due to  the interrelationships  among the  properties  of  the 

peat,  site drainage,  stand stocking,  and growth  in drained peatland  sites.  According  to 
Päivänen (1982),  the effect  of  stand volume on  groundwater  table depth  is  greater the 

deeper  the groundwater  table initially  is.  The groundwater  table is  influenced by  the tree  

stand through  interception  and  transpiration:  stands  with higher  basal  areas  are expected  to  

have lower  groundwater  tables (Laine 1986).  Greater changes  in deeper  peat layers  are due 
to  the higher  groundwater  coefficient (Heikurainen  1964).  Thus,  it  can be  assumed  that the 

growth response is also greater in  areas where the groundwater  table has initially been 

deeper. With improved  growth, these stands are able  to better control the groundwater  

table (Duncan  and Terry 1983, Laine 1986, Penner  et al. 1995). In the combination  

treatment areas, the response was evident even  in sparsely  forested stands because the 

intensive treatment  caused  a  considerable change  in site drainage,  as  indicated by  the 

average groundwater  table levels after the treatment  (Päivänen  and Ahti 1988).  Some of  
the effect may be  explained  by  differences in site quality:  in stands where  the basal area 

was  high,  the site quality  may also have been  better. In order to better explain  the variation 

in the growth  response, data  from groundwater  table fluctuations before and after  the 
treatment  should  be included in the analysis.  

When tree  diameter and plot  basal area  explained  the response,  wider original  ditch 

spacing  had  a negative  effect on the response to  ditch cleaning  and on the average growth  

rate of trees in the control treatment. Seppälä  (1972)  has  shown that the negative  

relationship  between tree  growth  and ditch spacing  is  most  evident in the poorest  sites. 

The random cross-classification between the year  and  the  experiment  indicated that annual 

growth variation was different in different locations (Table  3). After the treatment, 

variation between year and plot  became more important because trees which have been 

subjected  to  different ditching  treatments  respond  to  annual climatic variation differently 

even  if  they  occur  in the same location (Table  5).  Of  all variance  components, tree-level 
variance was the  greatest, probably  because  only  tree  diameter explained  growth within 

plots. Distance to the nearest  ditch and tree  age (Payandeh  1973, Hanell 1984, Miina 

1994), as  well as competition  indices (Miina  1994), have been used to explain  individual 

tree growth on drained peatlands.  In the present study,  the distance to  the new ditch in 

complementary  ditching and combination treatments  would most probably  have reduced 

the tree-level variation (Ahti 1995). 

On the  average, ditch cleaning  had only  a  moderate influence on individual tree  growth  

(see Stewart 1958). Complementary  ditching caused about a two-fold growth increase.  
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This was in  accordance with observed  responses in mean groundwater  levels and the 

assumed effects  of these measures on site drainage  (Päivänen  and Ahti 1988, Ahti and 

Päivänen 1997). Ditch cleaning  causes  a slight  decrease in groundwater  table levels by 

increasing base flow, and its influence is greatest close to  the old  ditches. In  

complementary  ditching  the original  ditch spacing  is  halved,  with  consequent increases 
both in surface flow and interflow, even though  the average decrease in groundwater  table 

level is  not  clearly  greater  than that in ditch cleaning  (Päivänen  and Ahti 1988).  If the  

treatments  are  combined,  site  drainage is  heavily  changed,  and  a  clear response  (additive,  

on  the average)  may  be  expected  both in groundwater  table levels  and  tree  growth.  

The average growth  response in the  data can  be  considered  moderate. This  was  partly  due 

to  the short  observation period,  and also  partly  due to  the fact  that the experiments  were  

conducted in low-productive  sites.  To obtain a  more comprehensive  view of  the growth  

response of Scots  pine  to  different improvement  ditching  methods,  data covering  a  longer  

post-treatment  time period  and  a  wider  range in site  quality  should  be  collected. However,  
the net  growth increase following improvement  ditching may be remarkable if no 

treatment at all would have led to  a continuously  decreasing  growth  rate.  For  the purposes 

of valid comparison,  it  is  important  to  model the long-term  development  of  the control 

plots.  Here  the trees  growing  on  the control plots  also  showed a  response  to  the treatment:  

it  is  probable  that in field experiments  the water  level draw-down cannot  be  limited to  the 

area of  treated plots,  but the control plots  may be affected as  well. 
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