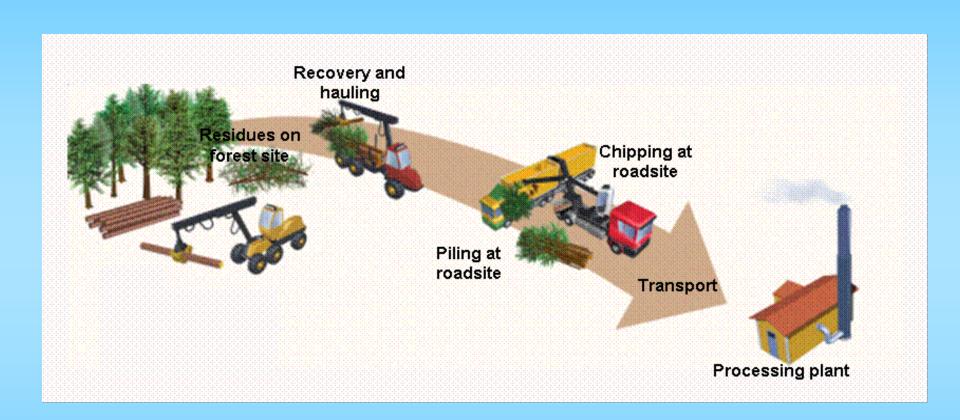
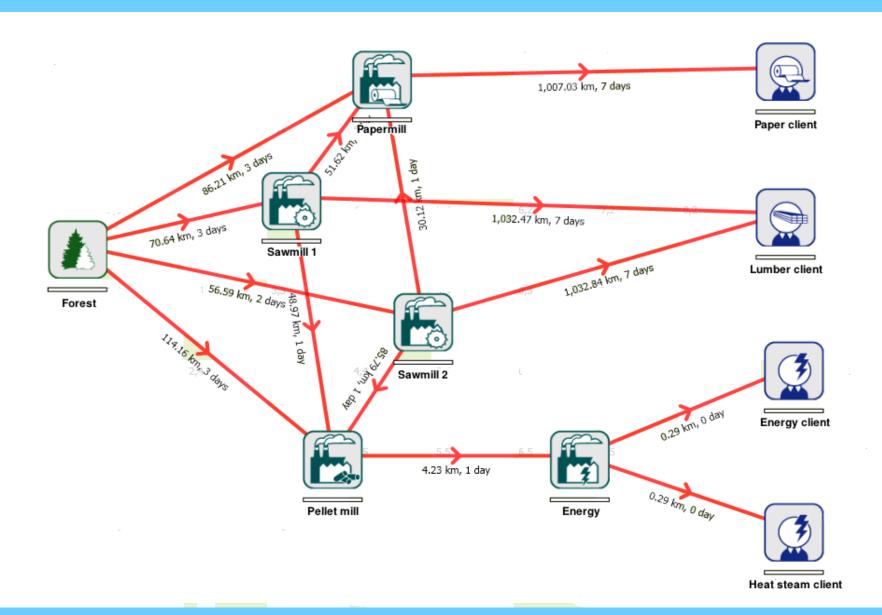
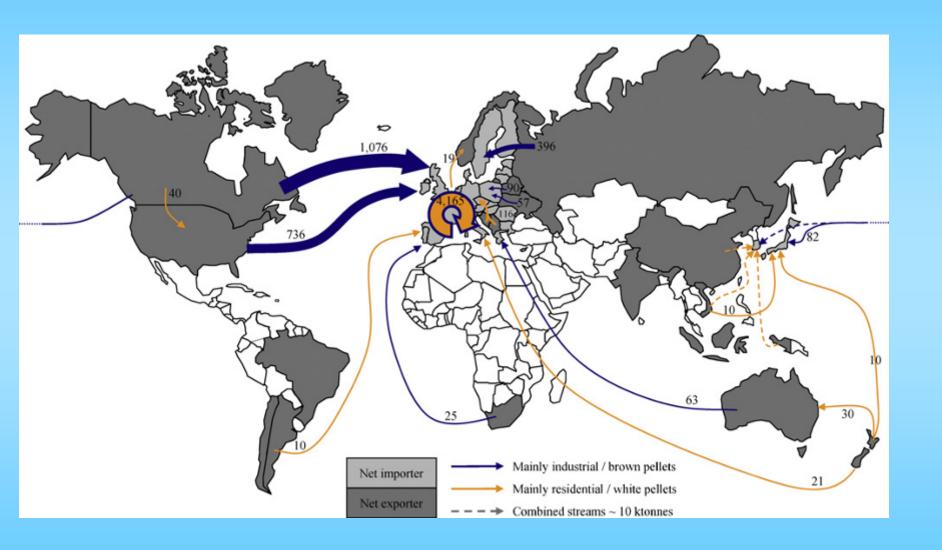
Case study: Boreal and temperate forests




Supply chain:


Network of organizations, people, activities, information and resources involved in the physical flow of products from supplier to customer.

Functions of:

- procurement of raw materials
- •transformation of these materials into semi-finished products and finished products
- transportation between facilities and to customers
 - Actors
 - Processes
 - Material flow
 - Information flow
 - Financial flow

External environment

Theoretical resources

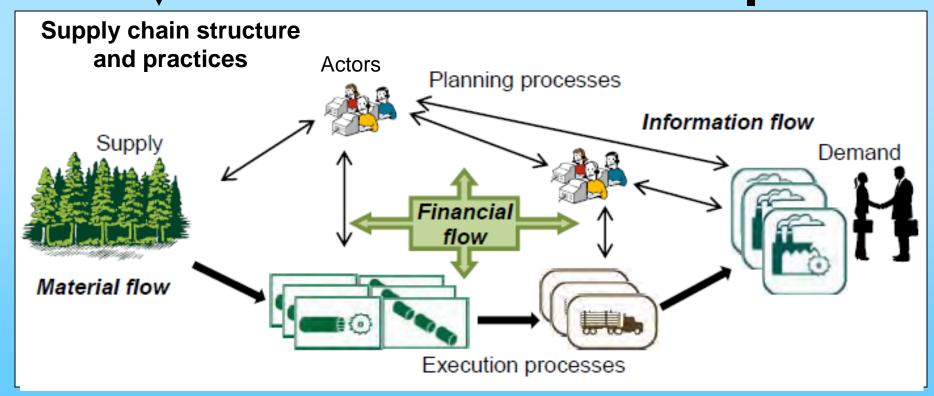
Policies

Industry sector

International sector

Source: Audy et al.

Performance

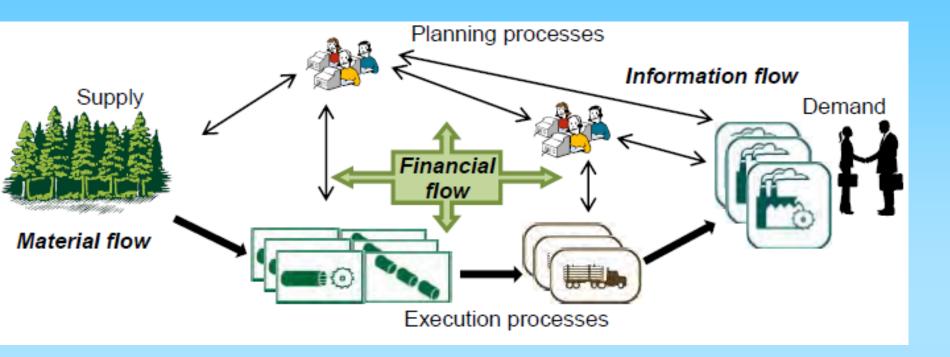

Efficiency

Agility

Profitability

Sustainability

Canada


Sweden and Finland

Immature forest bioenergy sector

Mature forest bioenergy sector

Feedstocks:

- Primary forest residues
- Secondary residues
- Bioenergy plantations
- Unutilized forest growth

Model of deployment:

- Local heat and/or power
- International trade of pellets
- Biorefineries

Two axes of analysis:

Country	Canada	Sweden - Finland	Other?
Deployment			
Local heat and/or power			
International export of solid biomass			
Biorefineries			
Other?			

Main aspects of mobilisation:

Forest biomass supply inventory

Sources of uncertainty in estimates, drivers of supply

Logistics of supply chains

Organisation of actors

Main decision nodes and decoupling points

Factors that influence performance

Sustainability

Environmental footprint: soil, water, biodiversity, GHG balance Trade-offs between ecosystem services

Other?

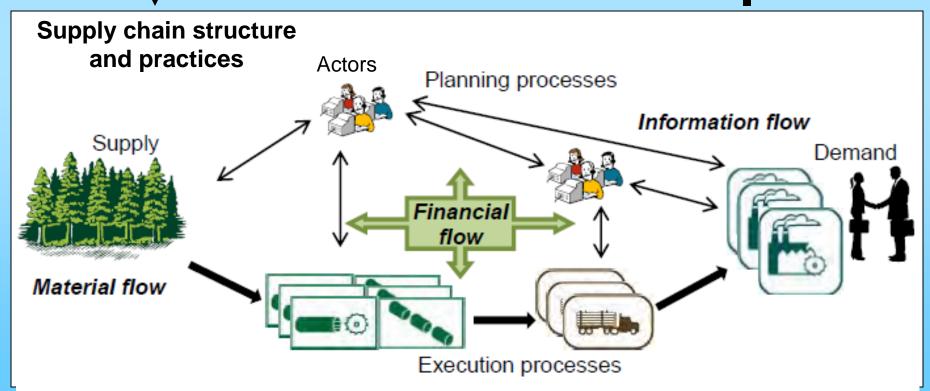
External environment

Theoretical resources

Policies

Industry sector

International sector


Efficiency

Agility

Profitability

Sustainability

Team:

Evelyne Thiffault, Canadian Forest Service (Canada)

David Paré, Pierre Bernier, Miren Lorente, Nicolas Mansuy, Julie Barrette,

Canadian Forest Service (Canada)

Suzanne Wetzel, Canadian Wood Fibre Centre (Canada)

Luc Lebel, Laval University (Canada)

Denis Cormier, Luc Desrochers and Dominik Röser, FPInnovations (Canada)

Tat Smith and Sally Krigstin, University of Toronto (Canada)

Antti Asikainen, METLA (Finland)

Annette Cowie, National Centre for Rural Greenhouse Gas Research (Australia)

Göran Berndes, Chalmers University (Sweden)

Gustaf Egnell, SLU (Sweden)

Inge Stupak, University of Copenhagen (Denmark)

Patrick Lamers and Martin Junginger

Forest biomass inventory for Canada's commercial forest landbase

Lead: Evelyne Thiffault, Canadian Forest Service. EcoEnergy Innovation Initiative 2012-2016 Biomass resources from managed forests:

- havest residues from final cuttings
- salvage harvesting of naturally-disturbed stands

Spatially and temporally explicit estimates, standardized across the commercial forest landbase Temporal estimates based on historical and predicted rates of clearcutting and natural disturbances

Sources and levels of uncertainty in estimates

Indicators: biomass availability in tonnes/ha/year

Scenario testing: variation in regimes of natural disturbances

Modelling of biomass supply chains

Lead: Evelyne Thiffault, Canadian Forest Service. EcoEnergy Innovation Initiative 2012-2016 Spatially and temporally explicit modelling of flow of biomass from the forest site to the industrial network

Modelling based on forest management strategies for procurement of biomass for bioenergy along with wood for traditional products, forest policies, configuration of road network, land-use patterns

Indicators: biomass availability tonnes/ha/year

Scenario testing:

conservation

- ecological/policy constraints to biomass harvesting for soil and biodiversity

- operational constraints for technical recovery of biomass from forest site

Characterization and sustainability of biomass feedstocks for conversion to bioenergy

Lead: Suzanne Wetzel, Canadian Wood Fibre Centre/ Sally Krigstin, University of Toronto .EcoEnergy Innovation Initiative 2012-2016

Physical, chemical and thermal characteristics of biomass feedstocks

Forecasting of optimal end-use of various sources of feedstock

Development of classification systems for biomass furels

Development of framework for an integrative measure of sustainability

Modelling of bioenergy value chains

Lead: Evelyne Thiffault, Canadian Forest Service. EcoEnergy Innovation Initiative 2012-2016 Spatially and temporally explicit modelling of flow of biomass through the industrial network Modelling based on existing and predicted wood product and bioenergy plant populations, transformation processes, pricing

Indicators: production of unit of energy/year, cost of production in \$/unit of energy

Scenario testing:

- demand for bioenergy
- subsidies for bioenergy
- demand for traditional wood products

Assessing forest biomass as a bioenergy feedstock: the availability and recovery of biomass in uneven-aged forests

Lead: John Casperson, University of Toronto. EcoEnergy Innovation Initiative 2012-2016

Community-level operational and social organisation of biomass supply chains for district heating

Lead: Eugène Gagné, Fédération québécoise des coopératives forestières du Québec EcoEnergy Innovation Initiative 2012-2016 Logistics of biomass harvesting, transport and conditioning operations, and stakeholders' network organisation for community district heating systems

Ecologically sustainable thresholds of forest biomass removal

Lead: Lisa Venier, Canadian Forest Service EcoEnergy Innovation Initiative 2012-2016 Spatially explicit identification of site suitability to forest biomass harvesting for soil and biodiversity conservation

Three main aspects of mobilisation:

Forest biomass supply inventory Intertask Working Group 1 Sources of uncertainty in estimates

Intertask Working Group 1

Intertask Working Group 2

Logistics of supply chains

Organisation of actors Main decision nodes and decoupling points Factors that influence performance

Sustainability

Environmental footprint: soil, water, biodiversity, GHG balance Trade-offs between ecosystem services

Two axes of analysis:

Country	Canada	Sweden - Finland	Other?
Deployment			
Local heat and/or power			
International export of solid biomass			
Biorefineries			
Other?	Link	with Case Study o	n Biorefineries