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The aim of this study was to test the usefulness of direct PCR-amplification in analysing fungal diversity in stumps. The
analysis was conducted on stumps treated against Heterobasidion spp. using a commercial formulation of Phlebiopsis

gigantea (Rotstop), and carried out using denaturing gradient gel electrophoresis (DGGE) of small subunit (SSU)
ribosomal DNA (rDNA) fragments PCR-amplified directly from wood DNA samples using two separate fungus-specific
primer pairs. On average, two (range 0–9) different amplification products were observed by DGGE in single wood

samples of approximately 500 mm3. The PCR products were classified into operational taxonomical unit (OTU) groups
based on their DGGE mobility. Six OTUs could be affiliated with a known species based on a reference fungal collection
of 37 species : Heterobasidion annosum, H. parviporum. Hypholoma capnoides, P. gigantea, Resinicium bicolor and Stereum

sanguinolentum. Sequence analyses did not give further identifications. OTU profiles from old (6 yr-old) and fresh
(1-year-old) Scots pine and Norway spruce stumps from treated and untreated forest plots were compared statistically,
and some significant differences were observed in the species composition between the treated and untreated plots.
However, the frequency of most of the OTUs did not seem to be affected, and the treatment did not seem to have

reduced the overall level of fungal diversity. Based on these results, direct PCR-amplification seems to be useful in
analyses of fungal communities in decaying conifer stumps.

INTRODUCTION

Pathogenic fungi belonging to the genusHeterobasidion
cause severe root and butt rot in conifers of the north-
ern temperate regions. During summertime loggings,
basidiospores of these species readily infect fresh stump
surfaces, from where the infection can spread vegetat-
ively into the stump roots and further to surrounding
healthy trees using root contacts. However, the stump
surface infections can be efficiently prevented using
Phlebiopsis gigantea biocontrol treatment (Risbeth
1952, 1963, Hodges 1964, Greig 1976, Kallio &
Hallaksela 1979, Korhonen et al. 1994), and in Finland
such treatment by private forest owners is financially
supported by the Government.

P. gigantea is one of the most common fungal species
found in coniferous wood remains in the Boreal region,
especially in managed forests (Käärik & Rennerfelt
1958, Meredith 1959, Kallio 1965, Petäistö 1978,
Eriksson, Hjortstam & Ryvarden 1981). The spore
infection of this fungus is very effective, and it is
a highly competitive primary colonizer of wood. The

use of a commercial formulation of P. gigantea
(Rotstop) allows practically complete prevention of
Heterobasidion annosum infections in Scots pine stumps
(Korhonen et al. 1994). In Norway spruce stumps, the
efficacy of P. gigantea treatment is somewhat lower
(Lipponen 1991, Korhonen et al. 1994, Nicolotti,
Gonthier & Varese 1999). There are also indications
that the use of P. gigantea might reduce the frequency
of certain other fungal species cultured from conifer
stumps (Kallio 1971, Kallio & Hallaksela 1979). These
species include among others Stereum sanguinolentum,
Peniophora pithya and Sistotrema brinkmannii, all of
which occur very commonly in decomposing conifer
stumps. This suggests that large-scale treatments with
P. gigantea might present an ecological threat in the
form of decreasing the diversity of natural communities
of wood-inhabiting fungi.

The survival of introduced P. gigantea strains has
been monitored in North America using RAPD
markers (Roy et al. 1997), and the presence of in-
oculated strains was demonstrated in red pine stumps
one year after treatment. In Europe, we used RAMS
genetic fingerprinting markers to detect a biocontol
genotype of P. gigantea (Rotstop) in Norway spruce* Corresponding author.
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stumps six years after treatment (Vainio, Lipponen &
Hantula 2001). However, the effect of P. gigantea
inoculum on the overall diversity of natural com-
munities of other stump decomposing fungi still remains
unresolved.

Denaturing gradient gel electrophoresis (DGGE) of
PCR-amplified small subunit (SSU) ribosomal DNA
(rDNA) fragments has proven to be a suitable method
for the analysis of complex bacterial as well as eukaryal
communities (Ferris, Muyzer &Ward 1996, Heuer et al.
1997, Vallaeys et al. 1997, Kowalchuk, Gerards &
Woldendorp 1997a, Kowalchuk et al. 1997b, Marsh
et al. 1998, Smalla et al. 1998, Smit et al. 1999, Vainio
& Hantula 2000a, ). The SSU rDNA gene shows very
limited within-species variation, but different species
can usually be separated from each other (Berbee &
Taylor 1993, Olsen & Woese 1993, Mitchell, Roberts
& Moss 1995). Using DGGE, SSU rDNA-fragments
can be differentiated according to their sequences
(in addition to length polymorphisms), and several
different sequence types obtained from a single sample
can be analysed simultaneously (Muyzer, de Waal &
Uitterlinden 1993).

The direct PCR amplification of DNA extracted
from environmental samples is not affected by the lack
of suitable culturing media, or by slow-growing species
being overgrown by faster ones. This method also gives
quantitative information, as the amount of DNA
obtained from each sample should directly reflect the
amount of fungal mycelia it contains, although it is
at least theoretically sensitive to differences in the
amplification efficacies between different DNA frag-
ments.

In this study the DGGE method was used to analyse
fungal SSU rDNA fragments PCR-amplified directly
from wood DNA samples. Species profiles obtained
from treated and untreated Scots pine and Norway
spruce stumps were compared to investigate whether
the direct analysis could be applied in determining
whether the use of Rotstop had reduced the diversity of
wood-inhabiting microfungal communities.

MATERIAL AND METHODS

Stump treatment experiments

Two stands both located in Taipalsaari (southeastern
Finland; 62x N, 28x E) were used. The Scots pine

stand consisted of eight different plots, four of which
had been treated with a commercial preparation of
Phlebiopsis gigantea (Rotstop, Kemira Oy) during a
thinning on 10 June 1992, while four plots had been left
untreated. A stump treatment device fitted to a har-
vester made by a Finnish manufacturer, Ponsse, was
used to apply the Rotstop preparation. A second felling
was made on 6 August 1997, consisting of one tree aged
about fifty years from each test plot, and the resulting
stumps were left untreated. During the second felling,
five trees were also cut from a separate Scots pine stand
with a comparable tree structure and habitat located
next to the test stand. The resulting stumps were used
as outer controls in order to compare the degree of
natural geographic variation to the effect of Rotstop
treatment. In total, 29 stumps were sampled approxi-
mately one year after the second felling on 9 Sept. 1998
as shown in Table 1. The term pretreated is used below
when referring to the fresh untreated stumps within the
treated plots.

The Norway spruce test stand included six different
plots : three had been treated with Rotstop during
thinnings on 4 June and 2 July 1992, and three had been
left untreated. In addition, five trees had been cut from
a separate control Norway spruce stand located next
to the test stand. During the second felling (August
6th, 1997), one tree aged about 70 years was cut from
each test plot and five trees were felled from the
control stand. All the resulting stumps were left un-
treated. In total, 28 stumps were sampled one year after
the second felling (9 Sept. and 1 Dec. from the test
stand and control stands, respectively) as shown in
Table 1.

Sample preparation and DNA extraction

The outermost layer (ca 5 cm) of the stumps was dis-
carded (in order to avoid fungi accidentally occurring
on the stump, but not growing in the wood) and discs
cut below the fresh surface were used for sampling.

The sample discs were stored in +4 xC for 1–5 d
prior to sampling. Wood chips were carved with a
sterile knife from inside the discs after the outer surface
had been removed, and ca 500 mm3 of wood material
was taken for each sample. Four samples were collected
randomly from different parts of each disc (in total 228
samples from 57 stumps) and stored in x80 x prior to
DNA extraction.

Table 1. Stump treatment experiments. The numbers of stumps analysed in each plot are given. ‘Old’ and ‘fresh’ refer to stumps from

trees felled six and one years before sampling, respectively. Four randomly collected samples were analysed from each stump.

Treatment/

tree species

No. of old

stumps in

treated

plots (OT)

No. of fresh

stumps in

treated

plots (FP)

No. of old

stumps in

untreated

plots (OU)

No. of fresh

stumps in

untreated

plots (FU)

No. of old

stumps in

separate control

area (OC)

No. of fresh

stumps in

separate control

area (FC)

Scots pine 8 4 8 4 – 5

Norway spruce 6 3 6 3 5 5
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Extraction of DNA directly from wood samples was
carried out using a multistep procedure described in
Vainio & Hantula (2000a). This procedure includes
homogenization of the wood chips in eppendorf tubes
using a sterilised glass rod, metal tweezers and quartz
sand, and lysis of the fungal cells in extraction buffer.
The lysate was purified with phenol and chloroform
extractions followed by the High Pure PCR Template
Preparation Kit (Boehringer Mannheim, IN), and
selective precipitation of the DNA using polyethylene
glycol.

PCR amplification and denaturing gradient gel
electrophoresis (DGGE)

PCR amplifications of the partial SSU rDNA frag-
ments were carried out as described in Vainio &
Hantula (2000a) using primer pairs FR1+NS1 and
FR1+FF390. Primer pair FR1+NS1 was used to
produce long PCR-fragments covering most of the
entire SSU rDNA molecule (ca 1650 bp) and primer
pair FR1+FF390 for obtaining short fragments of ca
390 bp. A GC-clamp (Vainio & Hantula 2000a) was
used in primer FR1 to allow optimal separation of the
fragments in DGGE. The amplification products were
analysed by the D GENETM system (Bio-Rad) as
described in Vainio & Hantula (2000a).

In order to be able to determine the relative
migration rates of the amplification products and to
ensure the reproducibility of the denaturing gradients,
a collection of five (primer pair FR1+NS1) or six
(FR1+FF390) PCR-amplification products from dif-
ferent fungal species was used as a mobility standard.
The amplification products were initially named and
classified into a mobility group using these standard
species (the information about the initial groups may
be useful in becoming studies, and is therefore given
in this paper, although the initial grouping itself was
not used in the statistical analyses). For primer pair
FR1+NS1 the initial groups were named as follows: L,
faster than Peniophora pithya ; P, slower than P. pithya ;
G, as Phlebiopsis gigantea or slower; H, as H. annosum
or slower; N, as Nectria sp. or slower; and T, as
Trichoderma sp. or slower. For primer pair FR1+
FF390 the initial groups were named as follows: L,
faster than Heterobasidion annosum ; H, as H. annosum
or slower; G, as P. gigantea or slower; C, as Chondro-
stereum purpureum or slower; A, as Amylostereum
areolatum or slower ; B, as Armillaria borealis or
slower ; O, as Armillaria ostoyae or slower ; or S, very
slow. After this, the bands were compared on parallel
lanes until they could be classified into a specific oper-
ational taxonomical unit (OTU). As all individual
species cannot be differentiated from each other when
only one primer pair is considered (Vainio & Hantula
2000a), further subgroups were also determined based
on unique OTU combinations obtained by comparing
the two separate banding patterns produced from each
sample using the two different primer pairs.

For the identification of species, a reference fungal
collection including the following wood-inhabiting
fungi was used: Amylocystis lapponica, Amylostereum
areolatum, A. chailletii, Armillaria borealis, A. cepis-
tipes, A. ostoyeae, Ascocoryne sp., Bjerkandera adusta,
Chondrostereumpurpureum,Coniophoraarida,Cylindro-
basidion evolvens, Exophiala sp., Fomitopsis pinicola,
Gliocladium sp., Heterobasidion annosum, H. parvi-
porum, Hypholoma capnoides, Ischnoderma benzoinum,
Merulius lacrymans, Nectria sp., Neobulgaria premno-
phila, Panellus mitis, Penicillium sp., Peniophora pithya,
Phaeolus schweinitzii, Phialophora sp., Phlebiopsis
gigantea, Polyporus borealis, P. brumalis, Resinicium
bicolor, Rhinocladiella sp., Sistotrema brinkmannii,
Stereum sanguinolentum, Trametes zonata, Trichaptum
sp., Trichoderma sp., Verticicladiella procera. The
collection numbers for the fungal isolates are listed in
Vainio & Hantula (2000a).

For example OTU NS1-26b (with an initial code N3)
migrated as fast or slower than Nectria sp. (it was the
third fastest of those bands), and could be separated
from OTU NS1-26a with primer pair FR1+FF390
(and therefore corresponds to OTU FF390-8 with an
initial code of H7). As a band with similar mobility was
also amplified from a culture of Stereum sanguino-
lentum, we concluded that OTU NS1-26b and FF390-8
correspond to this species.

Cloning and sequencing

Directly amplified PCR-fragments were cloned in
pCR 2.1 plasmids with Original TOPO TA cloning
kit (Invitrogen, Groningen) according to the manu-
facturers recommendations. The correct clone was
selected by comparing the migration of cloned inserts
to that of the original amplification product in DGGE
(for details see Vainio & Hantula 2000b).

Statistical analyses

Only frequencies of each band was measured (and thus
not differences in band intensities). Fisher’s exact test
was used for analysing whether the DGGE band dis-
tributions (frequencies of different OTUs) showed
statistical differences according to the plot treatment.
The frequency of each OTU among all plots rep-
resenting a certain treatment type (treated, untreated or
control) and stump type (fresh pines, old pines, fresh
spruces, old spruces) was determined, and the obtained
distribution profiles were compared using the Fisher’s
exact test of the StatXact program (Mehta & Patel
1991).

Shannon-Weaver and Gini heterogeneity indices
(Peet 1974) were used for analysing whether the
Rotstop treatment had influenced the general diversity
of the OTU profiles. Statistical differences between the
heterogeneity index profiles were tested using the
Student’s t-test.
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RESULTS

Occurrence of fungal amplification products within the
wood samples

The highest number of different amplification products
observed by DGGE in an individual wood chip sample
was nine (found from one old untreated pine stump
using primer pair FR1+NS1, and from one fresh pre-
treated spruce stump using primer pair FR1+FF390).
Generally, the average number of bands amplified from
each sample was somewhat higher using primer pair
FR1+FF390 (average 2.25) compared to FR1+NS1
(1.89, Table 4). Examples of band profiles amplified
from different samples are shown in Fig. 1.

The percentage of colonised samples containing at
least one detectable band varied from 70–100% (aver-
age 86.2%) depending on the plot treatment and stump
age, usually being higher within the treated plots com-
pared to the untreated or control plots (Table 4).
Accordingly, the average number of bands amplified
from each sample was generally highest within the
treated plots. Among the pine samples, fewer amplifi-
cation products were obtained from fresh stumps

(an average of 1.20 or 1.33 bands per sample using
primer pair FR1+NS1 or FR1+FF390, respectively)
than old stumps (2.78 or 2.67). In contrast, the average
number of bands amplified from each spruce sample
was higher within the fresh stumps (an average of
2.06 or 2.98 bands using primer pair FR1+NS1 or
FR1+FF390, respectively) compared to old stumps
(1.80 or 2.16).

Classification of PCR-products into different DGGE
mobility groups (OTUs)

Using primer pair FR1+NS1, the amplification prod-
ucts could be divided into 38 different OTUs (OTUs
NS1-1 toNS1-38,Table 2),while 48differentOTUswere
identified for primer pair FR1+FF390 (OTUs FF390-
1 to FF390-48, Table 3). In order to identify OTU
combinations corresponding to an individual species,
samples which produced only one amplification prod-
uct with both primer sets were considered. If the
same unique OTU combination (for example NS1-14
and FF390-5) occurred as a single PCR-product in at
least two separate samples from different stumps, this
combination was considered to represent a unique
species (single observations were not taken into
account as they could occur randomly due to possible
differences in the amplification efficacy of the two
different primer sets). Using these criteria, six differ-
ent unique OTU combinations could be identified
(Tables 2–3) : NS1-11/FF390-9 (Fig. 1, lanes 3), NS1-
14/FF390-5, NS1-24/FF390-13 (Fig. 1, lanes 4, upper
bands), NS1-26/FF390-24 (Fig. 1, lanes 7), NS1-26/
FF390-8 and NS1-27/FF390-10 (Fig. 1, lanes 6, upper
band/lower band, respectively). Based on these combi-
nations, the corresponding OTU groups could be fur-
ther divided into subgroups (groups NS1-11a, 14c, 24a,
26a, 26b and 27a, and groups FF390-9a, 5a, 13a, 24a, 8
and 10a).

Identification of species

A reference collection containing 37 different species of
wood-inhabiting fungi was used for comparing the
OTU groups with known species. Based on these com-
parisons, four of the unique OTU combinations could
be affiliated with a specific reference species: NS1-26/
FF390-8 with Stereum sanguinolentum ; NS1-27/
FF390-10 with Hypholoma capnoides ; NS1-26/FF390-
24 with Resinacium bicolor ; and NS1-11/FF390-9 with
Phlebiopsis gigantea. In addition to this, the occurrence
of Heterobasidion annosum and H. parviporum was
checked, although the corresponding OTU combina-
tions (NS1-14/FF390-6 and NS1-14/FF390-7, Tables
2–3) were not found as single PCR products from two
separate samples as described above for the unique
OTU combinations. The remaining reference species
could not be identified as clear OTU combinations
among the mixed samples containing more than one
amplification product.

1) 8+13+15+20

2) 11a+29

3) 11a

(A)

(B)

4) 11a+24a

5) 14b

6) 13+27a

7) 26a

8) 5+26a+31

1) 12+13b+16+30

2) 9a+20

3) 9a

4) 9a+13a

5) 7a

7) 24a

6) 10a+18

8) 39+40+42+46+47

Fig. 1. Examples of amplification products from different
wood samples obtained using primer pair FR1+NS1 (A) or
FR1+FF390 (B). The bands were classified into OTU groups

as listed after the lane number. Lanes (1) old treated pine,
plot 4 (p4), stump 1 (st1), sample 1 (sa1); (2) fresh untreated
pine, p4, sa4; (3) fresh control pine, st1, sa2; (4) old control

spruce, st 3, sa2; (5) old treated spruce, p1, st2, sa3; (6) old
treated spruce, p3, st2, sa3; (7) fresh pretreated spruce, p1,
sa2; (8) fresh pretreated spruce, p3, sa1.
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Frequency of the OTUs among different samples

Frequencies of the different OTUs varied considerably,
ranging from single observations (11 or 9 OTUs using
primer pair FR1+NS1 or FR1+FF390, respectively)
to OTUs that accounted for 11% of all bands analysed
(OTU NS1-11a). Six common OTUs, each of which
accounted for over 5% of all bands, and occurred in
more than 10% of the samples, were observed using
primer pair FR1+NS1 (NS1-11a, 13, 26c, 11b, 33 and
8, listed from the largest group to the smallest one).
Using the same criteria, four common OTUs (FF390-
9a, 44, 41, 16) could be identified for primer pair
FR1+FF390.

Identified species

Phlebiopsis gigantea formed the most common indi-
vidual OTU group for both primer pairs (NS1-11a or
FF390-9a), and occurred in 20.6% of all samples. It
was found very frequently within fresh pine stumps
(occurring in 43, 56, and 65% of all samples within the
fresh pretreated, fresh untreated and fresh control
stumps, respectively). However, it was not found among
any of the old pine stumps (whether treated or un-
treated). Within fresh spruce stumps, P. gigantea oc-
curred in 17, 33 and 20% of all samples within the fresh
pretreated, fresh untreated and fresh control stumps,
respectively, while the corresponding percentages for
old spruce stumps were 0 (old treated), 17 (old un-
treated) and 20 (old control). Thus, the fungus could
not be found from any of the old spruce stumps that
had been treated six years before the sample collection,
although it occurred within the untreated and control
stumps.

The remaining OTU combinations that could be
affiliated with a specific reference species were found
relatively rarely, and no clear difference was observed
between the treated and untreated plots. Hetero-
basidion annosum had colonised 3.5% of all samples,
and it was found both from treated and untreated old
pine and spruce stumps, and also from fresh pretreated
spruce samples. H. parviporum had infected old spruce
stumps within the untreated and control plots as well as
fresh pretreated spruce samples, its overall occurrence
being 2.2% of all samples. Resinicium bicolor (occur-
ring in 6.1% of all samples) seemed to occur frequently
in old treated pine stumps, but on the other hand it
was relatively common in fresh control spruce stumps.
S. sanguinolentum had colonised 2.2% of all samples,
and was found only in untreated fresh and old spruce
stumps, while H. capnoides was found only in old
stumps (both pine and spruce), but its frequency (4.8%
of all samples) did not seem to be correlated with the
Rotstop treatment.

Unidentified species

The majority of the common OTU groups could not be
identified as a specific species, and most of them seemed

to occur more frequently in old stumps compared to
fresh ones. Thus, OTUs NS1-8, NS1-11b, NSI-13,
NS1-26c and FF390-44, were most frequent within old
pine stumps, and the first three groups were also found
commonly within old spruce stumps. In addition, OTU
FF390-16 was common in old spruce stumps. Only two
of the common unidentified OTUs (NS1-33, FF390-41)
were most frequent within fresh pine stumps.

The frequency of most of the OTUs did not seem to
be correlated with the Rotstop treatment (Tables 2–3).
However, there were a few OTUs that appeared to get
either more abundant or rarer due to the treatment.
Thus, OTUs NS1-11b and FF390-30 seemed to be
more common in treated old spruce stumps compared
to the untreated ones, while OTU FF390-14 appeared
to suffer from the treatment within old pine stumps.
Other groups that seemed to a certain extent respond
positively to the treatment include NS1-27b, FF390-39,
FF390-41, FF390-44, and possibly declined groups in-
clude NS1-15, NS1-17, and FF390-29. When both
primer pairs were considered, one of the unidentified
OTU combinations (NS1-24/FF390-13) seemed to be
more frequent in treated old spruce stumps compared
to the untreated ones (occurring in 42, 12.5 and 5% of
samples within the treated, untreated and control plots,
respectively).

Sequences of OTUs affected by Rotstop treatment

Some of the DGGE-bands, the occurrence of which
seemed to be most clearly affected by the Rotstop
treatment, were cloned and sequenced. None of these
sequences were 100% identical to the GenBank data-
base of known sequences and therefore no further
identifications were made. However, the taxonomic
relatives of these OTUs could be identified. OTU
FF390-30 (GenBank accession no, AF541988) had a
similarity of 99% to Chlara strobilina (AF222516),
which is a mitosporic ascomycete. OTU NS1-24a
(AF541987) was related with 98% similarity to several
species of the basidiomycetous order Aphyllophorales :
Tyromyces chioneus (AF334938), Amauroderma sp.
(AF255199), Ganoderma boninense (AF255198), and
Anthrodia xantha (AF334902). The sequence of OTU
NS1-11b (AF541989) had a similarity of 98% to
Botryobasidium isabellinum (AF026610) and B. sub-
coronatum (AF026609), which belong to the basidio-
mycetous order Stereales. The sequences of OTU
FF390-14 (AF541990) and FF390-44 (AF541992) were
highly similar (99%) to each other, and were related
with 98% similarity to basidiomycetous fungi in sev-
eral orders : Boletales (Coniophora olivacea (AJ488905)
and other Coniophora species), Aphyllophorales
(Ossicaulis lignatilis (AF334923) and Tretopileus
sphaerophorus AB006005)), Nidulariales (Crucibulum
laeve (AF026624)), and Agaricales (Agaricus bisporus
(L36658)). OTU FF390-29 (AF541991) had a similarity
of 98% to Helicogloea variabilis, which belongs to
basidiomycetous order Atractiellales. OTU NS1-27b
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Table 2. Classification of PCR amplification products obtained using primer pair FR1+NS1 into different OTU groups based on DGGE. The unsplit groups are printed in bold, and subgroups are

separated by letters. The OTU groups affiliated with known reference species are indicated with letter combinations printed in italics: Pg=P. gigantea ; Ha=H. annosum ; Hp=H. parviporum ; Rb=R.

bicolor ; Ss=S. sanguinolentum ; Hc=H. capnoides.

No. of stumps

Plot treatment

P

Scots pine Norway spruce

1 yr-old (fresh) 6 yr-old (old) 1 yr-old (fresh) 6 yr-old (old)

Pretreated Untreated Control Treated Untreated Pre-treated Un-treated Control Treated Un-treated Control

(FP) (FU) (FC) (OT) (OU) (FP) (FU) (FC) (OT) (OU) (OC)

4 4 5 8 8 3 3 5 6 6 5 57

No. of samples 16 16 20 32 32 12 12 20 24 24 20 228

OTU Initial group Species

NS1-1. A1 0 0 0 0 0 1 2 0 0 0 0 3

NS1-2. A2 0 0 0 0 0 0 1 0 0 0 0 1

NS1-3. P1 0 0 0 0 0 2 3 0 0 1 0 6

NS1-4. P2 0 0 0 0 1 0 0 0 0 0 0 1

NS1-5. P3a 0 0 0 1 0 4 0 0 0 0 0 5

NS1-6. P3b 0 0 0 2 0 0 0 0 1 0 0 3

NS1-7. P4 0 0 0 2 0 0 0 0 0 1 1 4

NS1-8. P5 1 0 0 5 9 0 0 1 8 1 1 26

NS1-9. P6 0 0 0 0 1 0 0 0 1 0 0 2

NS1-10. P7 0 1 0 0 0 0 0 0 0 0 0 1

NS1-11a. G0/G0 Pg 7 9 13 0 0 2 4 4 0 4 4 47

NS1-11b. G0/not-G0 0 0 0 9 13 0 0 0 10 1 2 35

NS1-12. G1 0 0 0 0 1 0 0 0 0 0 0 1

NS1-13. G2 0 0 0 13 7 2 3 1 5 2 9 42

NS1-14a. H0/H0 Ha 0 0 0 2 2 1 0 0 1 2 0 8

NS1-14b. H0/H5 Hp 0 0 0 0 0 2 0 0 0 2 1 5

NS1-14c. H0/L5 0 0 0 0 0 0 0 0 1 5 0 6

NS1-14d. H0/not-H0,H5,L5 0 0 0 2 2 0 1 4 1 0 8 18

NS1-15. H1 0 0 0 2 7 0 2 0 1 0 0 12

NS1-16. H2a 0 0 0 0 0 0 0 0 0 1 0 1

NS1-17. H2b 0 0 0 1 6 0 0 0 3 0 0 10

NS1-18. H3 0 0 0 0 1 0 0 0 0 0 0 1

NS1-19. H4 0 0 0 0 0 0 0 1 0 0 0 1

NS1-20. H5 0 0 0 1 0 0 0 0 0 0 0 1

NS1-21. H6 0 0 0 2 0 0 0 0 0 0 0 2

NS1-22. H7 0 0 0 0 1 0 0 0 0 0 0 1

NS1-23. H8 0 0 0 4 0 0 0 0 0 0 0 4

NS1-24a. N0/C0 0 0 0 3 1 0 0 0 10 3 1 18

NS1-24b. N0/not-C0 0 0 0 2 4 1 0 0 0 0 0 7

NS1-25. N1 0 0 0 0 2 0 0 0 0 0 0 2
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(AF541993) was related with 98% similarity to
ascomycetous fungi (Dothideomycetes et Chaetothyrio-
mycetes incertae sedis) Phyllosticta pyrolae
(AB041250), Guignardia endophyllicola (AB041249),
other Guinardia species and Bulgaria inquinans
(AJ224362; order Leotiomycetes). The sequence of
OTU NS1-17 (AF541994) was most similar (97%) to
that of Kockovaella scimae (AB005482) and Fellomyces
lichenicola (AB032661), which are basidiomycetous
fungi belonging to order Tramellales.

Statistical comparison of OTU profiles between the
treated and untreated plots

Due to the two separate primer pairs used, two differ-
ent OTU groupings were obtained, both consisting of
unsplit groups and subgroups (Tables 2–3). The stat-
istical analyses were conducted using two different
methods : the Fisher’s exact test was used to reveal dif-
ferences in the species composition (i.e. OTU profiles),
while the heterogeneity indices (Shannon-Weaver and
Gini) were used to measure general species diversity
(both species richness and evenness).

Among the fresh pine stumps, the pretreated and
control plots revealed to be statistically different in
their overall diversity using primer pair FR1+FF390
(Table 6). However, no statistical differentiation was
observed between the pretreated and untreated plots,
and an even more similar species composition (as in-
dicated by the Fisher’s exact test, Table 5) was found
between the untreated and control plots, although
the control plots showed a lower overall diversity
(Table 6).

Among the old pine stumps, the treated and un-
treated plots differed significantly from each other
based on the Fisher’s exact test (Table 5). However, the
heterogeneity indices showed no statistical differen-
tiation, although a slightly lower level of diversity was
observed within the treated plots.

Among the fresh spruce stumps, statistically signifi-
cant differentiation was observed between the control
plots compared to both untreated and pretreated plots
(see Tables 5 and 6). This was based on the control
plots showing a low level of diversity, which was
reflected to both the heterogeneity indices (especially
Shannon-Weaver) and the Fisher’s exact test. In con-
trast, the pretreated and untreated plots did not differ
significantly. As with the fresh pine stumps, differences
in the species composition were highest between the
pretreated and control plots (Table 5).

Among the old spruce stumps, the heterogeneity in-
dices were quite similar between the different treat-
ments, but in this case the untreated plots showed the
lowest diversity. According to the Fisher’s exact test, a
high differentiation was observed in the species com-
position between the treated and control as well as the
treated and untreated plots (Table 5). Significant dif-
ferences were also found between the species compo-
sitions of untreated and control plots.N

S
1
-2
6
a
.

N
3
/B
0

R
b

0
0

0
5

0
1

0
6

1
1

0
1
4

N
S
1
-2
6
b
.

N
3
/H

7
S
s

0
0

0
0

0
0

1
0

0
3

1
5

N
S
1
-2
6
c.

N
3
/n
o
t-
B
0
,H

7
0

1
0

7
1
5

5
3

0
2

1
2

3
6

N
S
1
-2
7
a
.

N
6
a
/G

1
H
c

0
0

0
4

3
0

0
0

0
3

1
1
1

N
S
1
-2
7
b
.

N
6
a
/n
o
t-
G
1

6
1

1
1

3
0

1
0

0
0

3
1
6

N
S
1
-2
8
.

N
6
b

0
0

0
0

0
0

1
0

0
0

0
1

N
S
1
-2
9
.

N
7
a

2
2

0
0

1
4

3
0

0
0

0
1
2

N
S
1
-3
0
.

N
7
b

0
0

0
4

0
0

0
0

0
0

0
4

N
S
1
-3
1
.

T
0

1
0

0
1

2
8

5
0

3
0

1
2
1

N
S
1
-3
2
.

T
1

0
0

0
4

0
0

0
0

0
0

0
4

N
S
1
-3
3
.

T
2
a

9
4

2
1

6
0

2
0

3
0

0
2
7

N
S
1
-3
4
.

T
2
b

0
0

1
0

0
0

0
0

0
0

0
1

N
S
1
-3
5
.

T
3
a

0
0

0
2

0
0

0
0

0
0

0
2

N
S
1
-3
6
.

T
3
b

0
0

0
0

0
0

0
0

2
0

0
2

N
S
1
-3
7
.

T
4

0
0

0
0

0
0

0
0

1
0

1
2

N
S
1
-3
8
.

T
5

0
0

0
4

5
0

0
0

0
0

0
9

E. J. Vainio and others 109

https://doi.org/10.1017/S0953756204001406
Downloaded from https:/www.cambridge.org/core. Open University Library, on 21 Jan 2017 at 20:07:37, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0953756204001406
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


Table 3. Classification of PCR amplification products obtained using primer pair FR1+FF390 into different OTU groups based on DGGE. The unsplit groups are printed in bold, and subgroups

are separated by letters. The OTU groups affiliated with known reference species are indicated with letter combinations printed in italics: Pg, Phlebiopsis gigantea ; Ha, Heterobasidion annosum ;

Hp, H. parviporum ; Rb, Resinacium bicolor ; Ss, Stereum sanguinolentum ; Hc, Hypholoma capnoides.

No. of stumps

Plot treatment

P

Scots pine Norway spruce

1 yr-old (fresh) 6 yr-old (old) 1 yr-old (fresh) 6 yr-old (old)

Pretreated Untreated Control Treated Untreated Pre-treated Un-treated Control Treated Un-treated Control

(FP) (FU) (FC) (OT) (OU) (FP) (FU) (FC) (OT) (OU) (OC)

4 4 5 8 8 3 3 5 6 6 5 57

No. of samples 16 16 20 32 32 12 12 20 24 24 20 228

OTU Initial group Species

FF390-1. L1 0 0 0 0 0 0 0 0 1 0 0 1

FF390-2. L2 0 0 0 0 0 0 0 0 2 0 0 2

FF390-3. L3 0 0 0 2 0 0 0 0 0 1 3 6

FF390-4. L4 0 0 0 0 0 0 0 0 0 0 1 1

FF390-5a. L5/H0 0 0 0 0 0 0 0 0 1 5 0 6

FF390-5b. L5/not-H0 0 0 0 0 4 0 0 0 0 0 0 4

FF390-6a. H0/H0 Ha 0 0 0 2 2 1 0 0 1 2 0 8

FF390-6b. H0/not-H0 0 0 0 2 7 1 1 0 6 0 0 17

FF390-7a. H5/H0 Hp 0 0 0 0 0 2 0 0 0 2 1 5

FF390-7b. H5/not-H0 1 0 0 0 0 1 2 0 0 1 2 7

FF390-8. H7/N3 Ss 0 0 0 0 0 0 1 0 0 3 1 5

FF390-9a. G0/G0 Pg 7 9 13 0 0 2 4 4 0 4 4 47

FF390-9b. G0/not-G0 0 0 0 2 0 0 0 0 0 0 0 2

FF390-10a. G1/N6a Hc 0 0 0 4 3 0 0 0 0 3 1 11

FF390-10b. G1/not-N6a 0 0 0 1 0 0 0 1 0 0 0 2

FF390-11. G2 0 0 0 1 0 2 1 3 0 0 3 10

FF390-12. G3 0 0 0 1 0 0 0 0 0 0 0 1

FF390-13a. C0/N0 0 0 0 3 1 0 0 0 10 3 1 18

FF390-13b. C0/not-N0 0 0 0 1 0 0 2 0 0 0 0 3

FF390-14. C2 0 0 0 1 10 0 1 0 2 0 3 17

FF390-15. A0 0 0 0 0 4 0 1 0 3 0 0 8

FF390-16. A1 0 1 0 3 9 0 0 0 9 1 7 30

FF390-17. A2 0 0 0 2 0 0 0 1 0 0 1 4

FF390-18. A3 0 0 0 3 3 1 1 0 0 1 3 12

FF390-19. A4 0 0 0 3 6 0 1 2 2 0 4 18

FF390-20. A5a 2 1 0 5 7 0 1 0 4 0 0 20

FF390-21. A5b 0 0 0 0 2 0 0 0 3 0 0 5

FF390-22. A6a 0 0 0 2 5 0 0 0 0 1 0 8

FF390-23. A6b 0 0 0 0 0 0 0 2 0 0 2 4

FF390-24a. B0/N3 Rb 0 0 0 5 0 1 0 6 1 1 0 14

FF390-24b. B0/not-N3 0 0 0 1 0 0 1 0 5 1 0 8

FF390-25. B5 0 0 0 0 0 0 0 0 1 0 0 1
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DISCUSSION

Mature decay fungus communities usually develop a
mosaic structure (patch-like distribution of separate
individuals) due to antagonistic mycelial interactions
(Rayner & Boddy 1988). In this study, however, up
to nine different PCR amplification products were
observed by DGGE in a single 500 mm3 wood sample
(the average number being approximately two). This
suggests that the samples were often occupied by more
than one fungal mycelium, as the successful amplifi-
cation of DNA from wood samples probably requires
more DNA than what can be practically extracted from
single spores or single hyphal branches. Thus, it seemed
that many of the fungi had colonised relatively small
patches of wood or possibly even intermingled within
the same wood region. This kind of distribution is
characteristic to many microfungal non-decay fungi,
that may occupy small interaction zones between the
mycelia of decay fungi (Rayner & Boddy 1988). In ad-
dition, some of the bands might represent species that
are difficult to cultivate or are easily overgrown by
faster-growing species on agar plates.

The average number of bands amplified from each
sample was somewhat higher using primer pair
FR1+FF390 compared to FR1+NS1, which might
indicate a higher amplification efficacy (possibly due to
termination of the amplification product of FR1+NS1
during the PCR). However, the larger number of OTU
groups obtained using primer pair FR1+FF390 in-
dicated also a higher DGGE separation capacity for
this primer pair, which is consistent with previous
results (Vainio & Hantula 2000a). Thus, the smaller
number of bands obtained using primer pair
FR1+NS1 may be partly due to some of the amplifi-
cation products remaining undetected by DGGE due
to having identical migration rates despite minor
sequence variations. The higher DGGE separation ca-
pacity probably also explains the higher level of overall
diversity revealed using primer pair FR1+FF390. This
was indicated by the heterogeneity indices and also by
the Fisher’s exact test that usually showed higher stat-
istical differentiation between the treatments using
primer pair FR1+FF390 compared to FR1+NS1.

All the OTU combinations that could be affiliated
with a specific reference species (Stereum sanguino-
lentum, Hypholoma capnoides, Resinicium bicolor,
Phlebiopsis gigantea, Heterobasidion annosum and
H. parviporum) represented very common wood-decay
fungi. The frequent occurrence of P. gigantea within
the fresh pine stumps and the somewhat lower colon-
isation of fresh spruce stumps is consistent with pre-
vious studies (Käärik & Rennerfelt 1958, Kallio 1965,
Petäistö 1978). However, the Rotstop treatment had
not increased the overall occurrence of P. gigantea
within the next stump generation (fresh untreated
stumps within the previously treated plots).
Furthermore, P. gigantea could not be found from any
of the old spruce stumps that had been treated six yearsF
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Table 4. Occurrence of amplification products in the wood samples. Colonised samples contained at least one amplification product, but

blank samples did not produce any bands in PCR amplification.

Tree

species

Stump

age

Stump

treatment type

No. of Percentage of

colonised

samples

Average no. of

bands per sample

Samples Blank samples NS1 FF390

Spruce 1 pretreated 12 0 100.00 2.67 4.42

Spruce 1 untreated 12 3 75.00 2.67 3.58

Spruce 1 control 20 6 70.00 0.85 0.95

Spruce 6 treated 24 0 100.00 2.25 2.92

Spruce 6 untreated 24 2 91.67 1.29 1.46

Spruce 6 control 20 1 95.00 1.85 2.10

Pine 1 pretreated 16 2 87.50 1.63 2.06

Pine 1 untreated 16 4 75.00 1.13 1.19

Pine 1 control 20 6 70.00 0.85 0.75

Pine 6 treated 32 3 90.63 2.63 2.22

Pine 6 untreated 32 2 93.75 2.94 3.13

Sum 228 29

Average 86.23 1.89 2.25

Table 5. Statistical comparison of species compositions between different treatments using the Fisher’s exact test (exact P-value or Monte

Carlo estimateb of P-value). Statistically significant probabilities are printed in bold.

Host tree

Stump

age Stump treatment types compared

P-value

FR1+NS1 FR1+FF390

Pine 1 pretreated (4) – untreated (4) – control (4) 0.1916 0.1509

Pine 1 pretreated (4) – untreated(4) 0.2259 0.2194

Pine 1 pretreated (4) – control (4) 0.1133 0.0602

Pine 1 untreated (4) – control (4) 0.7653 0.9840

Pine 6 treated (8) – untreated (8) 0.0013b 0.0012b

Spruce 1 pretreated (3) – untreated (3) – control (3) 0.0033 0.0042b

Spruce 1 pretreated (3) – untreated (3) 0.2944 0.4490

Spruce 1 pretreated (3) – control (3) 0.0002 0.0000

Spruce 1 untreated (3) – control (3) 0.0025 0.0019

Spruce 6 treated (5) – untreated (5) – control (5) 0.0000b 0.0000b

Spruce 6 treated (6) – untreated (6) 0.0000 0.0000

Spruce 6 treated (5) – control (5) 0.0000 0.0000

Spruce 6 untreated (5) – control (5) 0.0015 0.0049

Table 6. Average values of Shannon-Weaver and Gini indices for the treated/pretreated, untreated and control plots and statistical

comparison between the treatments. Symbols +, – and c are used for the treated/pretreated, untreated and control plots, respectively. The

heterogeneity index value is followed by superscript symbols (+xc), which indicate treatments that did not differ statistically significantly

(P>0.05) from the current value (for example, value 1.056xc indicates that this index obtained from the pretreated plots did not differ

significantly from the untreated or control plots). The statistically significant values are also printed in bold. The stump numbers used for

the index calculations correspond to those given in Table 5.

Host

tree

Stump

age

Primer

used with

FR1

Plot treatments compared

Shannon-Weaver Gini

Treated/

pretreated (+) Untreated (x) Control (c)

Treated/

pretreated (+) Untreated (x) Control (c)

Pine 1 NS1 1.056xc 0.918+c 0.470+x 0.618xc 0.514+c 0.278+x

Pine 1 FF390 1.201x 0.976+c 0.300x 0.669x 0.531+c 0.205x

Pine 6 NS1 2.190x 2.247+ – 0.859x 0.879+ –

Pine 6 FF390 2.244x 2.305+ – 0.884x 0.888+ –

Spruce 1 NS1 1.737x 1.987+ 1.059 0.792xc 0.849+c 0.639+x

Spruce 1 FF390 2.126x 2.083+ 1.290 0.869x 0.863+ 0.722

Spruce 6 NS1 1.686xc 1.268+c 1.295+x 0.791xc 0.685+c 0.737+x

Spruce 6 FF390 1.993xc 1.408+c 1.767+x 0.851xc 0.709+c 0.814+x
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before the sample collection, although it occurred
within the untreated and control stumps. It must be
noted, that based on culturing experiments, P. gigantea
(more specifically, the Rotstop genotype) could be iso-
lated from these stumps when typical orange-brown
decay columns were selected for the analysis (Vainio
et al. 2001). Thus, the fungus occurred only sporadi-
cally within the stumps when six years had passed from
the treatment, and was therefore not detected among
the random wood samples. Within the old pine stumps,
P. gigantea had probably disappeared altogether dur-
ing the decay succession, as it was not found in any of
the samples whether treated or untreated. In contrast,
H. annosum was found both in treated and untreated
old pine and spruce stumps. Thus, the treatment had
not completely prevented the occurrence of this fungus
within the treated stumps, while H. parviporum was
found only in the untreated old spruce stumps.

Most of the largest OTU groups could not be ident-
ified as a specific species. This might be partly due to
some of the reference species remaining undetected
among the mixed samples containing more than one
amplification product. In addition, the reference col-
lection used in this study was somewhat biased towards
primary decomposer species, while most of the un-
identified common OTU groups seemed to occur more
commonly in old stumps. Thus, some of the unident-
ified groups probably represented species that are
characteristic to the later stages of stump decompo-
sition (Käärik & Rennerfelt 1958, Meredith 1960).

Based on statistical tests, the Rotstop treatment did
not appear to have caused long-lasting effects that
would have influenced diversity of new fungal infec-
tions to fresh pine and spruce stumps when six years
had passed from the treatment. On old spruce and pine
stumps the treatment appeared to have influenced
mainly the species composition of the stumps, but not
reduced their overall fungal diversity. Thus, while some
OTU groups seemed to suffer from the treatment (four
OTUs), other groups appeared to favour treated plots
over the untreated ones (seven OTUs). It therefore
seems that although Rotstop acts as a strong competi-
tor during the primary succession of the stumps, the
wood material decomposed by P. gigantea offers a
suitable substrate for certain species.

In conclusion, the analysis of fungal communities in
conifer stumps by DGGE analysis of directly amplified
SSU rDNA turned out to be a fruitful method. It may
be considered as another view (in addition to mycelial
isolations) to fungal diversity, and therefore can also be
used to complement the more traditional approach.
The only drawback we observed was the inability to
identify fungi based on BLAST search in GenBank.
This should, however, be a temporary problem as
DNA databases are developing rapidly. However, it
must be noted that SSU rDNA may not allow the
separation of all closely related species due to its con-
servative nature. As a biological conclusion, the stump
treatment did not seem to have reduced the overall

fungal diversity within the treated plots, and the usage
of Rotstop is therefore not likely to produce a highly
monomorphic stump microbiota. However, the data
analysed here was relatively small, and therefore can-
not be considered as comprehensive. Therefore possible
changes in the species composition of fungal com-
munities should be continually monitored in treated
forests, especially if large-scale stump treatments
covering several tree generations are carried out.
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