Genotype-by-environment interaction for uniformity of growth in rainbow trout

Sae-Lim P, Kause A, Janhunen M, Vehviläinen H, Koskinen H, Gjerde B, Lillehammer M and Mulder HA

Nofima, Norway. Natural Resources Institute Finland Wageningen University, The netherlands

Why is uniformity important?

- Uniform fish schools benefical for sea food value chain: Homogeneous products; Reduced dominance hierarchies; Increased growth, animal welfare and survival
- Traits with intermediate optimum: fillet lipid%, body shape
- Uniformity can genetically change, if genetic variation
- Quantified by within-family residual variation

Family 1: Uniform

Family 2: Heterogeneous

Potential for genotype-by-environment interaction

Nucleus: Freshwater

Commercial production: Sea

Does GxE interfere selective breeding? Or not?

Objectives

- Quantify genetic variation for uniformity of body weight in two environments
- Estimate genetic correlation between mean body weight and uniformity of growth in two environments
- Quantify the degree of genotype re-ranking for uniformity

Sae-Lim et al. 2015. Genetic (co)variance of rainbow trout body weight and its uniformity across production environments. *Genetics Selection Evolution* 47:46.

Sae-Lim P, Gjerde B, Nielsen HM, Mulder H & Kause A. 2015. A review of genotype-by-environment interaction and microenvironmental sensitivity in aquaculture species. *Reviews in Aquaculture*, in press.

Panya Sae-Lim's Project STABLEFISH

Data (no pre-selection at tagging)

	Subpopul	Subpopulation I		Subpopulation II	
	1996	1999	1997	2000	
Number of parents and families					
Sires, dams	57, 129	37, 94	65, 79	95, 121	
Sires per dam, mean (range)	1.00 (1-1)	1.00 (1-1)	2.41 (1-3)	1.63 (1-3)	
Dams per sire, mean (range)	2.26 (1-4)	2.54 (1-4)	2.93 (1-5)	2.06 (1-5)	

Statistical analysis

Double hierarchical generalized linear model (DHGLM)
 (Rönnegård et al. 2010; Felleki et al. 2012)

Model factors

- Fixed effects: YearClass x Sex x Maturity x Farm
- Random effects: Sire x Dam; Family tank

A bivariate analysis with two models:

- 1) Mean model: Body weight
- 2) Variance model: Squared residuals from model 1

Two response variables analysed:

- 1) Body weight
- 2) Log transformed body weight

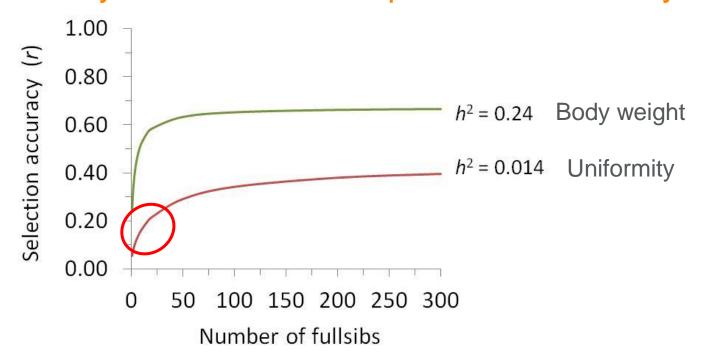
Average body weight, Nucleus: 1094g; Sea: 1050g

Relationship between mean BW and uniformity

Trait	$r_{\rm g}$ (SE)		
IIdit	Raw data	Log-transformed	
Within environment			
BW _{Nucleus} – Uniformity _{Nucleus}	0.30 (0.15)		
BW _{Sea} – Uniformity _{Sea}	0.79 (0.13)		

High mean - High variance

High mean - Low scaled variance (log variance; CV)
Fish become more uniform / less sensitive with increasing body weight


Genetic variation for uniformity in two environments

	Environment		
Parameter	Nucleus	Sea	
Raw BW data			
CV_G - Coefficient of genetic variation %	21.0	19.0	
<i>h</i> ² , heritability	0.011	0.010	
c^2 , family tank ratio	0.005	0.004	

High CV_G \Longrightarrow High potential for genetic change (R) Low h^2 \Longrightarrow Low selection accuracy, high number of relatives needed

i = selection intensity $r_{\rm IH}$ = selection accuracy σ_A = genetic standard deviation

Accuracy and selection response in uniformity

Expected genetic response in uniformity when 10% selected

difficitinty which to 70 3ciccted		
Family size	Residual variance of BW reduced	
20	-5%	
40	-9%	
80	-11%	
160	-13%	

Genetic responses expected but large number of fullsibs needed

Genotype re-ranking across two environment

Trait	$r_{\rm g}$ (SE)		
	Raw data	Log-transformed	
Genotype re-ranking			
$BW_{Nucleus} - BW_{Sea}$	0.70 (0.06)		
Uniformity _{Nucleus} – Uniformity _{Sea}	0.56 (0.20)		

Moderate re-ranking for mean and raw variance

When variation scaled for mean, complete re-ranking!

Testing at multiple environments needed

Uniformity has two parts:

- 1) One related to the mean
- 2) One independent of the mean

Practical implications

- Uniformity not included into the selection index, why?
- 1) Genetic trend for loguniformity flat or downward, fish are not becoming more sensitive (This study; Janhunen et al. 2012. *PLoS ONE* 7(6): e38766
- 2) We practice two-stage selection, the smallest of each family are left untagged (Martinez et al. 2006. *Aquaculture* 254: 195-202)
- 3) Not an easy trait to improve

Conclusions

- Uniformity diplays stronger re-ranking than growth itself
- Uniformity of growth can be improved, but not an easy trait to select:

Multiple environments

Large fullsib families

panya.sae-lim@nofima.fi

