
Cite: O. W. Salami, M. B. . Abdulrazaq, E. A. Adedokun, and B. Yahaya, “CICM: A Collaborative Integrity Checking Blockchain Consensus
Mechanism for Preserving the Originality of Data the Cloud for Forensic Investigation”, KINETIK, vol. 7, no. 1, pp. 55-68, Feb. 2022.
https://doi.org/10.22219/kinetik.v7i1.1378

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
Journal homepage: http://kinetik.umm.ac.id
ISSN: 2503-2267
Vol. 4, No. 3, August 2019, Pp. 277-288

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
Journal homepage: http://kinetik.umm.ac.id
ISSN: 2503-2267
Vol. 7, No. 1, February, Pp. 55-68

55

 CICM: a collaborative integrity checking blockchain consensus
mechanism for preserving the originality of data in the cloud for
forensic investigation

Omoniyi Wale Salami*1, Muhammad Bashir Abdulrazaq2, Emmanuel Adewale Adedokun3, Basira Yahaya4

Department of Computer Engineering, Ahmadu Bello University, Zaria, Nigeria1,2,3,4

Article Info Abstract
Keywords:
Forensic Investigation, Blockchain Consensus
Mechanism, Agreement Process, Data
Originality, Data Integrity

Article history:
Received: December 12, 2021
Accepted: January 15, 2022
Published: February 28, 2022

Cite:
O. W. Salami, M. B. . Abdulrazaq, E. A.
Adedokun, and B. Yahaya, “CICM: A
Collaborative Integrity Checking Blockchain
Consensus Mechanism for Preserving the
Originality of Data the Cloud for Forensic
Investigation”, KINETIK, vol. 7, no. 1, pp. 55-
68, Feb. 2022.
https://doi.org/10.22219/kinetik.v7i1.1378

*Corresponding author.
Omoniyi Wale Salami
E-mail address:
salamiow@gmail.com

The originality of data is very important to achieve correct results from its
forensic analysis for resolving an issue. Data may be analyzed to resolve
disputes or review issues by finding trends in the dataset that can give clues to
the cause of the issue. Specially designed foolproof protection for data integrity
is required for forensic purposes. Collaborative Integrity Checking Mechanism
(CICM), for securing the chain-of-custody of data in a blockchain is proposed
in this paper. Existing consensus mechanisms are fault-tolerant, allowing a
threshold for faults. CICM avoids faults by using a transparent 100%
agreement process for validating the originality of data in a blockchain. A group
of agreement actors check and record the original status of data at its time of
arrival. Acceptance is based on general agreement by all the participants in the
consensus process. The solution was tested against practical byzantine fault
tolerant (PBFT), Zyzzyva, and hybrid byzantine fault tolerant (hBFT)
mechanisms for efficacy to yield correct results and operational performance
costs. Binomial distribution was used to examine the CICM efficacy. CICM
recorded zero probability of failure while the benchmarks recorded up to
8.44%. Throughput and latency were used to test its operational performance
costs. The hBFT recorded the best performance among the benchmarks.
CICM achieved 30.61% higher throughput and 21.47% lower latency than
hBFT. In the robustness against faults tests, CICM performed better than hBFT
with 16.5% higher throughput and 14.93% lower latency than the hBFT in the
worst-case fault scenario.

1. Introduction

Digital forensic analysis is used to investigate the trend of activities on data on a digital device to reconstruct the
events that cause an issue and establish required facts. Like other forensic investigations, it is usually required to verify
claims made by parties in a dispute or to review historical activities to predict the future. Digital devices are of various
varieties. They include handheld devices like mobile smartphones, tabletop systems, laptop computers, wireless
sensors, etc. Digital technology is mostly used for information processing including its preparation, manipulation, and
dissemination. The big role digital technology is playing in information systems, especially online information exchange
has made it a key component in dispute resolution. But the fragile nature of digital data, e.g., wireless sensor data [1],
may make it difficult to be extracted successfully in a way that will not hamper its successful use to generate genuine
information. This is because it can be easily damaged by improper handling, unethical inspection method [2], or an
attack on the network [3]. Manipulations, made deliberately or by mistake, that alters the state or interpretation of data
can render it unacceptable [4] for analysis. Keeping vital records of digital data and its metadata before its properties
change is very essential to preserve its originality for future requirements. The solution proposed in this paper will use
blockchain technology for ensuring prompt preservation of data properties as early as possible. This will prevent loss
or manipulation of the features that may change its information contents.

Blockchains use a set of cryptographic algorithms to implement consensus mechanisms for enforcing trust and
transparency [5] where a high level of trust among transacting parties is very essential. Blockchain technology is suitable
for preserving trust among stakeholders in the chain of custody of digital data. It has been employed for different data
security purposes. The security and fault tolerance of a blockchain depends highly on the effectiveness of its consensus
mechanism [6]. Various consensus mechanisms are available which are used for different blockchain applications [7].
Each consensus mechanism has its preferential benefits and performance limitations because of the threat model and
assumptions on which its design was based. Forensic analysis of data relies highly on the accuracy of data being
analyzed to be able to trace the history of the data correctly and extract necessary trends of activities needed to infer
the desired information. Existing consensus mechanisms do not have adequate facilities for capturing and preserving
such accurate records of data attributes before incidence response as needed for digital forensic purposes. It is essential
to preserve the forensic soundness of the originality of data from the time of its creation to avoid manipulating it after

https://doi.org/10.22219/kinetik.v7i1.1378
http://kinetik.umm.ac.id/
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016
http://kinetik.umm.ac.id/
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016
http://kinetik.umm.ac.id
https://doi.org/10.22219/kinetik.v7i1.1378
https://crossmark.crossref.org/dialog/?doi=10.22219/kinetik.v7i1.1378&domain=pdf

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2022 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

56

creation before incidence response. A new consensus mechanism that is suitable for mining forensically sound data
attributes is proposed in this paper. The consensus mechanism provides a protocol for collaborative verification of data
attributes at the time of creation on the storage device. It uses a 100% agreement by all participants in the consensus
process for foolproof preservation of data integrity as suggested in [8]. The mechanism is called Collaborative Integrity
Checking Mechanism (CICM). It uses elliptical curve cryptography (ECC) algorithms for security and cryptoanalysis.
ECC is a key-based cryptography technique that uses points on an elliptic curve to create security parameters. It uses
a smaller key to achieve higher security than other security systems like RSA [9]. CICM also verifies the responses of
the participants in an agreement process with a consistency history token. The consistency token is unique for every
participant. Blockchain was used in the proposed solution for keeping the records of data attributes as at the time it was
created to make it immutable.

A new transparent collaboration method was used for the agreement process of CICM. The collaboration method
enhanced better synchrony among participants in a consensus and highly reduced message overhead and protocols.
It also introduced a new consensus mechanism with 100% agreement suitable for preserving data integrity for data
analysis that requires accurate data integrity. A novel method was used for computing the consistency history of the
agreement actors by the CICM.

Throughput and latency were used to analyze the operational costs of CICM as used in [10][11]. The binomial
distribution used to prove the security of the solution proposed in [12] was used to analyze CICM efficiency. The results
were compared with those of practical byzantine fault tolerant (PBFT) [11], Zyzzyva [13], and hybrid byzantine fault
tolerant (hBFT) [10] that were used as benchmarks.

1.1 Related Works

Erbacher [4] identified important areas of forensic investigation where validation is very important to make
forensic analysis reports valid. Among the significant areas identified are data generation, data collection, and data
storage. The forensic validity requirements for these areas emphasize the originality of data as opposed to the typical
security concerns that focus on the protection of privacy and other interests of the user in the information. Blockchain
was proposed by Nakamoto [14] purposely for ensuring the validity of transactions conducted with cryptocurrency. It
was first used for Bitcoin. It possesses necessary features for preserving transactions authenticity which has made it a
technology of choice for applications requiring validity. Blockchain is a computer security tool that is adequate for
guaranteeing transparency, authenticity, and audit of digital records [15].

The benefits of decentralized auditing and verifiable cryptography in blockchain as well as using blockchain’s
smart contract to automate time-consuming processes in IoT were investigated in [16]. It was discovered that employing
those features of blockchain can enhance achieving significant time and cost savings. Yan et. al. [12] proposed a
solution for securing the chain of custody of digital forensic evidence using blockchain technology to ensure traceability
and preservation of the integrity of the digital evidence data [12]. Blockchain technology was also used for monitoring
deliveries in the supply chain of petroleum products from depots to retail outlets [17].

Forensic-Chain [15] was built on top of Hyperledger. It is a permissioned blockchain solution for recording
evidence during the digital forensic investigation process. CrowdBC [18] employed blockchain for securing
crowdsourcing systems. CrowdBC conceptualized the use of blockchain to decentralize crowdsourcing storage and
ensure fairness between parties in crowdsourcing transactions. Consensus mechanisms provide coherence protocols
to a group of machines that are working collectively such that they can yield correct results even if some of its group
members failed. Consensus mechanisms are an important component of reliable large-scale systems. Consensus
protocols are used to solve byzantine and crash faults. Validating actors in a distributed blockchain network use
consensus mechanisms for reaching an agreement on the validity of a transaction to be accepted into the blockchain
ledger [19]. It is a fundamental module in blockchain that provides tamper-free protection and also ensures all the actors
agreed upon the same version of a value [5].

The main types of consensus algorithms are Byzantine Fault Tolerant (BFT) and Crash Fault Tolerant (CFT).
Byzantine faults are failures that make a system yield wrong results because of wrong inputs [20]. Crash faults are
caused by defects in the device that is executing a process [21][22]. Several consensus mechanisms available are
developed as variants of these types. The classical BFT mechanism [23] is a consensus algorithm based on the
byzantine generals' problem. It uses collective decision, called the agreement, in a distributed network to safeguard
against system failures by reducing the influence of the faulty nodes. The agreement process ensures that all nodes
implement the same instructions. It is designed to be resilient against some faulty nodes that are much lower in number
than the quorum required for consensus. BFT algorithm tolerates up to n faulty nodes existing among 3n+1 nodes to
work correctly, but the process is expensive both in terms of cost and effort [23].

Different consensus algorithms have been proposed based on the BFT principle intended to improve the BFT
algorithm and make it applicable in other use cases. Among BFT consensus mechanisms is Practical Byzantine Fault
Tolerance (PBFT) [11]. PBFT uses views to represent the period a primary coordinates a consensus process.
Uncommitted requests are discarded during checkpoints when a view is changed. PBFT reduced quorum to 2f+1, where

https://creativecommons.org/licenses/by-sa/4.0/

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Cite: O. W. Salami, M. B. . Abdulrazaq, E. A. Adedokun, and B. Yahaya, “CICM: A Collaborative Integrity Checking Blockchain Consensus
Mechanism for Preserving the Originality of Data the Cloud for Forensic Investigation”, KINETIK, vol. 7, no. 1, pp. 55-68, Feb. 2022.
https://doi.org/10.22219/kinetik.v7i1.1378

57

f is the number of faulty nodes. It introduced a view protocol for removing a faulty primary and checkpoint protocol for
clearing old data that was pending in the view of a changed primary to synchronize system states in the previous view
and the new view. Zyzzyva [13] is another consensus protocol that uses speculation to improve the cost of replication
better than it was in the classical BFT mechanism. It was developed upon PBFT protocol. Zyzzyva does not discard
uncommitted requests from the old view when transiting into a new view but retains them if they were not earlier than
any request that had been committed. Zyzzyva uses speculation to agree on request and sends it to client. If the client
detects faults it uses commit certificate to make loyal replicas that sent replies to commit to their replies. Zyzzyva
recognized the possibility of an untrusted primary that can exploit speculative agreement protocol to prolong the commit
process up to twice as may be necessary. Hybrid byzantine fault tolerance (hBFT) [10] proposed improvements to
Zyzzyva and PBFT. Like Zyzzyva, hBFT is a speculative Byzantine fault-tolerant mechanism with minimum cost. It
shifted some critical jobs to clients to reduce message complexity. It also tolerates an unlimited number of faults. hBFT
uses a three-phase checkpoint protocol to resolve inconsistencies when replicas are out of order in speculative
execution or when a primary triggers checkpoint through the panic system, and also to detect faulty clients’ behaviour
if they intentionally triggered checkpoint protocol. Moving critical jobs to clients introduced another vulnerability which
resolving it could cause additional overhead. Stellar consensus protocol (SCP) [24] is another consensus mechanism
of BFT class. It introduces federated byzantine agreement (FBA) and quorum slices. FBA allow validating peers to
prioritize response of particular peers they consider important and wait for those prioritized responses before conceding
to accepted values. FBA can make some participants not accept a correct value when their important peers have not
agreed to it which may increase time cost for an agreement process.

The CFT consensus mechanisms are different from BFT based on their threat and consensus models. Two
example mechanisms that are crash fault mechanisms are the Paxos [25] and the Raft [26]. Paxos is a CFT consensus
mechanism in which acceptors monitor the order of messages to avoid accepting contradictory messages or accepting
a message more than once. Paxos was considered to be complex and difficult to understand, so Raft [26] was proposed
to address understandability and complexity issues in Paxos. Raft incorporated leadership election in the agreement
process to reduce its protocols. It also uses joint consensus to address membership change issues and a
reconfiguration algorithm to keep normal processing of requests uninterrupted during membership changes.

Performance of network protocols like consensus algorithms is often measured with throughput and latency.
Throughput is a metric used to determine the number of completed tasks within a specific period. It can be used to
determine the computational costs of an algorithm. Latency determines the time taken to complete a process.
Throughput and latency are important metrics for determining the performance of a consensus algorithm to show if the
algorithm will be able to meet up with the possible rate of arrival of values for validation in real-time. The metrics were
used in [10][11] to test the scalability of their algorithm as the faults and users increased. The binomial distribution
provides a means to view the trend of the probability of outcomes in a specific number of attempts. It was used to prove
the security of the proposed consensus in [12].

2. Research Method

CICM is a partial leader-based consensus mechanism, it does not operate on views and does not change leaders.
There is no leader election as is done in some consensus mechanisms. CICM receives messages from its cluster
controller in a cloud network and sends a reply to a shared drive on its evidence server. Some mechanisms receive
values from a leader/primary and send a reply to the client. The agreement actors in CICM receive a message in one-
to-many and reply in many to one collaboration file for agreements as opposed to the case wherein the agreement
messages are sent many-to-many in some mechanisms. The rounds of message exchanges in CICM are 3 for fault-
free but not more than 8 depending on the fault. There are mechanisms where the message exchanges are far more
than the worst case of CICM because of their many protocols and protocol messages. The occurrence of faults that
may be caused by compromised nodes is rare in CICM because of the transparency provided by shared buckets for
collaboration where every agreement actor sees the same data as it arrived. The transparency is comparable to a
presentation that is projected onto a screen where every audience can see it and each audience also has a copy of it
opened on her/his digital device. Any disparity will be easily detected by all. In most other mechanisms the faults can
only be seen and reported by replicas individually or by the client. In CICM, an agreement actor whose response is
wrong may even see it and correct it before submitting its reply. CICM protects users’ data from being modified after it
left the users’ hands. Other mechanisms ensure correct results of execution before being written to a blockchain but do
not ensure its originality afterwards.

The components of the CICM and the methodology of its experimental implementation are explained in the
following.

2.1 The Proposed Collaborative Integrity Checking Mechanism Model

The Collaborative Integrity Checking Mechanism, CICM, is a blockchain consensus algorithm for capturing
attributes of data and storing it in a blockchain. It is a consensus mechanism specifically designed to preserve the

https://doi.org/10.22219/kinetik.v7i1.1378

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2022 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

58

soundness of digital data in the cloud for future forensic investigation requirements. It consists of a group of nodes
called “validating actors” that are involved in the agreement process. The validating actors include the edge node, the
replica nodes, the evidence server, and an optional artificial intelligence (AI) machine. The edge node may be a
switch/router, cloud controller, cluster controller/node controller, depending on the type of network. It is the entrance
through which messages from users enter the network. Replica nodes, the evidence server, and the AI machine that
are involved in the agreement process are called “agreement actors”. The edge node only shares the incoming
messages with the agreement actors. Every agreement actor has the ID and address of the edge node, and the IDs,
signatures, addresses, and consistency history (CH) of other agreement actors in a list arranged in the same order as
the lists held by the other agreement actors. Figure 1 shows interconnections between the CICM machines.

Collaboration service is now being used for increasing productivity. There are several collaboration tools and
services available nowadays. Google Workspace and Microsoft SharePoint are among the popular collaboration
services available. CICM uses a shared drive for collaboration to improve its operations. The evidence server hosts a
shared drive where items for collaboration by the agreement actors are located. The items on the shared drive are the
main blockchain ledger, an auxiliary blockchain ledger, and 3 shared buckets namely; message-hash bucket, vote
bucket, and review bucket. The items on the shared drive are accessed exclusively by the agreement actors only. Each
of the agreement actors has read/write access to them. Except for the agreement-hash bucket to which the cluster
controller also has read/write access. CICM neither tolerates any compromised nodes nor wrong responses.
Acceptance is by 100% agreement by all the responding actors. This is in contrast to other agreement-based consensus
mechanisms that allow a threshold for the number of untrusted nodes that may present wrong responses to requests,
CICM takes into cognizance the peculiarities of digital forensic investigations which are premised on the possibility of
extraction of genuine information. If information is falsified and the falsification is genuinely detected by the investigation
it is acceptable for inclusion in the investigation report. The significance of the protection provided by the proposed
CICM is post-execution because it preserves the originality of the data produced by execution processes. CICM model
involves message validation by multiple actors. Every agreement actor in the trust model uses the same method as
used by other actors for verifying transaction integrity. There is no election of leaders for the consensus protocol of this
mechanism because there are nodes among the main actors in this mechanism, i.e., the evidence server and cluster
controller, whose basic functions are similar to the roles played by leaders in other consensus mechanisms. A crypto-
hash algorithm is used for authenticating the status of messages by agreement actors. Consistency history is used to
monitor the performance of a validating actor. Signature and ID are used to validate a validating actor’s submission or
response. The process of the message inspection and the message record mining into the distributed blockchain ledger
is explained in the following. All communications between agreement actors and the edge node, in this case, a cluster
controller, pass through a virtual private network (VPN) secured channel that connects the validating actors as shown
in Figure 1.

Figure 1. Interconnections and Communication between CICM Components

https://creativecommons.org/licenses/by-sa/4.0/

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Cite: O. W. Salami, M. B. . Abdulrazaq, E. A. Adedokun, and B. Yahaya, “CICM: A Collaborative Integrity Checking Blockchain Consensus
Mechanism for Preserving the Originality of Data the Cloud for Forensic Investigation”, KINETIK, vol. 7, no. 1, pp. 55-68, Feb. 2022.
https://doi.org/10.22219/kinetik.v7i1.1378

59

2.2 The CICM Protocol
CICM is a non-quorum, fault-free consensus protocol with unelected partial leaders. The nodes that perform

functions similar to those performed by leaders in other consensus mechanisms are the edge node and the evidence
server. The edge node provides the value to be validated to the agreement actors as done by the primary [10]. The
evidence server provides a collaboration platform where agreement actors submit their responses for collaborative
review similar to a leadership role described in [27]. They are not elected and are not recognized as leaders because
they do not control the consensus process in any way. It is only their roles that are similar to some roles of a leader in
a consensus mechanism. This is why they are referred to as unelected partial leaders. The protocol allows only active
members of the agreement actors to participate in an agreement process. It rejects byzantine faults because it does
not tolerate traitors. Thus, it does not accept incorrect responses from any of the participants into the main blockchain.
The mathematical function for modelling the CICM Protocol can be given as;

𝑓 (𝑯𝑉𝑂𝑇𝐸𝐽
𝑆) = {

1, ⇔ ∀𝑯𝑉𝑂𝑇𝐸𝐽
𝑆 ∈ 𝑯𝑉𝑂𝑇𝐸

𝑆 : 𝑯𝑉𝑂𝑇𝐸𝐽
𝑆 = 1

0, ⇒ ∃𝑯𝑉𝑂𝑇𝐸𝐽
𝑆 ∈ 𝑯𝑉𝑂𝑇𝐸

𝑆 : 𝑯𝑉𝑂𝑇𝐸𝐽≥1
𝑆 ≠ 1

 (1)

In Equation 1, 𝐇VOTE𝐽

S is the individual signed response from each actor J, 𝐇VOTE
S are all the signed votes submitted

by the participants. There is consensus if and only if all participants responses agreed on the value. Otherwise, if one
or more participants' responses disagreed with others there is no consensus. The proof using probability theory to show
that Equation 1 can provide bases for the high level of accuracy required for digital data forensic analysis results is
given in the following.

2.3 Proof of Efficacy of CICM

The proof is based on the following rule of probability theory;
1) The sum of the probabilities of all possible outcomes is 1.

The rule can be mathematically modelled for probabilities of outcomes A, B to N as;

𝑃𝐴𝐵…𝑁 = 𝑃𝐴 + 𝑃𝐵 + ⋯ + 𝑃𝑁 = 1 (2)

In Equation 2, the 𝑃𝐴𝐵…𝑁 is the sum of probabilities of outcomes A, B, …, N, 𝑃𝐴, 𝑃𝐵 and 𝑃𝑁 are the probabilities

of the individual outcomes A, B, …, N respectively.
The binomial distribution is used to examine the possible rate of producing wrong results by the CICM consensus

algorithm in the following.
The formula for binomial distribution is;

𝑃(𝑥) =
𝑛!

(𝑛 − 𝑥)! × 𝑥!
× 𝑃𝑥 × (1 − 𝑐)(𝑛−𝑥) (3)

The formula for binomial distribution is given in Equation 3. The 𝑃(𝑥) is the probability of getting a total number

of 𝑥 outcomes, 𝑃 is the probability of getting the outcome in one attempt, 𝑛 is the number of attempts made.
Using Equation 3, the probability for the CICM to yield incorrect results 𝑥 times in 𝑛 attempts is calculated. Since

CICM does not tolerate traitors, 𝑃 = 0. If there would be a failure 𝑥 cannot be 0, thus 𝑥 > 0. Therefore,

𝑃(𝑥) =
𝑛!

(𝑛 − 𝑥)! × 𝑥!
× 0𝑥 × (1 − 0)(𝑛−𝑥) = 0

(𝑛, 𝑥) > 0

(4)

The results of Equation 4 will always be 0 for all values of 𝑛 and 𝑥 greater than 0. CICM has a probability of 0 to

give incorrect results for values of 𝑛 and 𝑥 greater than 0. According to the rule of probability stated earlier, the sum of
the probabilities of CICM giving incorrect results and CICM giving correct results is 1. Thus, the probability that CICM
will give correct results 𝑥 times in 𝑛 attempts is 1 - 𝑃(𝑥), which is 1 – 0 = 1.

Equation 4 has mathematically shown that CICM can yield the high level of accuracy required for forensic analysis
results from digital data which is what was aimed to achieve. The mathematical test presented here for proving the
efficacy of CICM was carried out on the hBFT, PBFT, and Zyzzyva that were used as benchmark solutions as presented
later.

CICM protocol records the status of data including the instances of faults that may affect the results of data
analysis. The correct attributes of data are put in the main blockchain while records of both the correct and the faulty
replies in a validation process where faults are discovered are put in the auxiliary blockchain. The purpose is to provide

https://doi.org/10.22219/kinetik.v7i1.1378

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2022 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

60

adequate accurate information about the data to an analyst/investigator that may need to extract information from the
data in the future.

The components of the CICM protocol consist of (1) Registration, (2) Agreement, (3) Crash-Check, (4)
Authentication.

2.4 Registration

Each member of the agreement actors group registers with the cluster controller and with every other member of
the group. A list of the identification certificates of other members that registered with each node is stored in a particular
order agreed by the participants and the same with every participant. The agreement actors group members’ certificates
contain the node ID, IP address, consistency history, and public key. A shared drive that hosts the main blockchain,
auxiliary blockchain, and the 3 shared buckets; message-hash bucket, vote bucket, and review bucket is available on
the evidence server for collaboration by agreement actors. The first bucket, called the message-hash bucket, is used
for submitting the message hash computed by each agreement actor. The second bucket, which is the vote bucket, is
used for agreement voting. The third bucket, called the review bucket, is used for reviewing the message from nodes
that computed a wrong message hash. All members of the validating actor group have read/write access on the
message-hash bucket, but only the agreement actors have read/write access on the vote and review buckets. The
agreement actors also have Read-only access to the main and auxiliary blockchain ledgers. Registration is done once
but items on the certificate may change as may be necessary. Since the ECC algorithm is used the public key may be
changed as may be agreed by the participants. Also, the consistency history token changes at the end of every
successful agreement process.

The routing update setting should be configured to update routing tables of the actors frequently enough to
minimize broken link challenges and ensure actors are always connected. The participating nodes should periodically
check the links on their routing table by exchanging routing information periodically to make sure they are not down.

2.5 Agreement Algorithm

The agreement algorithm checks the properties of the message when it was received on the cloud and accurately
records it in the appropriate ledger. The stages involve in a normal agreement process when all actors received the
correct copy of the message is illustrated in Figure 2. A cloud user sends a message to the cloud (Figure 2: A). The
cloud controller shares a copy with the cluster controller as <msg, msg-id, timestamp>cc. The cluster controller
forwards <msg, msg-id, timestamp>CC to the agreement actors and drops a copy in the message-hash bucket (Figure
2: A-B). The msg is the original message the user sent to the cloud, the msg-id is the ID of the message on the cloud,
cc indicates that the forwarded message originated from the cloud controller. The agreement actors compute and sign
the hash of the message as H(m)S, and the signed hash of the message metadata as H(meta)S. The signed hash of the
message and its metadata together with the agreement actor’s identity ID, its consistency history up to the last
consensus process conducted before the present one, CHn-1, and the nonce, Nn-1, that generated the CHn-1 are
composed as <H(m)S, H(meta)S, ID, CHn-1, Nn-1>. Each actor will send the details as <H(m)S, H(meta)S, ID, CHn-1, Nn-

1> to the message-hash bucket (Figure 2: B-C).

Figure 2. Agreement Process with No Faults

https://creativecommons.org/licenses/by-sa/4.0/

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Cite: O. W. Salami, M. B. . Abdulrazaq, E. A. Adedokun, and B. Yahaya, “CICM: A Collaborative Integrity Checking Blockchain Consensus
Mechanism for Preserving the Originality of Data the Cloud for Forensic Investigation”, KINETIK, vol. 7, no. 1, pp. 55-68, Feb. 2022.
https://doi.org/10.22219/kinetik.v7i1.1378

61

The algorithm for this stage is presented in Figure 3 and Figure 4. Figure 3 shows the pseudocode for the cluster
controller role when forwarding user messages from the cloud controller to the agreement actors. Figure 4 contains the
pseudocode for the message attributes scrutinization and recording by the agreement actors.

Figure 3. The algorithm for Cluster Controller activies

Figure 4. The Algorithm for Agreement Actors Message Attributes Checking Process

CHn-1, which is the CH for the last consensus conducted that all other actors have a copy of it, is used at this

stage. The CH for the current consensus process, CHn, will be computed at the end of this process using the final hash
submitted for agreement.

Each agreement actor has the consistency history of other actors up to CHn-1 and can confirm CHn with the
message hash H(m) and the nonce N. ID and signature are used to authenticate the sender. When an agreement actor
computed its response as explained it will put it in the message-hash bucket on the shared drive on the evidence server.
It will copy the serial number of its response in the message-hash bucket, i.e., the element number/index of its response
in the message-hash bucket. All agreement actors are monitoring the addition of responses into the message-hash
bucket and making a copy of it as it progresses. They know the number of members in the group, so when the last
response is put in the message-hash bucket, they all know that the process has been completed. The agreement actors
would have gotten complete copies of the contents of the shared message-hash bucket to themselves by the time the
last response was dropped in. They then individually authenticate each response with the identity certificate of the node
that submitted it and also check if all responses give the correct hash of the message. Each agreement actor that
confirmed that all responses sent gave the same correct hash of the message will generate and sign a hash of all the
responses it copied from the shared message-hash bucket and inspected as H(R)S. It will use the H(R)S as its vote for
agreement and submit it to the shared vote bucket (Figure 2: C-D). When the voting for agreement is completed the
original text of the message will be discarded and the accepted record of the message will be entered into the
appropriate blockchain. This stage is executed with the pseudocode in Figure 5. The pseudocode in Figure 5 checks
that every response from agreement actors comply with each other and agreed on the value. If there is anyone that
does not comply the actor that sent the response that differs will be requested to correct the error. They recheck the
submitted responses for compliance when voting is completed and compute consistency history tokens if everything is
okay.

At the end of the integrity checking process, when the responses from the actors have been admitted, each actor
will use the H(R) it submitted as its vote for agreement to compute CH as follows. It is computed as a signed hash, H()s,
using the previous CHn-1 and the H(R) in H(CHn)S = <H(CHn-1, H(R))>. The computed CH must have the hexadecimal
digits indicating the number of times the particular actor’s responses complied with the correct original message hash.
The hexadecimal count must be at a position in the CH characters which is equivalent to the actor’s index in the

Initialization:

ID = this actor’s ID

CHN-1 = CH from last session

Nn-1 = Nonce for CHN-1

RESPINDEX = “’ ////Serial number of an Actors response in the bucket

Hx = “” ////Unsigned computed Hash of X

Hx
S = “” ////Signed computed Hash of X

Hash(.) ////Hash function

On event <msg, msg-id, timestamp>CC Received from cluster controller

Hmsg Hash(msg)

Hmeta Hash(meta)

Put <Hmsg
S, Hmeta

S, ID, CHn-1, Nn-1> in message-hash bucket

RESPINDEX = INDEX + 1

Copy RESPINDEX

https://doi.org/10.22219/kinetik.v7i1.1378

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2022 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

62

agreement actors ID list. Example, counting from zero, an actor located at index 3 in the ID list who has had 15810
(equivalent to 0x9E or 9E16) correct responses will compute its CH as <H(CHn-1, H(R))> =
xxx9Exxxxxxxxxxxxxxxxxxxxxxxxxxx if SHA256 was used. The CH computation is implemented in the loop at the
bottom of Figure 5.

Figure 5. The Algorithm for Comparing Agreement Actors Message Attributes Checking Results and Concluding the

Agreement Process

The consistency history token is unique for the participant because the serial number of its ID on the list is
indicated in it. It is linked to other participants' CH because the H(R) is the same for all participants that submitted the
correct response in the session.

2.6 The Possible Conditions for Faults in CICM and their Possible Solutions

Some conditions that could cause errors in the operation protocols of CICM and the possible solution for resolving
them are presented in the following. Figure 6 is used to explain how different errors are resolved and where the process
will end in the session.

Initialization:

Nonce = 0

H = {all submitted message hash from other actors}

IDJ = This Actor’s ID ////This Actor is Actor J

HO = Message Hash from another actor ////Each of other Actor is Actor O

CHJ = Consistency history of Actor J for present session

IDINDEX,J = Index of IDJ on the list of Actors IDs

HS
VOTE,J = signed vote from this Actor

HS
VOTE = {submitted signed votes in the vote-bucket}

CHcount,J = total replies from this actor that are consistent with others

On event message-hash bucket changed

If (H ≠ HO) send <“Request”, review-bucket {(msg, msg-id)O, IDO, (CHn-1, Nn-1)O} > to Actor O

On event <(msg, msg-id)O, IDO, (CHn-1, Nn-1)O> Received from Actor O in review-bucket

Each Actor Do

 Compare (msg, msg-id)O with (msg, msg-id)cc

 If((msg-id)O ≡ (msg-id)cc Then

 If((msg)O ≡ (msg)cc or (msg)O ≈ (msg)cc) send <“Request”, Recompute> to O

 Record Transaction in Main Blockchain

 Else Blacklist O and Broadcast <“O suspected”> to other Actors

 Record Transaction in Auxilliary Blockchain

 End If

 Else Blacklist O and Broadcast <“O suspected”> to other Actors

 Record Transaction in Auxilliary Blockchain

 End If

 If (Response Complete) Copy review bucket contents

 HVOTE,J Hash(review bucket contents)

 Put HS
VOTE,J in vote bucket

 On event vote bucket change

 If (HS
VOTE ≠ HS

VOTE,O) send <“Request”, Recompute> to O

 On vote complete

 If({HS
VOTE} ≡ {HS

VOTE,J }) Do

 CH Hash(<H(CHn-1, H(R))S, Nonce>)

 For i = 0, i < length(CH), increment i

 If (i = 𝐼𝐷𝐼𝑁𝐷𝐸𝑋 ,𝐽 AND CH ∋ 0𝑥𝐶𝐻𝑐𝑜𝑢𝑛𝑡 @ 𝑖) Exit Do

 End For

 Nonce Nonce + 1

 End Do

 Broadcast CH

 End If

End Each Actor Do

https://creativecommons.org/licenses/by-sa/4.0/

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Cite: O. W. Salami, M. B. . Abdulrazaq, E. A. Adedokun, and B. Yahaya, “CICM: A Collaborative Integrity Checking Blockchain Consensus
Mechanism for Preserving the Originality of Data the Cloud for Forensic Investigation”, KINETIK, vol. 7, no. 1, pp. 55-68, Feb. 2022.
https://doi.org/10.22219/kinetik.v7i1.1378

63

2.6.1 Incorrect H(m) Computed by one or more Actors
The actor that submitted a wrong message hash (Figure 6: Actor2, dash arrow, B-C) will be requested to submit

the message it generated the hash from to the shared review bucket (Figure 6: C-D). Agreement actors that submitted
the correct message hash will do a bit-wise comparison of the message that generated a different hash with their own
that generated correct hash values (Figure 6: D-E). They will submit their votes for the correct responses into the vote
bucket when submitting comparison results for the wrong message into the review bucket for all to see ((Figure 6: E-
F).

Figure 6. Agreement Process, a Mismatch from Actor2

If the differences that caused the change in the hash value of the message was negligible and could not change

the information contained in the message (as shown in Figure 7), the node with the wrong message will use the message
ID to request cluster controller to retransmit the message to it (Figure 6: F-G) when it received the retransmitted
message from cluster controller (Figure 6: G-H), it will recompute a correct message hash and resubmit it (Figure 6: H-
I). If the resubmitted corrected message hash is correct, it will be acknowledged to be okay and accepted into the main
blockchain. Otherwise, if the corrected message hash resubmitted was still wrong or the modification found in the
message in step Figure 6: E-F changes the information content of the message, the node will be excommunicated and
the administrator will be alerted of the problem. Records of such faulty replies and the correct replies for the particular
validation session are put in the auxiliary blockchain.

In Figure 7, the characters that changed may not make the message incomprehensible and a reader may still be
able to get the correct information from the message. But if it were words that changed, then the information contained
in the message might change as well.

Figure 7. Bit-wise comparison of messages

2.6.2 Incorrect H(R) was Computed by one or more Actors

If the actor that computed incorrect H(R) submitted a correct H(m) into the message-hash bucket before, the
actor will be requested to recompute its H(R) because its H(m) had been used to generate vote tokens by other actors.
This will make the process that has only this error to end at the point Figure 6: F.

https://doi.org/10.22219/kinetik.v7i1.1378

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2022 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

64

2.6.3 One or more Actors Submitted Correct H(m) but did not Submit H(R)S
The actor will be considered to have crashed after submitting the correct H(m) and it does not respond to pings.

If its H(m) was correct it will be accepted as valid. When the actor comes up again it will update its consistency history.
This process will end at the point in Figure 2: D because since its H(m) was correct, the absence of its vote does not
have a negative effect.

2.6.4 One or more actors did not Submit Any Response

Crash check protocol as explained here later will be carried out by each active actor on the actors that did not
submit a response in the review bucket when their threshold time elapsed. If the inactive actor does not respond it will
be considered to have crashed and will be counted out of the agreement process for the session. The crashed node
can join another agreement session whenever it becomes active again but not the session that it did not start with other
actors.

All actors that did not participate, or submitted differing responses during a consensus process will not update
their consistency history. The actors that submitted wrong responses and corrected its error will update their consistency
history. When a record is updated in the auxiliary blockchain consistency history of all the participants will not be updated
because the results are disputable.

2.6.5 Crash-Check

The active actors including the evidence server will start a timer when they received <msg, msg-id,
timestamp>CC. Each actor will take note of the duration between the time it received <msg, msg-id, timestamp>CC
and the time the first reply was received in the message-hash bucket. Twice that duration will be used as the threshold
time between submission of the last and the subsequent replies in any buckets. The threshold time calculated by each
actor may not be the same. Thus, an actor whose threshold time has elapsed and there were no new replies in a bucket
where it expects replies, the actor will send a ping as a hello message to those that are supposed to submit a reply but
have not done so. The actor that does not participate in an agreement process and did not respond to pings will be
considered to have crashed. Only the consensus responses received will be used for the message validation. If it is the
only crash error that occurred, the process will still end at the point in Figure 2: D.

2.7 Authentication

Authentication of participants is done on every response a participant submitted. A participant submits its ID and
consistency history together with its signed response. Other actors in the agreement process confirm the signature on
the response to be that of the owner of the ID on the response. The consistency history which is unique to a participant
and has attributes that link it to other participants’ consistency history is also used to authenticate a participant that
submits a response.

2.8 Performance Evaluation of CICM Algorithm

The proposed collaborative integrity checking consensus mechanism is evaluated for operational performance
and robustness against faults using throughput and latency as metrics. It was tested and its results were compared with
three popular consensus mechanisms. The evaluation tests were simulated in NS3-Dev installed on Ubuntu 20.04 LTS,
Python 3.8.10, GCC version 10.3.0 on WSL2 virtual machine of Windows 10 Pro 21H1, OS build 19043.1319. The
simulation was done on Dell Latitude 7450, 16GB RAM, 1TB HDD. A set of 100 nodes were used comprising 60 users,
a cloud server, a cloud controller, and 38 validating actors comprising the cluster controller, evidence server, AI, and
other 35 Agreement Actors for CICM. NS3 is a handy testbed that can be adapted for different use cases by adding
modules and/libraries to it as may be needed. Nodes are assigned roles by writing scripts for executing the desired
functions and installing the scripts on the node. NS3 supports C++ and Python scripting. C++ codes were used for the
tests. Cryptopp library was added to the NS3 modules. The elliptic curve cryptography in the Cryptopp library was used
for all the cryptographic operations. The ECC digital signature algorithm (ECDSA) was used for signing, and the elliptic
curve Diffie–Hellman key exchange (ECDHKE) was used for sharing messages. MD5MAC of Cryptopp was used for
MAC generation for the benchmarks that used MAC.

The benchmark solutions used are PBFT [11], Zyzzyva [13], and hBFT [10]. Because of the differences in the
working process of CICM and the benchmarks, the settings for the best performances for the benchmarks as reported
in [10] were used. According to [10] the three solutions perform better with batching than without batching. The
performance peaked when a batch of 10 was used and clients were 30. The best microbenchmark for them was reported
as 0/0 (when a client sent 0 KB and replicas replied with 0 KB) and the worst was 4/4 (when a client sent 4 KB and
replicas reply with 4 KB). The benchmarks were tested with the following settings; batching b=10, f=1 (1 faulty replica),
64 nodes comprising 60 clients and 4 replicas among which primary is chosen, and 0/0 benchmark. CICM does not
batch requests but enough cache size, 10MB, that can avoid packets drop was used to accommodate a large number
of messages with a maximum size of 5KB each.

https://creativecommons.org/licenses/by-sa/4.0/

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Cite: O. W. Salami, M. B. . Abdulrazaq, E. A. Adedokun, and B. Yahaya, “CICM: A Collaborative Integrity Checking Blockchain Consensus
Mechanism for Preserving the Originality of Data the Cloud for Forensic Investigation”, KINETIK, vol. 7, no. 1, pp. 55-68, Feb. 2022.
https://doi.org/10.22219/kinetik.v7i1.1378

65

2.8.1 Comparison of CICM Efficacy Against Faults with those of the Benchmark Solution
The binomial distribution chart in Figure 8 shows the probabilities for different numbers of outcomes over the 100

attempts. The results for values of 𝑛 = 100 and different values of 𝑥 for the mechanisms are shown in Figure 8. Since
the fault tolerance for the benchmark solutions is the same as 3f+1, f is the number of traitors. Therefore, their

probability, 𝑃, of getting incorrect result in one attempt is
1

3
.

Each of the benchmark solutions has a very small probability of giving an incorrect result in a hundred attempts.
Unfortunately, the probabilities increase with an increased number of possible incorrect outcomes in the number of
attempts. The probability peaked at 0.0844 for 33 possible incorrect outcomes in hundred attempts in Figure 8.

Figure 8. Binomial Distribution of the Probabilities of Getting a Specific Number of Incorrect Outcomes in 100

Attempts.

2.8.2 Throughput
Throughput is used to measure the rate of operation executions by the mechanisms. It determines the number

of operations completed per unit of time. Figure 9 compares the results of throughput tests for each mechanism. The
CICM operations were faster because the operations were mostly carried out locally. The shared drive provides local
copies of the values to nodes as soon as it is available. This enhances faster synchronization. Also, in the benchmarks,
the cryptographic operations are performed twice on the same values, the primary perform cryptographic operations on
the values when it sends an order to the replicas, the replicas also carry out their cryptographic operations on their
response values. But in CICM the cryptographic operations on the values are done only by agreement actors before it
is written to the appropriate buckets on the shared drive. CICM maintain a focus in every operation. The message is
received from a single source at the same time, it is analyzed together and agreed upon in a single place.

Message overhead was highly reduced with great synchrony among the validating actors in CICM than all other
solutions considered. This is shown in the better performance of CICM in Figure 9 where it recorded an average of
30.61% better throughput than its nearest contender, the hBFT. It recorded 52.75% better throughput than PBFT and
72.69% better than zyzzyva.

Figure 9. Throughput Plotted Against the Increasing Number of Clients

2.8.3 Latency

The latency test compared the time taken by a mechanism to reach an agreement from when its actors received
a request. For the benchmarks, the time starts when the primary received a request from the client because the primary
and the clients are active actors in the agreement process. The time starts when agreement actors received <msg,

https://doi.org/10.22219/kinetik.v7i1.1378

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2022 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

66

msg-id, timestamp>CC in CICM because the cluster controller does not participate in the agreement process. It ends
when the message is committed in the benchmarks and when the agreement votes process submission is completed
in CICM. Figure 10 shows the results of latency tests for each mechanism. CICM recorded a 21.47% faster process
than hBFT, 35.2% faster than PBFT, and 50.72% faster than zyzzyva.

The speed advantage of CICM over the benchmark solutions was due to the high synchrony through its better
collaboration method and reduced message overhead in its processes. These tests results show that CICM has better
operational performance and lesser operational costs than the other solutions. A lower throughput and a higher latency
are indications of poorer performance and higher costs.

Figure 10. Operational Costs Test: Latency Plotted Against the Number of Clients

2.8.4 Robustness

The robustness test compared the scalability of the mechanisms as the number of faults increased. The
benchmarks have thresholds for the number of faults they can tolerate. CICM operation is the same in the face of any
faults as explained in section 5. If the fault is a minor one and can be reversed the node involved would be asked to
review and recompute the correct value, otherwise, the value will be recorded in the auxiliary ledger. CICM writes
disputable results in auxiliary blockchain other mechanisms discard such results. Discarding such results is not
acceptable for forensic investigations because vital facts may be lost with the discarded records. The downward fall of
CICM throughput and its increasing latency with the increase in faults was due to the repeated actions for every similar
fault. The time spent on each fault was comparatively the same for the same type of fault. In the case of the benchmarks,
cryptographic operations and message overheads per value increased with an increased number of faults. Figure 11
compares the robustness of each mechanism against the others. CICM recorded a quite more stable and higher
throughput than the benchmarks (Figure 11(a)). Zyzzyva’s throughput decreased faster than the other benchmarks
when the faults increased. CICM recorded 16.5% better average throughput than hBFT, 41.51% better than PBFT, and
84.05% better than zyzzyva. All mechanisms recorded increasing latency as the number of faults increased but CICM
recorded the least latency in each test followed by hBFT. Zyzzyva recorded lower latency than PBFT in the tests when
f = 1, f = 2, f = 3, and f = 4 but recorded higher when f = 5 (Figure 11(b)). On average, CICM latency was 14.93% lower
than hBFT, 27.12% lower than PBFT, and 26.09% lower than zyzzyva.

(a) Throughput for 0/0 benchmark (b) Latency for 0/0 benchmarks

Figure 11. Throughput and Latency for benchmark 0/0 measured for the 4 mechanisms

https://creativecommons.org/licenses/by-sa/4.0/

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Cite: O. W. Salami, M. B. . Abdulrazaq, E. A. Adedokun, and B. Yahaya, “CICM: A Collaborative Integrity Checking Blockchain Consensus
Mechanism for Preserving the Originality of Data the Cloud for Forensic Investigation”, KINETIK, vol. 7, no. 1, pp. 55-68, Feb. 2022.
https://doi.org/10.22219/kinetik.v7i1.1378

67

3. Results and Discussion
The importance of the tests conducted on the proposed solution and the results obtained is discussed in this

section.

3.1 Avoidance of Critical Consequences
The results of the analysis of the proposed solution and the benchmarks using binomial distribution theoretically

show that the proposed CICM is ideally not prone to faults. The same test shows that the probability of the benchmarks
producing wrong results could be as high as 8.44%. The challenges of having, even, such a small probability for wrong
results are; 1) it does not mean that the possibility of the error occurring is eliminated. 2) the time of occurrence of such
error is random which means that it can happen earlier than expected or at the most critical time. Such avoidable
consequences are not acceptable in forensic analysis. The reason is that the results of the forensic analysis of digital
data may be needed for resolving a life-threatening issue, e.g., to prove innocence in a murder case that carries a death
penalty, or other very important instances, such as in business. CICM can address this challenge as shown by equation
4. It makes both records of flawless and faulty data validation processes available to the prospective data analyst to be
able to make well-informed decisions. Thus, it can produce sound data for accurate analysis results that can be relied
upon to make correct decisions.

3.2 CICM adequacy for Data Capturing for Forensic Analysis Purposes

The operational performance tests show that the performance of the proposed solution increases faster than the
other benchmark solutions when the number of messages increases. It recorded a reasonably more stable higher
throughput and lower latency than the benchmarks for large numbers of message inputs. This is attributable to the
transparent collaborative method adopted for the consensus process which makes the agreement protocol faster. Also,
the error handling by the CICM whereby the records of the process in which irreconcilable errors found are simply
recorded in the auxiliary blockchain reduces the time spent on the error corrections. These results confirm the suitability
of the proposed solution for processing message validations at a rate commensurate with their rate of arrival on the
cloud.

3.3 The CICM better Faults Handling

The robustness tests show that the proposed solution is considerably stable irrespective of increasing faults. The
steps taken to reconcile an erroneous response from a participant are simpler and fewer than the other mechanisms.
Also, participants with crash faults are simply put aside so that the process will not be unnecessarily delayed. These
account for the higher stability of the solution in the face of increasing faults.

4. Conclusion

This research proposed a solution for protecting the originality of data on cloud storage to make it suitable for
extracting accurate information that can be used as a basis for making valid decisions. The solution implements a
consensus mechanism using a 100% agreement for accepting values to be recorded in the main blockchain and records
any values that received less than 100% consensus in an auxiliary blockchain. The agreement actors involved in the
consensus process scrutinize the status of the message on arrival to the cloud and record its accurate attributes in the
appropriate blockchain ledger based on 100% agreement by actors or otherwise. Transparent collaboration used for
the agreement process reduced its steps, ensured higher accuracy, and increased synchrony among the actors. This
work proposed a new mechanism for achieving a high level of accuracy required for forensic analysis results from digital
data and other data analysis that requires very accurate results. The efficacy of the proposed mechanism for the
intended uses was checked and compared with three existing solutions using the binomial distribution. Its operational
performance costs and robustness against faults were also tested using throughput and latency as metrics. It recorded
better results in all the tests than the benchmarks.

5. Limitations and Future Research

This mechanism does not confirm the correctness of the source of the messages as provided by the cluster
controller. It only accepts that the message originated from the user whose ID and address were attached by the cloud
controller as source and destination. So, the security of the mechanism does not cover activities performed on data by
the cloud controller or the cluster controller before forwarding the message to the actors of the mechanism. If the
evidence server is compromised the collaboration process may be disrupted. Although it is a rare possibility for all of
the agreement actors to be compromised at the same time, but if they were all compromised together the proposed
mechanism may not serve its purposes anymore. So, there is the need to secure the validating actors from being
compromised. Future research work will focus on obviating the vulnerability and securing the actors.

https://doi.org/10.22219/kinetik.v7i1.1378

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2022 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

68

References
[1] B. Yahaya, M. B. Mu’azu, and S. Garba, “Congestion Control Strategies on Integrated Routing Protocol for the Opportunistic Network: A

Comparative Study and Performance Analysis,” Int. J. Comput. Appl., vol. 117, no. 4, pp. 975–8887, 2015. https://dx.doi.org/10.5120/20540-
2906

[2] O. I. Ademu, C. O. Imafidon, and D. S. Preston, “A New Approach of Digital Forensic Model for Digital Forensic Investigation,” Int. J. Adv.
Comput. Sci. Appl., vol. 2, no. 12, pp. 175–178, 2011. https://dx.doi.org/10.14569/IJACSA.2011.021226

[3] O. W. Salami, I. J. Umoh, E. A. Adedokun, and M. B. Muazu, “Implementing Flash Event Discrimination in IP Traceback using Shark Smell
Optimisation Algorithm,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, pp. 259–268, 2019.
https://doi.org/10.22219/kinetik.v4i3.740

[4] R. F. Erbacher, “Validation for digital forensics,” ITNG2010 - 7th Int. Conf. Inf. Technol. New Gener., pp. 756–761, 2010.
https://doi.org/10.1109/ITNG.2010.18

[5] N. Chaudhry and M. M. Yousaf, “Consensus Algorithms in Blockchain: Comparative Analysis, Challenges and Opportunities,” in ICOSST 2018
- 2018 International Conference on Open Source Systems and Technologies, Proceedings, Jan. 2019, pp. 54–63.
https://doi.org/10.1109/ICOSST.2018.8632190

[6] Q. Wang, J. Huang, S. Wang, Y. Chen, P. Zhang, and L. He, “A Comparative Study of Blockchain Consensus Algorithms,” J. Phys. Conf. Ser.,
vol. 1437, no. 012007, pp. 1–8, Jan. 2020. https://doi.org/10.1088/1742-6596/1437/1/012007

[7] S. S. Hazari and Q. H. Mahmoud, “Comparative evaluation of consensus mechanisms in cryptocurrencies,” Internet Technol. Lett., vol. 2, no.
3, pp. 1–6, May 2019. https://doi.org/10.1002/itl2.100

[8] O. W. Salami, M. B. Abdulrazaq, E. A. Adedokun, and B. Yahaya, “Collaborative Integrity Verification for Blockchain-Based Cloud Forensic
Readiness Data Protection,” in Informatics and Intelligent Applications. ICIIA 2021. Communications in Computer and Information Science, vol
1547, M. Sanjay, O. Jonathan, D. Robertas, and M. Rytis, Eds. Springer International Publishing, Cham, 2022, pp. 138–152.
https://doi.org/10.1007/978-3-030-95630-1_10

[9] J. Mo, Z. Hu, H. Chen, and W. Shen, “An efficient and provably secure anonymous user authentication and key agreement for mobile cloud
computing,” Wirel. Commun. Mob. Comput., vol. 2019, no. Article ID 4520685, pp. 1–12, 2019. https://doi.org/10.1155/2019/4520685

[10] S. Duan, S. Peisert, and K. N. Levitt, “Hbft: Speculative Byzantine fault tolerance with minimum cost,” IEEE Trans. Dependable Secur. Comput.,
vol. 12, no. 1, pp. 58–70, Jan. 2015. https://doi.org/10.1109/TDSC.2014.2312331

[11] C. M and L. B, “Practical byzantine fault tolerance and proactive recovery[J],” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–461, 2002.
[12] W. Yan, J. Shen, Z. Cao, and X. Dong, “Blockchain Based Digital Evidence Chain of Custody,” in The 2nd International Conference on

Blockchain Technology 2020, 2020, pp. 19–23. https://doi.org/10.1145/3390566.3391690
[13] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva: Speculative Byzantine Fault Tolerance,” ACM Trans. Comput. Syst., vol. 27,

no. 4, pp. 7:1-7:39, Jan. 2009. https://doi.org/10.1145/1658357.1658358
[14] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008.
[15] A. H. Lone and R. N. Mir, “Forensic-chain: Blockchain based digital forensics chain of custody with PoC in Hyperledger Composer,” Digit.

Investig., vol. 28, pp. 44–55, 2019. http://dx.doi.org/10.1016/j.diin.2019.01.002
[16] K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts for the Internet of Things,” IEEE Access, vol. 4. Institute of Electrical and

Electronics Engineers Inc., pp. 2292–2303, 2016. https://doi.org/10.1109/ACCESS.2016.2566339
[17] L. A. Ajao, J. Agajo, E. A. Adedokun, and L. Karngong, “Crypto Hash Algorithm-Based Blockchain Technology for Managing Decentralized

Ledger Database in Oil and Gas Industry,” Multidiscip. Sci. J., vol. 2, pp. 300–325, 2019. https://doi.org/10.3390/j2030021
[18] M. Li et al., “CrowdBC: A Blockchain-based Decentralized Framework for Crowdsourcing,” IEEE Trans. Parallel Distrib. Syst., 2018.

https://doi.org/10.1109/TPDS.2018.2881735
[19] L. S. Sankar, M. Sindhu, and M. Sethumadhavan, “Survey of consensus protocols on blockchain applications,” in 2017 4th International

Conference on Advanced Computing and Communication Systems, ICACCS 2017, Aug. 2017, pp. 1–5.
https://doi.org/10.1109/ICACCS.2017.8014672

[20] L. Lamport and D. Equipment, “The Part-Time Parliament,” ACMTransactionsonComputerSystems, vol. 16, no. 2, pp. 133–169, 1998.
https://doi.org/10.1145/279227.279229

[21] L. Tseng, Q. Zhang, and Y. Zhang, “Brief Announcement: Reaching Approximate Consensus When Everyone May Crash,” in 34th International
Symposium on Distributed Computing (DISC 2020), 2020, vol. 53, pp. 53:1–53:3. https://doi.org/10.4230/LIPIcs.DISC.2020.53

[22] H. Samy, A. Tammam, A. Fahmy, and B. Hasan, “Enhancing the performance of the blockchain consensus algorithm using multithreading
technology,” Ain Shams Eng. J., vol. 12, no. 3, pp. 2709–2716, Sep. 2021. https://doi.org/10.1016/j.asej.2021.01.019

[23] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, 1982.
https://doi.org/10.1145/357172.357176

[24] D. Mazières, “The Stellar Consensus Protocol : A Federated Model for Internet-level Consensus,” pp. 1–45, 2015.
[25] L. Lamport, “Paxos Made Simple,” ACM SIGACT News, vol. 32, no. 4, pp. 18–25, 2001.
[26] D. Ongaro and J. Ousterhout, “In search of an understandable consensus algorithm,” in Proceedings of the 2014 USENIX Annual Technical

Conference, USENIX ATC 2014, 2014, pp. 305–319.
[27] S. Chaisawat, C. V.-2020 17th I. Joint, and U. 2020, “Fault-Tolerant Architecture Design for Blockchain-Based Electronics Voting System,”

ieeexplore.ieee.org, 2020. https://doi.org/10.1109/JCSSE49651.2020.9268264

https://creativecommons.org/licenses/by-sa/4.0/
https://dx.doi.org/10.5120/20540-2906
https://dx.doi.org/10.5120/20540-2906
https://dx.doi.org/10.14569/IJACSA.2011.021226
https://doi.org/10.22219/kinetik.v4i3.740
https://doi.org/10.1109/ITNG.2010.18
https://doi.org/10.1109/ICOSST.2018.8632190
https://doi.org/10.1088/1742-6596/1437/1/012007
https://doi.org/10.1002/itl2.100
https://doi.org/10.1007/978-3-030-95630-1_10
https://doi.org/10.1155/2019/4520685
https://doi.org/10.1109/TDSC.2014.2312331
https://pmg.csail.mit.edu/papers/bft-tocs.pdf
https://doi.org/10.1145/3390566.3391690
https://doi.org/10.1145/1658357.1658358
http://www.cryptovest.co.uk/
http://dx.doi.org/10.1016/j.diin.2019.01.002
https://doi.org/10.1109/ACCESS.2016.2566339
https://doi.org/10.3390/j2030021
https://doi.org/10.1109/TPDS.2018.2881735
https://doi.org/10.1109/ICACCS.2017.8014672
https://doi.org/10.1145/279227.279229
https://doi.org/10.4230/LIPIcs.DISC.2020.53
https://doi.org/10.1016/j.asej.2021.01.019
https://doi.org/10.1145/357172.357176
http://www.scs.stanford.edu/17au-cs244b/notes/scp.pdf
https://lamport.azurewebsites.net/pubs/paxos-simple.pdf
https://raft.github.io/raft.pdf
https://raft.github.io/raft.pdf
https://doi.org/10.1109/JCSSE49651.2020.9268264

