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Abstract

The behaviour of particulate matter emissions from a Ford XLD 4T, passenger 
car diesel engine through a practical exhaust system in place was investigated during 
transient conditions, namely cold start and fast acceleration. Particulate emissions 
were measured at four sampling points through the exhaust system and the changes 
in particulate total mass concentration, total number concentration, particle size 

distribution and Carbon/SOF fractions were determined for various engine operating 
conditions.

Each cold start test consisted of a step-change cold-start with fast acceleration, 

reaching one of the following target operation conditions: Idle, 1500rpm -  15kW, 
2250rpm -  15kW, 2250rpm-35kW and 3500rpm -  15kW. Two preconditioning 

procedures were designed to provide repeatable cold start tests. These consisted of a) 
Idle operation for 4 hours the day before the test, followed by overnight soak; and b)

10 minutes at high engine speed operation. Fast acceleration tests consisted of idle 

preconditioning followed by a step change to the target operation conditions.

The particulate matter changes through the exhaust system were shown to be 
dependent on the previous operational history o f the engine, idle conditions being 
effective at forming particle deposits. The amount of particulate deposited or blown 

out from the exhaust system constituted a significant fraction o f the total engine 
exhaust emissions in a significant number of cold start and acceleration tests. The 

changes in particle concentration did not occur throughout the system in the same 
fashion. The catalyst produced predominantly particle number and mass reduction 

and the second silencer was a more efficient particle collector than the first silencer. 
From the first silencer, particles were resuspended more easily and in many more 

cases.

Regarding the chemical composition, high-load conditions produced lower 
Solvent Organic Fraction (SOF) than their low load counterpart. However, the SOF 

did not change significantly through the exhaust system.

Part of this work consisted of examining the use of the Electrical Low Pressure 
Impactor (ELP1) to estimate particulate mass emissions. It was observed that the 

ELP1 tended to overestimate the number of particles in the large (>0.1 (im) size 
range. This greatly affected the conversion from total particle number concentration 

to particle mass concentration. A correction based on comparison between the 

electrical and gravimetric methods (ELPI vs. Andersen Impactors) in the common 

size range for both techniques was proposed.



iv

Transient and steady-state tailpipe emission factors, expressed as grams of 
particulate per unit of engine work in kWh, were calculated from the test results and 
used to estimate the effect o f transients on total cycle emissions in cycles with a 
different design from those followed in this work.

The ELPI proved to be useful, yet limited for particle collection on 
Transmission Electron Microscope (TEM) grids in several size ranges. TEM images 

of particles were analysed and their fractal dimension determined.



V

Acknowledgements

I would like to express my gratitude to the Department o f Fuel and Energy of 

the University of Leeds, for their support and for giving me the opportunity to do 

this PhD work.

I wish to give my most sincere thanks to Professor Gordon E. Andrews, for his 

invaluable guidance and permanent support, his ideas and encouragement. Also I 
would like to thank Dr. Andrew Clarke for his help with the particle science 

concepts.

I also would like to thank Mr. Geoff Cole for his support and for all he taught 

me during the tests. Thanks to Mr. Harry McLeod and Bob Boreham for their help 

with the engine operation and gas analysis.

I would like to thank my sponsors; the Committee of Vice-Chancellors and 

Principals of the Universities o f the United Kingdom (CVCP) and the Overseas 

Research Student (ORS) scholarship they awarded me; the University o f Leeds for 
the Tetley and Lupton Scholarship; the Department of Fuel and Energy for the 

maintenance grant; and the Corporation para el Futuro de Colombia, Colfuturo, for 

the student loan/scholarship that covered the rest o f my maintenance.

This work would have not been possible without the shared sponsorship o f the 

EPSRC and Ford Motor Co. through the Joint Research Equipment Initiative, 

EPSRC grant Grant GR/L26063. Thanks to Ford Motor Co. for donating the diesel 

test engine and to Tim Sale and Dave Gregory, who offered me their professional 
support and advise, and gave their permission to publish the papers with the results 

from this work.

Many thanks to Dr. Rick Brydson and his team at the Electron Microscopy 

team of the Department o f Materials at the University o f Leeds for their great help in 
my learning how to use the TEM and interpret the images.

Finally, I would like to thank all those who gave me their support; my family 

and my Colombian friends, who were always with me even being on the opposite 

side of the Atlantic Ocean; and all my friends in Leeds, who will be with me even 
once they will be all over the world.



VI

Contents

A bstract...................................................................................................................................... iii

Acknowledgem ents...................................................................................................................v

C ontents..................................................................................................................................... vi

F igures...................................................................................................................................... xiii

T ab les ..................................................................................................................................... xxvi

Chapter 1. Diesel particulate emissions -  A review on recent concerns,
measurement techniques and previous resu lts.................................................... 1

1.1. Objective of this work.........................................................................................4

1.2. Health and environmental impacts o f particulate m atter..............................5

1.3. The role of transport in total particulate emissions........................................8

1.4. Particulate formation in diesel engines............................................................9

1.5. Particle and aerosol characteristics................................................................ 11

1.5.1. Particle size, shape, density and fractals.......................................... 11

1.5.2. Particle size distribution...................................................................... 16

1.5.3. Mass and number concentration.........................................................23

1.5.4. Particulate chemical composition..................................................... 24

1.6. Particulate physical and chemical processes.................................................26

1.6.1. Thermodynamic properties.................................................................26

1.6.2. Nucleation............................................................................................. 28

1.6.3. Condensation.........................................................................................29

1.6.4. Evaporation........................................................................................... 30

1.6.5. Coagulation........................................................................................... 31

1.6.5.1. Thermal coagulation.............................................................. 32

1.6.5.2. Kinematic coagulation...........................................................34

1.6.6. Chemical reactions...............................................................................35

1.7. Forces acting on particles................................................................................. 36

1.7.1. Particle adhesion, detachment and bouncing...................................36

1.7.2. Gas flow and particle motion in the gas........................................... 38

1.7.3. D iffusion................................................................................................40

1.7.4. Settling velocity, aerodynamic diameter and inertial
impaction.................................................................................................40

1.7.5. Thermophoresis.....................................................................................42



1.7.6. Electrophoresis......................................................................................43

1.7.7. Transport efficiency.............................................................................43

1.7.7.1. Gravitational settling.............................................................. 44

1.7.7.2. Diffusional deposition............................................................44

1.7.7.3. Turbulent inertial deposition.................................................45

1.7.7.4. Inertial deposition at a bend..................................................45

1.7.7.5. Thermophoretic deposition................................................... 46

1.7.8. Results from previous studies on particle deposition..................... 46

1.7.9. Reentrainment o f particles in turbulent flows................................. 48

1.8. Aerosol characterisation techniques............................................................... 52

1.8.1. Total mass concentration.....................................................................52

1.8.1.1. Exhaust filtration -  gravimetric mass determination........53

1.8.1.2. Real time mass measurement: TEOM................................. 54

1.8.2. Particulate imaging...............................................................................54

1.8.2.1. Transmission Electron Microscope (TEM)........................ 55

1.8.2.2. Scanning Electron Microscope (SEM)................................ 55

1.8.3. Size distribution measurement techniques.......................................56

1.8.3.1. Andersen Impactor..................................................................56

1.8.3.2. Electrical Low Pressure Impactor (ELPI)...........................57
1.8.3.2.1. Instrument description and operation........................................... 57
1.8.3.2.2. Evaluation comparisons of the ELPI with other techniques.....61

1.8.3.3. Scanning Mobility Particle Sizer (SMPS)...........................63

1.8.4. Recommendations for Exhaust Sampling in Particulate 
Characterisation......................................................................................64

1.9. Effect O f Engine Performance And Pollutant Reduction
Technologies On Exhaust Particulate Emissions.......................................66

1.9.1. Exhaust Gas Recirculation (EG R ).................................................... 66

1.9.2. Aftertreatment.......................................................................................67

1.9.2.1. Diesel Oxidation Catalysts (DOC) and DOC with 
hydrocarbon adsorber..................................................................67

1.9.2.2. Particulate traps........................................................................68

1.9.2.3. Exhaust pipe and silencers.................................................... 69

1.9.3. Influence of Cold Start........................................................................ 70

1.9.4. Legislative driving cycles...................................................................71

1.9.4.1. ECE R49 for heavy-duty vehicles........................................ 72

1.9.4.2. ESC (European Stationary Cycle) for heavy-duty 
vehicles.......................................................................................... 73



1.9.4.3. ETC (European Transient Cycle) for heavy-duty 
vehicles.......................................................................................... 74

1.9.4.4. ECE and EUDC (Extra-Urban Driving Cycle) for
Light duty vehicles...................................................................... 76

1.9.5. Influence of Transients: acceleration and deceleration..................77

C hapter 2. Experim ental Techniques and Procedures Used in This W o rk ......80

2.1. The Low-Emission Ford 1.8L IDI Diesel Engine........................................ 80

2.1.1. Turbocharger and Intercooler............................................................. 83

2 .1.2. Exhaust Gas Recirculation (EG R ).................................................... 84

2.2. The Exhaust System.......................................................................................... 84

2.2.1. Close-Coupled Diesel Oxidation Catalyst (DOC) with 
Hydrocarbon adsorber........................................................................... 84

2.2.2. Silencers.................................................................................................85

2.3. Ultra-low Sulphur Diesel F uel........................................................................ 87

2.4. The Froude DPX Type Hydraulic Dynamometer with remote control.....87

2.5. Temperature Monitoring Along the Exhaust System...................................88

2.6. Exhaust Gas Analysis........................................................................................88

2.7. Mass Concentration Filter Determination..................................................... 90

2.8. Particle Size Distribution Measurement.........................................................91

2.8.1. SEM and TEM im aging...................................................................... 91

2.8.2. Andersen Impactor...............................................................................92

2.8.3. Electrical Low Pressure Impactor (ELPI)........................................ 93

2.8.3.1. Whole Exhaust Dilution.........................................................94

2.8.3.2. Two-Stage Minidilution.........................................................95

2.9. Particulate Analysis........................................................................................... 96

2.9.1. Thermal-Gravimetric Analysis (TGA)..............................................96

2.9.2. Pyrolisis -  Gas Chromatography.......................................................97

2.10. Tests Description..............................................................................................97

2.10.1. Preconditioning Procedures............................................................. 97

2.10.2. Cold Start Procedures........................................................................ 98

2.10.3. Fast Acceleration Procedures........................................................... 98

2.10.4. Mass Collection Procedures with Andersen Impactors and
EL PI.........................................................................................................99

2.11. Supporting results............................................................................................99

2.11.1. Theoretical penetration efficiencies through the exhaust
system.......................................................................................................99



2.11.1.1. Effect o f the time from cold start.....................................103

2.11.1.2. Effect o f the target operation conditions.........................104

2.11.2. The correction of the particle number-to-mass conversion
used in this w ork ..................................................................................107

2.11.3. Analysis of SEM and TEM images of diesel particles............. I l l

Chapter 3. Cold Start Particulate M ass Emission and Particle Size 
Distribution Changes Through a Practical Exhaust System -  
Preliminary T ests .................................................................................................. 116

3.1. Introduction.......................................................................................................116

3.2. Exhaust Temperature Changes During Cold Start.....................................116

3.2.1. Catalyst light-off temperature..........................................................117

3.2.2. Metal temperature differences and thermophoretic particle- 
deposition potential............................................................................. 117

3.3. Hydrocarbon Emissions During Cold S ta rt................................................ 118

3.3.1. Id le ........................................................................................................118

3.3.2. 1500rpm - lOkW ................................................................................ 126

3.3.3. 2250rpm - 15kW ................................................................................ 126

3.4. Filter Mass Concentration Changes Through the Exhaust System
During Cold Start...........................................................................................127

3.4.1. Particulate Concentrations at Different Positions in the
Exhaust Pipe System...........................................................................127

3.4.2. Particulate Storage and Blow-out in the Exhaust
Downstream of the Catalyst...............................................................130

3.4.3. Particulate Removal Efficiency of the Diesel Oxidation 
Catalyst with Hydrocarbon Adsorber...............................................144

3.4.3.1. Id le ...........................................................................................144

3.4.3.2. Low speed and power (lOkW )............................................145

3.4.3.3. High speed and power (15kW )...........................................145

3.5. Chemical composition by T G A .................................................................... 147

3.5.1. Chemical composition vs. particle size...........................................147

3.5.2. Cold start at Idle..................................................................................149

3.5.3. Cold start at 2250rpm -15kW .......................................................... 151

3.6. Total Number Concentration, Mass Concentration and Particle Size
Distribution Changes Through the Exhaust System During Cold
Start Using the EL PI.....................................................................................152

3.6.1. Id le ........................................................................................................154

3.6.1.1. First mass bu rst........................... ..........................................159

3.6.1.2. Peak particulate emissions by num ber.............................. 163



X

3.6.1.3. Stabilisation............................................................................166

3.6.2. 1500 rpm and 10 kW ..........................................................................169

3.6.2.1. First mass bu rst..................................................................... 173

3.6.2.2. Peak by number..................................................................... 176

3.6.2.3. Valley after peak ...................................................................180

3.6.2.4. Increase after EG R................................................................183

3.6.3. 2250 rpm and 15kW...........................................................................186

3.6.3.1. First mass burst..................................................................... 186

3.6.3.2. Peak by number..................................................................... 190

3.6.3.3. Valley after peak ...................................................................193

3.6.3.4. Increase after EG R................................................................196

3.7. Key points from this chapter..........................................................................199

3.7.1. Filter measurements...........................................................................199

3.7.2. Size distribution measurements........................................................202

Chapter 4. Cold Start Particulate Mass Emission and Particle Size
Distribution Changes Through a Practical Exhaust System -  High 
Speed and High Power T ests................................................................................. 204

4.1. Exhaust Temperature Changes During Cold Start: Catalyst light-off
temperature and aerosol - metal temperature differences...................... 204

4.2. Hydrocarbon Emissions During Cold Start.................................................. 209

4.3. Filter Mass Concentration Changes Through the Exhaust System
During Cold S tart.......................................................................................... 210

4.3.1. Particulate concentration changes at different positions in the 
Exhaust System....................................................................................210

4.3.2. Particulate Storage and Blow-out in the Exhaust Section 
Downstream o f the Catalyst...............................................................212

4.3.3. Catalytic converter efficiency.......................................................... 215

4.4. Chemical composition by TGA during cold start......................................217

4.4.1. Cold start and stabilisation at 2250rpm - 35kW............................219

4.4.2. Cold start at 3500rpm - 15kW.......................................................... 219

4.5. Total Number, Mass Concentration and Particle Size Distribution
Changes Through the Exhaust System During Cold Start..................... 221

4.6. Deposition And Reentrainment Through The Exhaust System At
High Speed and Load Conditions.............................................................. 226

4.6.1. 3500rpm -  15kW, Idle preconditioning......................................... 226

4.6.1.1. First mass bu rst..................................................................... 226

4.6.1.2. Peak by number..................................................................... 233



4.6.1.3. Stabilisation............................................................................236

4.6.2. 3500rpm - 15kW, High-speed preconditioning............................239

4.6.2.1. First mass b u rst..................................................................... 239

4.6.2.2. Peak by number..................................................................... 246

4.6.2.3. Stabilisation............................................................................249

4.6.3. 2250rpm - 35kW, Idle preconditioning.......................................... 252

4.6.3.1. First mass burst..................................................................... 252

4.6.3.2. Peak by number.....................................................................259

4.6.3.3. Valley after peak ...................................................................262

4.6.3.4. Increase after EGR-valve opening.....................................265

4.6.4. 2250rpm - 35kW, High-speed preconditioning............................268

4.6.4.1. First mass burst..................................................................... 268

4.6.4.2. Peak by number..................................................................... 275

4.6.4.3. Valley after peak ...................................................................278

4.6.4.4. Increase after EGR-valve opening.....................................281

4.7. Comparative summary of the cold start results.......................................... 284

4.7.1. Direct deposition/blow out comparison......................................... 284

4.7.2. Analysis based on the number of deposition/blow out cases......287

4.8. Key points from this chapter..........................................................................295

4.8.1. Filter measurements...........................................................................295

4.8.2. Particle size distribution measurements......................................... 296

C hapter 5. Rapid Acceleration Particulate Mass Emission and Particle 
Size D istribution Changes Through a Practical Exhaust System in 
Place...........................................................................................................................299

5.1. Total Exhaust Outlet Measurements: Total Particulate Number and
Mass Emissions during free Accelerations from Idle............................. 299

5.1.1. Acceleration to 41 OOrpm (2 tests)................................................... 300

5.1.2. Acceleration to 3000 rpm..................................................................302

5.1.3. Acceleration to 2000rpm...................................................................307

5.2. Changes Through the Exhaust System During Fast acceleration........... 308

5.3. Exhaust Temperature Changes...................................................................... 310

5.3.1. Hydrocarbon Emissions.................................................................... 312

5.3.2. Total Number Concentration, Emission Index and Size 
Distribution Changes...........................................................................313

5.3.2.1. Acceleration from Idle to 3500rpm -  15kW.................... 313
5.3.2.1.1. Idle preconditioning scenario.......................................................319
5.3.2.1.2. Acceleration mass burst, both cycles......................................... 322

xi



5.3.2.1.3. Acceleration number peak, both cycles.....................................325
5.3.2.1.4. Stabilisation, both cycles.............................................................. 328

5.3.2.2. Acceleration from Idle to 2250rpm -  15kW .................... 333
5.3.2.2.1. Preconditioning at id le ..................................................................338
5.3.2.2.2. Acceleration mass burst (both cycles)....................................... 340
5.3.2.2.3. Acceleration number peak (both cycles)....................................345
5.3.2.2.4. Stabilisation (both cycles)............................................................ 347

5.4. Comparative analysis of the acceleration results....................................... 350

5.5. Key points from this Chapter........................................................................ 358

C hapter 6. New Exhaust T ests.....................................................................................349

6.1. First mass burst................................................................................................355

6.2. First temporary peak-number event............................................................. 357

6.3. Valley after peak..............................................................................................359

6.4. Stabilisation after increase.............................................................................361

6.5. Summary of the cold-start with the new exhaust....................................... 362

6.6. Idle steady-state with the new exhaust.........................................................365

6.7. Key points from this chapter......................................................................... 367

C hapter 7. D iscussion.................................................................................................... 367

7.1. Analytical summary o f the results............................................................... 367

7.1.1. Comparison of ELPI measurements vs. engine conditions 
throughout this w ork...........................................................................367

7.1.2. Impact of cold-start and acceleration on total emissions for 
legislative purposes.............................................................................375

7.1.3. ELPI vs. Total-Mass Filters Emission Index................................ 380

7.1.4. Comparisons with results from other studies................................ 382

7.1.4.1. Particulate Mass and Number levels..................................384

7.1.4.2. Particulate resuspension.......................................................387

C hapter 8. Conclusions and final rem a rk s ...............................................................392

8.1. Conclusions.......................................................................................................392

8.2. Remarks and recommendations for future work........................................ 395

References..........................................................................................................................398

xii



Figures

Figure 1.1. Examples o f equivalent particle dimensions used in particle sizing..... 13

Figures 1.2.a) and 1.2.b). Examples o f size distribution diagrams, a) Histogram and 

b) line............................................................................................................................ 18

Figure 1.3. Typical size distribution o f a diesel exhaust aerosol (Kittelson, 1998). .21

Figure 1.4.b). Particle size distributions from diesel and petrol light-duty vehicles 

(Andersson, 2001). 50 km/h......................................................................................22

Figure 1.5. Typical chemical composition of diesel exhaust particulate matter 

(Ahamed, 1999)...........................................................................................................25

Figure 1.6.a) Schematic diagram of inertial deposition as it occurs in two impactor 

stages, b) The curves on the right (Keskinen, 1999) represents the typical 

collection efficiency values for various collection stages in an impactor. The 

particle diameter at which the collection efficiency o f a stage is 50% is the cut­

off diameter for that stage..........................................................................................42

Figure 1.7. Mechanism of striped deposition layer movement (Adhiwidjaja, 2000). 
........................................................................................................................................50

Figure 1.8. Relationship between the movement of the deposition layer and the 

collision/adhesion moments ratio.............................................................................51

Figure 1.9. Schematic representation o f a particle impacting upon an aggregate 

particle on the rough surface (Adhiwidjaja, 2000)................................................52

Figure 1.10. Schematic representation of the ELPI (Dekati®).................................... 58

Figure 1.11. Schematic representation o f the SMPS.................................................... 63

Figure 1.12. Conditions and weighting factors for the ECE R49 driving cycle....... 72

Figure 1.13. Conditions and weighting factors for the ESC.........................................73

Figure 1.14. Vehicle speed vs. time for the chassis dynamometer variant of the ETC. 
........................................................................................................................................ 74

Figure 1.15. Engine speed (upper chart) and torque (lower chart) for the engine 

dynamometer variant o f the ETC............................................................................. 75

Figure 1.16. Speed conditions vs. time for the ECE and EUDC segments o f the 
European cycle for light-duty vehicles........................ ...........................................76



xiv

Figure 1.17. Speed conditions vs. time for the alternative EUDC segment for low- 

power vehicles............................................................................................................. 77

Figure 1.18. Effect of the European Test Cycles on Particulate Emissions from a 

EURO-II Engine (Zelenka, 1998)............................................................................ 78

Figure 2.1. The Ford XLD 418T engine in the test bed................................................ 80

Figure 2.2. Power curves for the Ford XLD 418T engine. The dots represent the test 

conditions used for this work.................................................................................... 81

Figure 2.3. Test conditions for this work, as compared to the various modes o f the 

legislative driving cycles for heavy-duty engines................................................. 82

Figure 2.4. Section o f the ETC, in grey, for which the tests for this work show 

similarity (N is speed in rpm)....................................................................................83

Figure 2.5. The exhaust system as installed in the test bed.......................................... 84

Figure 2.6. Side view o f the close-coupled diesel oxidation catalytic converter as 

installed in the exhaust system..................................................................................85

Figure 2.7. Cut-open silencer 1......................................................................................... 86

Figure 2.8. Cut-open silencer 2..........................................................................................86

Figure 2.9. Thermocouples along the exhaust system...................................................89

Figure 2.10. Mass fdter in the SAE smoke measurement technique.......................... 90

Figure 2.11. Experimental set-up for mass concentration measurements..................91

Figure 2.12. Andersen impactors as located into an oven at 100°C............................ 92

Figure 2.13. The ELPI with the double-stage ejection-type dilution system.............93

Figure 2.14. Experimental set-up for particle size distribution measurement with 
ELPI and a whole exhaust dilution system.............................................................95

Figure 2.15. Experimental set-up for particle size distribution with ELPI and a 

double-stage ejection-type dilution system.............................................................96

Figure 2.16. Sections o f the exhaust system between sampling points, as used in the 
experimental results and in the deposition calculations..................................... 100

Figure 2.17. Real exhaust mass and volumetric flow vs. time, and exhaust gas 

velocity vs. time for the engine operational conditions in this work............... 102

Figure 2.18. Penetration efficiency through the system vs. particle size for various 

periods from cold start. Target conditions: 2250rpm - 35kW...........................105



XV

Figure 2.19. Penetration efficiency vs. particle size for various engine operation 
conditions after 4 minutes from cold start............................................................ 106

Figure 2.20. Comparison between mass size distributions as measured with the 

Andersen Impactors and the ELPI......................................................................... 108

Figure 2.21. Apparent Density vs. Size derived in this work, by comparison between 
the ELPI and Anderson Impactors......................................................................... 108

Figure 2.22. Mass per particle calculated with unit and apparent densities.............109

Figure 2.23. Comparison between ELPI Calculated and Gravimetric Emission Index, 

using Unit and Corrected Density.......................................................................... 109

Figure 2.24. Comparison of the number size distributions as derived from Andersen 

Impactors and ELPI measurements....................................................................... 110

Figure 2.25. Primary-particle size distributions for high and low TEM 

magnifications........................................................................................................... 112

Figure 2.26. SEM images o f particles collected on Andersen Impactor stages. The 

grey line under each image corresponds to 0.5|im..............................................113

Figure 2.27. TEM images of particles collected on ELPI stages...............................114

Figure 2.28. Particle size distributions of the agglomerates from low-resolution TEM 

pictures........................................................................................................................115

Figure 2.29. Fractal dimension determination from TEM image analysis.............. 115

Figure 3.1. Catalyst temperatures during cold start at idle, 1500rpm - lOkW and 

2250rpm - 15kW. a) First set................................................................................. 119

Figure 3.2. Exhaust gas and wall temperatures and temperature differences through 

the exhaust system, a) First silencer, first set.......................................................121

Figure 3.3. Exhaust gas and wall temperatures and temperature differences through 

the exhaust system, a) Second silencer, first set..................................................123

Figure 3.4. Hydrocarbon emissions during cold start measured downstream of the 

catalyst........................................................................................................................ 125

Figure 3.5. Emission Index during cold start through the exhaust system, a) First set. 

......................................................................................................................................128

Figure 3.6. Emission rate during cold start through the exhaust system, a) First set. 

......................................................................................................................................131

Figure 3.7. Mass loss in the exhaust system section downstream of the catalyst 

during cold start at idle, a) Emission Index.......................................................... 134



XVI

Figure 3.8. Mass loss in the exhaust system section downstream o f the catalyst 

during cold start at 1500rpm -  lOkW. a) Emission Index................................. 136

Figure 3.9. Mass loss in the exhaust system section downstream of the catalyst 

during cold start at 2250rpm -  15kW. a) Emission Index................................. 138

Figure 3.10. Particulate blow-out from the exhaust system section downstream of the 
catalyst during cold start as a percentage of the tailpipe emissions, a) First set. 
......................................................................................................................................140

Figure 3.11. Catalyst particle removal efficiency during cold start at various

conditions................................................................................................................... 146

Figure 3.12. Exhaust particulate carbon content vs. particle size and location in the 

exhaust. 2250rpm - 15kW....................................................................................... 148

Figure 3.13. Particulate Carbon Emission Index size distribution at 2250rpm - 

15kW...........................................................................................................................149

Figure 3.14. TGA particulate carbon content during cold start at idle conditions.. 150

Figure 3.15. TGA particulate carbon content during cold start at 2250rpm - 15kW. 
......................................................................................................................................151

Figure 3.16. Total number and mass concentrations through the exhaust system 

against time during cold start at Idle, a) Concentrations at sampling points.. 155

Figure 3.17. Total number and mass concentrations for the main events during cold 
start at Idle against the position in the exhaust.................................................... 158

Figure 3.18. Particle size distributions for the first mass burst at various points 

through the exhaust system (Idle).......................................................................... 160

Figure 3.19. Particle blow-out through three sections o f the exhaust system, for 
different size ranges, during the first mass burst event o f the cold start (Idle). 
...................................................................................................................................... 161

Figure 3.20. Particle size distributions for the peak number at various points through 
the exhaust system (Idle)......................................................................................... 164

Figure 3.21. Particle blow-out through three sections o f the exhaust system, for 

different size ranges, during the peak number event of the cold start (Idle)... 165

Figure 3.22. Particle size distributions for the stabilisation event at various points 

through the exhaust system (Idle)....................................................... .................. 167

Figure 3.23. Particle blow-out through three sections o f the exhaust system, for 
different size ranges, during the stabilisation event o f the cold start (Idle).... 168



XVII

Figure 3.24. Total number and mass concentrations through the exhaust system 

against time during cold start at 1500rpm -  lOkW. a) Concentrations........... 170

Figure 3.25. Total number and mass concentrations for the main events during cold 

start at 1500rpm -  lOkW against the position in the exhaust............................172

Figure 3.26. Particle size distributions for the first mass burst at various points 
through the exhaust system (1500rpm -  lOkW)..................................................174

Figure 3.27. Particle blow-out through three sections o f the exhaust system, for 

different size ranges, during the first mass burst event o f the cold start 

(1500rpm-  lOkW)....................................................................................................175

Figure 3.28. Particle size distributions for the peak number at various points through 

the exhaust system (1500rpm -  lOkW).................................................................178

Figure 3.29. Particle blow-out through three sections o f the exhaust system, for 

different size ranges, during the peak number event o f the cold start (1500rpm -  

lOkW)..........................................................................................................................179

Figure 3.30. Particle size distributions for the valley-after-peak event at various 
points through the exhaust system (1500rpm -  1 OkW)......................................181

Figure 3.31. Particle blow-out through three sections of the exhaust system, for 

different size ranges, during the valley-after-peak event o f the cold start 

(1500rpm -  1 OkW)....................................................................................................182

Figure 3.32. Particle size distributions for the increase-after-EGR event at various 
points through the exhaust system (1500rpm -  lOkW)......................................184

Figure 3.33. Particle blow-out through three sections of the exhaust system, for 

different size ranges, during the increase-after-EGR event o f the cold start 
(1500rpm -  lOkW)....................................................................................................185

Figure 3.34. Total number and mass concentrations through the exhaust system 

against time during cold start at 2250rpm -  15kW. a) Concentrations........... 187

Figure 3.35. Total number and mass concentrations for the main events during cold 

start at 2250rpm -  15kW against the position in the exhaust............................189

Figure 3.36. Particle size distributions for the first mass burst at various points 

through the exhaust system (2250rpm -  15kW)..................................................191

Figure 3.37. Particle blow-out through three sections of the exhaust system, for 

different size ranges, during the first mass burst event of the cold start 
(2250rpm -  15kW)....................................................................................................192



xviii

Figure 3.38. Particle size distributions for the peak number at various points through 

the exhaust system (2250rpm -  15kW).................................................................194

Figure 3.39. Particle blow-out through three sections of the exhaust system, for 

different size ranges, during the peak number event of the cold start (2250rpm -  
15kW)..........................................................................................................................195

Figure 3.40. Particle size distributions for the valley-after-peak event at various 

points through the exhaust system (2250rpm -  15kW)......................................197

Figure 3.41. Particle blow-out through three sections o f the exhaust system, for 

different size ranges, during the valley-after-peak event of the cold start 

(2250rpm - 15kW)....................................................................................................198

Figure 3.42. Particle size distributions for the increase-after-EGR event at various 

points through the exhaust system (2250rpm -  15kW)......................................200

Figure 3.43. Particle blow-out through three sections of the exhaust system, for 

different size ranges, during the increase-after-EGR event o f the cold start 

(2250rpm -  15kW)................................................................................................... 201

Figure 4.1. Catalyst temperatures during cold start at various operation conditions, a) 

2250rpm - 35kW....................................................................................................... 205

Figure 4.2. Exhaust gas and wall temperatures and temperature differences through 
the exhaust system, a) 2250rpm - 15kW...............................................................207

Figure 4.3. Hydrocarbon emissions during cold start measured downstream of the 
catalyst.........................................................................................................................209

Figure 4.4. Emission Index during cold start through the exhaust system after Idle 
preconditioning..........................................................................................................210

Figure 4.5. Emission Index during cold start through the exhaust system after high­

speed preconditioning...............................................................................................211

Figure 4.6. Particulate mass blow-out loss through the section downstream of the 

catalyst at the high load and high-speed conditions, with idle and high-speed 

preconditioning..........................................................................................................213

Figure 4.7. Particulate mass blow-out loss through the section downstream of the 

catalyst at the high load and high-speed conditions, with idle and high-speed 

preconditioning..........................................................................................................216

Figure 4.8. Catalyst efficiency during cold start at various operation conditions... 218

Figure 4.9. TGA particulate carbon content during cold start at 2250rpm - 35kW.220



xix

Figure 4.10. TGA particulate carbon content during cold start at 3500rpm - 15kW.
......................................................................................................................................221

Figure 4.11. EGR valve opening during cold start at high-speed and high-load 

conditions................................................................................................................... 222

Figure 4.12. Total number concentration upstream and downstream of the catalyst 
during cold start at various conditions, b) Second Silencer..............................224

Figure 4.13. Total number and mass concentrations vs. time during cold start at 

high-speed conditions after Idle preconditioning at various points through the 

exhaust system, c) Uncorrected Emission Index................................................. 229

Figure 4.14. Total number and mass concentrations vs. position in the exhaust 

system for the main events of the cold start at high-speed condition after Idle 

preconditioning..........................................................................................................230

Figure 4.15. Particle size distribution during the first mass-burst event o f the cold 

start at 3500rpm -  15kW after Idle preconditioning...........................................231

Figure 4.16. Particulate blow-out in various size ranges during the first mass-burst 
event of the cold start at 3500rpm -  15kW after Idle preconditioning............232

Figure 4.17. Particle size distribution during the peak-number event o f the cold start 

at 3500rpm - 15kW after Idle preconditioning................................................... 234

Figure 4.18. Particulate blow-out for various size ranges during the peak-number 

event of the cold start at 3500rpm -  15kW after Idle preconditioning............235

Figure 4.19. Particle size distribution during the stabilisation o f the cold start at 

3500rpm -  15kW after Idle preconditioning........................................................237

Figure 4.20. Particulate blow-out for various size ranges during the stabilisation 

event of the cold start at 3500rpm -  15kW after Idle preconditioning............238

Figure 4.21. Total number and mass concentrations vs. time during cold start at 
high-speed conditions after high-speed preconditioning, at various exhaust 

points, c) Uncorrected Emission Index................................................................. 242

Figure 4.22. Total number and mass concentrations vs. location in the exhaust for 

various events during cold start at high-speed conditions after high-speed 

preconditioning..........................................................................................................243

Figure 4.23. Particle size distribution during the first mass-burst event o f the cold 
start at 3500rpm -  15kW after high-speed preconditioning.............................. 244

Figure 4.24. Particulate blow-out for various size ranges during the first mass-burst 
event of the cold start at 3500rpm -  15kW after high-speed preconditioning.245



XX

Figure 4.25. Particle size distribution during the peak-number event of the cold start 

at 3500rpm -  15kW after high-speed preconditioning.......................................247

Figure 4.26. Particulate blow-out for various size ranges during the peak-number 

event of the cold start at 3500rpm -  15kW after high-speed preconditioning.248

Figure 4.27. Particle size distribution during the first mass-burst event o f the cold 
start at 3500rpm -  15kW after high-speed preconditioning.............................. 250

Figure 4.28. Particulate blow-out for various size ranges during the stabilisation 

event of the cold start at 3500rpm -  15kW after high-speed preconditioning.251

Figure 4.29. Total number and mass concentrations vs. time during cold start at 

high-load conditions after Idle preconditioning at various exhaust points, c) 

Uncorrected Emission Index...................................................................................255

Figure 4.30. Total number and mass concentrations for the main events o f the cold 
start at high-load conditions after Idle preconditioning vs. location in the 

exhaust system...........................................................................................................256

Figure 4.31. Particle size distribution during the first mass-burst event o f the cold 

start at 2250rpm -  35kW after Idle preconditioning...........................................257

Figure 4.32. Particulate blow-out for various size ranges during the first-mass-burst 

event of the cold start at 2250rpm - 35kW after Idle preconditioning.............258

Figure 4.33. Particle size distribution during the peak-number event o f the cold start 

at 2250rpm -  35kW after Idle preconditioning....................................................260

Figure 4.34. Particulate blow-out for various size ranges during the peak-number 

event of the cold start at 2250rpm - 35kW after Idle preconditioning.............261

Figure 4.35. Particle size distribution during the valley-after-peak event o f the cold 

start at 2250rpm -  35kW after Idle preconditioning...........................................263

Figure 4.36. Particulate blow-out for various size ranges during the valley-after-peak 

event o f the cold start at 2250rpm - 35kW after Idle preconditioning.............264

Figure 4.37. Particle size distribution during the increase-after-EGR event o f the 
cold start at 2250rpm -  35kW after Idle preconditioning..................................266

Figure 4.38. Particulate blow-out for various size ranges during the increase-after- 

EGR event of the cold start at 2250rpm - 35k W after Idle preconditioning... 267

Figure 4.39. Total number and mass concentrations vs. time during cold start at 

high-load conditions after high-speed preconditioning at various points o f the 

exhaust system, c) Uncorrected Emission Index.................................................271



XXI

Figure 4.40. Total number and mass concentrations for the main events o f the cold 
start at 2250rpm - 35kW after high-speed preconditioning vs. location in the 

exhaust........................................................................................................................ 272

Figure 4.41. Particle size distribution during the first mass-burst event o f the cold 

start at 2250rpm -  35kW after high-speed preconditioning.............................. 273

Figure 4.42. Particulate blow-out for various size ranges during the first-mass-burst 
event of the cold start at 2250rpm - 35kW after high-speed preconditioning. 274

Figure 4.43. Particle size distribution during the peak-number event o f the cold start 

at 2250rpm -  35kW after high-speed preconditioning.......................................276

Figure 4.44. Particulate blow-out for various size ranges during the peak-number 

event of the cold start at 2250rpm - 35kW after high-speed preconditioning. 277

Figure 4.45. Particle size distribution during the valley-after-peak event o f the cold 

start at 2250rpm -  35kW after high-speed preconditioning..............................279

Figure 4.46. Particulate blow-out for various size ranges during the valley-after-peak 
event of the cold start at 2250rpm - 35kW after high-speed preconditioning. 280

Figure 4.47. Particle size distribution during the increase-after-EGR event of the 

cold start at 2250rpm -  35kW after high-speed preconditioning..................... 282

Figure 4.48. Particulate blow-out for various size ranges during the increase-after- 
EGR event o f the cold start at 2250rpm - 35kW after high-speed 

preconditioning..........................................................................................................283

Figure 4.49. Summary o f the particulate blow-out during cold start for all the engine 
operation conditions studied, expressed as number concentration and Emission 

Index blow out vs. time, a) Catalyst...................................................................... 285

Figure 4.50. Contribution of the engine conditions to the total of increase and 

decrease in particle number during cold-start tests............................................. 292

Figure 4.51. Contribution of transient events to the total o f blow-out and deposition 

cases during cold-start tests.....................................................................................293

Figure 4.52. Contribution of exhaust devices to the total o f blow-out and deposition 

cases during cold-start tests.....................................................................................294

Figure 5.1. Total particle number concentration during acceleration tests from idle to 

4100rpm using the ELPI with total-exhaust dilution..........................................301

Figure 5.2. Particle size distribution during the first acceleration test from idle to 

4100rpm using the ELPI with total-exhaust dilution..........................................303



XXII

Figure 5.3. Particle size distribution during the second acceleration test from idle to 

4100rpm using the ELPI with total-exhaust dilution..........................................304

Figure 5.4. Total particle number concentration during acceleration tests from idle to 

3000rpm using the ELPI with total-exhaust dilution..........................................305

Figure 5.5. Particle size distribution during the second acceleration test from idle to 
3000rpm using the ELPI with total-exhaust dilution..........................................306

Figure 5.6. Total particle number concentration during acceleration tests from idle to 

2000rpm using the ELPI with total-exhaust dilution..........................................307

Figure 5.7. Particle size distribution during the second acceleration test from idle to 

3000rpm using the ELPI with total-exhaust dilution..........................................309

Figure 5.8. Exhaust Temperature Changes and gas-metal temperature differences 

during acceleration to 3500rpm - 15kW after idle preconditioning.................311

Figure 5.9. Exhaust temperature changes and gas-metal temperature differences 
during acceleration to 2250rpm - 15kW after idle preconditioning.................311

Figure 5.10. Hydrocarbon emissions during acceleration to 3500rpm - !5kW (left) 

and 2250rpm - 15kW (right) after idle preconditioning.....................................313

Figure 5.11. Total number and mass concentrations vs. time during acceleration to 

high-speed conditions, 3500rpm -  15kW, after a 4-hour Idle preconditioning at 
various points through the exhaust system, c) Uncorrected Emission Index.. 316

Figure 5.12. Speed vs. time profiles for several acceleration cycles to 3500rpm -

15kW...........................................................................................................................317

Figure 5.13. Total number and mass concentrations vs. location in the exhaust 

system for the main events of the acceleration to high-speed conditions, 

3500rpm -  15kW, after a 4-hour Idle preconditioning.......................................318

Figure 5.14. Particle size distribution at idle................................................................ 320

Figure 5.15. Particulate blow-out for various size ranges at Idle..............................321

Figure 5.16. Particle size distribution for the mass burst event of the acceleration 
cycles, 3500rpm -  15kW.........................................................................................325

Figure 5.17. Particulate blow-out for various size ranges at the mass burst events for 

both acceleration cycles, 3500rpm -  15kW......................................................... 326

Figure 5.18. Particle size distribution for the peak number events o f the acceleration 

cycles, 3500rpm -  15kW......................................................................................... 329



XX111

Figure 5.19. Particulate blow-out for various size ranges at the peak number events 

for both acceleration cycles, 3500rpm -  15kW................................................... 330

Figure 5.20. Particle size distribution for the stabilisation events of the acceleration 

cycles, 3500rpm -  15kW......................................................................................... 332

Figure 5.21. Particulate blow-out for various size ranges at the stabilisation events 

for both acceleration cycles, 3500rpm -  15kW...................................................333

Figure 5.22. Speed vs. time profiles for several acceleration cycles to 2250rpm - 

15kW. The deceleration was not recorded........................................................... 338

Figure 5.23. Total number and mass concentrations vs. location in the exhaust 

system for the main events of the acceleration to low-speed conditions, 

2250rpm -  15kW, after a 4-hour Idle preconditioning.......................................339

Figure 5.24. Particle size distribution at idle................................................................ 341

Figure 5.25. Particulate blow-out for various size ranges at Idle..............................342

Figure 5.26. Particle size distribution for the mass burst event o f the acceleration 

cycles, 2250rpm -  15kW.........................................................................................344

Figure 5.27. Particulate blow-out for various size ranges at the mass burst events for 
both acceleration cycles, 2250rpm -  15kW......................................................... 345

Figure 5.28. Particle size distribution for the peak number events of the acceleration 

cycles, 2250rpm -  15kW......................................................................................... 348

Figure 5.29. Particulate blow-out for various size ranges at the peak number events 

for both acceleration cycles, 2250rpm -  15kW................................................... 349

Figure 5.30. Particle size distribution for the stabilisation events of the acceleration 

cycles, 2250rpm -  15kW......................................................................................... 351

Figure 5.31. Particulate blow-out for various size ranges at the stabilisation events 
for both acceleration cycles, 2250rpm -  15kW................................................... 352

Figure 5.32. Contribution of engine target conditions to the total of blow-out and 

deposition cases during acceleration tests............................................................ 354

Figure 5.33. Contribution of acceleration cycles to the total o f blow-out and 

deposition cases during acceleration tests............................................................ 355

Figure 5.34. Contribution of transient events to the total o f blow-out and deposition 

cases during acceleration tests................................................... ............................ 356

Figure 5.35. Contribution of exhaust devices to the total of blow-out and deposition 

cases during acceleration tests................................................................................ 357



xxiv

Figure 6.1. Total number concentration and Emission Index vs. time during cold 

start at 2250rpm - 15kW for various points through the brand new exhaust 
system..........................................................................................................................350

Figure 6.2. Total number concentration and Emission Index vs. position in the new 

exhaust for the main events during cold start at 2250rpm - 15kW.................. 353

Figure 6.3. Particle number and Emission Index size distributions (left), and 

particulate changes vs. particle size, expressed as blow-out (right), for various 

points through the exhaust system during the first mass-burst event o f the cold 

start at 2250rpm - 15kW.......................................................................................... 356

Figure 6.4. Particle number and Emission Index size distributions (left), and 

particulate changes vs. particle size, expressed as blow-out (right), for various 
points through the exhaust system during the peak-number event o f the cold 

start at 2250rpm - 15kW.......................................................................................... 358

Figure 6.5. Particle number and Emission Index size distributions (left), and 

particulate changes vs. particle size, expressed as blow-out (right), for various 
points through the exhaust system during the valley-after-peak event o f the cold 

start at 2250rpm - 15kW.......................................................................................... 360

Figure 6.6. Particle number and Emission Index size distributions, and particulate 

changes vs. particle size, expressed as blow-out, for various points through the 
exhaust system during the stabilisation event of the cold start at 2250rpm - 

15kW........................................................................................................................... 362

Figure 6.7. Contribution o f particle size, transient events and exhaust devices to the 

total of deposition and blow-out cases during cold start at 2250rpm - 15kW 

with the brand new exhaust, a) Fine particles...................................................... 363

Figure 6.8. Total number concentration and Emission Index through the new exhaust 

system at idle steady-state conditions....................................................................366

Figure 6.9.Particle Number and Emission Index size distributions and blow-out vs. 

size at Idle steady state conditions through the new exhaust system...............367

Figure 7.1. Average Particle Number Concentration and Emission Index from ELPI 

during the main events of cold start and acceleration tests................................370

Figure 7.2. Average Emission Index from total mass filter measurements during cold 

start tests..................................................................................................................... 371

Figure 7.3. Accumulation mode diameter (calculated as the geometric mean 
diameter in the accumulation size range) based on Number and Corrected



XXV

Emission Index Size Distributions for the main events o f cold start and 

acceleration tests........................................................................................................372

Figure 7.4. Coarse mode diameter (calculated as the geometric mean diameter in the 

coarse size range) based on Number and Emission Index Size Distributions for 

the main events o f cold start and acceleration tests............................................ 373

Figure 7.5. Example o f analytical fit o f a bimodal, lognormal size distribution to 

ELPI data, from which the accumulation and coarse modes were estimated. 374

Figure 7.6. Percentage o f corrected mass emissions during transient and steady 

segments of the tests................................................................................................. 376

Figure 7.7. Work delivered by the engine during the step-change tests...................376

Figure 7.8. Work-specific corrected mass emissions during the tests...................... 377

Figure 7.9. Change in mass emissions due to cold-start or acceleration during the test 

cycles...........................................................................................................................377

Figure 7.10. ELPI / Filter Emission Index ratio during cold start using mass-burst 

and peak-number event as references, a) Mass burst; b) Number peak.......... 381

Figure 7.11. ELPI / Filter Emission Index ratio during stabilisation........................382

Figure 7.12. Average particle number concentration and Emission Index vs. Average 

exhaust gas velocity, exhaust mass How and exhaust volumetric flow at steady 

state..............................................................................................................................389

Figure 7.13. Particulate blow out from the Catalyst (a) as Number concentration vs. 

various exhaust aerosol parameters........................................................................391

Figure 7.14. Particulate blow out from the First silencer (a) as Number 

concentration) vs. various exhaust aerosol parameters.............. ........................393

Figure 7.15. Particulate blow out from the Second silencer (a) as Number 
concentration vs. various exhaust aerosol parameters........................................395



XXVI

Tables

Table 1.1. Percentage o f size fractions o f particulate matter emissions from road 
transport (USEPA, 1985). Note o f  the author. The apparently low percentage of 

particulate mass observed in the petrol cars figures of the USEPA report may 

be misleading. This fraction should be near 100% as in diesel engines. 

However, no reason for this value was found in the reference..............................6

Table 1.2. Equivalent diameters used to describe particle behaviour or properties in 

an aerosol......................................................................................................................14

Table 1.3. Andersen Impactor median aerodynamic diameters...................................56

Table 1.4. ELPI Impactor Size Fractions........................................................................ 57

Table 1.5. Correction matrix for particle diffusional losses in the ELPI....................59

Table 1.6. Thermophoretic deposition losses. Influence of tailpipe modifications. 

(Kittelson, 1991)..........................................................................................................70

Table 1.7. Ratio of average Cold:Hot emissions in real urban conditions for petrol 

and diesel cars. The cars were driven over the same urban trip for both cold and 

hot conditions to make the comparison (Farrow, 1993).......................................71

Table 2.1. Ultra-low Sulphur Autodiesel (ULSD) Specification Sheet (taken from 

Bayford Thrust, Energy. Bayford & Co. Ltd..........................................................87

Table 2.2. Location of thermocouples along the exhaust system................................ 89

Table 2.3. Characteristics o f the TEM and SEM used in this work............................ 91

Table 2.4. Dimensions and characteristics of the exhaust system used in the 

deposition calculations............................................................................................. 100

Table 2.5. Average primary-particle diameters from SEM and TEM images........ 112

Table 3.1. Test Procedure for the preliminary tests..................................................... 117

Table 4.1. a) Summary o f deposition and blow-out cases for the cold-start tests, 
including the exhaust devices, three size ranges - idle and low speed conditions.
......................................................................................................................................289

Table 5.1. Comparison between the first and second acceleration cycles regarding 

the acceleration mass burst event, 3500rpm - 15kW............ ............................ 323

Table 5.2. Comparison between the first and second acceleration cycles regarding 

the peak number event........................................... ..................................................327



XXV11

Table 5.3. Comparison between the first and second acceleration cycles regarding 

the stabilisation event............................................................................................... 331

Table 5.4. Comparison between the first and second acceleration cycles regarding 

the acceleration mass burst event, 2250rpm -  15kW......................................... 343

Table 5.5. Comparison between the first and second acceleration cycles regarding 
the acceleration peak number event, 2250rpm -  15kW..................................... 347

Table 5.6. Comparison between the first and second acceleration cycles regarding 

the stabilisation event, 2250rpm -  15kW............................................................. 350

Table 5.7. Summary of deposition and blow-out cases for the acceleration tests, 

including the exhaust devices, three size ranges, target conditions and 

acceleration cycle......................................................................................................353

Table 7.1. Average Particle Number Concentration and Emission Index from ELPI 

measurements throughout this work......................................................................368

Table 7.2. Average Emission Index from total mass filter measurements in cold-start 
tests..............................................................................................................................369

Table 7.3. Summary of particle number and mass emission rates in particles/km and 

g/km in the present work......................................................................................... 383

Table 7.4. Exhaust mass and volumetric flow and exhaust gas velocity for steady 

state conditions..........................................................................................................388



Abbreviations

ACEA Association des Constructeurs Europeens d ’Automobiles

AEA Atomic Energy Authority Research Establishment (AEA 

Technology)

AFR Air/Fuel Ratio

atdc after top dead centre

BLPI Berner low-pressure impactor

BP British Petroleum Co.

btdc before top dead centre

Cl Compression ignition

CMD Count median diameter

CNG Compressed Natural Gas

CNC Condensation Nuclei Counter

CO Carbon monoxide

CO2 Carbon dioxide

COMEAP Committee on the Medical Effects o f Air Pollutants

CONCAWE The Oil Companies European Organisation for Environment, 

Health and Safety

CPC Condensation Particle Counter

CVS Constant volume sampling

DETR Department of Environment, Transport and the Regions

DI Direct injection

DOC Diesel oxidation catalyst

DPF Diesel particulate filter

DR Dilution ratio

EGR Exhaust Gas Recirculation

El Emission Index, g/kg fuel

ELPI Electrical low-pressure impactor



xxix

EPA Environmental Protection Agency

EPEFE European Programme on Engines, Fuels and Emissions

ESC European Steady-state Cycle

ETC European Transient Cycle

EUDC European Urban Driving Cycle

FID Flame Ionisation Detector

FTP Federal Test Protocol

GC Gas Chromatography

HC Hydrocarbon (s)

HGV, HDV Heavy-goods vehicles, Fleavy-duty vehicles

IC Intercooled

IDI Indirect injection

IEA International Energy Agency

LDV Light-duty vehicles

LEV Low-emission vehicles

LPG Liquefied Petroleum Gas

MGV Medium-sized goods vehicles

MOUDI Micro-orifice uniform deposit impactor

mph miles per hour

MS Mass spectrography

N/A Naturally aspirated

n 2o Nitrous oxide

NMHC Non-methane hydrocarbons

NO Nitrogen oxide

n o 2 Nitrogen dioxide

NOx Nitrogen oxides (including NO, N 0 2 and NjO)

OECD Organisation for Economic Cooperation and Development

OH Hydroxyl radical

PAC Polycyclic Aromatic Compounds



XXX

PAH Polycyclic Aromatic Hydrocarbons

PM Particulate matter

PMn Total Particulate matter finer than n size (n in (im), as in PMio

ppb parts per billion

ppm parts per million

QCM Quartz Crystal Microbalance

QUARG Quality of Urban Air Review Group

rpm revolutions per minute

SAE Society o f Automotive Engineers

SEM Scanning electro-microscope

SI Spark ignition

SMMT Society O f Motor Manufacturers And Traders

SMPS Scanning mobility particle sizer

SO2 Sulphur dioxide

SOF Solvent organic fraction

TC Turbocharged

TCIC Turbocharged -  Intercooled

TEM Transmission electro-microscope

TEOM Tappered-element microbalance

TGA Thermo-gravimetric analysis

THC Total Hydrocarbons

TWC Three-way catalyst

UHC Unburned Hydrocarbons

ULEV Ultra-low-emission vehicles

ULSD Ultra-low sulphur diesel

VOC Volatile organic compounds

WHO World Health Organisation



xxxi

Symbols and units

aggregate (as a subscript)

projected area of an aggregate (pm2, nm2)

2 2projected area of a primary particle (pm , nm ) 

average velocity in pipe 

constant in Equation 1.34. 

particle mobility (cm/s dyn)

Cunningham slip correction factor 

Threshold concentration for nucleation (pg/m3) 

drag coefficient

pipe diameter, particle diameter (pm, nm) 

aerodynamic diameter (pm, nm) 

geometric mean diameter (pm, nm) 

particle diameter, mobility diameter (pm, nm) 

fractal dimension

diffusivity o f vapour molecules (cm2/s)
2 ,

diffusivity, particle diffusion coefficient (cm /s) 

electron charge

Capture efficiency, electrical field 

Force, N

forces o f collision and adhesion, N 

friction factor

acceleration of gravity, gas (as a subscript)

Hamaker constant (2x10 19 J)

undetermined subscript, individual (e.g. N,, M,, d,, etc) 

particle deposition and resuspension fluxes (kg/m2s) 

Boltzmann constant (1.38x10 'l(’ dyn cm/K)



xxxii

auxiliary parameters in equation 1.80 

coagulation coefficient (cm3/s)

Knudsen’s number

maximum length o f an agglomerate (|im, nm), tube length (m)

molecular weight

aggregate mass (g, mg, pg)

particle mass concentration, mg/m3

primary particle mass (g, mg, pg)

work-specific particulate mass emissions during steady-state,

transient or a cycle, g/kWh.

particle number concentration, cm '3

number of particles in smallest aggregate for Equation 1.2.

number of particles in an aggregate

Avogadro’s number

penetration rates ratio, Penetration

pressure (atm), particle (as a subscript)

particle-aggregate (as a subscript)

vapour pressure over a particle (atm)

vapour, or saturation, pressure (atm)

volumetric exhaust flow, flow rate

surface average roughness (m)

surface critical roughness (m)

universal gas constant 

Reynold’s number 

radius o f gyration (pm, nm) 

relative humidity 

particle radius (pm, nm) 

saturation ratio 

Schmidt number



xxxiii

geometric standard deviation 

Sherwood number 

Stokes number 

temperature (°C, K) 

time, s

velocity (m/s, cm/s)

Poisson’s ratio

molar volume o f a liquid

molecular volume (nr1)

terminal settling velocity, m/s

root mean square distance (m, |im, nm)

work delivered by the engine during steady-state, transient or 

a cycle, kWh.

deposition layer particle concentration per unit area (kg/m2) 

electrical mobility

angles in the definition of deposition and adhesion moments, 

equation 1.79

particle shape correction factor

rate of energy dissipation

pipe bend angle, radiants; equivalence ratio

ratio o f the specific heat at constant pressure to the specific 

heat at constant volume; Dupre energy of adhesion.

viscosity of the gas, efficiency

mean free path, ^m

pipe inclination, degrees

density (kg /nr)

gas density (kg/m3)

particle density (kg/m3)

surface tension



xxxiv

geometric standard deviation



Chapter 1. 
Diesel particulate emissions -  A review on recent concerns, 

measurement techniques and previous results

Emissions from combustion sources, particularly from automotive engines, are 

responsible for a considerable fraction o f air pollution (OECD, 1988; Whitelegg, 

1993) and play a very significant role in Global Warming processes (MacLean,

1998), perhaps one of the most disquieting environmental issues of our society in the 

last decade. In this scenario, the combination of fuel and engine technology that can 
produce the lowest amount of greenhouse gases per unit o f power generated at a 

reasonable cost will be preferred over other technologies. Diesel engines are 

extremely efficient power plants and emit about 20% less greenhouse gases than 

gasoline engines (IEA, 1993), so they would be very strong candidates to become 

dominant in the market if greenhouse gas emissions were the main selection factor. 
Another factor, however, put diesel engines in disadvantage: diesel exhaust 

particulate pollution.

Diesel particulate emissions are one and even two orders of magnitude higher 
than those from gasoline engines (Ahamed, 1997; Hill, 2000), and such emissions 

are considered as a threat to public health, according to evidence from numerous 

toxicological and epidemiological studies (Walsh, 1999). Death rates and 

concentration of particles with a diameter of less than 10|am (PM 10) have shown to 

be strongly associated, with a 1% increase in the number of deaths caused by a 
10|^g/ny increment in particulate mass concentration. The highest risk is probably 

due to particles smaller than 2.5(im, PM2.5 (HEI, 1995). Current emissions 

legislation is for total particulate mass concentration, which is effectively PM 10 
legislation, as diesel and Spark Ignition (SI) size measurements show that virtually 

all particles are finer than I0|am, with an additional limit for PM2.5 in the USA 

since 1999. These legislative controls have forced car companies to achieve 

important improvements in combustion and aftertreatment technologies. Particulate 

emissions within Europe have been reduced by about 80% since 1980 and, for the 
EU-15, a 75% reduction in particulate emissions from diesel vehicles between 1990 

and 2010 has been predicted, after the implementation of the Auto-Oil I Programme 
(CONCAWE, 1999). This includes a 30% predicted growth in road transport, from 

which diesel passenger cars count for a steadily increasing fraction since 1980 in 

Europe and a steady fraction in Japan and the USA (Walsh, 1999).
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Recently different researchers have shown evidence that particle size 
distribution, particle number, particle surface area and particle composition are 

potentially more critical factors than particulate mass, regarding their interaction 

with lung or alveoli cells (Seaton 1985, Oberdorster 1994). It is not clear that 
legislation to mass concentration also controls the number o f fine particles. This 

prompts a debate on which o f those factors is most important to be regulated and 

how the new decisions will affect the emission measurement standards (ETH, 2000). 

Also, for many researchers, current knowledge on measuring diesel particle size 

distribution is not mature enough for legislative purposes, since there are still 

uncertainties in the reproducibility and comparability of the results obtained by 

different groups and technologies. It is estimated that by August 2002 legislative 
decisions on this matter will have been made in the European Union context, where 

current limits for particulate matter emitted by new diesel passenger cars are 

0.08g/km and will be 0.05g/km in 2000 and 0.025g/km in 2005 (Walsh, 1999). This 

converts to 0.32 g/kg-fuel (Emission Index) using 79g/km fuel consumption. Over 

the 160,000km that the 2005 emissions control technology has to be validated for, 

the total mass emitted will be 4.0kg. If the engine manufacturers develop engines to 
produce 25% below the standard, as is normal to account for production variability, 

then the total mass emitted by a diesel passenger car over 160,000km will be 3.0 kg.

Legislation uses driving cycles that try to account for the particulate emissions 

at different engine operation conditions, representative o f urban and/or motorway 
driving. Some engine conditions provoke higher emission rates of particulate matter 
to the atmosphere, either by affecting the engine performance or inducing changes in 

the exhaust system. From these, cold start is, perhaps, the most critical transient state 
tested in regulated driving cycles, leading to engine particulate and gaseous 

emissions that are several times higher than steady state emissions. According to 
Hall et al. 1998, the particulate mass emissions are higher during cold start owing to 

the production o f larger particles during this period. Rapid acceleration transients in 

these tests produced higher levels of particle number at high speed. These transients 
can also produce undesirable and unpredictable emissions of visible particulate 
clouds, a situation experienced by low emission diesel car users of several 

manufacturers. The latter problem, however, is not present in legislated driving 

cycles and only occurs in real world driving.

Unpredictable visible levels o f particulate emissions have occurred after a new 

exhaust system has been in operation for typically six months to one year of average 

use. Drivers that normally only use relatively low power in city driving, with little 

high speed operation, often find that when they undertake a high speed or high 

acceleration manoeuvre, a cloud o f visible particulates are emitted (Sale, 1998). One
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situation where this often occurs is in the acceleration onto a motorway or freeway 

after relatively slow speed city-street driving over the previous days. Drivers that 
regularly have fast accelerations and sustained high speed driving as part of their 

normal driving pattern will not experience the problem as their exhausts are 
regularly being cleared o f any accumulated particles. Low speed commuting 
journeys, several short duration journeys per day, or peak time journeys in traffic 

jam  conditions are the type of real world driving that will lead to the storage of 

particulates in exhaust systems on a sustained basis.

Several manufacturers o f passenger car diesel engines have experienced this 

phenomenon o f sudden release o f particulate in low emission diesel vehicles. The 
3.0 kg to be emitted by low emission diesel engines over 160,000km are not a large 

amount of particulate and could be stored in exhaust systems or traps designed for 

this purpose. However, the problem is difficult to reproduce in the laboratory and is 

not a feature o f legislated test procedures. The observed phenomenon obviously 

involves the storage of particulates in exhaust systems, as the equivalent acceleration 

events in the EUDC part of the test cycle do not give this phenomenon. Evidence 
can be found that diesel exhaust systems contain accumulated particulate matter in 

the silencer boxes, which is observed when they are cut open for inspection.

This work investigates the changes suffered by particulate matter through a 

practical diesel passenger car exhaust system, under the critical cold start and rapid 
acceleration operation conditions. This was studied in terms o f mass concentration, 
number concentration, size distribution, chemical composition and physical 

structure, and the aim was to reproduce in the laboratory, the deposition and blow­

out phenomena that have been observed only in real driving conditions and have not 
counted in legislative driving cycles. Techniques used included the procedure of the 

Society of Automotive Engineers (SAE) for filter mass determination at 52°C, 

Andersen Impactors sampling at 100°C for mass size distribution, Electrical Low 

Pressure Impactor (ELPI) for number size distribution, Thermogravimetric Analysis 
(TGA) for chemical composition, and Scanning Electron Microscopy (SEM) and 

Transmission Electro-microscopy (TEM) for particulate structure imaging.

From the measurement experience developed in this work, the author has also 
analysed some aspects o f the particle number-to-mass conversion issue, which has 

been shown to be a difficult problem among the scientific community in this field.

The following chapters develop the investigation as follows:

Chapter 1 contains a brief literature review regarding particulate matter 

characteristics, measurement techniques and conditions to support the legislative 

process and technological approaches to particulate reduction.
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Chapter 2 describes the experimental techniques and conditions used in the 

present work.

Chapters 3 and 4 present an analysis o f the changes along the exhaust system 

during cold start, in terms of particle mass, number, size distribution and chemical 

composition.

Chapter 5 shows a similar analysis of the changes o f diesel particulates through 

the exhaust system for the rapid acceleration tests.

Chapter 6 shows support results from steady-state tests.

Chapter 7 focuses on the discussion on the results.

Chapter 8 presents the conclusions derived from the present work and 

suggestions for future work.

1.1. Objective of this work

This work investigates the changes experienced by diesel exhaust aerosol 
through a practical exhaust system during cold start and acceleration periods. This is 

to be achieved by sampling and characterising the aerosol at four points along the 

system, and then looking for key changes in some aerosol characteristics such as 

total mass and number concentration, particle size distribution and, to a certain 

extent, chemical composition and particulate morphology through image analysis. In 

the exhaust and sampling systems, the exhaust aerosol is exposed to changes in 
temperature, flow regime and direction, transport line geometry and roughness, 

among many others. Measuring its particulate mass concentration and collecting 

particles for chemical analysis involves the separation o f the particulate phase from 
the gas phase by filtration. Particle number concentration and particle size 
distribution measurement techniques may require dilution with fresh air, followed by 

the exposition to electrical and/or inertial fields. Imaging o f the particles requires the 
particulate collection on a suitable substrate and exposition to electron beams in 

electron microscopes.

As a result o f the various conditions present in the transport through the 

exhaust system, sampling lines and measurement devices, the aerosol undergoes 

numerous changes. The processes responsible for these include: particle deposition 

on the surfaces of transport lines and other devices; reentrainment and outgassing 

from them; particle coagulation to form larger agglomerates; condensation of vapour 

phase components to form new particles or cause particle growth; chemical reactions 

within the particles and on their surface, among others. Many o f these processes are 

well understood, but some of them are not, therefore creating uncertainties and
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unpredictable events such as those that originated the idea for the present work. This 

chapter aims to briefly describe the present knowledge around those processes, how 
they have been used to develop aerosol characterisation techniques and a review of 

important results emerging from the use of these techniques, after presenting an 
overview o f the health and environmental aspects o f  particulate matter, as well as 

the role o f transport in particulate emissions.

1.2. Health and environmental impacts of particulate matter

PM 10, the total mass concentration of particles smaller than 10|nm in an 

aerosol, is the parameter used for legislative control of particulate emissions and air 
quality standards and, for their aerodynamic characteristics, these particles can 

penetrate into the human respiratory system and deposit through it. Practically the 

totality o f the particle mass emitted from diesel engines is below this limit 

(Table 1.1.), which has created a number of concerns over diesel particulate 

emissions.

It has been found that atmospheric PM 10 correlate well with mortality, 

morbidity, asthma and lung function statistics (COMEAP, 1995; Hall, 1998; Pope, 
1992). A lOjig/m3 rise in PM 10 concentration can be associated to a 1% increase in 

the relative risk o f mortality from all causes in the exposed population. The same 
increase in PM 10 is accompanied by a 1.4% increase in mortality from 
cardiovascular causes and a 3.4% increase in the relative risk o f respiratory causes 
of death (Dockery, 1994). According to the US Six cities study (Dockery, 1993), the 

rise and fall in non-accidental death rates is linked to daily levels o f fine particulates 
(PM2.5) but not with other pollutants. The correlation held even at low levels.

An important fraction o f diesel combustion particles is formed by organic 

compounds that have been shown to have a carcinogenic effect. Rats exposed to 
high concentrations o f diesel exhaust unmistakably developed lung cancer, giving 

clear evidence o f carcinoginecity (Mauderly, 1994). On the other hand, 

epidemiological studies have shown that an increased risk o f lung cancer was 

detected in populations heavily exposed to diesel fumes, but this constituted limited 

evidence only (COMEAP, 1995). Reports by the World Health Organisation (WHO) 

in 1996 and the California and US EPAs in 1998 coincide in the sufficiency o f rat 
studies in demonstrating the carcinogenicity o f diesel exhaust, as well as in the lack 

o f unambiguous evidence for human epidemiology studies (HEI, 1999). Diesel 
exhaust remains classified by the International Agency for the Research on Cancer 

(IARC) as probably human carcinogenic (Harrison, 1993; HEI, 1999). It is still 

unclear if the carcinogenic characteristics o f diesel exhaust are due to carcinogenic
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volatile compounds, such as benzo(a)pyrene or benzo(a)anthracene, absorbed on the 

particles, or to the particles themselves, stripped of organic and other materials on 

the surface (Mauderly, 1994).

Particles deposit in different sections o f the respiratory system according to 

their aerodynamic behaviour, which is dependent on the particle size. Alveolar 
deposition starts becoming important below 4|im and much more significant below 

0.4|im, and the fraction o f particles around this size is called 'respirable fraction' by 

some authors (Hall, 1998). A 'high risk respirable fraction' was also defined by EPA 

for particles smaller than 2.5|am, or PM2.5, after comparing PM 10 and PM2.5; the 

EPA concluded that ambient coarse fraction particles are either less potent or a 

poorer surrogate for community effects o f air pollution than air fine fraction 

particles (Baker, 1998), and defined a PM2.5 standard of an annual average level of 

15mg/m' and a 24-hour standard o f 65m g/m \ to be applied in locations with high 
natural dust concentrations that can not meet the PM 10 standard.

<2.5pm <10pm

Petrol cars Leaded -  no catalyst 67 80

Unleaded -  no catalyst 70 90

Three-way catalyst 90 97

Diesel cars 92 100

Diesel Heavy-Goods Vehicles (HGV) 92 100

Tyre wear 39 55

Brake lining 39 98

Table 1.1. Percentage of size fractions of particulate matter emissions from road 
transport (USEPA, 1985). Note o f  the author. The apparently low percentage 
o f particulate mass observed in the petrol cars figures o f the USEPA report 
may be misleading. This fraction should be near 100% as in diesel engines. 
However, no reason for this value was found in the reference.

From the comparison between the effects o f PM 10 and PM2.5 on health, the 

importance o f studying particle size distribution in emissions from diesel engines 

becomes greater and several studies have tried to explain the mechanism o f action. It 
has been observed that the mass o f suspended particulate matter associated with 

adverse effects is very small and that particles may have a non-specific action 

(COMEAP, 1995). It has been suggested that ultrafine particles (smaller than 50 

nm), which represent a small proportion o f the mass o f PM 10 but a high proportion
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o f the number of particles, may play a role. According to Seaton, 1995, 

nanoparticles and ultrafme particles may provoke alveolar inflammation causing 

changes in blood coagulability and attacks o f acute respiratory illness in susceptible 

people. Seaton has proposed also that very fine particles may cause adverse health 
effects regardless o f their composition. Posterior examinations, however, have 

shown the opposite evidence: i.e. no short-term effects following exposure to 
carbon, silver or iron oxide ultrafme particles were observed in rats, in a study by 

Ziesenis et al. (Ziesenis, 1998).

Murphy et al. (Murphy, 1998) support this idea showing that carbonaceous 

particles have a less damaging effect on the lung epithelium than silica, and that the 

surface chemistry o f the particles is more important than the size. They also affirm 

that small aggregate-in-air particles may have a greater toxicity to the lung than the 

same mass (but lower total surface area) o f larger particles, due to cumulative 
effects. Oberdorster, 1994, gave evidence that ultrafme particles (50nm) may be far 

more biologically active in the lung than fine particulate (250nm) with the same 
chemical composition, and similar experience has been published by other 
researchers (Kales 1994). Donaldson et al. (Donaldson 1998) showed the importance 

o f particle size in the effects on human health overdosing rats with a relatively inert 

powder such as TiC>2 . No effect was observed when the particle size in the powder 

was 200nm, but a significant decrease in lung function occurred when the particle 

size was 50nm. From these results, it can be suggested that particle surface area or 
particle number is a more relevant parameter for assessing critical exposure levels 

than particle mass. According to Wilson, 1997, there are very different patterns of 
personal exposure to the different size fractions of particulate matter and only a few 

data, as well as some correlation given by Peters, 1997 and Tach, 1997 between lung 

function and exposure to ultrafme particles, are available on this matter.

Apart from the effects on human health, other environmental concerns over 

diesel particulate emissions have to do with the effects to the environment, the most 

important being as follows;

■ Visibility reduction. Diesel particulate emissions include particles of a 

broad size range. Among them, particles between 0.2pm and 2pm have 

the capacity to scatter light, and those particles around the size o f the 

light wavelength, 1pm, absorb it. The result of these two processes is 
visibility reduction, not proven a public concern in recent research, but 

nonetheless an issue to take into account when establishing air quality 

standards and emissions reduction strategies. Research at the



University o f Birmingham found evidence that suggests that particulate 

matter exerts a strong control on visibility (Harrison, 1996).

■ Soiling. Black smoke is the main type of particulate blamed for 

building soiling, and diesel particulate constitute a significant fraction 

o f the total black smoke emitted to the atmosphere in urban areas. 
However, the assessment o f the exact contribution o f diesel particulate 

emissions to soiling is complex, since it depends on many factors such 

as blackness per unit of smoke, particle size distribution, chemical 

nature of the particles, and surface characteristics and orientation, 

among others. Soiling from transport generates a significant amount of 

public concern, as has been indicated by research during the 1990s. 

(Ball, 1983).

1.3. The role of transport in total particulate emissions

According to the Third Report o f the Quality o f Urban Air Review Group, 

QUARG (Harrison, 1996), road transport particulate emissions, as PM 10, 

constituted 25% of the national particulate emissions in the UK in 1990. This 
fraction changed greatly with the type o f area, urban or rural, where the estimate was 

made. In Greater London, perhaps the most dramatic example, road transport 

accounted for 75% of the total particulate emissions. In this scenaiio, legislation has 

become increasingly strict, and the emissions from new vehicles must meet 
reductions by up to 80% between 2000 and 2008 with the introduction o f new 

technologies. Assuming an increase in road usage, the implementation o f stricter 

emission limits on new vehicles, and a constant contribution o f 20% by diesel 
engines to the new-vehicle market, it has been predicted that the transport 

contribution to PM 10 emissions will have been reduced by about 35% of 1990 

levels in the year 2010.

The QUARG indicated that medium- and heavy-goods vehicles (MGV and 

HGV), mainly powered by diesel engines diesel engines, constituted two thirds of 

the total road traffic emissions in 1990. As black smoke, the diesel contribution in 

the same year was 39% of London total emissions. Therefore, any reduction in 

diesel particulate emissions will affect significantly the total emissions. As an 

example, the predicted reduction by the year 2010, mentioned above, was mainly 

due to a reduction in emissions from diesel-powered MGV and HGV.

The contribution o f SI engines to the total o f particulate emissions, as black 
smoke, was 3% in the UK and 7.7% in London, in 1991 (C'hell, 1993). The scenario 

is dramatically different in the USA and other countries with a much more



9

significant use o f petrol: 67% of the total black smoke from road transport was 

emitted from petrol vehicles, mainly due to the low fraction o f diesel vehicles in the 
market. A CONCAWE study (CONCAWE, 1998) found that the gasoline engines 

emitted 40 -  85 times less particle mass compared with the diesel engines for all test 
conditions, ranging from idle to high-speed. In terms o f particle number, the 
difference between these fuels depended on the operation conditions: gasoline 

engines emitted 2000 times lower concentrations than diesel engines at urban 
speeds, but only about 3 times lower at the higher highway speed tested. This was 
supported by Rickeard et al, who showed similar number concentrations for spark 

ignition and diesel vehicles under high-speed cruise conditions: 1 x 1014 km"1 and 
2 x l0 14 km"1 for petrol and diesel, respectively, although for total cycle emissions, SI 

engines emitted much lower number concentrations (Rickeard, 1996). It is clear, 

then, that gasoline emissions will have to be considered if the particle number 

concentration becomes an important parameter in particulate emission control.

1.4. Particulate formation in diesel engines

Diesel exhaust aerosol consists of stable and unstable combustion gases and 

very unstable particles undergoing a complex series o f changes since the moment 
they are formed until a long time after they are cooled in the exhaust system and 

diluted into the atmosphere. Particles start to be formed as soon as the fuel is 
injected to the cylinder. In diesel engines, fuel is introduced into the combustion 
chamber through hole-type nozzles that make possible the formation of one or 

several finely divided sprays (Russell, 1997). The fuel leaves the nozzle and travels 

into the combustion chamber in the form of ligaments and droplets that are formed 
in a way that depends on the pressure drop across the nozzle, the density, viscosity 

and surface tension of the fuel and the density and temperature o f the air. The fuel 

droplets mix with hot, compressed air to form a near-stoichiometric mixture and, 
consequently, are evaporated and heated up to the auto-ignition temperature, 

provoking a series o f chemical reactions in which unstable hydrocarbons and 

oxygenate species are formed and ignite spontaneously. The time between the start 

o f injection and the start of the auto-ignition is known as ignition delay and lasts 

0.0002 to 0.002 seconds (0.02 to 2 milliseconds), depending on the engine speed and 

the engine piston design. Low-emission engines have ignition delays that are very 

short, of the order of 0.2 ms. The ignition delay is of major importance for the 
completion o f the combustion reactions and for the engine emissions. It is the only 

period when auto-ignition can occur, and corresponds to the period during which the 

piston travels from about 20° crank angle before top dead centre (btdc) to 40° alter
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top dead centre (atdc). This period can be as short as 2 .1ms for a passenger car at up 

to 4800 rpm.

The auto-ignition process does not occur homogeneously in the whole spray. 

The fuel in the centre of the spray is heated by combustion of the surrounding fuel, 

and due to the low concentration of oxygen in this area, it is pyrolysed in the gas as 

well as in the liquid phase. This all occurs at high pressure, which increases the rate 
o f pyrolysis. The very low oxygen concentration reacts with hydrogen atoms from 
the fuel and as a result, carbon-rich species remain in the centre o f the jet. Some 

more oxygen entrained causes hydrogen stripping from the enriched species and 

hence leaves carbon chains, which are the precursors o f the particulate (Kittelson, 
1978). Agglomeration of the formed particles takes place as a result of intimate 

contact among them, followed by their binding together, in an area o f turbulence 

generated when the jet blasts through the slower-moving air.

The size of basic soot particles (precursors or embryonic nuclei) is about 0.001 

to 0.01 pm (1 to lOnm). Then, precursors produce larger particles (between 0.01 and 

0.1pm) either by coagulation or interacting with the liquid and vapour “surface 
growth” species, basically unburned hydrocarbons (Kittelson, 1978). These may 

remain unburned due to the presence o f too-lean or too-rich-to-burn zones, 

entrapment in the holes downstream of the injection needle and areas near the 
cylinder head and piston, fuel on the wall not removed by air motion, or lubricating
oil present in the combustion chamber in significant quantities. Kazuhisa et al. 

(Kazuhisa, 1999) showed how the growth of soot particles from 0.02 to 0.1pm 

occurs between 0.3 and 0.8 milliseconds after ignition.

Oxidation of precursors of soot and growth species opposes the formation and 

growth reactions (Choi, 1995), and it takes place during diffusion burning processes 

after ignition. Nearly all the soot produced in fuel rich parts o f the spray are 

consumed while the piston descends at the start o f the power stroke due to turbulent 

mixing of the burning mass with the air above the piston crown (Russell, 1997). The 
design o f the combustion chamber (diameter, depth, profile, etc.) and its matching 

with the injection equipment are very important for keeping emissions low without a 

loss in torque and specific power.

After leaving the cylinder, the exhaust is cooled in the manifold, silencers and 

pipes. Processes o f particle deposition (i.e. gravitational, diffusional, inertial, 

thermophoretic or electrophoretic) and reentrainment through the pipes, occur as the 
particles interact with the pipe walls. Furthermore, coagulation and gas-to-particle 

conversion processes (nucleation, adsorption/condensation o f H 2SO 4 - HiO vapour 

and soluble organic components) take place as the interaction among particles
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(Abdul-Khalek, 1999). All these processes produce particles whose size is in the 
range 0.1 to l(im, with a changing size distribution as they occur along the exhaust 

system. A comprehensive explanation of the effects of the exhaust system on 

particulate is still to be done, although many papers have been published about the 
effect o f aftertreatment devices (oxidation catalytic converters or particulate traps) 

on the particles.

The cooled exhaust aerosol finally leaves the exhaust system and undergoes 

further cooling and dilution in the atmosphere, where nucleation, absorption and 
adsorption processes take place, affecting also the particle size distribution in 

different ways. A dilution ratio o f 1000 may be reached in 1 to 2 seconds, a period 

long enough to change the total particle number concentration by a factor of 100 or 
higher due to nucleation process only. More than 90% of the particle number formed 

are in the nanoparticles range (smaller than 50 nm), and from 5 to more than 50% of 
the particle mass may form as nanoparticles and adsorbed material, as it has been 

confirmed in dilution experiments (Abdul-Khalek, 1999).

1.5. Particle and aerosol characteristics

As a result o f the processes briefly described above, diesel exhaust aerosols 

exhibit an extremely wide range of particle sizes, shapes, densities, concentrations, 

chemical composition, etc. According to their individual characteristics, particles 

react in different ways to various forces applied over the aerosol, which can be used 
to allow their classification and characterisation. This, however, also contributes to 

the very high sensitivity shown by the aerosol to sampling and measuring 

conditions, transport, changes in temperature, dilution, etc.

This section describes particle and aerosol characteristics and properties that 

determine the aerosol behaviour in the exhaust system o f a diesel engine. The object 

o f this study is to examine particle mass and size distribution changes in a practical 

exhaust system.

1.5.1. Particle size, shape, density and fractals

Particle size is the main characteristic that determines the behaviour of the 
particle in an aerosol. Given the wide range of particle sizes in diesel exhaust 

aerosols, from a few nanometers to 10|im or even larger, their behaviour is governed 

by different physical laws. Nanoparticles, for example, respond primarily to 

Brownian motion, whereas large particles are governed by inertial and gravitational 
forces (Willeke et al., 1993).
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Diesel exhaust particles also exhibit a varied range o f shapes, from spherical to 
very long, branched particle agglomerates. With this diversity in particle shape, each 

particle would need a set of parameters to characterise its size. However, it is 

preferred to establish an equivalent diameter or equivalent area. Some examples are 
shown in Figure 1.1. The definitions o f these dimensions are related to the visual 
appearance o f individual particles, so they are relevant when using powerful optical 

techniques like SEM and TEM, which will be described later.

The definition o f particle size has gone beyond the optical appearance of the 
particles. Based on the differential behaviour o f the particles under various forces, 

diffusion, aerodynamic, electrical and optical equivalent diameters have been 
defined, each representing a measurable index o f the particle. The aerodynamic 

diameter, da, for example, is defined as

where Cc(dp) and Cc(da) are the Cunningham slip correction factors when the 
particle size is represented by the mobility and aerodynamic diameters, dp and da, 

respectively; pp is the particle effective density and pp, the particle aerodynamic

the particle diameter that accounts for the discrete character of the aerosol, in 

contrast with a continuous fluid.

Likewise, particle equivalent diameters have been defined based on particle 
properties, like the projected area and the volume-to-surface ratio diameters. The 

bases for the definitions are shown in Table 1.2. Here, the particle shape is important 

in determining the particle behaviour. For example, in the case o f long diesel particle 
agglomerates, the surface area per unit mass or volume and hence the charging 

characteristics o f  the particle are affected, which would determine the particle 

behaviour under electrical forces. Also, the large voids o f the volume enclosed by 
the particles change the effective density o f the agglomerate (the total volume, 

including voids, is taken into account), and this affects the particle behaviour under 

forces that are proportional to the particle mass. In these cases, it is sometimes 

convenient to define a mass-equivalent diameter, which does not take into account 
the voids, or an envelope-equivalent diameter, which includes the voids. Several of 

the equivalent diameters mentioned in this section will be used throughout this 
work.

(Equation 1.1.)

density, normally equal to 1 kg/m3. The Cunningham slip factor is the function of
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Projected maximum length

Projected area equivalent diameter

Figure 1.1. Examples o f equivalent particle dimensions used in particle sizing.

Long branched diesel exhaust particles can be described as fractal-like 
aggregates, and their density and mass can be calculated from this description. The 

fractal definition takes into account the complexities introduced by the shape ot the 
aggregates when calculating their perimeter, surface area or mass. The fractal 
dimension, Df, is the key parameter in the characterisation of the aggregates (Brasil,

1999). It gives the information about how compact or open, branched, etc, an 

aggregate is. A Df = 3.0, for example, would represent a perfectly compact, spherical 

aggregate. Diesel particles have been found to show Dr values between 1.8 and 2.7, 

indicating long branched aggregates as well as more compact ones, respectively.

Defined equivalent diameter Particle behaviour / property

Diffusion diameter Brownian motion

Aerodynamic diameter Gravity, Inertial field

Electrical mobility diameter Electrically-induced motion

Optical diameter Light scattering

Projected area diameter Particle surface
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Sauter mean diameter Particle volume-to-surface ratio

Mass diameter Long aggregates, excluding internal voids

Envelope diameter Long aggregates, including internal voids

Table 1.2. Equivalent diameters used to describe particle behaviour or properties in 
an aerosol.

By assuming that primary particles are spherical and having an experimental 

indicator o f their density, the mass of an aggregate was defined by Gorbunov et al. 

(Gorbunov, 1999) as:

where Rg is the radius of gyration of the agglomerate formed by primary particles of 

radius Rp; mp is the mass of a primary particle; Dt is the fractal dimension of the 

agglomerate; and N0 is the average number o f primary particles in the smallest 

aggregate for which the expression is valid. There are some problems with this 

equation, however, because it is not valid when the number o f particles equals N„, as 
suggested by Clarke (Clarke, 2001). Gorbunov (Gorbunov, 1999), based on 

measurements o f the changes in SMPS number distributions of a 1.8L turbo diesel 
exhaust aerosol collected in a Teflon bag, and following an integrating method, 

found that during the first 80 minutes o f age of the aerosol, the average values of the 
parameters were: I)t = 1.92 ± 0.8, N0= 2.5 ± 0.6, when accepting the density of a 

12.5nm radius primary particle to be 1.50g/cm\ as suggested by Weingartner et al 

(Weingartner, 1997).

The shape of a particle carries information about the formation and history o f 

the aggregate: primary nanometric spherules, which diffuse very rapidly, coagulate 

into more or less branched chains, and these chains intercept one another to form 

larger clusters. The aggregation depends on the formation and flow conditions, and 

can be described by different models, such as ballistic, diffusion-limited, particle-to- 
cluster and cluster-to-cluster aggregation. One o f these may be more significant than 
the others at different growth stages and various engine operation conditions. The 

first particles agglomerate ballistically, particle to particle and particle to cluster, 

producing compact aggregates, with high fractal dimensions. As the aerosol cools 

down and the aggregate size increases, for example through the exhaust manifold 

and exhaust pipe, diffusion-limited aggregation becomes more important and the 
fractal dimension o f the agglomerate becomes lower. At high load conditions,

(Equation 1.2.)
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cluster-cluster aggregation occurs faster, and, as a result, the aggregates have a very 

low fractal dimension (Skillas, 1998; Brasil, 2001).

Most of the studies to find the fractal dimension of soot aggregates have 

involved the analysis of structural parameters in two-dimensional, projected images 

o f particles produced by TEM, therefore requiring the establishment o f a 

relationship with three-dimensional properties such as the number o f primary 
particles in the aggregate, the radius o f gyration, the aggregate surface, the fractal 

dimension and the fractal pre-factors, whose definitions are not included in this 

thesis, but can be found elsewhere (Friedlander, 1993 and 2000; Nyeki, 1994; Brasil, 

1999; Skillas, 1999; Gorbunov, 1999; Kostoglow, 2000). Brasil et al. (Brasil, 1999) 

have compiled the considerations and corrections needed to do this, and defined a 

recipe to characterise both structural and fractal properties from projected images as 
a result. From basic measurements such as the maximum length o f the agglomerates, 

projected areas o f agglomerates and primary particles, and the mean diameter of the 

primary particles, the following procedure is followed:

* Calculate the number o f particles per agglomerate,

N.. =
< A ra

AP\  H y

(Equation 1.3.)

where Aa is the projected area of the agglomerate and Ap, the projected area o f a 

primary particle; a  can be reasonably assumed to be equal to 1.09 for diesel engines 

(Brasil, 1999; Lee, 2000).

■ Calculate the radius o f gyration for each agglomerate,

R = — , (Equation 1.4.)
g 3

where L is the maximum length o f the agglomerate. This relationship is generally 

valid for diesel engines, for which Brasil et al (Brasil, 1999) found that 

(L/Rg)=1.50±0.05.

■ For each agglomerate, calculate the relationship 

Rg/dp (Equation 1.5.)

where dp is the average diameter o f the primary particles.

■ Finally, plot N vs. (Rg/dp) in logarithmic scale and adjust the best 
power function fit, the slope of which is the fractal dimension, Dt.
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1.5.2. Particle  size d istribution

Diesel exhaust, as many other natural aerosols, is polydisperse, i.e. it is 

composed by particles of very different sizes. To describe this size diversity, it is 
necessary to use a particle size distribution function, perhaps the most important of 

the physical characteristics o f this kind of aerosols (Friedlander, 1977).

The particle size distribution is, essentially, a statistical concept. It is formed 
by contiguous size intervals, each containing information about a certain particle 

parameter, namely number, mass surface area, volume, chemical composition, etc. 

Therefore, it is possible to have a number-weighed particle size distribution, a mass- 

weighed particle size distribution, and so forth. The particle size will be given by the 
measurement technique, as an equivalent diameter such as those already mentioned: 

aerodynamic diameter, electrical mobility diameter, etc. The information can be 

shown in different ways: a tabulated set of data, a histogram, a continuous frequency 
curve, a cumulative curve or a mathematical continuous function, as illustrated with 

an example in Figure 1.2. When plotting these graphs, it is usual to normalise the 

data by dividing the measured parameter (N, number concentration; M, mass 

concentration; etc) of a defined interval i by the size difference in that interval, for 
AN. AN.

example — — o r -------- '■—  if the size axis is in logarithmic scale. From this point
Ad, A log10 d,

on, the logarithm will be always considered as logio, but only log will be used. For 

logc, In will be used.

In a normalised histogram, the area o f the rectangle in each size interval is 

proportional to the total number (or mass, volume, etc.) o f particles. This can be 

converted to a smooth curve by selecting a characteristic size for each size interval 
and making the area under the curve proportional to the number (or mass, volume, 

etc) of particles. This can also be converted into a cumulative distribution curve by 

adding the number (or mass) o f particles o f all the size intervals under a certain size. 

The experimental size distribution may be fitted to continuous statistical distribution 

functions, such as Gaussian, log-normal, Poisson, power-law, among other 
distributions. For detailed information about generating and representing particle 

size distributions, the readers are referred to the literature (Friedlander, 1977; Hinds, 
1982; Willeke, 1993). Here, the most important characteristics o f diesel exhaust 

aerosol size distribution are described.

Figures 1.2. and 1.3. show a typical, normalised, size distribution o f  a diesel 
exhaust aerosol, in its two main components: number-weighed and mass-(or 

volume-) weighed size distributions. Distributions are bimodal, that is, they have 

two modes or characteristic sizes where the distributions have a local maximum. The
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first, around 0.007(im to 0.02|im, is normally called nucleation mode, and the 
second, around 0.1 |im, accumulation mode. The mass distribution may show a third 
mode, around 10|im or more, called the coarse mode. The distribution around each 

mode fits very well to a log-normal distribution, which means that they show the 
well-known bell shape o f the Gaussian distribution when the size-axis scale is 

logarithmic.

This distribution can be easily represented mathematically and summarised 

with a few parameters, namely the geometric median diameter and the geometric 

standard deviation:

F(d)  =
1

-exp
1 f log d — log dg

2 '

2 \°£S
\

(Equation 1.6.)
y fln  log.vg

where d K is the geometric mean diameter and sg is the geometric standard

deviation:

T  = \ml * Y n

ZW, . ( log< / , - l og r fg ) 2

N

(Equation 1.7.) 

(Equation 1.8.)

The distributions in Figures 1.2. c) and 1.3. show the relative characteristics of 

the number and mass distributions of diesel exhaust aerosol: most of the particle 

numbers is in the nucleation mode, but they might contribute very little to the mass 

distribution. Figure 1.2. c) shows the nuclei and accumulation modes in the volume- 

weighed distribution, which is equivalent to the mass distribution. I'he 
corresponding number-weighed distribution, however, shows that the nuclei mode 

was predominant over the accumulation mode when both are plotted on a linear 

scale.

A recent study o f number and mass size distributions in emissions from 

European light-duty vehicles (Hall et al, 1998) showed that 99% o f the particles 

were below 1 |im, which corresponded to 85% of the mass.

Differences in the combustion characteristics cause differences in the particle 

size distribution o f exhaust aerosol from various sources. The distribution may then 

become a fingerprint which allows the identification o f the sources o f apportionment 

of particulate pollution in a certain region. As an example, Figure 1.4. shows the 
particle size distributions o f exhaust aerosols from several diesel and petrol vehicles
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studied in the DETR/SMMT/CONCAWE Particulate Research Programme 1998- 

2001 (Andersson, 2001). The highest number concentrations were found in exhaust 

aerosols from Conventional Diesel vehicles, compared with Direct Injection (DI) 

Gasoline, Multi-point Injection (MPI) and Liquefied Petroleum Gas (LPG) vehicles, 
as well as Trap-equipped Diesels, at idle and 50 km/h in Figures 1.4. a) and 1.4.b).

3 )  Histogram
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1.E+00 
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Dp [pm]
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Figures l.2.a) and l.2.b). Examples of size distribution diagrams, a) Histogram and 
b) line.
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Figures l.2.c) and 1.2.d). Examples of size distribution diagrams, e) Cumulative 
distribution and d) lognormal distribution fit.
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e) Volume Weighted Size Distribution
1991 Cummins L10 Mode 9 - Data from HEI Report
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Figures 1.2.e) and l .2.0- Examples o f size distribution diagrams, e) Volume- 
weighted size distribution and 1) number-weighed size distribution from 
dynamometer studies on diesel engines (Kittelson, 1998).
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Figure 1.3. Typical size distribution of a diesel exhaust aerosol (Kittelson, 1998).

Light Duty Vehicles 
Particle Number and Size at Idle

Figure 1.4.a). Particle size distributions from diesel and petrol light-duty vehicles 
(Andersson, 2001). Idle
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Light Duty Vehicles 
Particle Number and Size at 50kmlh

Figure 1.4.b). Particle size distributions from diesel and petrol light-duty vehicles 
(Andersson, 2001). 50 km/h.
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Figure l.4.c). Particle size distributions from diesel and petrol light-duty vehicles 
(Andersson, 2001). 120 km/h.

However, at 120 km/h, there was a significant increase in the particle number 

concentration for all the vehicles that previously showed low number concentrations.
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This was due to a clear increase in the number o f particles in the nucleation mode, 

nanoparticles (<50nm).

1.5.3. M ass and num ber concentration

Total mass and number concentration can be either derived from the size 

distribution described above or measured directly using a suitable technique. From 

the total size distribution, it is clear that the total mass or number can be calculated 
by adding the number at each size range. Following the nomenclature used above,

N  = E/V, (Equation 1.9.)

M = Z M f, (Equation 1.10.)

where Mi is measured directly or calculated from the particle number N,:

if the particle density is known.

If a continuous particle size distribution function is used instead, the total 

number and mass for sizes below a certain value can be calculated using the 
cumulative number and mass distribution expressions, respectively:

where the suitable definition o f the upper limit of the integral, dr, can be used for 

various purposes. For example, legislative limits have been set for several years for 
particle mass below 10|im or PM 10. New limits have been imposed in California 

legislation, for particle mass below 2.5|im, or PM2.5. Hence, having the information 
for the whole size distribution, it is possible to calculate these mass values and 
compare them with the legislated values, as long as the errors due to the differences 

in the measurement techniques are taken into account.

Since the particle density is a very difficult parameter to measure, the 
measurement o f total mass concentration and total number concentration is achieved 

separately by very different techniques. High efficiency filtration at suitable 

conditions, followed by the gravimetric determination o f the filtered mass, is the 

currently standard technique for total mass concentration, although other techniques

(Equation 1.11.)

(Equation 1.12.)

(Equation 1.13.)
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are also available. Total number concentration can be determined by optical 

counting o f the particles if they are large enough to scatter light. Ultrafme particles 
and nanoparticles can be made to grow by condensation of alcohol on their surface, 

and then counted. Other counting methods include charging the particles to a known 
charge distribution and then detecting the current generated when the particles 

impact on a conductive stage connected to an electrometer. These techniques are 

explained later in this chapter.

1.5.4. Particulate chemical composition

As a result o f the combustion process, as well as physical and chemical 

changes through the exhaust system, the chemical analysis o f a diesel exhaust 
particulate sample is a complex task. The particulate chemical composition includes 

organic and inorganic compounds, their nature and relative amount depending on the 

fuel used, the engine technology level, and the operational conditions.

Normally, the chemical analysis o f diesel particulate is carried out over a 

filtered mass of particulate, from which the total mass concentration is also 
determined, so the concentration o f each component is expressed as an average 

concentration in the sample, regardless o f the particle size distribution. However, the 

composition of individual particles may change depending on various factors such as 

the particle size and the exact moment and conditions when they are produced. 

Therefore, the size distribution o f chemical compounds and important changes in 

particulate composition with time become significant aspects to be investigated.

The composition o f diesel particulate matter has been typically expressed as 
the fractions of solid carbon, soluble organic fraction (SOF), sulphates, water and 

ash (metals, others). The SOF is formed by unburned hydrocarbons from both diesel 
fuel and lubricant oil, as well as pyrosynthesised compounds, which can be adsorbed 

over the solid phase, or condense forming particles that aggregate to solid particles. 

The extent to which these hydrocarbons become part o f the particulate matter is 

strongly affected by the sampling conditions. Therefore, these conditions must also 

be taken into account so the analysis can be comparable among different research 

groups.

A typical composition o f diesel particulate matter from a LD engine is shown 

in Figure 1.5. In it, the SOI fraction is 32% (25% from the fuel and 7% from the 

lubricant oil), but it can actually vary between 10% and 80%. This is possibly the 

most important fraction of particulate matter related to health effects, since it 

includes polyaromatic hydrocarbons (PAH), some of which have been classified as 

proven or probably carcinogenic. By definition, the SOF is the fraction soluble in an 

organic solvent. The reference method, therefore, is the Soxhlet extraction, for
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which the use o f Methylene Chloride or benzene/alcohol is recommended. This 
method is time consuming (8 hours) and requires a high degree o f analytical 

expertise, for which reason alternative methods have been developed. These include 
vacuum oven sublimation, purge vacuum oven sublimation, thermogravimetric 

analysis (TGA), pyrolisis -  gas chromatography and differential on-line gaseous 
hydrocarbon analysis at two temperatures (Abbass, 1990; Williams, 1988). These 

methods agree to a certain degree with the extraction method, the main differences 

being related to the sulphate content o f the particulate matter, which is much higher 

for vacuum sublimation and TGA than for extraction.

Apart from the determination o f total SOF in the particulate matter, the 
speciation of SOF is required when identifying individual compounds that may be 

responsible for higher health hazards. Some SOF determination methods allow 

having an extract or effluent that can be analysed with advanced separation 
techniques, such as visible, infrared and UV spectrometry; atomic adsorption and 

flame photometry; mass spectrometry and gas and liquid chromatography, among 

others, which can be combined to increase the resolution and range of the analysis. 
The extract from the Soxhlet extraction method is readily available for these 

analyses. The gaseous effluent from the vacuum sublimation and the TGA methods 

can be fed to an FID to identify the hydrocarbons constituting the SOF. Detailed 

descriptions o f the analytical techniques can be found elsewhere (Willeke, 1993; 

Harrison, 1998; Lipkea, 1979; Abbass, 1989).

SOF from  lube 
oil 
7%

Ash and others
13%

Carbon
41%

SOF from  fUe 
25%

Sulphate and 
water 
14%

■ igure 1.5. Typical chemical composition o f diesel exhaust particulate matter 
(Ahamed, 1999).

As stated above, chemical compounds might not be distributed evenly among 

particles of different sizes. If a collection technique in different size ranges allows 

having enough particulate mass to perform an accurate chemical analysis, the
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chemical composition can be also expressed as a distribution of a specific 
component as a function o f particle size. Some examples o f this are given by 

Venkataraman et al. (Venkataraman, 1994), Tanaka et al. (Tanaka, 1999) and 

Westerholm et al. (Westerholm, 1999), who have determined the size distribution of 
PAM in diesel exhaust aerosol from a passenger car engine using low pressure 

impactors. The latter, using the electrical version (ELPI) evaluated different 
collection substrates, but even in the best case, the results showed a difference by a 

factor o f 3 between PAH from conventional filter sampling and ELPI sampling. The 

technique they used was an extraction in dichloromethane and fractionation 

according to polarity, followed by gas chromatography mass spectrometry (GC- 

MS) analysis. PAH size distribution was parallel to the mass-weighed particle size 

distribution, with the largest mass being emitted at 0 .lf.un and 70% of the mass 

between 0.05pm and 0.4|a.m. The more important PAH found were phenanthrene, 2- 
methyl-phenanthrene, 1-methyl-phenanthrene, fluoranthene, pyrene, benzo(ghi)- 

fluoranthene, and chrysene/triphenylene, from a total of 24 identified components 

ranging from three-ringed to six-ringed PAH.

1.6. Particulate physical and chemical processes

Diesel exhaust aerosol is highly unstable, owing to the multiple changes 
through the exhaust pipes and the subsequent dilution in the atmosphere. Various 

physical and chemical processes occur continuously in the particulate phase, 
therefore changing the particle concentration, size distribution and chemical 

composition. The processes take place as a result of the thermodynamic properties of 

the particulate components, which cause mass transfer between the particulate and 
gas phases, in either direction, and between particles. This section starts describing 

some concepts given by the equilibrium thermodynamics, and then applied to the 
different physical and chemical processes. Afterwards, the processes o f nucleation, 
condensation, evaporation and coagulation are briefly explained.

1.6.1. Thermodynamic properties

In an ideal situation, the exhaust aerosol could be considered as a system in 

which the particulate and vapour phases are in equilibrium, that is, there is no net 

mass transfer between those phases, or between particles. In the vapour phase, the 

concentration o f each o f the exhaust gas components is expressed by its partial 

pressure. The sum of the partial pressures of all the components is the exhaust 
pressure, so the partial pressure o f a certain component divided by the exhaust 

pressure becomes the fractional concentration o f the component in the exhaust gas. 

The liquid fraction o f the particulate phase consists o f the same components o f the
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vapour phase, and each vapour component exerts such a pressure over the liquid o f 

the same component that no mass transfer occurs. This is called vapour, or 

saturation, pressure, which is a unique property o f a liquid, and is a function o f 

temperature: ps(T).

In real situations, ash particles e.g. metals play the role o f  condensation nuclei. 

However, if  the num ber o f  nuclei is not sufficient, the equilibrium condition may not 

be met, and the actual partial pressure o f  each component would differ from the 

saturation pressure as a result. Therefore, the ratio o f  the actual pressure o f  a 

component in vapour phase to its saturation pressure at the same temperature may 

become a very important param eter called the saturation ratio:

For S = l, the mixture is saturated; for S> 1, it is supersaturated; and for S<1 it is 

unsaturated. There are two particularly important saturation trajectories in diesel 

aerosols, which are i) the reversible adiabatic expansion and ii) the dilution with 

cooler air, which may lead to the formation o f  small liquid droplets or nuclei 

particles. For the adiabatic expansion, the following conditions along the trajectory 

are met:

where 1 and 2 refer to the conditions before and after the expansion, respectively, 

and y is the ratio o f  the specific heat at constant pressure to the specific heat at 

constant volume.

Particle size has an interesting effect on the vapour pressure, called the Kelvin 

effect. In a small particle or droplet, the resistance offered by neighbouring 

molecules to a molecule that has reached the sufficient energy to separate from the 

liquid phase and become part o f the vapour phase, is lower than the resistance o f  the 

liquid molecules on a plane surface. Therefore, the vapour pressure is higher on the 

particulate or drop than on the plane surface. For a drop o f  diameter d,„

(Equation 1.14.)

Pi _  T2
y /  (r-D

(Equation 1.15.)

[n  p d _  4v c t _  4g v m 

P, d  ,,RT d pR T ’
(Equation 1.16.)

where p(| is the vapour pressure over the particle, v is the molar volume o f  a liquid, 

vm is the molecular volume
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(vm= v/N av, being Nav Avogadro’s number), (Equation 1.17.)

and a  is the surface tension. From this definition, it can be inferred that there is a 

minimum droplet size for a particle to form and grow. Under this size no 

condensation will occur, unless an extremely high supersaturation exists in vapour 

phase. For the organic vapours present in diesel exhaust, particles much larger than 

0 .2 |im  are needed for condensation to occur on them in a 1% supersaturation 

(W illeke, 1993).

1.6.2. N u cleation

Nucleation is the formation o f  droplets from the vapour phase in the absence o f 

previous condensation nuclei. This requires large saturation ratios, e.g. 2 to 10, 

present only in chemical process and combustion situations. The formed droplets, 

which become condensation nuclei, are agglomerations o f  molecular clusters that 

have reached the minimum size established by the Kelvin effect mentioned above. 

M olecular clusters under that size are formed continuously, but are unstable and 

disintegrate quickly, so they do not become condensation nuclei. The 

supersaturation required for this process to occur is a property o f a certain vapour at 

a given temperature and is called the critical saturation ratio.

Various gas-to-particle conversion processes can cause nucleation. Between 

the physical process, adiabatic expansion, mixing or dilution, conductive cooling 

and radiative cooling are found. Chemical processes in the gas phase can also 

originate nucleation, when new condensable species are formed. This is the case o f 

photochem ical smog, which is the result o f  the formation o f  nitric acid, sulphuric 

acid and condensable organic compounds from NO, SO2 and organic compounds 

emitted in the automotive exhaust, reacting with tropospheric ozone, under the 

action o f  ultraviolet light.

Two theories have been used to explain nucleation from gas phase reaction: the 

classical theory, for single condensable species; and the heteromolecular theory, or 

m ulticomponent condensation. For the last case, if  two or more condensable species 

are present simultaneously and interact strongly, their condensation can occur at 

much lower vapour pressures than that for the single species.

The most important nucleation species in exhaust aerosol is sulphuric acid, in 

its system with water vapour (Friedlander, 1977). Sulphuric acid’s threshold 

concentration for its nucleation may be estimated by the following equation 

developed by Seinfeld and Pandis (Abdul-Khalek, 2000):

Ccrtl = 0.16*01™ " - 27 7 (Equation 1.18.)
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where Ccnt is the threshold concentration (in pg/m 3) o f  H2 SO 4, T is the absolute 

temperature and RH is the relative humidity. Hydrocarbons can also provoke 

significant nucleation. the potential for which is represented by the saturation ratio.

1.6.3. C o n d e n sa tio n

Once nucleation has taken place generating condensation nuclei, and/or there 

are previously formed particles larger than the Kelvin diameter, molecules from the 

vapour phase can condense on their surface making the particles grow. The growth 

rate depends on the saturation ratio and the particle size. For particles smaller than 

the mean free path o f  the gas, A., the particle growth is controlled by the kinetic 

theory o f the gases. The mean free path o f the gas, X, is the average distance 

travelled by a particle without colliding against any gas molecule. For larger 

particles, on the other hand, the particle growth depends on the molecular diffusion 

to the particle surface. The growth rate is expressed as follows, for each case:

= ,  for dp<A (Equation 1.19.)
dt p ^ l n R T / M

= 4 1 \ A f ( p - p a ) for d ^  (Equation 1.20.)
dt P„d„RT

where Dv is the diffusivity o f the vapour molecules (W illeke, 1993). The integration 

o f  the latter equation allows calculating the time required for growth from a certain 

size to another:

t = — -----— ------ — , for d|>A. (Equation 1.21.)
8 D vM ( p - p s)

Unlike nucleation, condensation on previously formed condensation nuclei or 

particles does not require high saturation ratios. Only a few-percent supersaturation 

is enough for the process to take place.

The knowledge o f condensation has lead to the development o f particle 

counting techniques such as the Condensation Nuclei Counter, CNC, as will be seen 

later. In them, the particles are exposed to a supersaturated atmosphere and then 

cooled by a rapid expansion, so they grow to a size o f about 10pm, regardless o f 

their initial size, and can be detected by a single-particle optical counter. In this way, 

it is possible to count particles that originally are below the detection limit o f  optical 

devices and could not be measured otherwise.
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In the field o f  diesel exhaust emissions, Kittelson et al. (Kittelson, 1991) and 

Khalek et al. (Khalek, 1999, 2000) have investigated experimentally and assessed 

theoretically the growth processes by nucleation and condensation during cooling 

and dilution. Their study started when investigating the high variability in particulate 

measurements during transient tests. Particle number concentration was found to be 

strongly dependent on dilution conditions such as temperature, saturation ratio, 

dilution ratio and residence time in the dilution tunnel, owing to the formation o f 

nanoparticles. Different dilution conditions can generate differences in particle 

number concentration o f  up to two orders o f magnitude, represented in a huge 

nanoparticles mode. Most o f  the nanoparticles formed during cooling and dilution o f 

the exhaust aerosol consist o f sulphuric acid and hydrocarbons, the former being the 

main nuclei precursor and the latter the main growth species by condensation. The 

use o f  low sulphur fuel can reduce significantly the number o f new nuclei although 

it does not always eliminate the nuclei mode. A very important result from their 

work is that carbonaceous particles play a significant role in the depletion o f gas- 

phase condensing species such as sulphuric acid and hydrocarbons. When carbon 

particulate emissions are reduced, as in the case o f ultra-low emission engines, the 

condensing species, sulphuric acid and hydrocarbons, stay in vapour phase and can 

nucleate as droplets o f  less than 50nm in size. These are considered, then, as 

nanoparticles, which become the most significant fraction o f the total particulate. To 

avoid the formation o f  nanoparticles, the emissions o f  the condensing species must 

be reduced.

The increased nucleation trends described by Abdul-Khalek et al. explain the 

observations by other researchers, in which increasing particle number and 

formation o f  nucleation mode occur as the exhaust aerosol passes through particulate 

traps (Mayer, 1995, 1996; Abdul-Khalek, 1996; Matter, 1999; Dementhon, 1997; 

Baumgard, 1991).

1.6.4. Evaporation

The mass transfer between the particulate and gas phases can occur in either 

direction, and the previous sections examined the gas-to-particle transfer processes 

o f nucleation and condensation. The opposite process, particle-to-gas transfer, is 

evaporation and is governed by the same laws.

As an opposite process, evaporation needs the opposite condition for 

nucleation or condensation to occur, that is, the partial pressure o f  vapour, p, is 

lower than the saturation pressure p s. The equation for the size decrease rate, or 

evaporation rate, is just a readjustment and correction o f  the equation for growth by 

condensation:



31

(Equation 1.22.)

where the subscript d refers to the particle surface and away from the surface 

(W illeke, 1993). X is the mean free path, defined in section 1.6.3. The difference 

between T„, and Td facilitates the correction for surface cooling due to rapid 

evaporation.

For small particles, the Fuchs correction factor for diffusion is introduced, 

being very important for particles smaller than 1pm (Willeke, 1993):

If the conditions are favourable, evaporation o f  droplets without insoluble 

material can occur with no limit, that is, zero diameter, in contrast to the minimum 

nuclei size for condensation to occur. The time needed for the particle to dry out is 

calculated as:

However, most particles formed by nucleation will not dry to zero diameter, 

but to the diam eter o f  the original nuclei (W illeke, 1993).

1.6.5. C oagu lation

Particulate aggregates are formed as a result o f  the predominant action o f  van 

der W aals forces at the surface o f  particles with liquid and sticky components. The 

action o f these forces was explained in a previous section. The process by which the 

aggregates interact with others to form larger aggregates is called coagulation, and it 

can occur in two ways. The first is called thermal coagulation, and is due to 

Brownian motion o f  the particles. The second is kinematic coagulation, in which the 

action o f external forces, as those described in a previous section, are responsible for 

causing the relative motion among particles. Regardless o f  the particle motion 

mechanism, the result from the coagulation process is particle growth and a decrease 

in particle num ber concentration.

d ( d p ) _ 4 D vM  ' p  P j '  ________ 2^  + d p
dt p pd pR { T „  Td y d ^  +5.33(A2 / c//,) +  3 .4 2 a J ’

for dp<A, (Equation 1.23.)

(Equation 1.24.)
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1.6.5.1. T herm al coagulation

The simplest way to study thermal coagulation is assuming that the aerosol is 

monodisperse, and then correcting the equations for polydisperse aerosols with 

known characteristics from the log-normal particle size distribution. For a 

monodisperse aerosol, the diffusion o f  one particle to another causes a decrease in 

particle number concentration. The rate at which this occurs can be expressed by:

<̂L  = - K N 2 (Equation 1.25.)
dt

where K is the coagulation coefficient and N is the particle number concentration. 

For particles larger than the mean free path o f the gas,

4kTC
K = AjuI  D  = --------- (Equation 1.26.)

3?)

where I) is the particle diffusion coefficient, k is the Boltzm ann’s constant and q is 

the viscosity o f  the gas. From this, it is inferred that the coagulation rate is very high 

at high number concentrations and slow at low number concentrations. For particles 

with Cc= l, the coagulation coefficient would be independent o f particle size. 

Considering that K is constant, as it is in the extent o f particle size increase normally 

observed, the integration o f  the Equation 1.26. with the initial condition N N0 when 

t="0 gives the change in number concentration in a defined period t, which can be 

calculated as:

N
N(t)  = --------—  (Equation 1.27.)

1 + N„Kt

where the subscript 0 represents the initial conditions. If spherical particles were 

considered, the final particle size in the period t would be given by:

d(t)  -  J 0(l + N 0Kt) 'n  (Equation 1.28.)

The equations are correct for liquid droplets, since they are derived for 

perfectly spherical particles. Diesel particles are aggregates o f  unit solid particles 

slightly different from spheres. The equations become approximately valid for them 

as long as they form compact clusters, but this is not usually the case, so a correction 

for aggregate shape must be included, and the use o f the fractal dimension becomes 

likely.

The previous considerations for monodisperse aerosols can be applied to 

polydisperse aerosols such as diesel exhaust, if some adjustments are applied. In
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polydisperse aerosols, the diffusion o f  small particles to others with a larger size, 

and therefore a larger surface area, is enhanced in comparison to diffusion o f  small 

particles to others o f  the same size. Therefore, the coagulation rate can be reasonably 

expected to increase in a polydisperse aerosol with respect to the monodisperse 

aerosol. If  the former has a log-normal particle number size distribution, then its size 

can be represented by the geometric median diam eter (GMD) and the geometric 

standard deviation o g. Using these parameters, the diffusion coefficient for the 

particles in the polydisperse aerosol can be calculated as:

K  = U T
i n

i ln2<r„ ' 2.49A  V  0 5In"’ ci 2.5ln: <J \1 - h e  * + ----------------  l e  '  +  e
GMD /

(Equation 1.29.)

and replace K in the equation for monodisperse aerosols. It is assumed that o g 

remains constant, which is reasonable for moderate particle size changes. If large 

changes occur, the growth analysis can be made in several smaller size intervals 

where the assumption is acceptable, a value o f K being calculated for each interval 

(W illeke, l ()93). Then the change in the number concentration o f  particles in a 

certain size c/„ N,i„ with time, in an aerosol with the size ranges d |, d2, d j... d,„ can 

be expressed as:

JN i I It! I
■ (EO” 110" I J 0 ->

4  J,=J, z </,=«/,

where the first term on the right hand side o f  the equation corresponds to the 

increase due to combination o f smaller particles making a dj-th size particle, and the 

second term, to the loss o f  dj-th particles by combination with other particles (Reist, 

1993). Kd.di is the coagulation coefficient for the polydisperse aerosol formed by size 

ranges d, and dj. The change in the total particle number concentration, considering 

all size ranges is the sum o f  the changes in individual size ranges, which becomes:

dN  i
= - ~  £  X  K m  N ‘i, N ‘<, ’ (Equation 1.31.)

,/,= I <Wi

According to Reist, 1993, the main limitation o f  this approach is that the it 

may be required to solve a set o f  very many equations simultaneously when 

coagulation proceeds, and even so, there may be inaccuracy in the numerical 

solution. Therefore, he recommends the use o f nonlinear integrodifferential 

equations, which convert the discrete model o f  equations 1.30. and 1.31. into a 

continuous model. The reader is invited to read the references to have a deeper
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knowledge on this approach and others out o f  the scope o f this work (Reist, 1993; 

Willeke, 1993; Friedlander, 2000).

1.6.5.2. K inem atic coagulation

The different response o f  particles o f  various sizes to external forces such as 

gravity, create relative motion, collisions and hence coagulation. The prevailing 

collision mechanisms between large and small particles are inertia and interception. 

Since the smaller particles tend to follow the gas flow around larger particles owing 

to their lower inertia, the particle collection o f the large particles is lower than it 

would be if  the small particles did not follow that How, which defines the collection 

efficiency, E. Taking this into account, the capture rate for particles under the effect 

o f gravity is expressed as:

K
nr = — d j  Fu N E , (Equation 1.32.)

where d<j is the diam eter o f  the large particle and Vs, is the settling velocity or 

relative velocity between large and small particles. The capture efficiency, E, can be 

calculated by the empirical expression (Hinds, 1982):

E =
Stk Y

Stk + 0.25
, for Stk > 1 (Equation 1.33.)

p  d 2CcV
where the Stokes number, Stk = ----------1— . (Equation 1.34.)

18 T}dd

Particles o f  the same size have a zero relative settling velocity, so their capture 

efficiency becomes also zero.

In diesel exhaust-aerosol transport systems, such as the exhaust pipe and 

sampling systems, the coagulation can be significantly enhanced owing to How 

velocity gradients for particles following different, neighbouring streamlines. This 

process is called shear coagulation and, for a laminar (low in a tube, it can be 

expressed as:

d i r
*hear -  1 (Equation 1.35.)

K t.rm a l

v
where is the ratio o f  the shear coagulation rate to thermal coagulation rate, and F

is the velocity gradient at that point (Hinds, 1982). In many practical situations, 

however, the How is not laminar but turbulent, and thus the coagulation can be
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enhanced even further. This is called turbulent coagulation, and is due to the 

increase in velocity and change in direction o f  the velocity gradients, owing to 

inertial effects in the turbulent eddies. The ratio o f turbulent coagulation to shear 

coagulation for a monodisperse aerosol is given by:

V „ bDturb _
V * -  64 kD

(Equation 1.36.)

where b is a constant o f  order 10 and £ is the rate o f  energy dissipation per unit mass 

o f  gas (Hinds, 1982). In a pipe o f  diam eter dt, this parameter is:

2 f U 3E = —------ , (Equation 1.37.)

where U is the average velocity in the pipe and /  is the friction factor.

According to Hinds, 1982, turbulent coagulation is negligible for particles 

below 0.1 pm  and very important for particles around and larger than 10pm. 

Complex geometries and How direction changes such as those present in the exhaust 

pipe, catalyst and silencers can be expected to increase the extent o f  turbulent 

coagulation.

1.6.6. C h cm ica l  reactions

Multiple reactions take place between the particulate -  including solid and 

liquid - and gas phases. The high specific surface area (surface area per unit mass) 

plays a very important role in the diversity o f  reactions, which can occur between 

compounds within a particle, between particles with different composition and 

between particles and various species in the gas phase. At diesel exhaust conditions, 

the number and complexity o f  the reactions are extremely large.

Different processes control the rate at which these reactions occur. Between 

compounds within the particles, reaction rates are controlled by chemical kinetics. 

The rate o f reactions between particles with different chemical composition is 

mostly controlled by the coagulation rate. Between particles and species in the gas 

phase, the reaction rate is predominantly controlled by the condensation rate. As a 

reminder, some o f  the species that condense from the gas phase onto the particle 

surface are sulphuric acid and associated water, and a complex mixture o f  semi- 

volatile hydrocarbons. Extracts from particulate matter analysed by gas 

chromatography showed two peaks at the equivalent n-alkane carbon number 

distributions for hydrocarbon species o f  C i6 and C25. The first was derived from 

diesel fuel and the second, from lubricating oil (Abdul-Khalek,2000). A
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representative hydrocarbon, just in the middle o f  the SOF range in particulate matter 

is nonadecane.

The process through which gas molecules dissolve in the liquid component o f 

the particle is called absorption, which is normally extremely fast and thus not a 

controlling process when compared to diffusion from the gas to the particle surface 

or diffusion within the particle. It carries on until the solubility limit o f the gas in the 

liquid is reached. If mass transfer occurs between the gas phase and solid 

components o f  the particles, the process is called adsorption, which may or may not 

include chemical reactions, in which cases it is called physisorption and 

chemisorption, respectively. Physisorption is the result o f  the action o f  van der 

Waals forces when the temperature is below the critical temperature o f  the gas. It is 

similar to condensation in its analysis. Chemisorption involves the creation o f 

chemical bonds, and it can occur at temperatures higher than the critical temperature 

o f the gas.

1.7. Forces acting on particles

Particles suspended in the exhaust aerosol are in continuous motion, and 

respond to the flow o f  the exhaust gas, which largely governs their behaviour, as 

well as to various external forces that originate through the exhaust pipe, such as 

inertial, thermophoretic, or electrophoretic forces. This section describes the 

concepts involved with the particle motion in the diesel exhaust aerosol. Since the 

particle size extends from a few nanometers to several micrometers, different 

physical laws govern their motion: the kinetic theory o f gases is closely related to 

the motion o f  submicron particles, especially those smaller than 0. lpm , affected by 

the motion o f  gas molecules; and fluid dynamics is applied to intermediate and large 

particles immersed in the continuous gaseous medium. The section concludes with 

the application o f  these forces to the aerosol flow through the exhaust and sampling 

lines, expressed as the overall particulate transport efficiency.

1.7.1. Particle adhesion , d etach m ent and bouncing

The adhesive forces that keep the particles together are extremely important 

but poorly understood. They are normally several orders o f magnitude stronger than 

common external forces applied on the particles, and may depend on particle size, 

shape, surface roughness, chemical composition, etc; the surrounding-gas properties 

as humidity and temperature; and the mechanics o f  other particles that make contact 

with them, the time o f  contact between one another and their relative velocity.
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Diesel exhaust particles are formed by carbonaceous solid material and liquid 

components, condensed and/or adsorbed from the gas phase. The liquid component 

facilitates the action o f London - van der Waals forces, which are the main adhesive 

forces for sticky particles. These act over extremely short distances, in contrast to 

gravitational, inertial, thermophoretic and electrical forces, and decrease rapidly to 

zero away from the particle surface (Friedlander, 1977). The random motion o f 

electrons creates instantaneous dipoles at the particle surface in the electrically 

neutral material, and these induce dipoles in neighbouring materials, creating 

attraction forces (Hinds, 1982; W illeke, 1993). The forces are inversely proportional 

to the square o f  the separation distance between two surfaces. After an initial 

contact, they deform to reduce the separation distance and increase contact area, 

until the attractive forces balance those that resist deformation. This occurs between 

neighbour particles, as well as between a particle and an object surface, for example, 

exhaust walls, a filter or an impactor stage.

Detachment forces can break the adhesion o f the particles. Vibration, as well 

as gas currents over a layer o f  deposited particles, contributes to particle detachment. 

The vibration detachment force is proportional to the particle diameter cubed, dp\  

and that due to a gas current, to the exposed area, or d2. As the opposed force, 

adhesion, is in linear proportion to the diameter, d, large particles become more 

likely to be detached than the fine ones. According to some authors, particles smaller 

than lOpm, which constitute virtually the totality o f  diesel exhaust aerosol, are not 

likely to be removed by vibration or exhaust gas How, but once those particles have 

formed a deposition layer over a surface, e.g. the walls o f an exhaust pipe, larger 

pieces, namely around 100pm to 10mm, may be removed from the layer by those 

mechanisms (Hinds, 1982; Willeke, 1993). O ther authors (Ziskind, 1995) have 

pointed out that particles as small as 2pm can be reentrained in turbulent pipe flow. 

The phenomenon o f  reentrainment in turbulent flows is discussed in more detail 

later in this chapter.

Adhesion and detachment, as suggested above, occur because o f  the liquid 

component o f  the particles. The solid component, on the other hand, originates a 

different phenomenon, particle bounce. The stronger force resisting the surface 

deformation in solid particles may be greater than the adhesion force o f  the liquid 

component, so the particle ends up moving away after making contact with another 

particle or a solid surface. This characteristic is undesirable for particulate collection 

techniques based on inertial impaction, although it can be improved by applying 

grease or oil to the collection surface, as it will be seen later.

i -'mwfpsity library



1.7.2. G a s  flow  a n d  p a r t ic le  m o tio n  in th e  gas

According to the engine speed, in the case o f exhaust aerosol flow through the 

exhaust system, or the sampling flow rate, in the case o f aerosol characterisation 

equipment, the aerosol flows at various flow rates, which affect its flow pattern, 

from smooth or laminar, to highly turbulent. This pattern is governed by the ratio o f 

the inertial force o f  the gas to the friction force between the gas and the exhaust pipe 

walls, expressed by the Reynolds number,

p V d
Re = — — , (Equation 1.38.)

n

where pg is the gas density, V the velocity o f  the gas, r| the gas viscosity and d the 

pipe diameter. Suspended in this gas, particles are in continuous motion, its flow 

pattern being defined by its own particle Reynolds number, Rep, with a similar 

definition to Re, changing the pipe diameter for the particle diameter, dp. The gas 

flow pattern, and therefore Re, is affected by direction and geometry changes in the 

pipe, the inclusion o f  the catalytic converter honeycomb channels, orifices and bends 

in the exhaust silencers.

Diesel exhaust particles interact with the exhaust gas molecules, so to analyse 

the motion o f the particles whose motion can be significantly affected by this 

interaction, the discontinuous nature o f the gas must be taken into account.

Following the reasoning by Stokes, it is possible to develop an expression for 

the force resisting the motion o f a spherical particle o f diam eter dp, moving through 

the gas at a constant velocity V. when the particle is away from surfaces. The force 

is called particle’s drag force, and is given by the Stokes’ law:

Fdrag = 3;v j  Vdp , (Equat ion 1.39.)

where r| is the gas viscosity. For this expression to be valid, the particle Reynolds 

number, Rep, must be much less than unity, and the particle diam eter must be much 

larger than the mean free path o f the gas molecules. The mean free path, X, is a 

characteristic o f the gas, as defined previously in section 1.6.3., is the average 

distance travelled by a molecule between successive collisions. It depends on the gas 

density, and increases with increasing temperature and decreasing pressure. It is 

related to the particle diam eter through the Knudsen number:
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Therefore, the Stokes’ law, as expressed in Equation 1.39., is applicable to 

spherical particles with a Knudsen number Kn «  1. In this case, the gas is 

considered as a perfect continuum.

Stokes’ law becomes incorrect when the assumptions o f spherical particles, 

Reynolds numbers much smaller than unity and particles much larger than the gas 

molecules ( K n « l ) are not met. For these situations, corrections may be applied.

For very small particles, approaching the mean free path o f  the gas molecules, 

this is Kn=2, the gas is no longer a perfect continuum. The drag for a given velocity 

becomes less than predicted by Stokes’ law and continues to decrease with particle 

size (Friedlander, 2000). This can be corrected by a factor called the Cunningham 

correction factor, Cc, so Equation 1.39. becomes:

The constants A, Q and b are given by an empirical fit for a certain gas. For 

air, the values A T .252, Q 0.399 and b 1.100 were published by Jennings in 1988 

(Reist, 1993). The Cunningham correction factor equals unity in the continuum 

regime and is bigger than unity for decreasing particle size in the transition regime. 

For solid particles in air at normal conditions, Cc 1.02 for 10|im particles, 1.15 for 

l|im  particles, and 2.9 for 0. l|im  particles (Reist, 1993; Willeke, 1993).

Additionally, a dynamic shape factor, x. may be introduced to account for the 

non-sphericity o f the particles:

X can be between 1.12 and 1.32 for branched particle clusters o f spheres such 

as diesel particles (W illeke, 1993; Reist, 1993).

When particles much smaller than A, this is, in the free molecular range 

( K n » l ) ,  they can How very close to surfaces such as pipe or channel walls, 

orifices, etc, without being disturbed by gas molecules. An expression for the drag 

force can be derived from kinetic theory:

(Equation 1.41.)

where

(Equation 1.42.)

(Equation 1.43.)
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F * .  = |  < / > ,

/ \ 
2nkT

v * /

1/2

(Equation 1.44.)

where A is the mass transfer coefficient, pg is the gas density, mg is the molecular 

mass o f the gas molecules, a  is an accomodation coefficient that must be normally 

evaluated experimentally, but is usually near 0.9 for momentum transfer 

(Friedlander, 2000).

1.7.3. D iffusion

In the presence o f  a particle concentration gradient, e.g. between the centreline 

o f  the exhaust pipe and the boundaries o f  the pipe walls, small particles migrate 

from the higher to the lower concentration, as gas molecules do, owing to the 

random movement o f  the particles. This is known as diffusion or Brownian motion. 

A diffusion coefficient or diffusivity, is thus defined as

kTC
D  = -------— = k T B , (Equation 1.45.)

3 nr)dp

where k is the Boltzmann constant (1.38x10 1,1 erg/K) and B is the mechanical 

mobility o f  the particle in the surrounding gas. The diffusivity can be used to 

estimate the root mean square distance, which is the distance the particle can travel 

in a given time t,

x,-m = V2D/ . (Equation 1.46.)

1.7.4. Settling velocity , aerodynam ic  d iam eter  and inertial impaction

Particles are attracted by the gravitational force 

Fgnv = m pg  = (p„  -  p,, )v,,g . (Equation 1.47.)

This force equilibrates quickly with particle drag, so the particle reaches a 

constant settling velocity, defined as

V = , (Equation 1.48.)
' 18fj

for dp > I ).im and Re < 1.0. I he settling velocity o f  spherical particles is easily 

expressed mathematically. Since such particles, e.g. droplets, are also easy to 

produce, their settling velocity is used as a reference to compare their behaviour 

with that o f  non-spherical diesel exhaust and atmospheric particles. This is the origin
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o f  the definition o f  the aerodynamic diameter, da, which is the diam eter o f  a unit- 

density sphere that has the same settling velocity as the particle in question.

Similarly, the Stokes diameter, ds has been defined as the diameter o f a 

spherical particle with the same density and settling velocity as the particle in 

question. Therefore,

This equation must be solved iteratively, since Cj is dependent on settling velocity 

(W illeke, 1993). An initial value for Vls is assumed to calculate Q . This value is re­

introduced in equation 1.49. to calculate Vls, which is used for a new Cd value. This 

is repeated until successive values for each parameter converge.

From the definition o f  the settling velocity, some other parameters have been 

defined. The relaxation time,

V
r  = — , (Equation 1.51.)

indicates the time a particle needs to reach ( 1/e) o f its final velocity in a gravitational 

field. It is used to calculate the stopping distance o f  a particle that is injected into a

where V() is the initial velocity o f  the particle. This is extremely useful in the design 

o f  particle collectors, i.e. impactors, in which the aerosol (low negotiates a 90°C 

bend at an initial velocity V(), so particles above a certain size do not follow the gas 

Mow owing to their inertia, and thus can be collected on an impaction stage at a 

distance S. The initial velocity, V0, is determined by the si/e  o f  a jet nozzle upstream 

o f  the collection stage. This kind o f  system can be represented by the Stokes 

number:

(Equation 1.49.)

(Equation 1.50.)

gas, as

(Equation 1.52.)

(Equation 1.53.)
d 9t] d

where d is a characteristic dimension as the nozzle radius, and d, 2d, the nozzle 

diameter. A schematic diagram o f  inertial deposition is shown in f  igure 1.6.
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a)

Figure 1.6.a) Schematic diagram o f  inertial deposition as it occurs in two impactor 
stages, b) The curves on the right (Keskinen, 1999) represents the typical 
collection efficiency values for various collection stages in an impactor. The 
particle diam eter at which the collection efficiency o f  a stage is 50% is the cut­
o ff diameter for that stage.

1.7.5. T h erm op h orcs is

Since the gas molecule motion increases with increasing gas temperature, 

particles in a thermal gradient have more contact with gas molecules in the hotter 

side and, as a result, they are forced towards the colder side. The thermophoretic 

force is defined as:

F,h =

- p X d l A T

2P j

-9j rr i2d pH A T

2 P J

, for dp < X

, for dp > A.

(Equation 1.54.)

(Equation 1.55.)

where DT is the temperature gradient and H includes the effect o f  the thermal 

gradient inside the particle, and it is given by:

/ /  =
1

1 + 6 A Id .
A

ka ! k,, + 4 .4 A /dp 
1 + 2 k a / k p + 8.8 XI  d p

(Equation 1.56.)

where ka and kp are the thermal conductivities o f  air and particle, respectively 

(W illeke, 1993).

K„ =

K> =

The thermophoretic velocity is given by 

- 0 .5 5 i]AT .

P J

- I r / C ' / I A T

, for dp < X

2 P J
, for dp > X.

(Equation 1.57.) 

(Equation 1.58.)

I Collection plate
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In the former case, it is independent o f particle size, and in the latter, it is a weak 

function o f  particle size.

Thermophoretic velocity can exceed settling velocity for submicron particles 

as well as deposition due to thermophoresis can be more significant than deposition 

by diffusion for particles larger than 0.2|im.

1.7.6. E le c tro p h o re s is

Particles carry electric charge, and can be charged in a controlled way. An 

electrostatic field originates an electrostatic force that may be higher than other 

external forces, depending on the number o f  charges on the particle:

Felec = n e E , (Equation 1.59.)

where n is the number o f electrons with charge e , and E is the electric field. An 

equilibrium between F0|CC and F(|rag leads to a terminal velocity,

From here, it is possible to relate the mobility mechanical mobility with the 

electrical mobility, as

Electrical mobility has been used to classify particles by size, as long as a 

known charge distribution with particle size exists, as will be seen in the next 

section.

1.7.7. Transport efficiency

As a result o f  the study o f  the effect o f  the various forces explained above, 

several authors have derived correlations for the transport o f  aerosol through lines 

with a circular cross section, such as those used normally for aerosol transport and 

sampling, and applied in this work. The transport efficiency, T | , a s  defined by 

Brockmann in the compilation by Willeke and Baron (W illeke, 1993), is “the 

product o f  the transport efficiencies in each llow element for each mechanism” :

(Equation 1.60.)

Z neB, (Equation 1.61.)

(Equation 1.62.)

(Equation 1.63.)

The expressions to estimate the transport efficiency due to each o f  the most 

common and significant mechanisms are given below.



44

1.7.7.1. G rav ita tiona l settling

The transport efficiency for an aerosol in laminar How in a straight tube with 

an inclination 0 is expressed by:

k  = (3 /4 )Z c o s 0  = (3 /4 )(Z ./d)(V„/U)cosO

for Vtss in ( 0 /U ) « l ,  where Z (L/d)(Vls/U) is the gravitational deposition parameter, 

L is the length o f  the tube and d is the inside diameter o f  the tube (W illeke, 1993).

For turbulent flow, the expression becomes:

also for the condition V,ss in ( 0 /U ) « l . It has been shown that if the tube through 

which turbulent (low exists is a bending tube, the transport efficiency due to 

gravitational settling is equal to that through a horizontal tube with the same 

diam eter and the length projected by the bending tube on the horizontal plane. I his 

is not valid for laminar (low through the bending tube. Nevertheless, the How at the 

diesel exhaust conditions is turbulent virtually all the time, so the expression is 

applicable.

1.7.7.2. D iffusional deposition

The walls o f  the exhaust pipe act as a sink for diffusing particles owing to the 

particle concentration gradient inside the pipe. At the walls, the particle 

concentration can be considered as zero, so those particles would deposit on them. 

The transport efficiency with diffusive deposition is given by the expression:

where Sh is the Sherwood number; V(llH the deposition velocity due to diffusion, d is 

the tube diameter, L is the tube lenght and Q is the volumetric exhaust flow (Hinds, 

19X2). The Sherwood number is related to the Reynolds num ber for the gas. Re, and 

the Schmidt number, Sc. For turbulent flow.

(Equation 1.64.)

(Equation 1.65.)

(Equation 1.66.)

Sh = 0,01 18 R e7'* Sc ' x (Equation 1.67.)

where:
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1.7.7.3. T u rb u le n t inertia l deposition

Particles with large inertia can be deposited on wall pipes under the effect o f 

the turbulence in the center o f  the pipe. The transport efficiency with turbulent 

inertial deposition can be expressed in a very similar way to that due to diffusional 

deposition, just replacing V^n-by Vt:

T he turbulent inertial deposition efficiency, V(, has been better studied by 

comparing it to the carrying gas velocity, U, through the definition of the 

dimensionless turbulent inertial deposition velocity, V,:

Then, the dimensionless velocity is an indicator o f  how fast the particles are with 

respect to the velocity o f the carrying gas. The dimensionless velocity is related to 

the dimensionless relaxation time x,:

1.7.7.4. Inertia l deposition at a bend

The change in the aerosol flow direction causes the particles with higher inertia 

to deposit on the pipe walls. I he transport efficiency with inertial deposition at a 

bend for turbulent flow is given by:

where cj) is the bend angle in radiants. It is independent o f the Reynolds number, 

depending only on the bend angle. For laminar flow, the transport efficiency is 

affected by the Reynolds number and the curvature ratio, the latter defined as the 

ratio between the bend radius and the tube radius. Nevertheless, for exhaust aerosol 

flow, only turbulent How will be considered, so the curvature ratio and the Reynolds 

number do not affect the transport efficiency.

Vlner'ia, =  eXP (Equation 1.68.)

Vt = 5 .0 3 (K ,/£ /)R e ‘/8 (Equation 1.69.)

Vt = 0.0006*^ (Equation 1.70.)

The dimensionless relaxation time is defined by:

T+ = 0.0395Stk  Re3/ 4 (Equation 1.71.)

= ex p (-2 .8 2 3 Stktp) (Equation 1.72.)
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1.7.7.5. T herm ophoretic  deposition

T he transport efficiency with thermophoretic deposition is given by:

{
(Equation 1.73.)

where V,h is the thermphoretic deposition velocity. This is dependent on the particle 

size, expressed by the Knudsen number.

Thermophoresis has been shown to have a significant effect on the amount of 

soot mass deposited on the combustion chamber and exhaust system walls 

(Abraham, 1996; Kittelson, 1990)

1.7 .S. Results from  previous studies on particle  deposition

Particle dispersion and deposition has been studied theoretically, 

experimentally and using com puter simulations. Several authors include 

compilations o f  various studies in the field (Chunhong, 1998; Willeke, 1993; Hinds, 

1982; Friedlander, 1977). Other authors (Berger, 1995) have remarked that 

thermophoresis plays a significant role in the deposition o f  particles through vehicle 

exhaust systems. Here, some conclusions from selected studies are presented, given 

their relevance to the application in vehicle exhaust.

Com puter simulations by Chunhong et al. (Chunhong, 1998) evaluated the 

aerosol particle deposition in duct Hows using the computational fluid dynamics 

code FLUENT®, which allowed the inclusion o f  models for Brownian motion 

diffusion, thermophoresis, lift force and gravity in laminar and turbulent aerosol 

flow. For the turbulent case, representative o f  vehicle exhaust, they found that, when 

the particles are beyond the viscous sublayer near the tube wall, thermophoresis and 

Brownian motion diffusion are negligible, owing to the increased particle dispersion 

produced by the turbulence. Close to the wall, inside the viscous sublayer, 

thermophoresis has a strong effect on deposition and transport o f  particles below a 

few micrometers in si/e . and Brownian motion is the dominant dispersion 

mechanism. T he thermophoretic force decreases with increasing particle s i/e  above

0.1 |im  and the range o f  particle sizes affected by this force expands as the 

temperature gradient increases.

(Equation 1.74.)

„  - 3  r]CcH VT  
lh _ „ , for Kn<2. (Equation 1.75.)
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Chunhong also found that, for turbulent hot gas flow in a duct with cold walls, 

the deposition velocity increases significantly for particles smaller than O.lfini, 

owing to thermophoresis. For particles between 0.1pm  and 4pm , thermophoresis 

was the dominant deposition mechanism. Deposition o f larger particles was more 

importantly influenced by turbulent eddy impaction and the effect o f thermophoresis 

became insignificant.

In their study on thermophoretic deposition in turbulent flow, Romay et al. 

(Romay, 1998) aimed to determine the way different mechanisms acted together 

over particles between 0.1pm and 0.7pm, particularly thermophoresis and turbulent 

eddie impaction. They developed an expression to predict the total particle 

deposition and assumed that both mechanisms were independent and acted in series. 

The preditions agreed well with experimental results for small particles and 

Reynolds numbers around 5000, but deposition was underestimated by as much as 

50% o f  the experimental values for higher Reynolds numbers. This was attributed to 

an unaccounted turbulent effect in the theoretical prediction, indicating the need to 

develop a more detailed theoretical model.

Berger et al (Berger, 1995), in a realistic study o f  particle deposition on a 

diesel exhaust pipe, used a model including thermal and turbulent eddy diffusion as 

well as thermophoresis, and compared its results with experimental data involving 

particle size distribution measured with cascade impactors. They found that, for the 

fine particle mode, with a median diameter o f  0.12pm  and accounting for 75% o f the 

total particle mass, the penetration rate through the pipe was 88%. On the other 

hand, the penetration for the coarse particle mode, with a median diam eter o f  2.4pm 

and 25% o f  the mass, was just 64%. The effect o f  turbulent diffusion was more 

significant for large particles when the How is turbulent, but just the opposite occurs 

when this is laminar. Thermophoresis was a very important deposition mechanism, 

depending on the temperature gradient near the wall. When insulating the pipe, the 

gradient was reduced and the penetration rates ratio Pinsuiaicd/Pnon-msuiaicd was around 

93%.

The studies mentioned above pointed out the importance o f  thermophoresis in 

the region near the walls for turbulent flows. I he dynamics o f  aerosols in this region 

has been modelled by Zaichik et al. (Zaichik, 1995), who analysed the effect o f 

droplet size and concentration on the deposition rate in turbulent pipe flows. They 

found that the deposition coefficient was a function o f  the dimensionless relaxation 

time for large particles only. For small particles, it depends on the inertia parameter.
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1.7.9. R eentra inm ent o f  particles in turbulent flows

Reentrainment o f particles from the deposition layer, also called resuspension 

by several authors, is not yet a well characterised process (Adhiwidjaja, 2000; 

Phares, 2000; Ziskind, 1995; Willeke, 1993; Kittelson, 1991), although it has been 

subject o f theoretical and experimental studies covering different approaches to its 

several behavioural aspects. Resuspension is a consequence o f  deposition processes. 

Reducing deposition through isolation, preheating and using short lines would 

diminish the deposition rate and, therefore, the resuspension rates, as Kittelson 

explained. This approach, however, was focused on the measurement, and not on the 

emissions in the real world. Exhaust pipe isolation and preheating is not practical, so 

particulate deposition, and hence resuspension, cannot be controlled this way. As a 

result, particles deposit and are reentrained through the exhaust system.

Excellent reviews and analysis o f  the phenomenon have been made by Ziskind 

et al. (Ziskind, 1995) and Phares et al. (Phares, 2000). to which the reader is referred 

to for a detailed explanation o f the phenomenon. Here, the most relevant aspects 

from these reviews are summarised, although their application to resuspension in 

real exhaust systems is still quite impractical.

Two kinds o f  forces have been proposed to cause particle resuspension o f 

particles in turbulent flows, namely normal lift forces and tangential shear forces 

(Phares, 2000). These forces act over the particles producing various modes o f  

motion involved in particle separation; lift-off from the surface, sliding and rolling. 

The most widely accepted models explaining the involved processes in equilibrium 

are the JFK and the DMT theories, which describe the detachment o f  particles from 

a planar surface, assuming that the particles are originally spherical but are flattened 

against the surface because o f  the action o f  attractive forces. The theories predict a 

critical pull-off force that depends on particle size:

C " ,  = n t f p  (Equation 1.76.)

FpM-off <Equation 1.77.)

where y is the Dupre energy o f adhesion (Phares, 2000). I he difference between 

both forces is small, although they were derived from different principles: in the 

DM I theory (developed by Derjaguin et al ), the contact area decreases gradually to 

zero, whereas in the JKR theory (developed by Johnson et al.), there is a finite 

contact radius at the moment o f  detachment, caused by crack propagation due to 

high tensile stresses along the particle plane contact surface. These theories do not 

include the effect o f elastic moduli o f  the particle and the surface. Another model is
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necessary for this, which is the TPL theory (developed by Tsai et al.), whose 

equations are not included here, but are shown elsewhere (Phares, 2000). This theory 

assum es that the contact area between surfaces is dependent on the elastic modulus 

o f  the particles and so is the pull-off force over the particles. As a consequence, a 

decrease in the elastic modulus produces an increase in the pull-off force, which 

begins to resemble the separation o f  two flat surfaces.

Phares et al. (Phares, 2000) investigated the validity o f  the equilibrium theories 

by converting the threshold tangential forces involved in particle reentrainment to a 

threshold shear stress, and comparing them with experimentally measured threshold 

shear stress values. These are calculated from the particle Reynolds number, and 

thus are size-dependent. Phares et al. pointed out that the equilibrium theories, in 

which detachment forces are applied infinitely slowly, are not successful in 

predicting accurately the size dependence o f  the threshold shear stress, since 

resuspension occurs suddenly, too quickly to maintain the equilibrium. Therefore, 

they undertook a resuspension dynamics analysis, by changing the applied force 

duration and intensity in their experiments and developing a dynamic resuspension 

model based on crack propagation kinetics. In this way, they found an explanation 

for the deviations o f  the equilibrium theories’ predictions, but lack o f  information 

did not allow producing a quantitative reliability for the dynamic model.

Allhough Phares et al. stated in their recent study that resuspension takes place 

suddenly, several researchers have based their studies on the assumption that 

reentrainment has a statistical origin associated with the turbulent flow character, as 

has been indicated by experimental measurements, described as random turbulent 

“bursts”. Turbulent flow involves the repetition o f similar events or “coherent 

structures” in time, such as low speed streaks in the viscous sublayer, ejections o f  

low-speed fluid, sweeps o f low-speed fluid, vortical structures, sloping near-wall 

shear layers, formation o f  near-wall pockets and large scale motions and 

discontinuities in the streamwise velocity. T hese structures, and their possible role in 

particle resuspension, were described in detail by Ziskind et al (Ziskind, 1995).

I lore, it is relevant to say that their action differs for different particle sizes.

T he importance o f  the dynamic analysis on particle resuspension is reflected in 

the fact that unsteady conditions such as turbulent flow with eddies impinging on the 

wall and the start-up and shutdown o f  flows are much more significant causes o f 

reentrainment than steady conditions. Cold start, fast acceleration and deceleration 

would be the most influencing events on particle reentrainment in the diesel exhaust 

system. In them, deposition and reentrainment usually occur simultaneously. 

Adhiwidjaja et al. (Adhiwidjaja. 2000) described the formation o f  deposition layers
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as a result o f  simultaneous particle deposition and reentrainment, using an aerosol 

with coarse particles (median diameters between 3.5pm and 5.6pm). They observed 

how the deposition layers formed striped patterns that, under certain conditions, 

moved streamwisc at a velocity Vji, proportional to the flux o f colliding particles J j , 

dependent on the aerosol concentration:

Vm “  k mJ d (Equation 1.78.)

where km is the proportional constant.

Airflow

Airflow Newly deposited 
particles□

Airflow

Figure 1.7. Mechanism o f striped deposition layer movement (Adhiwidjaja, 2000).



51

The mass o f  the deposited particles per unit area (W /A) was a function o f the 

gas velocity Vg an is constant at steady conditions, as a result o f  the equilibrium 

between deposition and reentrainment phenomena:

^-r(Vg’rsa’ N ) = J d ~ J r (Equation 1.79.)
A

where rsa is the surface average roughness and Jr, the resuspension flux. The 

resulting mechanism they proposed is shown schematically in f  igure 1.7.

An increase in the roughness o f  the tube material reduced the interv al between 

strips as well as the thickness o f  the layer. The roughness also affected the velocity 

at which the layer moved downstream o f  the pipe, taking it down to zero at a critical 
roughness r ’a . They also found that the proportional constant km could be

characterised by the ratio between the collision and adhesion moments, as shown in 

Figure 1.8.

Figure 1.8. Relationship between the movement o f the deposition layer and the 
collision/adhesion moments ratio.

The following expression for the collision adhesion-moments ratio Mt./Ma was 

derived:

A/f co s(a  + y) + sin(/J — y )  F
— -  = ------------- —----------- — --------  (Equation 1.80 .)
M„ 2 sin a  F

where l\  is the collision force and I „ the adhesion force, and «  and |J. angles in 

f igure 1.9. These are defined as:

Fc =1.12*,;’ ' (Equation 1.81.)
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and

12z2
(Equation 1.82.)

the Young modulus; H, the Hamaker constant; and v, the Poisson’s ratio. The 

subscripts a and p  designate the deposited aggregate and the colliding particle, 

respectively.

Figure 1.9. Schematic representation o f  a particle impacting upon an aggregate 
particle on the rough surface (Adhiwidjaja, 2000).

Another study by the same group (Adhiwidjaja, 2000) showed that, for 

charged particles, electrostatic forces enhanced the particle deposition, increasing 

the deposited mass on the tube walls to a certain value, irrespective o f  the applied 

voltage to the tube. The use o f  a wide electrode or an array o f  electrodes at intervals 

or in spiral along the tube eliminated the filmy deposition layers

1.8. Aerosol characterisation techniques

I.N.I. tota l  m ass concentration

I he separation o f  the particulate and gas phases is the most straightforward 

technique to determine the total particulate mass concentration in an aerosol. 

Normally, this involves the filtration o f  the aerosol and the gravimetric

Aerosol particlo

a
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determination o f  the mass collected, which is therefore related to the total 

concentration by dividing by the total volume o f  aerosol passing through the filter. 

This is not a continuous monitoring procedure, since a rather large mass is needed to 

be collected for the technique to be accurate with the current laboratory

microbalances.

Given the significance o f  transient emissions, other techniques have been 

developed to allow rapid and even continuous determination o f  total particulate mass 

concentration. Examples o f these techniques are the Tapered Element Oscillating 

Microbalance (TEOM ), the Quartz Crystal M icrobalance (QCM), light scattering 

and extinction techniques. Although these have been extensively tested and correlate 

to a certain extent well with the gravimetric determination, the legislated technique 

is still based on the gravimetric determination at 52°C, using a Constant Volume 

Sampling (CVS) system. Researchers in industry, the universities and official 

institutions are working hard on techniques that allow the measurement o f  transient 

emissions for legislative purposes.

The following sub-sections describe briefly the most important total mass 

determination techniques, namely filtration-gravimetric determination and the 

TEOM. The former has been extensively used at the Department o f Fuel and Energy 

for many years, and the latter, although not used in the present work, will be part o f  

future projects on engine emissions at the same Department.

1.8.1.1, Exhaust filtration -  gravimetric mass determination

Owing to its simplicity, flexibility and economy, filtration is perhaps the most 

widely used mass collection technique for aerosol characterisation (W illeke, 1993). 

It provides the virtually complete separation o f  the particulate phase from the gas 

phase, through a combination o f  mechanisms such as inertial impaction, interception 

and diffusion o f  the aerosol particles onto a fibrous or membrane filter (Hinds, 

1982). The technique involves a pump, a proper sampling probe at the exhaust -or 

the exhaust dilution- system, an efficient transport line, a filter holder, a flow 

measurement device and a flow regulator. T he temperature o f  the transport line, the 

filter holder and the flow measurement device is o f  utmost importance, so it must be 

controlled to meet a well-defined standard.

f  ilters for gravimetric mass determination o f  exhaust aerosol must be nearly 

100% efficient in the particulate separation from the gas phase. I'he m aterials that 

have offered the best performance at the standard testing conditions are glass fibre, 

quartz and microporous membranes, from which the former are preferred because of 

the very low pressure drop across them and have become the standard filter media. 

T hey consist o f  fibres with diameters between 0.1 pm and 100pm, have a 60% to
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99% porosity, and their thickness can be between 0.15mm and 0.5mm. For a high 

collection efficiency to be achieved, the aerosol sample velocity must be kept low.

The gravimetric mass determination requires the change in the filter weight 

before and after sampling to be attributable only to the particulate from the aerosol. 

For this condition to be met, the filter weight should not be affected by temperature, 

age or moisture o f the surrounding atmosphere. T his is difficult to  achieve, since 

both the filter material and the collected particles are hygroscopic and, therefore, 

they adsorb/absorb water vapour. This makes the technique particularly sensitive to 

the relative humidity o f  the surrounding atmosphere. Since it can be very changeable 

in an open space, the technique must include the conditioning o f  the filters in a 

closed constant-temperature-and-humidity atmosphere for 24 to 48 hours before 

their weighing, as well as the use o f a blank filter. The use o f  the Teflon-coated 

version o f  glass fibre filters reduces significantly the sensitivity to moisture 

conditions, since Teflon reduces the inherent reactivity o f glass fibre.

1.8.1.2. Real time mass measurement: TEOM

The TEOM uses the principle according to which the frequency o f a vibrating 

object depends on the object’s mass. The element in question is a special glass 

tapered tube that holds a filter where particulate matter from the flowing aerosol is 

deposited. The element vibrates at its natural frequency, dependent on the total mass 

(tapered element plus particulate), and this vibration frequency is continuously 

measured electronically. Using the vibration frequency difference between two 

instants t| and t2 in time, the mass deposited on the filter in that period can be 

determined:

m , , = — r—-—— , (Equation 1.83.)
’ ( f i  “  f i  )

where K„ is a characteristic o f  the element a n d /i  and fo are the vibration frequencies 

at t| and t2, respectively.

1.5.2. Par t i cu la te  imaginK

The shape, size and count o f  individual particles can be determined from 

images o f  collected samples. Optical imaging has a very limited use, since it can not 

be used for measurements o f  particles smaller than the wavelength o f light, 0.5)Jm, 

which constitute a great majority o f  the particles in number. More powerful 

techniques, such as Scanning Electron Microscopy and transm ission Electron 

M icroscopy are used for those purposes. Practical applications in the use o f  these 

microscopes are presented by Watt et al. (Watt, 1985).
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1.8.2.1. Transmission Electron Microscope (TEM)

The TEM was exactly derived from the optical microscope. In it, light has 

been replaced by electrons, and optical lenses by their electromagnetic equivalent 

(Watt, 1985; Lipkea, 1979). The electron illumination has a much shorter 

wavelength, 0.01pm , which allows high magnifications (x 300000) and, therefore, 

the measurement o f  much smaller particles than its optical counterpart. M easuring 

particles larger than 10pm, however, is not practical because o f the small field o f 

view at low magnifications. Electrons are produced by an electron gun, concentrated 

on the sample by a condenser lens, then focused by an objective lens into an 

intermediate image, and finally enlarged by a projector lens to produce a resulting 

image on a fluorescent screen or photographic film. The system works at high 

vacuum pressures, normally 104 mbar or below, since the electron gun must be 

protected from the atmosphere and electron scatter by air molecules must be 

minimised. The energy supplied to the lenses is very high, in the order o f  1000kV or 

higher. The combination o f high vacuum and high-energy systems make the 

microscope very bulky, needing separate rooms, or even buildings. Samples must be 

collected on thin membranes supported by fine metallic grids to be mounted over a 

standard sample holder o f  the TEM. T he membranes must be transparent to the 

electron beam, and the materials used vary from carbon to metals and oxides.

1.8.2.2. Scanning Electron Microscope (SEM)

The SEM has little in common with the TEM , although it also uses an electron 

gun and a condenser lens system to produce the electron beam. The difference is that 

the SEM does not use the objective and projector lenses as the TEM does. The 

electron beam produced, with energies around 40keV, is very fine and focused on a 

narrow portion o f  the sample surface. It is then scanned across the surface in a 

pattern o f  parallel lines or a “raster” . From the sample surface, secondary electrons 

with energies o f  a few tens o f eV are emitted, and high-energy backscattered 

electrons from the primary beams are re-emitted and reflected (W att. 1985). fhen 

they are collected, amplified and used to produce an image o f  the sample surface in 

a cathode-ray tube. Since the intensity o f emission o f  electrons from the sample 

surface is very sensitive to the incidence angle o f the primary beam, topographical 

information about the sample surface can be obtained. The resolution o f the SEM is 

not as good as that o f  the TEM. being around 0.1pm , but it allows determining the 

shape and elemental composition o f large agglomerates. I he samples can be taken 

from filters previously covered by a thin layer o f a conductive material to avoid 

irregular charging.
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1.8.3. Size d istribution m easurem ent techn iques

Particle size classification can be achieved by applying the knowledge on the 

size-dependent behaviour o f the particles under the action o f  external forces, such as 

those described in a previous section. The diffusion battery, for example, classifies 

particles between 0.002pm and 0.2pm, according to their diffusion onto cylindrical 

tubes or screens. Impactors use the inertial behaviour o f  the particles to make them 

impact onto several stages according to their si/e: the aerosol is accelerated in a jet 

and then the How direction changes abruptly over an impaction stage, so particles 

with high enough inertia escape the How streamlines, impact on the stage, and stay 

there if  bounce is not significant. Electrical sizers use the charging principles and the 

electrical mobility o f the particles with the same objective. There are some 

additional techniques based on other principles such as thermophoretic deposition.

This section will describe the most widely used techniques for exhaust aerosol 

analysis, namely the Andersen inertial impactor, the Electrical I.ow-Pressure 

Impactor and the Scanning Mobility Particle Sizer. The former two were used in this 

work, and the latter will be used in future projects o f  the Department, and is one o f 

the most widely used techniques at the moment.

1.8.3.1. Andersen Impactor

The Andersen Impactor classifies particles in seven stages with the median 

aerodynamic diameters in Table 1.3.

Stage Median Diameter, pm

0 9

1 5.8

2 4.7

3 3.3

4 2.1

5 1.1

6 0.7

7 0.4

I able 1.3. Andersen Impactor median aerodynamic diameters.

The particle s i/e  distribution is determined gravimetrically, using 7 cm 4> glass 

fibre or Teflon filters as the collection media. I hese are to be weighed before and 

after sampling so, a 24- to 48-hour conditioning period in a constant temperature- 

and-humidity atmosphere is recommended to reduce the technique sensitivity to 

water adsorption by the filter and the sample.
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The top impactor stages consist o f  a single central orifice, whereas the lower 

stages have gradually more and smaller orifices in a radial configuration. The 

diam eter o f the nozzles determines the size o f  the particles to be collected on the 

corresponding stage, through the definition o f the Stokes number:

p  Ccd 2U
Slk = — -------— (Equation 1.84.)

w ,

where dn is the diam eter o f  the orifices or nozzles o f the stage. Normally, it is 

calculated as Stkso, which is the Stokes number o f  particles with a size dso. T his is 

called the cut diam eter o f  a stage, that is, the diam eter o f  the particles collected with 

50% efficiency on that stage.

1.8.3.2. Electrical Low Pressure Impactor (ELPI)

The ELPI classifies particles in 12 impactor stages. T he median si/e  range (as 

aerodynamic diameter) for each impactor stage is shown in Table 1.4. I he fractions 

are defined by the median diam eter o f  the particles deposited on each stage.

Stage Median 

Diameter, nm

Stage Median 

Diameter, nm

1 42 7 834

2 82 8 1326

3 141 9 2084

4 219 10 3270

5 333 11 5270

6 525 12 8234

T able 1.4. ELPI Impactor Size Fractions

1.8.3.2.1. Instrument description and operation

In the ELPI, a vacuum pump generates an absolute pressure o f  lOOmbar. In 

this way, it makes it possible for the impaction o f  particles below the lowest cut-off 

size o f  an Andersen Impactor, which works at atmospheric pressure. A previous 

version o f  this technique was the Bem er low-pressure impactor (BI PI), which 

allowed the measurement o f  particles in the same range as that resolved by the ELPI. 

T he BLPI, however, is still a gravimetric technique as the Andersen Impactor is, so 

long sampling times are needed to collect an accurately weighable mass, and the 

technique is subject to a great variability due to the sensitivity o f  the filters to
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humidity and temperature conditions. To avoid these problems, the ELPI includes an 

electrical particle counting technique, that also allows measuring the panicle size 

distribution in real time. If the ELPI is used for the collection o f particulate mass for 

chemical analysis, it must be considered that sampling under vacuum conditions can 

degas the particles, and therefore the fraction o f  volatile compounds may be 

underestimated, particularly for very fine particles.

In the ELPI, shown schematically in Figure 1.10. the aerosol particlcs arc 

charged with a unipolar charge in a diode-type corona charger before entering the 

actual impactor. This consists o f a cylindrical tube, through which the aerosol flows, 

with a 5 mm long tungsten wire electrode in the centre. When a 5kV positive voltage 

is supplied to the wire, a corona discharge is generated around the wire and thus ions 

arc produced. Positive ions migrate towards the cylinder walls, that is. perpendicular 

to the particle flow, building a unipolar positive charge on the particlcs as a result. 

The remaining ions, as well as charged particlcs below 20 nm. arc removed in an 

electrical trap. This particlc loss is the main disadvantage o f this charging system 

(Kcskincn, 1992, Marjamiiki, 2000).

Serial port

External PC/laptop 
ELPI software

Figure 1.10. Schcmatic representation o f  the EI.Pl (Dckati®).

After passing the ion trap, the aerosol is fed into the impactor. Each stage o f 

the impactor is insulated from the previous and next stages by Teflon O-rings, and 

each is connected to an electrometer. When the particlcs impact on a stage, their 

charge is transferred to the stage, so an electrical current is generated, which is 

measured by the electrometer of the corresponding stage. The current signals from 

each stage is then converted into particlc number concentration at each size by 
applying:

Flush pump A 
filte r

hvT
Power sourc«

Electrometers 

A A/D

| Pressure gauge

ELPI unit

Controls A 
LCD display

Internal PC 
ELPIcomm 
software

(Externa) n/output)

1-tOV input 
23<V out
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vV = ■
PneQ

(Equation 1.85.)

where N is the particle number concentration, 1 is the measured current, P is the 

penetration through the charger, e is the charge o f the electron, n is the average 

number o f  charges per particle and Q is the flow rate.

T he charger’s efficiency is a power function o f the particle diameter, which is 

a result from the calibration o f  the charger. Including this function, the group PneQ 

in the previous equation for this unit becomes:

PneQ =

211.52dp , for dp < 0.0482pm

3.557</‘741, for 0.0482pm  < dp < 0.141pm (Equation 1.86.) 

1.335c/'241, for dp > 0.141pm

Diffusional losses o f  particles occur through the impactor. Marjamaki et al. 

(M arjamaki, 1999) showed that particle loss increases rapidly as particle si/e 

decreases, and they reach 6% for particles around 0.038pm. These losses are taken 

into account in the number calculation by means o f  a correction matrix. Table 1.5.

Stage
1
2
3
4
5
6
7
8
9
10 
11 
12

1 2 3 4 5 6 7 8 9 10 11 12
1

0.016 1
0 016 0 008 1
0013 0 007 0 004 11
0 012 0 007 0 004 0 003 1
0 011 0.006 0 004 0 003 0 003 ~~TT
0 011 0 006 0 004 0 003 0 003 0 003 1
0007 0 004 0.003 0 002 0 002 0 001 0001 1
(I 0010.004 0 003 0 002 0 002 0001 0001 0 001 1
0 007 0 004 0 003 0 002 0 002 0 001 0 001 0 001 0 001 1
0 007 0 004 0 003 0 002 0 002 0 001 0 001 0 001 0 001 0 001 i t
0.007 0 004 0 003 0 002 0 002 0 001 0 001 0 001 0 001 0 001 0 001 1

Table 1.5. Correction matrix for particle diffusional losses in the EL PI.

Stages in the ELPI are numbered from fine to large particles, so the bottom 

stage is number l and the top stage is number 12. I he values in the correction matrix 

correspond to the fractional loss o f  particles, the columns representing the stage on 

which particles should be collected, and the rows, the stages on which they are 

actually collected. Particles finer than the cut-off diameter o f  a stage are lost by 

diffusion in all stages designated by a higher number (upper stages), and they 

contribute to a increase in the current measured for each o f  those stages. Two 

corrections are, therefore, necessary: the first correction has to account for the 

diffusional loss o f  the particles through the upper stages; and the second, for the 

increase in the current measured at a certain stage, caused by particles that should be 

counted in lower stages. I he transport efficiency through each stage is calculated as
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(1 - fractional loss), and the overall transport efficiency, shown at the bottom row o f  

Table 1.5., is the product o f  the efficiencies for all the stages. The original current 

measured at each stage is then corrected by subtracting the additional current 

transferred by the diffusing particles deposited.

Another particle loss mechanism through the ELPI that has been recently 

evaluated is space charge, since the particles flowing through the ELPI are charged 

and, therefore, they are subject to electrical forces in the impactor (Virtanen, 2000). 

It becomes important for large particles at high particle concentrations, but it has not 

been taken into account in the software provided by the equipment supplier used for 

the data analysis o f  this work.

From the simultaneous second-by-second measurement o f the currents at all 

the stages, the particle size distribution for all 12 stages is determined; hence the 

changes during transient engine operation can be followed in nearly real time. Other 

technologies have been suggested for this objective, such as the combination o f  an 

electrostatic classifier TEOM condensation particle counter described by 

Ristovski et al. (Ristovski, 1998) but. at the moment o f writing this thesis, the I I PI 

is the only particle size instrument used extensively to do this.

The ELPI produces results in terms o f number-weighed particle size 

distribution. The conversion into mass units for comparison purposes with 

gravimetric techniques and legislated limits involves a set o f  assumptions, e.g. unit 

density, constant density over the whole size measurement range and spherical 

particles regardless o f  the particle size, assumptions that are all fairly far from being 

certain. Hence, mass concentrations may be overestimated, as re-calculated mass- 

based size distributions can be strongly biased towards large particles. Furthermore, 

if the particle density is unknown, high errors in measured number distributions may 

be expected, as observed by Moisio et al. and other authors (M oisio, 1997; 

Tsukamoto, 2000). It is necessary to find methods that can increase the reliability 

and the validity o f  the re-calculation o f  particle num ber from current data and 

particle mass from particle number data.

Unlike electrical mobility techniques, the ELPI allows collecting mass in the 

different stages to determine the mass-based particle size distribution for comparison 

or analysis purposes. The collection is normally carried out on aluminum foil 

substrates, over which vacuum grease is applied to reduce particle bounce. Mass 

collection allows comparing directly steady-state size distributions from particle 

count and gravimetric determinations. I his is not, however, a trivial issue and 

special conditions regarding mass collection must be taken into account. First o f  all, 

it is recommended to run the mass collection as a separate test from the number
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distribution determination and operate the ELPI with the charger off, in order to 

avoid mass losses in the charger, otherwise corrections should be applied. Secondly, 

the mass collection test has to be long enough to collect a relatively large mass for it 

to be reliably measured with a O.Olmg sensitivity balance. W ith a m odern low 

emission engine, this means a 15- to 50-hour test using a 100:1 dilution ratio, 

implying a very high consumption o f  fuel, dilution air, etc. Sampling time can be 

reduced significantly by reducing the dilution ratio, but this should never be lower 

than 7:1 to avoid reaching the sulphuric acid dew point. Finally, substrates greasing 

and handling must be extremely careful to minimise the error for grease or 

aluminium foil losses in the gravimetric determination.

Some evaluations have shown significant overloading problems arising from 

the use o f greased aluminium foil substrates for the stages (van Gulijk, 2000). The 

overloading is due to the fluffy structure o f diesel particles impacting on the stages, 

and is followed by particle bounce. As a consequence, the count o f  small particles is 

lower and the count o f  large particles larger than the count without overloading. The 

proposed solution has been the use o f vacuum-oil greased, sintered, porous metal 

stages (Marjamaki, 2000), which prevent particle bounce and blow -off much more 

effectively than aluminium foil substrates, and increase very significantly the 

maximum load on the stages.

1.8.3.2.2. Evaluation com parisons of the ELPI with other techniques.

Not many direct comparisons between calculated and gravimetrically 

measured mass from the ELPI have been published: most o f the studies involving 

measurements with the ELPI report only number-based distributions, which are very 

useful owing to their real-time characteristics. One o f  the few studies reporting mass 

values obtained with the ELPI used the TEOM for comparative purposes (Moisio,

1995). Real-time mass concentrations from both instruments agreed relatively well 

when measuring emissions from a pulverised coal power plant, ranging from 

lm g/m 3 to 3mg/m3. In his PhD thesis, the same author (Moisio, 1999) includes a 

comparison o f mass calculated from ELPI number distribution data with gravimetric 

mass distribution from a BLPI, showing a fairly good agreement, although some 

tendency to mass overestimation in the large size range can be observed. The 

electrometers sensitivity together with the current correction in the large size range 

can exacerbate a small error when calculating the mass distribution.

For comparison purposes, it may be safer converting a gravimetrically 

measured mass distribution into the corresponding number distribution and 

comparing it to the ELPI number distribution. W esterholm et al. (W esterholm, 1999) 

published an example o f  this procedure, when evaluating the use o f  fibreglass filters
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for mass collection with an ELPI. He observed a mass distribution with a maximum 

around 1 OOnm aerodynamic diam eter and number concentrations were higher when 

measured than when calculated from mass. The divergence was much higher in the 

large size range, being o f one order o f magnitude for particles around 0.6pm and 

more than three orders o f  magnitude for particles around 8(im.

Tsakumoto et al. (Tsakumoto, 2000) evaluated the agreement between the total 

particulate mass determined gravimetrically and that calculated with the ELPI. They 

found that both methods were equivalent at low-load conditions, but the ELPI 

measurements were 1.5 to 2 times greater than the gravimetric for 25% load or 

higher, owing to the decrease in SOF content during high-load operation. The 

assumptions o f  constant charger efficiency, regardless o f  the properties o f  the 

particles, as well as constant density, are considered to be the reasons for the total 

mass overestimation.

Evaluations o f  the ELPI have been focused on comparing its results with 

SMPS, DMPS, DMA and EAA, which also produce the number-weighed size 

distribution, although this is due to electrical mobility, not aerodynamic behaviour. 

In their performance evaluation o f  the ELPI, Marjamaki et al. (Marjamaki, 2000) 

showed that, when converting aerodynamic diam eter into mobility diameter using 

the bulk density o f  a calibration aerosol (di-octyl stabate, DOS), a good agreement 

between the measured distributions was achieved, thus concluding that the ELPI 

performance was good. This statement, however should not be extended to real 

world aerosols.

Ahlvik et al. (Ahlvik, 1998) pointed out that, despite the agreement with 

calibration aerosols, comparisons between these techniques must be interpreted 

more carefully, since real aerosols, and particularly diesel exhaust aerosol, have a 

much more complex behaviour because o f the high complexity o f  their shape and 

density changes with size. They found that, when comparing the ELPI and the 

DMPS distributions in the mobility size base (that is, converting the aerodynamic 

diam eter to mobility diameter), the ELPI size distribution shifted. To make the 

distribution match, the particle density values were iterated until the number data 

from the ELPI equated the number data from the DMPS, thus obtaining a function of 

the effective particle density vs. particle size that must be taken into account. 

A hlvik’s effective particle density function decreases dramatically with particle size 

for particles larger than lpm . Furthermore, a tandem experiment by the same author 

demonstrated that, for diesel particles, “a well defined mobility o f a monodisperse 

diesel aerosol classified by the SMPS does not lead to a specific aerodynamic
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diameter, but to a wide range o f  aerodynamic diameters” . Therefore, any agreement 

between the SMPS and the ELPI can be considered fortuitous (Maricq, 1999).

1.8.3.3. Scanning  M obility  Partic le  Sizer (SM PS)

The SMPS is the most widely used electrical mobility sizing technique 

nowadays. It measures the particle size distribution o f  the aerosols with a great 

resolution in the range 0.003|J,m to 1pm by using three units in series: a Kr-85 

bipolar source for particle charging, a differential mobility analyser (DMA) and a 

Condensation Nuclear Counter (CNC), as shown schematically in Figure 1.11. The 

bipolar ion source brings the polydisperse aerosol to charge equilibrium. The DMA 

consists o f a central rod and an annular cylinder o f aerosol surrounding a core o f air 

but instead o f  collecting the particles o f a desired size on the rod, the DMA produces 

a m onodisperse aerosol around that size. This is possible due to a gap between the 

rod and a collection tube at the lower part o f the analysis tube, which only particles 

o f  a certain size, defined by their mobility, pass through. Particles smaller than those 

are collected on the rod, and those larger are exhausted, whereas the particles that 

passed through the gap are counted by a CNC.

dean air 
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and control 
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Figure 1.11. Schematic representation o f  the SMPS.
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In the CNC, particles o f  the aerosol are put in contact with a saturated alcohol 

vapour atmosphere, created by a pool o f alcohol kept at 35°C. The particles are then 

carried to a condenser tube at 10°C, hence the particles grow due to alcohol 

condensation on their surface, until becoming large enough to be counted by an 

optical device. By applying successive discrete voltages on the rod, monodisperse 

aerosols with particles o f  different sizes are generated by the DMA and counted by 

the CNC in short, successive periods, thus completing a whole distribution o f  105 

size classes classified in less than 60 seconds. This response, unfortunately, is not 

good enough when m easuring the whole size distribution during engine transient 

operation. Transient response can be achieved only if  the measurement is limited to 

a narrower range, in which case it would be necessary to run the transient test 

several tim es to build the size distribution over the whole range. Another limitation 

o f the SMPS is that it does not measure particles larger than 1pm, so the 

accumulation mode and particles up to 10pm, important for legislative purposes, are 

left out.

1.8.4. R e c o m m e n d a tio n s  fo r  E x h a u s t  S a m p lin g  in P a r t ic u la te  

C h a ra c te r is a t io n

The main difficulties related to the sampling and measurement o f particulates 

from diesel engines are due to the unstable character o f  their compounds in the 

changing physicochemical conditions they find from the very moment they are 

produced. M easurement o f  the exhaust volume emitted by the engine is also a big 

problem to overcome. Sampling systems have been developed to manage these 

difficulties and provide the measurement equipment with a representative, stable and 

reliable sample. An example o f  such a system is the Constant Volume Sampler 

(CVS), which does not require the measurement o f  the exhaust volume (Hill, 1999). 

A CVS system involves a dilution process that brings about several other advantages 

over the raw exhaust measurement. It slows the chemical interaction o f the various 

species present in the gas. Furthermore, its measurement accuracy is not affected by 

leaks in exhaust and sampling systems. However, it is not intended to reproduce 

atmospheric dilution. In transient cycle tests, CVS systems are used to 

proportionally sample from a mean bag aerosol sample and so determine the gaseous 

pollutants and total particulate mass concentration over the cycle.

Despite the CVS system advantages, several studies have shown how diesel 

particulate composition (Abbass, 1991) and particle size distribution (Kittelson,

1991) change along the exhaust and sampling systems involving dilution tunnels. 

The main processes involved in the loss and gain o f  particles during sampling are 

diffusion, thermophoresis, particle charging, reentrainment, outgassing. Studies have
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defined certain guidelines to design and set up sampling systems so that the effect on 

the m easurement can be reduced to less than 10%, e.g. avoiding sharp bends as well 

as long and narrow tubes, avoiding thermal gradients and using clean tubes. They 

have also remarked the necessity for standardisation o f size distribution 

measurement, since comparison o f  different data sets is not possible due to problems 

with artifact formation.

Kittelson et al. (Kittelson, 1991) produced a set o f recommendations on the 

design and operation o f measurement facilities involving dilution tunnels, based on 

the analysis o f the sources o f  variability in the Heavy-Duty Test Procedure. In order 

o f  higher to lower importance, recommendations related to the dilution tunnel and 

sampling system are summarised as follows:

a) Reduction o f heat transfer to reduce thermophoresis.

b) Tunnel conditioning.

c) Temperature and/or dilution ratio control, to minimise or eliminate the 

effect o f  the saturation ratio, which is the driving force for condensation 

and/or absorption o f  SOF.

d) Improvement in flow measurements to and from the secondary dilution 

tunnel, to achieve a ±0.5% accuracy.

e) Improvement o f  filters and handling procedures.

f) Conditioning o f  combustion and dilution tunnel air.

g) Deposition analysis.

Kittelson remarked also on the lack o f understanding o f  the reentrainment of 

particles from the walls o f the engine, exhaust system and sampling system, which 

may change the nature and quantity o f  particles emitted by the engine.

In one o f the most recently published studies, Maricq, 1999 compared the 

effect o f  two different dilution systems on the particle size distribution o f emissions 

from petrol and diesel engines. One was a conventional dilution tunnel that dilutes 

the whole exhaust and the other, an ejector-pump diluter that can be used to m easure 

distributions directly at different points along the tailpipe. It was found that the size 

distribution depends on the transfer line temperature, the ultrafme particle number 

concentration increasing when using an insulated stainless steel line. Particle number 

emissions measured in a dilution tunnel are higher than measured by diluting with an 

ejector pump, especially in the size range below lOOnm. The use o f a silicon rubber 

coupler promotes ultrafme mode formation due to desorption and/or pyrolisis o f 

material by hot exhaust gases. In the case o f diesel engines emissions, the dilution
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tunnel causes the particles to  grow around 20nm in size. This artifact is due to 

heating o f the transfer hose. On the other hand, the use o f  an ejector pump as a 

dilution system causes a transient artifact due to residual hydrocarbons on the j-tube 

sample probe used, which condensate onto the particles’ surface.

1.9. Effect O f Engine Performance And Pollutant Reduction  
Technologies On Exhaust Particulate Emissions

Different engine performance enhancing strategies and emission reduction 

technologies affect particulate emissions either positively or negatively. Trade-offs 

exist and it is necessary to look for a compromise among engine power output, 

driveability, fuel consumption and emissions o f  different pollutants. There is a vast 

amount o f  literature regarding all diesel processes that influence particulate 

formation, from which only the most important aspects are summarised below. 

References are given for those interested in deepening their knowledge in these 

aspects.

For its formation characteristics, particulate formation is reduced effectively by 

increasing the Air/Fuel ratio (APR) -that is, reducing the Equivalence Ratio-. 

Increasing the Equivalence Ratio is convenient to reach high Mean Effective 

Pressures (MEP), but it increases fuel consumption and, above a certain limit -  

around 0.5, AFR below 24-, produces a catastrophic increase in soot emissions 

(Kittelson 1994, Perkins 1999). Lean combustion is, then, desirable to keep low fuel 

consumption levels. However, because o f the high availability o f  oxygen originated 

by lean combustion, NOx emissions increase, which is by all means undesirable.

The following are among the technological responses to these trade-offs: 

Turbocharging, Aftercooling, very-high-pressure Fuel Injection, Flexible Injection 

Timing and Cooled Exhaust Gas Recirculation (EGR).

1.9.1. E xh aust  G as R ecirculation  (E G R )

The EGR is a NOx emission reduction technique based on lowering the 

combustion peak temperature. A fraction o f  the exhaust gases is drawn into the 

combustion chamber, displacing a fraction o f  the air. During the fuel injection and 

subsequent combustion, the exhaust gas acts as an inert sink o f the heat released by 

the reacting air-fuel mixture, allowing a lower peak combustion temperature. The 

NOx formation potential decreases, so that emissions o f  this pollutant are reduced by 

up to 25%.

The EGR has a potential problem at high load or power, since it may increase 

particulate emissions to undesirable levels, owing to a reduced Air/Fuel ratio. For
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this reason, the EGR rate control strategy is biased towards low loads (Baert, 1999; 

Leet, 1998; Suzuki, 1997; Dickey, 1998).

1.9.2. A f te r t r e a tm e n t

Aftertreatment devices have been introduced into the exhaust system o f petrol 

and diesel engines in order to meet emission limits imposed by regulations. The 

introduction o f  DeNOx catalysts and particulate traps appears to be forced by 2005 

for diesel heavy-duty vehicles. Diesel oxidation catalysts (DOC) have been installed 

in recent models o f  passenger cars, and particulate traps have been under study. 

Advanced oxidation catalysts similar to the one installed on the Ford 1.8L passenger 

car diesel engine o f  the used in this work have been designed to operate as a 

hydrocarbon adsorber during cold start and as a catalytic reactor after warming up.

1.9.2.1. Diesel O xidation  C atalysts (D O C ) and  DO C w ith h y d rocarbon  

a d so rb er

Catalysts have been applied for cleaning automotive exhaust emissions for 25 

years now. Their application on diesel engines, however, has been delayed nearly 15 

years with respect to their petrol counterpart, since diesel vehicles could meet the 

emissions standards without using aftertreatment technologies. As legislation has 

become stricter, and owing to the difficulties encountered in rem oving NOx from 

diesel exhaust, the efforts to improve catalysts for diesel engines have increased 

significantly in the last 10 years (Shelef et al., 2000; W ebster, 2000). The large 

excess o f oxygen used by diesel engine does not allow using three-way catalysts 

(TW C), since these require a stoichiometric mixture to remove HC, CO and NOx. 

Therefore, efforts have been focused on developing oxidation catalysts for lean 

combustion, but able to reduce NOx. At the same time, diesel catalysts must deal 

with particulate matter, either removing them or, at least, not increasing their 

concentration in number or mass. Also, as diesel exhausts are much cooler than 

petrol ones, the catalyst must light-off at lower temperature. Aditionally, stricter 

emission limits make necessary developing a technology that can reduce emissions 

during cold start, before reaching the catalyst light-off temperature. The answer to 

this is HC adsorption at cold temperatures.

Highly porous materials, such as zeolites, have been used as HC adsorbers in 

diesel oxidation catalysts since the 1990s (Engler, 1993; Adams, 1996; Leyrer,

1996). The adsorption is temporary, so the hydrocarbons are desorbed once the 

catalytic active material (Pt, Pd) has lit off, and therefore are oxidised.

Particulate matter consists mainly o f  large hydrocarbon molecules adsorbed on 

a carbon core, as well as a small amount o f  sulphate compounds. DOCs have the
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ability to oxidise the carbonaceous material, hence reducing the total particulate 

mass. However, together with the carbonaceous material, DOCs can oxidise SO2 

from the gas phase at temperatures about 3500 °C, forming SO3 and then H2SO4. 

This is either adsorbed by the particles or condensed to form new particles. In either 

case, the particle num ber and mass concentrations can increase with the presence o f 

the catalyst. Fortunately, with the use o f  ultra-low sulphur fuels, which are now 

widespread in Europe, this risk is overcome. The catalyst reduces the particulate 

m atter concentration in the exhaust at all exhaust temperatures. In these conditions, 

the hydrocarbon adsorber has been shown to improve the particulate matter 

conversion by the catalyst, reaching 40% to 50% in small diesel engines (Adams et 

al., 1996).

The effect o f  DOCs on particle size distribution has been described by some 

authors as a decrease in mass concentration, but at the same time an increase in 

number concentration o f  nanoparticles, coinciding with an increase in sulphates 

concentration. Kruger et al., 1998 tested an improved design, optimised for low 

sulphur conversion, which showed a huge reduction in sulphates and nanoparticles 

downstream o f the catalyst compared to the non-optimised model. Klein et al., 1998 

showed that the oxidation catalyst reduces the SOF content over the whole 

temperature range o f a diesel car. In the low temperature region SOF content is 

reduced by the catalyst and no sulphate is formed, which causes a shift to lower 

particulate sizes due to a lack o f  adhesives after the catalyst. In the high temperature 

region SOF content is reduced by the catalyst but sulphate is formed, so that an 

enlargement o f particulate is observed due to the sulphate that acts as a glue.

Kittelson and Abdul Khalek, 1998, also observed an increase in particulate 

number concentration produced by the oxidation catalytic converter at high 

temperature operation conditions o f the engine, i.e. high speed and high load. 

Formation o f  nanoparticles by the catalyst was evident in the range 7 -  13nm and 

suggested the mechanism o f particle nuclei formation by H2S 0 4 -  H20 . Bagley, 

1998 suggested a different mechanism for the formation o f these tiny particles, due 

to carbonaceous nuclei. Kittelson found the presence o f  calcium and pointed out that 

nuclei may be metallic ash from oil and fuel additives.

1.9.2.2. P articu la te  trap s .

Diesel particulate traps, also called Diesel Particle Filters (DPFs) are designed 

to store particulate m atter from the engine for relatively long periods, followed by a 

regeneration period consisting o f  burning the particulate o ff by thermal and/or 

catalytic processes. DPFs significantly reduce particulate mass concentration, but 

some authors have shown that they may increase significantly the number
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concentration o f  nanoparticles by promoting the nucleation o f  hydrocarbons and 

sulphates. W ithout the trap, these species condense and are adsorbed by solid 

particles. Not all the studies have shown the increase in nanoparticle concentration 

trough traps; Hawker et al., 1996, tested a continuously regenerating DPF that 

showed no formation o f nanoparticles and a reduction in particle number 

concentrations by 1 to 2 orders o f  magnitude in each size class from 10 to 210nm. In 

the same year, M ayer et al. (Mayer, 1996) tested various trap designs efficiency at 

different particle sizes, and found a low efficiency for the surface filter and a high 

efficiency for the deep-bed filter, at trapping fine particles, and Dementhon, 1997, 

confirmed these differences among various trap designs. He detected a high 

particulate stripping rate during regeneration with all traps, and generally, the 

particle mean diameter observed downstream o f  the trap was slightly smaller than 

the one detected upstream o f  the trap. Deep bed traps were found to lose more 

particulates around lOOnm during regeneration. Further work by Pattas et al., 1998, 

showed a reduction in total mass and number concentration through a ceramic trap, 

although a relatively high penetration o f  ultrafme was observed. High peaks o f 

particles were generated when using the trap during accelerations o f  an urban 

driving cycle, probably due to desorption o f  condensed hydrocarbons.

Perhaps the most important factor influencing particle size distribution changes 

through particulate traps is the residence time o f the exhaust aerosol in the trap, 

according to Abdul Khalek, 1998, who found higher concentrations o f nanoparticles 

when residence times were longer, due to nucleation inside the trap and, for some 

models, downstream o f  the trap. In the same study, it was shown that, in early stages 

o f the regeneration process o f  the trap, a dramatic increase in the concentration o f 

nanoparticles occurred. Then, it decreased as the agglomerates concentration 

increased, indicating that the penetration along the trap increased as the trap 

regenerated. Finally, a better performance o f the trap was observed when the trap 

was loaded, due to the increased contact between the particles and the trapping 

material when particles are already closing the porous structures o f the traps.

I.9.2.3. E xhaust pipe and silencers

The exhaust pipe offers some o f the conditions required for the particles in the 

exhaust aerosol to deposit on its walls: it is normally horizontal, so gravitational 

forces act fully (they are perpendicular) over the particles; its walls are colder than 

the exhaust gas, so thermophoretic forces are created promoting particle deposition. 

The exhaust has bends that create the turbulence that can enhance the deposition. 

Nevertheless, the ultimate result o f  various deposition processes is its opposite: 

particle resuspension, or reentrainment. This has been identified as a significant
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source o f variability in transient tests. Its processes are not thoroughly understood 

although it is known that certain parameters such as the wall shear stress, the nature 

o f  the particle-surface and particle-particle bonding, and surface vibrations, play an 

important role. Kittelson et al. (Kittelson, 1991) considered minimizing deposition 

as the best approach to reduce reentrainment, and therefore variability in the tests.

Kittelson showed that the tailpipe caused the highest thermophoretic 

deposition loss in the exhaust -  dilution system combination: 2.6%, the total system 

loss being just over 5%. M odifications to the tailpipe were applied to reduce this 

loss with the results shown in Table 1.6.

The exhaust silencers include complex internal components in their design, 

such as extended inlet/outlet tubes, thin baffles with eccentric holes, internal 

connecting tubes, perforated tubes, perforated baffles, How plugs and sound- 

absorbing materials. All these components increase the area exposed to the exhaust 

aerosol as well as the turbulence in the flow and, therefore, heat and mass transfer 

coefficients, factors that are intimately related to the enhancement o f particle 

deposition. Reentrainment, and with it test variability, can then be expected to be 

enhanced as a result.

M odification
Mass fractional particulate loss from raw 

exhaust by thermophoresis

Base case, no insulation 0.026

Base + Perfect insulation = B 0.019

B + th inner wall 0.013

B + dilution air, 2:1 DR, constant flow 0.012

B + 200°C preheating 0.010

B + dilution air, 3:1 DR, constant flow 0.009

B + dilution air, 2:1 DR, proportional flow 0.007

Base + N orm al insulation + 150°C preheating + 
dilution to lim it Tm ax = 150°C 0.003

Table 1.6. Thermophoretic deposition losses. Influence o f  tailpipe modifications. 
(Kittelson, 1991).

1.9.3. In flu e n c e  o f  C o ld  S ta r t

Vehicle engine emissions are much higher when the engine is cold than when 

fully warmed. Under urban driving conditions, the vehicle may need to be driven for
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a considerable distance to warm  up, 5km in the case o f diesel engines, 10km for 

petrol engines, so that a significant number o f  urban journeys are made with a cold 

engine, therefore increasing the emissions. The effect is dramatic for gaseous 

emissions o f  petrol engines, such as volatile organic compounds (VOC) and CO 

emissions, for which one third o f  total emissions during these typical journeys occur 

during cold start (Farrow, 1993). This figure can increase significantly for petrol 

engines fitted with a three-way catalyst, since the engine runs on rich mixtures when 

it is cold and the catalyst requires stoichiometric mixtures to be highly efficient.

Particulate m atter emissions from diesel engines are also affected by cold start. 

Table 1.7. shows that cold-start particulate emissions are 20% higher than those 

from a hot engine. In addition, the low temperature o f the pipes, together with its 

subsequent fast warm-up and the sudden disturbance caused by switching on the 

engine, mainly manifested as vibration, may affect the deposition and reentrainment 

processes. As a result, sudden emissions during the cold-start may occur and be 

considerably higher than for a hot engine and exhaust system.

CO THC NOx PM

Standard Petrol 1.6 2.0 1.0 -

Petrol + TWC 9.6 11.0 1.3 -

Diesel 1.6 1.0 1.2 1.2

Table 1.7. Ratio o f  average Cold:Hot emissions in real urban conditions for petrol 
and diesel cars. The cars were driven over the same urban trip for both cold 
and hot conditions to make the comparison (Farrow, 1993).

1.9.4. L e g is la tiv e  d r iv in g  cycles

At this point, it is worthwhile to have a closer look at the design o f  the 

legislative driving cycles over which the emission standards are defined. The test 

conditions and procedures defined for this work, which are described in Chapter 2, 

were not devised to reproduce any specific condition or mode o f  a legislative driving 

cycle, and therefore no direct comparison can be made. However, it will be tried to 

find some relationship, so the impact o f  the results can be suggested.

The cycles examined here correspond to the European context for both heavy- 

duty and light diesel vehicles. Cycles for heavy-duty vehicles include the ECE R49, 

the ESC (European Stationary Cycle), and the ETC (European Transient Cycle). On 

the other hand, cycles for light vehicles include the ECE 15 (or UDC, Urban Driving 

Cycle) and the EUDC (Extra Urban Driving Cycle). There are fundamental 

differences among cycles. Firstly, some o f  them are performed on engine
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dynamometers and others on chassis dynamometers. Secondly, some o f  them are 

m ulti-mode steady-state tests and others are fully transient. And finally, the results 

are expressed in different units, some in g/kW h and others in g/km. All this makes 

difficult to make comparisons o f the integrated emissions obtained from them. The 

main objectives and characteristics o f  the tests are described below.

I .9 .4 .I. E C E  R49 for heavy-duty  vehicles

The ECE R49 is a 13-mode steady-state diesel engine test cycle used for 

certification o f  heavy-duty engines through the Euro II emission standard. It is 

performed on an engine dynamometer, which is operated through a sequence o f  13 

steady-state load and speed conditions, shown in Figure 1.12., each known as a test 

mode. The emissions are m easured and expressed as g/kWh over each mode, and 

then they are wheighted averaged to produce an overall result. The conditions are 

identical to those o f  the US 13-mode cycle, although the weighting factors, also 

shown in Figure 1.12, are different. In the European weighting, high loads, and 

therefore high exhaust temperatures, are the emphasized characteristics.

ECE R49 and US 13-mode Cycles
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M ode Load,
W eighting

No. Speed %
Factors

R49 US

1 idle - 0.25/3 0.20/3

2 maximum 10 0.08 0.08

3 torque 25 0.08 0.08

4
speed

50 0.08 0.08

5 75 0.08 0.08

6 100 0.25 0.08

7 idle - 0.25/3 0.20/3

8 rated 100 0.10 0.08

9 power 75 0.02 0.08

10
speed

50 0.02 0.08

11 25 0.02 0.08

12 10 0.02 0.08

13 idle _ 0.25/3 0.20/3

Figure 1.12. Conditions and weighting factors for the ECE R49 driving cycle.

From October 2000, with the introduction o f  Euro III standards, the R-49 cycle 

is replaced by the ESC.
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1.9.4.2. ESC  (E u ro p ean  S ta tio n ary  Cycle) fo r heavy-duty  vehicles

The ESC cycle is a 13-mode cycle that replaced the R49 from 2000. 

Conditions and weighting factors are, however, quite different, as shown in Figure 

1.13. The operation also differs from that in the R49, being stricter. Each mode has a 

prescribed operation time, completing engine speed and load changes in the first 20 

seconds.
8%

100

75

"S3
ra 50 o

25

9% 8%

Idle Engine speed, %

ESC T est M odes

M ode Engine Speed % Load W eight factor, % Duration

1 Low idle 0 15 4 m inutes

2 A 100 8 2 m inutes

3 B 50 10 2 m inutes

4 B 75 10 2 m inutes

5 A 50 5 2 m inutes

6 A 75 5 2 m inutes

7 A 25 5 2 m inutes

8 B 100 9 2 m inutes

9 B 25 10 2 m inutes

10 C 100 8 2 m inutes

1 1 C 25 5 2 m inutes

12 C 75 5 2 m inutes

13 C 50 5 2 m inutes

Figure 1.13. Conditions and weighting factors for the ESC.
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The speed should be within +50rpm o f the specified value and the torque, 

within ±2% o f  the m aximum  torque at the specified speed. Additional random tests 

around the certification area may be required by the certification personnel. In the 

ESC, a single filter is used for particulate emissions for the 13 modes. The results 

are expressed as g/kWh.

The engine speed conditions A, B and C are defined taking the speed at 

maximum power as a reference:

■ The high speed nhi is determined by calculating 70% o f the declared maximum

net power. The highest engine speed where this power value occurs (i.e. 

above the rated speed) on the power curve is defined as nhj.

■ The low speed n]0 is determined by calculating 50% o f  the declared maximum

net power. The lowest engine speed where this power value occurs (i.e. 

below the rated speed) on the power curve is defined as ni0.

■ The engine speeds A, B, and C to be used during the test are:

A = n!o + 0.25(nhi - n)o)

B = ni0 + 0.50(nhi - n(0)

C = nio + 0.75(nhi -n io)

The ESC test is characterized by high average load factors and very high 

exhaust gas temperatures.

1.9.4.3. E T C  (E u ro p ean  T ra n sie n t Cycle) for heavy-duty  vehicles

Time, s

Figure 1.14. Vehicle speed vs. time for the chassis dynamometer variant o f the ETC.
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Figure 1.15. Engine speed (upper chart) and torque (lower chart) for the engine
dynamometer variant o f  the ETC.

The ETC was introduced together with the ESC for emission certification o f 

heavy-duty diesel engines in Europe through EURO III standards, in 2000. It was 

based on real road measurements, and consists o f three parts that represent urban, 

rural and motorway driving. The duration o f  the entire cycle is 1800s, and the 

duration o f  each part is 600s. Urban conditions are characterised by a maximum 

speed o f 50km/h, frequent starts, stops, and idling. Rural driving starts with a steep 

acceleration segment. The average speed is about 72 km/h. M otorway driving uses 

an average speed o f about 88 km/h. The emissions are sampled following the 

Constant Volume Sampling technique and expressed in g/km.
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The ETC has two variants, one for chassis dynamometer and another for 

engine dynamometer. For the former, vehicle speed vs. time is shown in Figure 1.14. 

For the latter, engine torque and speed are shown in Figure 1.15.

1.9.4.4. EC E and  EUDC (E x tra -U rb an  D riving Cycle) fo r L igh t du ty  vehicles

The ECE+EUDC cycle is a chassis-dynamometer test used for emission 

certification o f  light-duty vehicles in Europe. The entire cycle includes four ECE 

segments repeated without interruption, followed by one EUDC segment. The basic 

segments are shown in Figure 1.16.

Time, s

Time, s

Figure 1.16. Speed conditions vs. time for the ECE and EUDC segments o f the 
European cycle for light-duty vehicles.

The ECE (also known as UDC, Urban Driving Cycle) was designed to 

represent typical city driving conditions, characterized by low vehicle speed, low 

engine load, and low exhaust gas temperatures. The EUDC segment, added after the 

fourth ECE cycle, accounts for more aggressive, high speed driving modes. The 

maximum speed o f the EUDC cycle is 120 km/h or, as an alternative for low-power 

vehicles, 90 km/h, observed in Figure 1.17.
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Time, s

Figure 1.17. Speed conditions vs. time for the alternative EUDC segment for low- 
power vehicles.

The following are the summarised conditions for the whole cycle:

C haracte ris tics___________Unit______________ E C E  15_____________ EUDC
D istance km 4x1.013=4.052 6.955
D uration  s 4x195=780 400
A verage Speed km/h 18.7 (with idling) 62.6
M axim um  Speed km/h 50 120

1.9.5. In flu e n c e  o f  T ra n s ie n ts :  a c c e le ra tio n  a n d  d e c e le ra tio n

Particulate emissions from diesel engines increase dramatically for richer 

combustion with a decrease in the Air/Fuel ratio (AFR). During transient events, the 

AFR is likely to suffer this kind o f  excursions, therefore increasing particulate 

emissions (Tanin, 1999). The situation is clearly reflected in the differences between 

legislated steady-state and transient driving cycles. Transient tests demand much 

more from the performance o f an engine regarding its ability to keep emissions low. 

Therefore, emissions from a transient test are generally higher than from steady-state 

tests.

In Europe, a calibration o f a EURO II DI/TCI Heavy Duty Diesel Engine was 

carried out comparing the steady-state EURO II (ECE R49) and EURO III tests (13- 

Mode -  ESC), and the transient EURO IV test (ETC). Particulate matter emissions 

increased for the transient test in such a way that the EURO-II limit was exceeded, 

as observed in Figure 1.12. The emissions from the transient test exceeded those 

from the ECE R49 by 40%, whereas the emissions from the 13-mode cycle were 

25% lower.

Since transients affect the combustion process, they may have an effect on the 

chemical composition o f  the particles and the particle size distribution o f  the exhaust
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aerosol. Results from the DETR/SM M T/CONCAW E Research Programme for 

Heavy-Duty Emissions (Wedekind, 2000), showed that in the first part o f the R49 

cycle the nanoparticles were most abundant, but in the second part, the accumulation 

mode dominated, which seemed to be related to chemical composition: conditions 

with high levels o f carbon produced a dominating accumulation mode, since the 

carbon cores promote the accumulation o f nanoparticles. On the other hand, over the 

ETC, nanoparticles were readily produced in response to virtually all the transient 

excursions, including increases and decreases in load. “Accumulation mode particles 

were produced mostly across the urban phase and reduced across the rural and 

motorway phases, suggesting a positive relationship between the severity o f 

transients within a cycle and the particle number.”
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DI/TCI HD Diesel Engine (2L/cylinder) 
EURO II Calibration

Limit

EURO II (ECE EURO III, 13-mode EURO IV 
R49) (Transient)

Cycle

Figure 1.18. Effect o f the European Test Cycles on Particulate Emissions from a
EURO-II Engine (Zelenka, 1998).

Increase in particle number concentration and Emission Index as a 

consequence o f transient changes has also been observed in spark ignition engines. 

Kayes et al. (Kayes, 1999) showed that “during controlled start-up tests, particulate 

matter emissions were consistent with a peak just at start-up, followed by a period o f 

relatively level emissions during which time the particle size distribution may shift 

upward and/or along the particle size axis in response to the equilibration in the 

intake, in-cylinder or exhaust processes. When the ignition and injection are 

simultaneously shut-off, PM emissions may peak again, but quickly decrease.”

Also in Spark Ignition engines, a study by Hall et al. (Hall, 2000) showed that, 

during acceleration transients from 50km/h to 140km/h ,and even from 120km/h to 

140 km/h, bursts o f particles were blown out from the tailpipe and clear increases in 

particle number concentration occurred. It was found that the emission rates from
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the engine were not the same as those at the tailpipe, since particles deposited on 

cool surfaces within the exhaust system during cool operation and were released 

when the vehicle warmed up. It was concluded that sustained periods o f  high 

temperature operation would clean the exhaust system and reduce the particle 

number concentration to low levels within minutes. However, this process would be 

more significant for Spark Ignition, since the temperatures reached are higher than in 

Compression Ignition engines.
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Chapter 2. 
Experimental Techniques and Procedures Used in This W ork  

2.1. The Low-Emission Ford 1.8L IDI Diesel Engine

The engine used was a Ford XLD 418T. It is a Turbocharged 1.8 litre indirect 

injection engine, designed to meet the ECE 15.04 and 5th Amendment emission 

control standards, with a high performance even at high-speed conditions and a 

good fuel economy. A picture o f the engine in the test bed and the engine power 

curves are shown in Figures 2.1. and 2.2., from which the maximum power is 

55kW @ 4500rpm and the maximum torque is 152Nm@2250rpm. A detailed 

description o f  the engine can be found in the Ford XLD Range Engine Specification 

Brochure (Ford, 1992).

Figure 2.1. The Ford XLD 418T engine in the test bed.

Figure 2.2. shows the power curves for the Ford XLD 418T engine and the test 

conditions used for this work. The conditions do not correspond to any specific 

selected mode in a legislative driving cycle.
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Figure 2.2. Pow er curves for the Ford XLD 418T engine. The dots represent the test 
conditions used for this work.

Each test for this work, as will be explained in more detail later, consisted o f a 

cold start with a step change to one o f  the conditions shown in Figure 2.2 or an 

acceleration with a warm engine from idle to one o f those conditions. The engine 

was kept running at the same condition for a period between six and ten minutes. 

Afterwards, the engine was decelerated and shut down in the case o f cold start tests, 

or decelerated to idle in preparation for a second acceleration, in the case o f  the 

acceleration tests.

The first part o f  the tests for this work was transient, and the second, after 

reaching the target speed and power condition, steady. The steady part may be 

associated to one o f  the steady-state modes o f  the R49 or the ESC, as shown in 

Figure 2.3., although these are designed for heavy-duty engines and not for light- 

duty engines such as the Ford XLD 418T. On the other hand, the transient part 

cannot be associated to a complete transient legislative test such as the ETC, since
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the latter involves several acceleration/deceleration cycles and not only one step 

change. However, some similarity can be found in terms o f speed with the rural 

segment o f  the ETC, between 600s and 1200s in Figure 2.4. Most o f the speeds used 

in this work are below the speed o f that segment o f  the ETC, and one -3500rpm - is 

above it.
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Figure 2.3. Test conditions for this work, as compared to the various modes o f the
legislative driving cycles for heavy-duty engines.

Regarding the light-duty legislative driving cycle, the ECE+EUDC, or real- 

world conditions, there is no direct reference that allows a comparison with the 

steady-state test conditions reached in this work. Engine dynamometer test 

conditions o f  engine speed and load do not correspond to a single speed condition in 

chassis dynamometer tests, mainly because o f  the influence o f  the gear changes. In 

spite o f  this limitation, a relationship between the steady-state conditions targeted in 

this work and real-world conditions could be attempted qualitatively as follows:
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T arg e t Test 
conditions

Idle
1500rpm -  lOkW

2250rpm -  15kW 
3500rpm -  15kW

R elated EC E+EU D C  
conditions

Idle segments
50-100s ECE (30km/h)

140-170s ECE (50- 35km/h) 
50-100s EUDC (70km/h)

2250rpm -  35kW 300s EUDC (100-120km/h)

R elated  real-w orld  conditions

Idle
Very slow urban driving 
conditions
Slow urban driving conditions 
M edium speed urban/rural 
driving conditions 
Medium speed motorway 
conditions

Time, s

Figure 2.4. Section o f the ETC, in grey, for which the tests for this work show 
similarity (N is speed in rpm).

2 .1.1. T u r b o c h a r g e r  a n d  In te rc o o le r

In the Ford XLD 418T, the engine output and mechanical efficiency are 

increased by increasing the density o f  the air drawn into the engine, in order to 

achieve a performance level closer to that o f the gasoline engine. A compressor 

driven by an exhaust gas turbine increases the air density. This technique is known 

as turbocharging and the compressor, as turbocharger. In addition to this, a heat 

exhanger that uses air as cooling medium, known as intercooler, is also used in order 

to avoid a decrease in density caused by temperature rise in the compression 

process.

The use o f turbocharging and intercooling reduces fuel consumption and also 

particulate and NOx emissions when compared with naturally aspirated engines. 

Mori et al. (Mori, 1997) and Tanin et al. (Tanin, 1999) showed that particulate and 

NOx emissions could be reduced by around 25% and 15% respectively, and at the 

same time fuel economy increased, when using turbocharging and intercooling.
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2.1 .2 . E x h a u s t  G a s  R e c irc u la t io n  (E G R )

EGR is another emission control technique in the Ford XLD 418T. As 

explained in the previous section, NOx emissions are reduced by decreasing the 

peak combustion temperature by introducing a fraction o f the exhaust gas to the 

combustion chamber.

2.2. The Exhaust System

The engine exhaust pipe is a single 45mm (Internal diameter) x 2mm-wall pipe 

connected to the exhaust manifold. The maximum backpressure is lOOmbar (Ford,

1992). Figure 2.5. shows a view o f part o f  the exhaust sytem as installed in the test 

bed. The components o f the exhaust system are described below.

Figure 2.5. The exhaust system as installed in the test bed.

2 .2 .1 . C lo se -C o u p le d  D iesel O x id a tio n  C a ta ly s t  (D O C ) w ith  H y d ro c a rb o n  

a d s o rb e r .

The catalyst installed in the exhaust system o f the Ford XLD 418T has the 

following characteristics:

Substrate: 300 cells/in2, cordierite, 8 mil. wall

Volume: 60% swept volume (1.08 litres)

Coating: Engelhard IEX531

Loading: lO g /ft ' Platinum
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The catalyst formulation includes a zeolite for hydrocarbon adsorption during 

cold start, whose characteristics were explained above. A picture o f  the catalyst is 

shown in Figure 2.6.

Figure 2.6. Side view o f the close-coupled diesel oxidation catalytic converter as 
installed in the exhaust system.

2.2.2. S ile n c e rs

The exhaust Ford XLD 418T has two serial silencer boxes o f  different design 

downstream o f  the catalyst. The first silencer consists o f  two parallel partially 

perforated tubes, each having the same exhaust pipe diameter, separated 1/3 

diameter from each other, enclosed in a box. The second is an S-shaped tube 

enclosed in a corrugated box. The perforated and bent tubes are characteristic 

discontinuities o f reactive silencers, whose performance is determined by their 

geometrical shape. The discontinuities provoke a reflection o f  part o f  the acoustic 

energy back to its source, or back and forth through the pipe until it is dissipated. 

Hence, the acoustic energy penetrating the system is reduced. Figures 2.7. and 2.8. 

show cut-open silencers identical to those installed in the exhaust system.

The use o f  perforations, bends and baffles in the design o f reactive silencers 

modifies the flow pattern o f  the exhaust aerosol and increases the surface area on 

which particles can be deposited, either temporarily or definitely.
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Figure 2.8. Cut-open silencer 2.
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2.3. Ultra-low Sulphur Diesel Fuel

The diesel fuel used in this work was ultra-low sulphur fuel, known and sold 

in the UK and other European countries under the generic name "City Diesel". A 

complete specification sheet is shown in Table 2.1.

Property and Units Limit
T est M ethod

N ote (1).

A ppearance
C lear and bright, free from visible 

sedim ent and w ater
Visual

C olour Max 2.5 D 1500 - IP 196
O dour M erchantable
D ensity @  15°C, g/ml M in-M ax 0 .8 2 0 -0 .8 3 5 D 4052
Cold Filter P lugging Point EN 1 1 6 / IP309
W inter, °C (2) Max -15
Sum m er, “C (2) Max -5
C loud Point Max +3 D 2 5 0 0 / IP219
W inter, °C (2)
Sum m er, °C (2) Max 56
Flash Point (PM CC ), °C Min 49 ISO 2719

C etane N um ber Min 49
ISO 5165 / IP380 / 

D 6I3

C etane Index Min 46
ISO 4264 / IP380 / 

D4737

V iscosity, cSt (2> 40°C Min -  Max 2 .0 - 4 .5 ISO 3104

Sulphur, %W Min 0.005 ISO 8754

C opper C orrosion (3h. (a> 50°C) M ax 1 IS O 2 I 0O
M icro Carbon Residue: Residue 
w eight on 10% Bottom s

M ax 0.30 (N ote 3) ISO 1 0 3 7 0 / 1P398

Ash, %W M ax 0.01 ISO 6245 / I  P4

Particulate M atter, m g/kg Max 24 DIN 51 419

W ater, m g/kg Max 200 D 1744
D istillation,
% Vol Rec @  250 °C Max 65.0 ISO 3405

% Vol Rec @  345 °C Min 95.0

O xidation Stability, m g/100m l Max 2.5 D 2274

Table 2.1. Ultra-low Sulphur Autodiesel (ULSD) Specification Sheet (taken from 
Bayford Thrust, Energy. Bayford & Co. Ltd.

2.4. The Froude DPX Type Hydraulic Dynamometer with remote 
control

The Froude DPX-Type Hydraulic Dynamometer used in this work was an 

electrically controlled version o f the manually operated original dynamometer. The 

modifications were made by Plint and Partners ®, although the principle, design and 

construction remained the same. The dynamom eter is accurate, though its control
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response is slow and, therefore, it is not the ideal dynamom eter for transient test 

cycles. However, the cold start and fast acceleration tests designed for this work do 

not involve cyclic operation, but only one step change in speed and load, so the 

dynamometer performance was considered good enough if  helped by manual 

acceleration to make it faster. In the tests the step-change target condition was 

reached between 30 and 90 seconds from the disturbance o f the system.

Compared to real-world driving, the manual acceleration achieved was still 

somewhat slow and gentle, so the results were not really comparable to real-world 

conditions, where much more aggressive accelerations take place. Furthermore, real 

world driving involves gear changes that were not simulated by the dynamometer. 

All this would mean that much more dramatic changes could be expected in real- 

world driving than those found in this work.

2.5. Temperature Monitoring Along the Exhaust System

Temperature gradients between an aerosol and a solid surface, e.g. between

exhaust aerosol and the inner walls o f the exhaust system, generate a thermophoretic

force acting on the aerosol particles, in addition to the drag, gravimetric and

Brownian motion forces (Chunhong, 1998). Thermophoresis leads to particle

deposition on the walls and, when the temperature gradient is high, the

thermophoretic force may become the main deposition driving torce.

Thermophoresis depends on particle size, as well as on the relation between particle
2A

size and the mean free path, i.e. the Knudsen number, Kn = — , where A is the
d

mean free path and dp, the particle diameter. Berger et al. built an approximate 

model to observe the changes in the particle size distribution o f  a hot diesel exhaust 

aerosol due to thermophoretic deposition through a pipe (Berger, 1994). They found 

that thermophoresis played the major part only in rather slow flows, and diffusion 

was more important elsewhere.

K-type thermocouples, some pressed against the metal or ceramic surfaces, 

and some exposed to the exhaust gas, monitored continuously the temperatures 

along the exhaust system. A total o f  32 thermocouple readings were possible, 

located through the exhaust system as shown in Table 2.2. and Figure 2.9.

2.6. Exhaust Gas Analysis

Exhaust Gas Analysis was carried out downstream o f  the catalyst. Total

Unbumed Hydrocarbons Concentration was determined by using Flame Ionisation
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Detectors at three temperature levels: 190°C (hot FID), 90°C (medium FID) and 

56°C (cold FID). Chemiluminiscence was used to determine N O x. Non-Dispersive 

Infra Red analysis was used for CO, O2 and CO2.

Upstream

Catalyst

1.M etal T urbo O ut G as Side Downstream 

Silencer 1

13.Skin bottom  out

2.G as T urbo out 14.Skin top-out

3.C A T Face US 15.M etal-O ut M l G as-side

Downstream

Catalyst

4.CAT Face DS 16.G as Out, M l

5.M etal Gas side DSCat Upstream 

Silencer 2

17.M etal G as side in M2

6.Gas sam ple DS Cat 18.G as In, Silencer 2 (rear)

7.M etal intersection 19.Skin top-in

Upstream 

Silencer 1

8.Metal G as side in M l 20.Skin bottom -in

9.Gas In, Silencer 1 21 .G as-m id section M2

10.Skin bottom  in Downstream 

Silencer 2

22.Skin top-out

11 .Skin top in 23 .Skin bottom -out

12.G as-m id section M 1 2 4 .Metal for tail pipe

25.G as, Tail Pipe

Table 2.2. Location o f thermocouples along the exhaust system.

Sample ports, which were common to all measurement techniques, consist o f 

sample pipes 6.3mm OD located on the exhaust pipe centreline, with a curved 

section to exit through the exhaust pipe wall, normal to the wall. The particulate 

sample pipe was made o f  stainless steel.
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2.7. Mass Concentration Filter Determination

Exhaust samples were taken using the heated SAE smoke measurement 

technique, shown in Figure 2.10., which is manufactured in the UK by Richard 

Oliver Ltd. This was modified to include separate heating o f  the filter paper housing 

as well as the constant temperature oven. This was particularly suitable for sampling 

directly from the exhaust o f low emission diesel engines. The constant temperature 

sampling (CTS) technique used includes uncooled stainless steel pipes inserted with 

a bend onto the centreline o f the exhaust pipe. Each sample was transported through 

heated flexible sample lines to the CTS system into a heated oven set at 50°C. The 

sample was cooled in the oven to 50°C and then passed through a W hatman 40mm- 

diameter GF/F glass fibre filter, located in a heated filter mount at 50°C and having 

a sample spot size o f  25mm. The exhaust flow rate through the filters was 5 L/min. 

Figure 2.11. shows schematically the mass-measurement set up through the exhaust 

system.

Figure 2.10. Mass filter in the SAE smoke measurement technique.

The particulate mass concentration was determined by measuring the increase 

in weight o f the filter. W eights were recorded to 10-mg accuracy after a 24-hour 

conditioning period in a constant humidity enclosure, before and after the test. The 

mass collected was divided by the sample volume to obtain the particulate
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concentration as mg/L or g/m . This was then converted into mass o f  particulate per

(Equation 2.1.)

mass o f  fuel burnt using the equation:

El (g/kg-fuel) = (M p/1.18)(1 + A/F)/1000

W here,

Mp= Particulate M atter mg/m .

A/F = Air/Fuel ratio by mass.

The constant 1.18 kg/m 3 is the density o f  the sample gas at the sample flow 

meter temperature and pressure.

Smokemeters

<I> <D-

(Heated lmes)

Gas analysis 

^  1st, silencer^) ° c2nd. silencer^ * = 3
Tailpipe

Figure 2 .11. Experimental set-up for mass concentration measurements.

2.8. Particle Size Distribution Measurement

2 .8 .1 .  S E M  a n d  T E M  im a g in g

Table 2.3. shows the characteristics o f  the TEM and SEM used in this work, 

both at the Department o f M aterials o f the University o f  Leeds.

Instrument Model Features

SEM Hitachi S700
Field-Emission Gun 

Secondary Electronic Imaging

TEM Phillips CM20
LaB6 Source 

Bright-field Imaging

Table 2.3. Characteristics o f  the TEM and SEM used in this work.

Samples for the SEM were taken from Andersen impactor collection filters, in 

a 2-hour sampling at 100°C, with the engine running at 2250rpm and 15kW. A

0.5cm square was cut from the filter on stage 4 o f the impactor and covered by a



-92-

gold film before the observation under the microscope, in order to make the sample 

conductive.

Samples for the TEM were taken using carbon fdm  in gold grids 200 mesh/in2. 

The grids were put over aluminium foil collection substrates o f  the ELPI, greasing 

only a very small portion o f the collection substrates to hold the grids by the edge, 

and avoid them to be lifted by the aerosol flow. The engine was run at 2250rpm and 

15kW for two hours, as in the case o f particulate collection with the Andersen 

impactors, using a 10:1 dilution ratio (one dilution stage with Dekati® ejector-type 

diluter). Normal greasing on the collection substrates was not used owing to the 

interference that the grease may produce in the image formation. No mounting wax 

was used to hold the grids either, since this can break them as a result. The grids 

were then kept on the stages just by a very small amount o f grease on the grid edge. 

Two grids per stage were used.

2.8 .2 . A n d e r s e n  Im p a c to r

Figure 2.12. Andersen impactors as located into an oven at 100°C.

Four Andersen Impactors were used simultaneously at four sampling points 

along the exhaust system, to determine the mass-weighed particle size distribution in 

steady-state conditions. The sampling How through each impactor was 28.32L/min, 

and it was carried directly from the exhaust, with no dilution involved. To
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accomplish this, heated lines at 180°C were used to transport the samples, and the 

impactors were kept in an oven at 100°C, as seen in Figure 2.12., so the 

condensation o f exhaust water vapour was avoided.

Teflon coated fibreglass filters were used as collection substrates on each stage 

o f  the impactors. Filter weight was recorded to 10-|ig accuracy after a 24-hour 

conditioning period in a constant humidity enclosure, before and after two-hour 

tests. This period was needed to collect enough mass on the filters. The mass 

collected was divided by the sample volume to obtain the particulate concentration 

as mg/L or g/m3, and converted into Emission Index in g/kg-fuel. Subsequently, the 

particle size distribution was derived by a simple data reduction technique.

2 .8 .3 .  E lec tr ica l  L o w  P r e ssu r e  Im p a c to r  (E L P I)

Figure 2.13. The ELPI with the double-stage ejection-type dilution system.

The Dekati® ELPI was briefly described in Chapter 1 and is shown in Figure 

2.13. It was used to determine the particle size distribution between 0.038|am and 

10pm on a second-by-second basis. The same four sample ports used for the filter 

mass determination equipment and the Andersen Impactors along the exhaust 

system were used for the ELPI in non-simultaneous tests.

Dilution is necessary when using the ELPI owing to:
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a) the exhaust particle num ber concentrations are well over the 

equipment operation threshold;

b) the exhaust must be kept above the sulphuric acid dew point to 

protect the instrument from physical deterioration.

In this work, two dilution systems were used in series to produce an adequate 

aerosol to be analysed by the ELPI. The first was a whole-exhaust two-stage dilution 

tunnel. The second, Dekati’s ® two-stage minidilution system. These systems are 

explained below.

2.8.3.1. W hole  Exhaust Dilution

The whole exhaust was mixed with air at the normal tailpipe exit. A two-stage 

air dilution tunnel system was used with a 4/1 dilution at the tailpipe. This used air 

taken downstream o f  the air filter on the main dilution tunnel and separately 

metered. A sample from this primary full flow dilution was then further diluted to 

give an overall dilution ratio o f  180/1. The dilution ratio was determined using NOx 

analysis as well as airflow metering. The dilution airflow was manually controlled 

so that the dilution ratio was constant during the engine acceleration period. At 3.5m 

from the sample inlet in the secondary dilution tunnel the diluted particles were 

sampled into the ELPI size analyser.

The dilution ratio o f 180:1 selected for whole exhaust dilution was within the 

range used in laboratory studies, which rank between 5:1 and 1000:1. Dilution ratios 

between 5 and 50 are considered critical for gas-to-particle conversion processes, 

and are not recommended. So the dilution ratio o f 180:1 used in this study for whole 

exhaust dilution was considered safe. This value is, however, much lower than real- 

world dilution conditions. M easurements by Kittelson et. al., showed that in 

atmospheric dilution, the exhaust passed through the critical dilution ratio values 

between 5:1 and 50:1 in less than 0.4s and was diluted above 1000:1 in 

aproximately Is (Kittelson, 1998).

The present double dilution system, shown schematically in Figure 2.14. was 

not ideal in its design. The primary whole exhaust dilution was at rather a low 

dilution ratio o f  4/1. Abdul-Khalek et al. 1998, 1999 have shown that low primary 

dilution ratios can influence the particle number and volume concentrations for 

particles below about 80nm. Also the considerable length o f the primary dilution 

tunnel could produce large particle losses due to deposition on the walls (Kittelson, 

1991). This length was unavoidable due to the distance between the test bed and the 

secondary tunnel and the length o f the exhaust system at 90° to the engine. 

However, it was considered important to use whole exhaust flow in the primary
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dilution so that all the particles blown out from the wall region were collected. The 

secondary dilution tunnel was fed with a sample from the primary dilution stage, to 

yield high overall dilution ratios, around 150:1 to 200:1.

V enturi
A

Dilution tunnel
J  Secondary dilution

\  °

V

Filter

Blower

Dilution air

Tailpipe

I
ELPI

J

y

^ J J  Primary dilution

Figure 1. Experimental set-up, dilution tunnel and ELPI sampling point location

Figure 2.14. Experimental set-up for particle size distribution measurement with 
ELPI and a whole exhaust dilution system.

2.8.3.2. Tw o-Stage Minidilution

Since the objective o f this work was identifying the changes through the 

exhaust system, a direct exhaust dilution was needed. This was achieved by using a 

double m inidilution system provided by Dekati®. Each diluter consists o f  an ejector 

in which zero grade air at 2 bar overpressure generates a vacuum at the exhaust 

sample position. The ejector draws the exhaust particle sample into a dilution 

chamber in which air and exhaust gases mix together. Part o f  this diluted exhaust is 

drawn to the atmosphere and the rest into the second diluter, as shown schematically 

in Figure 2.15. The second dilution is identical to the first one, and part o f its 

product is drawn into the ELPI at a nominal How rate o f lOL/s. In this work, each 

dilution stage had a dilution ratio o f  10/1, yielding a 100/1 overall dilution ratio. 

W ater vapour condensation was avoided in the first diluter by heating the dilution 

air to 100°C. The second dilution air was not heated, so the resulting temperature o f 

the aerosol entering the ELPI was approximately 28°C.
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Figure 2.15. Experimental set-up for particle size distribution with ELPI and a 
double-stage ejection-type dilution system.

2.9. Particulate Analysis

2 .9 .1 . T h e r m a l -G r a v im e tr ic  A n a ly s is  (T G A )

The thermal-gravimetric analysis uses the difference in phase and volatility o f 

various groups o f  chemical compounds to give general information regarding the 

chemical composition o f  a particulate sample. The application o f  this technique to 

the analysis o f  diesel particulate matter collected on filters allows determining the 

carbon content, ash, water and soluble organic fraction (SOF), together with the 

differentiation o f the source o f  SOF from fuel or lubricant oil technique, developed 

at the University o f  Leeds by Abbass et al. (W illiams, 1988; Abbass, 1991).

The TGA apparatus consists o f a highly sensitive microbalance that reads 

continuously the sample weight. The sample is hanging into a oven whose 

temperature and heating/cooling ramps can be closely-controlled and through which 

flows a controlled atmosphere created from known gases. The sample weight is 

recorded at all times, so any change in sample weight can be related to changes 

temperature and/or reaction with the flowing gases.

The TGA technique was developed for liquid or solid samples to be put into a 

5mm diam eter ceramic pan including a metallic pan holder. The adaptation for 

particulate matter on filters consists o f cutting the 25mm inner circle where 

particulate matter is actually collected from the 55mm collection filter, folding it 

and wrapping it with an aluminium wire hook to be hung instead o f  the pan holder. 

The sample is heated at a rate o f  20°C/min until reaching a temperature o f 550°C in 

a Nitrogen atmosphere, so all materials that are volatile under this temperature, 

virtually all SOF, are removed from the sample and are exhausted. Keeping the 

temperature at 550°C, the flow o f nitrogen is stopped and, instead, air starts flowing.
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The oxygen reacts with the particulate carbon remaining on the filter. Any residue 

on the filter is due to the ash content o f the particulate matter.

The differentiation between the SOF from lubricant oil and the SOF from the 

fuel is achieved by running the analysis with samples o f  pure fuel and lubricant oil, 

as well as mixtures o f both, spiked on filters, and then comparing the temperatures 

at which they start and finish their volatilisation. In their work, Abbass et al. 

(Abbass, 1991) found that all virtually all the fuel was volatilised at 290°C, virtually 

the same temperature at which the lubricant oil started its volatilisation. Despite the 

fact that a narrow overlap was found, the calibration with mixtures showed that the 

contribution can be calculated from the difference o f the mass loss fractions below 

and above 290°C. The results from this technique agreed with those from other 

thermal methods such as vacuum oven sublimation, purged vacuum oven 

sublimation and pyroprobe/gas chromatography, but all the others produced higher 

SOF values than the Soxhlet extraction method due to the sulphate content o f  the 

samples being more efficiently extracted by thermal methods than by solvent 

extraction.

2 .9 .2 .  P y r o l i s i s -  G a s  C h r o m a t o g r a p h y

This technique consists o f  a very rapid volatilisation o f  hydrocarbons from the 

particulate matter and their subsequent analysis by gas chromatography (Williams, 

1988). It uses very small scratched-from-filter samples into a 20mm X 3mm quartz 

tube, which is heated rapidly to 660°C and held at that temperature for 20 seconds in 

a stream o f  inert gas. The volatilised material from the sample is carried by the inert 

gas to a chromatographic column, which analyses the sample for individual 

compounds. If  the quartz tube is weighed before and after the analysis, the weight 

difference represents the SOF o f  the particulate.

2.10. Tests Description

This work was focused in two types o f  tests, Cold Start and Fast Acceleration. 

Preconditioning o f  the exhaust system was carried out before these tests to simulate 

the effect o f  either prolonged city-driving conditions or regular motorway driving. 

Additional tests were also needed to study the number-to-mass conversion when 

determining particle size distribution. The description o f  the tests follows.

2 .1 0 .1 .  P r e c o n d it io n in g  P r o c e d u r e s

The application o f preconditioning procedures in this work was the result o f 

the hypothesis that the sudden particulate blow out observed in real-world driving 

was due to particulate storage under prolonged low speed, low power city-driving
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periods, followed by a fast acceleration period. Regular high-speed, high-power 

driving would lead to virtually no storage in the exhaust, as any deposit would be 

repeatedly cleared out. Hence, the effect o f the recent history o f  the engine was 

considered an important factor in this study.

The first preconditioning procedure was designed to simulate prolonged low 

speed and low power City Driving. It consisted o f a Four-hour Idling Period prior to 

the test, which henceforth will be referred to as 'Idle Preconditioning'. I f  followed by 

a Cold Start Test, an overnight soak after preconditioning was also applied. In 

contrast, continuous operation was applied for the hot fast acceleration tests.

The effect o f  high-speed motorway driving for a short period, e.g. commuting, 

was achieved by using a 'High Speed Preconditioning'. It consisted o f  a ten-minute 

operation at 3500rpm, with the objective o f  clearing out the exhaust system by 

blowing o ff fluffy particle deposits. After this, the engine was left for an overnight 

soak to run a cold-start test the morning after.

2 .10 .2 .  C o ld  S ta r t  P r o c e d u r e s

Cold start tests were run after the overnight soak at ambient laboratory 

temperatures following the preconditioning procedure. The goal in each test was to 

reach a certain condition just after starting the engine. The time the engine takes to 

reach the condition was longer for either high speed or high load than for low speed 

or low load, but it never exceeded one and a half minutes. M easurements with 

Andersen Impactors were extended for as long as twenty minutes from cold start. 

Measurements with the ELPI were no longer than ten minutes, and many times they 

were shorter, since once stabilisation in particle number concentration was reached, 

the tests were stopped, as will be shown later.

The engine operation conditions at which the cold start tests were performed 

were typical o f low power (0-15kW ) and high power (35 kW) city driving:

■ Idle, that is, 800rpm - OkW

• 1500rpm - lOkW

■ 2250rpm - 15kW

• 2250rpm - 35kW

• 3500rpm - 15kW

2 .10 .3 .  F ast  A c ce ler a t io n  P r o c e d u r e s

Fast acceleration tests were run immediately after a four-hour preconditioning 

at Idle. They consisted o f  two six-minute step-change cycles to high engine speed or
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load conditions in less than one and a ha lf minutes, with a ten-minute idle period 

between consecutive cycles.

Three target conditions in these tests were selected from the cold start tests to 

perform the fast acceleration tests:

• 2250rpm - 15kW

• 2250rpm - 35kW

• 3500rpm - 15kW

2.10.4. M ass Collection Procedures with Andersen Im pactors and ELPI

Particle size distribution determination using Andersen Impactors needs a long 

sampling time to collect enough mass. At moderate conditions, two hours are 

needed when sampling undiluted exhaust. This size distribution is, therefore, 

representative o f steady state conditions.

Mass collection with the ELPI was carried out for the same period and the 

same conditions as that using the Andersen Impactor. In this case, however, the 

exhaust was diluted to a 10:1 ratio. The charger was o ff at all times to avoid 

particulate mass losses, as recommended by Marjamaki et al. (Marjamaki, 2000).

2.11. Supporting results

2.11.1. Theoretical penetration efficiencies through the exhaust system

In this section the effect o f some parameters on the transport efficiencies 

through a pipe similar to that o f the exhaust system used in this work were 

calculated using real temperatures, engine speed and Air/Fuel ratio profiles as 

measured in the tests, in order to observe the deposition trends o f  the particulate 

matter. This does not aim to be a detailed model, but only a very basic model that 

can give more elements o f analysis. The complex geometry o f  the catalyst, for 

example, was not taken into account; hence this is not a realistic result. However, it 

is useful to observe the trends produced in order to observe the contrast with the 

experimental results. The work in this PhD thesis had an experimental nature, so the 

development o f a realistic and complete model for the particulate deposition and 

reentrainment in exhaust systems is beyond its scope. This would be for future 

work.

The gravimetric, thermophoretic, inertial and diffusive depositions were 

calculated as penetration or transport efficiency through the system. The overall 

transport efficiency is defined in the equation 1.62. and is the fraction o f  the entering 

particulate into the system that penetrates it. The calculation was made over 12 size



-100-

ranges corresponding to the ELPI impaction stages, Table 1.4., in order to detect 

size-dependent effects, and at different times during the transients. The dimensions 

and characteristics o f  the exhaust system used in the model are shown in Table 2.4. 

and Figure 2.16. Specific features o f the devices, such as the honeycomb geometry 

o f  the catalyst and the multiple orifices o f  the first silencer were not taken into 

account. The devices were considered as portions o f  pipe with the same exhaust 

diam eter o f the exhaust pipe, so the results o f  the model will be expected to produce 

higher transport efficiencies than the real system. More realistic estimations would 

demand a much more complex model.

Section 1: 
Catalyst

Section 2: First 
silencer

Section 3: Second 
silencer

Device Length (m) 0.14 0.39 0.34

A ssociated Pipe length (m) - 4.10 0.34

N um ber o f  90°C bends 0
7 (+4 inside the 

device)
4 (inside the device)

Table 2.4. Dimensions and characteristics o f the exhaust system used in the 
deposition calculations.

Figure 2.16. Sections o f  the exhaust system between sampling points, as used in the
experimental results and in the deposition calculations.

The penetration efficiencies were calculated using equations 1.63. and 1.64. 

(gravimetric), 1.65 (diffusional), 1.67 (inertial), 1.71 (inertial in bends), and 1.72 

(thermophoretic), with their corresponding auxiliary equations shown in Chapter 1,

i.e. dimensionless numbers.

Real temperatures measured during the tests were used in the estimation o f  the 

properties o f  the aerosol system, such as viscosity and density. Simplified equations 

for these properties in the exhaust system were provided by Dekati® (Dekati, 1999) 

in the ELPI Excel® calculations spreadsheet, and used as follows:

Gas viscosity:
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ju = 0.0 lx
1069.15[02 ] +  963.02[C02} +  420.35[H20]  +  873. \[N2 ] A

Equation 2.2.
5.6 6[02 ] + 6.93[CO, ] + 4.24 [H20]  + 5.29 [N2 ]

\ /

where [ ] indicates the volumetric fraction o f  each component o f the exhaust

gas.

Temperature correction for viscosity: 

v1'5 / 383.4 + T \273 + T 
273

x
383.4

Equation 2.3.

M olecular mass:

M  = 32[ 0 2 ] +  44 [C 02 ] + 18[H2 O] +  28[V 2 ] Equation 2.4.

Gas density:

P, =
M gP

R x ( T  + 273)
Equation 2.5.

M ean free path:

A = 6 .6 x  10"
T + 273 

293

1.3768

1 +
10.4

Equation 2.6.

(T + 273)

The fuel consumption was measured experimentally by an automatic fuel 

tim er and the Air/Fuel ratio (AFR) calculated from the gas analysis. With these two 

parameters, the exhaust mass flow was calculated:

<haus, =™fuel XQ + AFR)

The volumetric exhaust flow was then: 

• = +  273)
exhaust ,  ,M ..

Equation 2.7.

Equation 2.8.

And the exhaust gas linear speed, considering a countinuous rather than a 

pulsing flow:

1/  _  ^exhaust
exhaust .

Ap<pe
Equation 2.9.



-102-

50 100 150 200 250 300 

Time (s)
350 400

----- IDLE - — 1500-10 -—  2250-15 - o -  2250-35 3500-15

Time (s)

----- IDLE ------ 1500-10 ------ 2250-15 - — 2250-35 ^ — 3500-15

Figure 2.17. Real exhaust mass and volumetric flow vs. time, and exhaust gas 
velocity vs. time for the engine operational conditions in this work.
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The cross sectional area o f  the 0.045m I.D . o f  the exhaust pipe, A pjpe, is 

0.0015904 m2.

Figure 2.17. shows the resulting exhaust mass and volumetric flows, as well as 

the exhaust gas speeds for the various engine operational conditions investigated in 

this work. The exhaust flow and the exhaust gas velocity increase with the engine 

speed at similar load levels. Idle operation showed the lowest steady exhaust flow 

and velocity. These increase slightly with increasing speeds for 1500rpm - lOkW, 

2250rpm - 15kW and more significantly for 3500rpm - 15kW. High load operation, 

2250rpm - 35kW , showed the highest exhaust flow and gas velocity o f all 

conditions. These changes respond to the operation o f  the turbocharger. In a 

turbocharged engine such as the Ford XLD 418T, air is pumped into the combustion 

chamber to increase the air density and the volumetric efficiency, reducing the 

emissions. The mixture is kept lean, i.e. the AFR is kept higher than in naturally 

aspirated engines for all conditions. At high load conditions, the extra air pumped to 

the engine and the high fuel consumption result in the increased exhaust mass and 

volumetric flows, and hence higher exhaust gas velocity observed in Figure 2.17.

During the first 150 seconds in Figure 2.17., the various step-change cycles in 

Exhaust flow and gas velocity reflect the response o f  the engine control strategy to 

the acceleration during cold start, including a repeated decrease in exhaust flow, 

which is counteracted by corresponding increases in AFR and therefore in exhaust 

flow and gas velocity. After 150 seconds, a stabilisation was reached.

2.11.1.1. Effect of the time from cold start

According to the theoretical prediction, the penetration efficiency through the 

exhaust system during a cold-start-like transient should have the following 

characteristics, as shown in Figures 2.18. and 2.19.:

■ The calculated total penetration efficiency o f very fine particles, below 

0.1 |^m, is always higher than that o f  particles larger than 1.0)im. Mid­

sized particles have normally intermediate penetration efficiencies, 

although under some conditions they show higher penetration 

efficiencies than finer particles.

■ The dominant process for the deposition o f very fine particles, those 

below 0.1 |im , is thermophoresis. Therefore, the highest penetration 

efficiency o f  very fine particles occurs during the first 30 seconds o f 

cold start, when the difference between the exhaust-gas and metal 

temperatures reaches a maximum. Afterwards, the penetration 

efficiency reaches a minimum between 60 and 120 seconds from cold
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start, when the gas-metal temperature difference is the highest, and 

then, the penetration efficiency increases again, until reaching a stable 

value, which is often higher than that in the period between 30 and 60 

seconds from cold start.

■ Particles larger than 1.0|im deposit through the exhaust system mainly 

under the action o f gravitational forces. Low gas velocities, and 

therefore long residence times in the exhaust system, reduce the 

penetration o f  these particles through the exhaust system due to 

gravitational forces. Consequently, the lowest penetration efficiency 

for these particles occurs in the first thirty seconds, when the engine 

gas velocity is also the lowest. Then, as the gas velocity increases to 

the target condition, the penetration efficiency increases steadily, 

reaching a maximum between 5 and 6 minutes from cold start, which 

remains constant afterwards.

■ Particles between 0.1|_im and 1.0|am are affected by both 

thermophoretic and gravitational forces alike. The smaller particles in 

this range tend to behave the way particles smaller than 1.0|im do, 

whereas larger particles behave more like particles larger than 1.0|im.

Figure 2.18. illustrates the changes o f  the penetration efficiency with time for 

the various particle-size ranges, for a target condition o f  2250rpm - 15kW, through 

the first section o f the exhaust pipe.

2.11.1.2. Effect of the target operation conditions

For the stabilisation period, the deposition model showed idle operation to 

cause the lowest total penetration efficiency for particles o f  all sizes, as shown in 

Figure 2.19. Medium speed and low load conditions, namely 2250rpm - 15kW and 

1500rpm - lOkW, showed the second and third lowest total penetration efficiency, 

although thermophoretic deposition for these conditions was more significant than 

for idle conditions, owing to the higher temperature differences. High engine speed 

conditions showed just slightly higher total penetration efficiency than 1500rpm - 

lOkW and 2250rpm - 15kW. For all these low load conditions, the penetration 

efficiency in the large size range was controlled by gravimetric effects. The total 

penetration efficiency was higher in the large size range and lower in the fine size 

range for high load conditions, 2250rpm - 35kW.
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Figure 2.18. Penetration efficiency through the system vs. particle size for various 
periods from cold start. Target conditions: 2250rpm - 35kW.
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Figure 2.19. Penetration efficiency vs. particle size for various engine operation 
conditions after 4 minutes from cold start.

The exhaust gas velocity is higher at these high load conditions owing to the 

turbocharger, thus increasing the penetration o f  large particles. On the other hand,
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the higher temperatures and gas-metal temperature differences under these 

conditions account for the increased thermophoretic deposition o f fine particles, 

reducing their penetration.

2.11.2. The correction o f the particle num ber-to-m ass conversion used in 
this w ork

A comparison between the particulate mass size distributions from the 

Andersen Impactors and the ELPI at different points along the exhaust system and 

with the engine running at 2250rpm -  15kW are shown in Figure 2.20. A 

comparison with the mass distributions calculated from ELPI numbers was made, 

using the spherical particle and unity density assumptions. The shape o f  the mass 

distributions from the gravimetric determinations was substantially different from 

that derived from the ELPI number distribution. This would suggest that the 

assumptions o f  unit density and spherical particles were not valid.

Apparent densities in the different size ranges were then calculated from the 

comparison o f the measured and calculated mass at the four sampling points. This 

calculation still assumes spherical particles. The results are given in Figure 2.21. as 

average values o f density vs. particle diameter. Since four Andersen Impactors at 

four points were used for the comparison with the ELPI, error bars are given as an 

indication o f  the variability o f  the density determination. Particles collected on each 

stage o f the ELPI had, then, a density range. The calculated densities in the upper 

stages o f  the ELPI showed little error, whereas their variability at lower stages was 

greater because they were the product o f  an extrapolation using the trend o f  the 

stages 5, 6 and 7, which correspond to the lower stages o f the Andersen Impactors. 

The shape o f  the resultant curve in Figure 2.21. was very similar to the shape o f  the 

effective density reported by Ahlvik et al., although they represent somewhat 

different parameters. The resulting mass per particle using unit and apparent 

densities is shown in Figure 2.22. The mass distribution changed after applying the 

calculated apparent density values and the total mass concentration agreed well with 

the gravimetric determination, as seen in Figure 2.23.

These results were made assuming that the ELPI number distributions were 

totally reliable in all size ranges and that the disagreement with the gravimetric mass 

measurements was entirely due to the density and shape assumptions. However, 

Figure 2.24. show the comparison in the opposite direction. The original ELPI 

number distributions are compared with the number distributions calculated from 

the gravimetrically derived mass distributions, assuming unit-density spherical 

particles. T his shows that not only the shape, but also the values o f  the distributions, 

agreed very well in the middle size range covered by the ELPI. The distributions



-108 -

diverge for particles bigger than l |im  by up to two orders o f  magnitude and to a 

lesser extent for particles smaller than 0.1 jam.
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Figure 2.20. Comparison between mass size distributions as measured with the 
Andersen Impactors and the ELPI.

Figure 2.21. Apparent Density vs. Size derived in this work, by comparison between 
the ELPI and Anderson Impactors.
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Figure 2.22. Mass per particle calculated with unit and apparent densities.

Comparison between ELPI Calculated and Gravimetric Emission Index, using Unit and
Corrected Density

Time [min]

---------- Emission Index - Corrected Density

---------- Emission Index - Unit Density

• Emission Index - Gravimetric

Figure 2.23. Comparison between ELPI Calculated and Gravimetric Emission 
Index, using Unit and Corrected Density.

In the ELPI, the measured current in every stage is corrected for fine particle 

losses according to a correction matrix that depends on the type o f  stages that is 

used. Corrections for teflon and metal-shielded teflon insulators, with sintered metal 

collection subtrates are available with the instrument. The measured stage current is 

then converted into number or mass concentration values by applying the charger 

efficiency power function, dependent on particle size. This function is a result o f the
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calibration o f  the charger, which is made with a calibration aerosol (DOS, NaCl) 

and a DM A to generate monodisperse aerosols. The total number o f  particles is 

determined from the electrom eter measurements and APS number concentrations. 

The latter is used for particles bigger than l|J.m, which is the range showing the 

biggest divergence in our test, as well as in the study by W eingartner, 1997.

An evaluation o f  the ELPI [Marjamaki, 2000] showed that in that size range, 

the charger efficiency differed from that specified by the manufacturer, owing to the 

decrease in counting efficiency o f  the APS. Also, it is possible that differences in 

dielectric properties between calibration and test aerosols make big unknown 

particles more likely to be more densely charged than calibration aerosol particles. 

Therefore, particles are counted in higher numbers than they actually are. Regarding 

these difficulties, Donald et al. (Donald, 1997) suggested that better algorithms for 

the conversion o f  current signals into num ber concentrations should be developed.
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Figure 2.24. Comparison o f  the number size distributions as derived from Andersen 
Impactors and ELPI measurements.
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2.11.3. A nalysis o f  SEM  and TEM  im ages o f diesel particles

Particles from the Ford 1.8L IDI diesel engine were analysed by SEM and 

TEM after collection on various stages o f  one Andersen Impactor and the ELPI, 

respectively. The collection technique based on impaction has been used 

successfully for many years (Lipkea, 1978), although it implies long collection 

periods to have enough material on the filter, and is normally carried out with 

dilution o f the exhaust. Long collection periods can affect the particle structure, 

since the particles are exposed to the interaction with other impacting particles. 

Furthermore, the formation o f  various layers o f  particles is likely, which is not 

convenient for the image analysis. Dilution and cooling affect the particle structure 

because o f the condensation o f hydrocarbons, as shown by Lipkea et al. (Lipkea, 

1978). To avoid these disadvantages, other authors have used the thermophoretic 

sampling technique, in which a cold grid holder is exposed to the hot exhaust 

aerosol for a very short period (a few milliseconds), thus promoting thermophoretic 

deposition o f  particles onto the grid.

An attempt was made to evaluate the particle separation in the Andersen and 

the Low-Pressure impactors through microscopic-image analysis. Although this 

separation is based on the aerodynamic behaviour o f  the particles, a relationship 

with the microscopic-image sizing may not be discarded. There is a limitation, 

however, which is that the microscopic image is a bidimensional measuiement, 

whereas the aerodynamic sizing depends on a combination o f parameters defined in 

three dimensions.

Samples from the Andersen Impactor stages were collected on glass-fibre 

filters, from which portions were cut o ff and covered by a layer o f gold to make 

them conductive. Those from the ELPI were collected on TEM carbon-film grids 

placed on the impaction stages. For both cases, the collection took 2 hours, without 

dilution for the Andersen impactors, and a 10:1 dilution for the ELPI. The engine 

ran at high-load conditions, 2250rpm -  35kW.

Figure 2.26. shows examples o f  the SEM images from stage 4 o f the Andersen 

impactor upstream o f the catalyst at two magnification levels. Because o f  the 

formation o f two or more layers o f particles on the particulate filter, it was not 

possible to achieve images o f  individual particles but in few cases. The resulting 

image had good tridimensional characteristics, although the resolution was poor 

compared to that achieved with the TEM, examples o f which are shown in Figure 

2.27. Nevertheless, it was possible to measure the size o f primary particles from 

them, by using the KS400® image analysis software. TEM images had an excellent 

resolution, allowing not only m easuring the size o f  the primary particles, but also
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observing the layers o f fullerenes that consitute their basic carbonaceous structure at 

high magnifications (310000X). At lower resolutions (38000X, 27500X) the 

projected area o f many individual agglomerates was measured, so the calculation o f 

the fractal dimension was possible. Unlike the SEM images, those produced by the 

TEM do not show a clear tridimensionality.

The size o f  the primary particles showed some variations, depending on the 

technique and the magnification used, but it was not clear whether this reflected a 

real change in the particle size or an artifice o f  the analysis. The smallest primary- 

particle diameters, shown in Table 2.5. and Figure 2.25., were measured in high- 

magnification TEM pictures, around 25nm. A t low magnifications with the same 

technique, diameters were around 35nm to 40nm. The highest value was measured 

with the SEM, around 70nm.

Primary particles Agglomerates
Average Dp 

(nm)
Std. Dev. (nm) Median Dp 

(nm)
Geom. Std. 

Dev.
TEM High mag. (310k X) a. 23.76 3.58
TEM High mag. (310k X) b. 25.67 6.05
TEM Low mag. (38k X) a. 39.40 12.72 73.66 1.17
TEM Low mag. (38k X) b. 33.98 5.62 68.54 1.22
SEM 69.68 19.11

Table 2.5. Average prim ary-particle diameters from SEM and TEM images.

Unit particle size distribution

o 20 40

Diameter (nm)

60

o TEM Low mag. 
(38k X) a.

■ TEM High mag. 
(310k X) b.

Figure 2.25. Primary-particle size distributions for high and low TEM 
magnifications.
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Figure 2.26. SEM images o f particles collected on Andersen Impactor stages. The 
grey line under each image corresponds to 0.5|im.
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Figure 2.27. TEM images o f particles collected on ELPI stages.
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The particle size distribution for the agglomerates was built from statistical 

data o f  the equivalent circle diameters o f  nearly 150 individual particles, based on 

projected area measurements o f the low-resolution TEM images. Results are shown 

in Table 2.5. and Figure 2.28. In addition, projected area data, together with the 

maximum Feret Diameter and the average diam eter o f  the primary particles, were 

also used to determine the Fractal Dimension o f  the agglomerates, assuming a value 

o f a  = 1.09 in Equation 1.03 (Lee, 2000) and calculating the radius o f  gyration in 

Equation 1.04 as Rg = Fmax/3 (Brasil, 1999). The resulting value o f Df = 1.82 (Figure
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2.29.) was comparable to that o f  1.83 found by Lee on a Caterpillar single cylinder 

diesel engine at 1400rpm - 0% load (Lee, 2000), but lower than the 1.88 for the 

same engine at 1400rpm - 50% load, which would be the equivalent condition in 

this work.

Agglomerate particle size distribution

Q. 
T3 

a) O)
o  °  
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i TEM Low mag. (38k X) b. ■ TEM Low mag. (38k X) a.

Figure 2.28. Particle size distributions o f  the agglomerates from low-resolution 
TEM pictures.

Fractal dimension evaluation

Rg/dp

Figure 2.29. Fractal dimension determination from TEM image analysis.
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Chapter 3. 
Cold Start Particulate Mass Emission and Particle Size Distribution 
Changes Through a Practical Exhaust System -  Preliminary Tests 

3.1. Introduction

Preliminary tests were run at Idle, 1500rpm - lOkW and 2250rpm - 15kW, in 

two sets o f  tests that differed in the immediate previous history o f  the engine. 

Initially, the engine was idling for four hours the day before the test. It was then left 

to cold soak overnight at 11 to 15°C prior to the cold-start tests the next day. Test 

series Set 1 in Table 3.1. were carried out with this preconditioning at idle prior to 

the first test. After each cold-start test at a fixed condition, the engine was shut down 

and left to cold-soak until the next day. Thus each test in the sequence had a cold 

start and the previous operational condition o f the engine was known. The end test 

condition o f  Set 1 tests was 15 kW  power output and this was considered to be 

representative o f a low power city driving with the possibility o f accumulating 

deposits. It would leave the exhaust systems with much less deposits than at the idle 

condition.

The second test sequence, Set 2, was carried out with a 15kW extended test 

followed by a cold soak overnight at 11 to 15°C, in reverse order from Set 1, ending 

with the idle condition on the third day. This was designed to start with a ‘cleaner’ 

exhaust and end with deposition at idle. Finally, the tests in Set 3 were carried out 

with the same procedures followed in Set 2, but with the catalyst and adjacent 

exhaust pipe work cooled overnight, using an external temperature controlled 

cooling system controlled at 2°C. The coolant was circulated through pipes wrapped 

around the catalyst and the adjacent exhaust pipe work. The temperature o f  the 

catalyst and pipe at the start o f  the test was 3-5°C. This was designed to enhance 

particle deposition through the catalyst and delay light off.

3.2. Exhaust Temperature Changes During Cold Start

Exhaust aerosol and system wall temperatures were monitored during cold- 

start tests at all conditions. Temperatures upstream and downstream o f the catalyst 

are useful to determine the catalyst light o ff as well as the temperature gradient 

between the exhaust aerosol and the metal in contact with it, which together with the 

flow characteristics, determine the thermophoretic deposition potential.
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Uncooled catalyst Cooled catalyst

Set 1 Set 2 Set 3

Day 1 Idle High High

Day 2 Low Low Low

Day 3 High Idle Idle

Table 3.1. Test Procedure for the preliminary tests.

3.2.1. C atalyst light-off tem perature

Since the oxidation reactions are exothermic, they produce an increase in the 

gas temperature through the catalyst. Gas temperatures in the catalyst are plotted in 

Figure 3.1. as a function o f  time from cold start. Only the first 10 minutes o f the test 

have been plotted, as the temperatures were constant after this period. This is the 

duration o f  many short city driving journeys and is 50% o f the European passenger 

car test cycle. Hence, the exhaust warm-up period is significant. The catalyst light- 

o ff temperature was approximately 300°C for the tests at 1500rpm - lOkW and 

2250rpm - 15kW. During the cold start at Idle, the catalyst was not active for 

oxidation. The gas temperature in this did not reach above 140°C and the 

temperature downstream o f  the catalyst was below the gas temperature upstream. In 

contrast, the gas temperature increased clearly through the catalyst at 1500rpm - 

15kW, showing that the catalyst was active. At 2250rpm - 15kW, however, the 

temperature difference as the gas passed through the catalyst was very small, 

indicating that there was a lower energy release by CO and UHC oxidation. As it 

shall be seen later, the hydrocarbon levels out o f the engine at 2250rpm were 

substantially lower than at 1500rpm, which explained the lower heat produced.

3.2.2. M etal tem perature differences and therm ophoretic particle- 

deposition potential

Temperature differences between the exhaust aerosol and the metal in contact 

with it were used to estimate the particle deposition due to thermophoresis. Aerosol 

and metal temperatures for the tests are plotted against time in Figures 3.1., 3.2. and

3.3, at the inlet o f the catalyst and o f  each silencer. The temperature difference at all 

these points increased rapidly during the first minute or two minutes for all 

conditions, reaching a maximum temperature difference and then decreasing 

gradually to a fairly constant value. At idle, the maximum temperature difference in 

the catalyst was around 120l)C, and the equilibrium temperature difference around 

40 to 60°C. M aximum and equilibrium aerosol-metal temperature differences were
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reduced to just 50°C and 20°C respectively at the inlet o f  the first silencer, and 30°C 

and 20°C at the inlet o f the second silencer, thus reducing substantially the 

thermophoretic deposition potential, already very low upstream o f the catalyst.

At 1500rpm - lOkW, the temperature difference upstream o f the catalyst was 

above 200°C for about one minute, reaching a maximum at 250°C. The equilibrium 

temperature was around 100°C. Upstream o f  the first silencer the maximum and 

equilibrium temperature differences were around 150°C and 70°C respectively, and 

decreased to 80°C and 50°C at the inlet o f  the second silencer. The thermophoretic 

deposition potential was clearly increased from idle conditions, particularly 

upstream o f the catalyst.

Aerosol -  metal temperature differences during cold start at 2250rpm - 15kW 

were not very different from those at 1500rpm - lOkW. A maximum temperature 

difference o f 240°C was reached upstream o f the catalyst before two minutes from 

cold start, decreasing to 50°C - 60°C six m inutes later. M aximum and equilibrium 

temperatures were 150°C and 50°C - 60°C respectively upstream o f the first silencer, 

and 90°C and 35°C respectively downstream o f  the second silencer.

3.3. Hydrocarbon Emissions During Cold Start

The total hydrocarbon emissions as measured at the sampling point 

downstream o f  the oxidation catalyst are shown in Figure 3.4. for the three test 

conditions o f  Set 1 and 2 in Table 3.1. Only the first ten minutes from cold start are 

shown.

3.3.1. Idle

The previous day to the cold-start test at Idle conditions o f Set 1, the engine 

was operated at idle for a period o f  several hours, so the hydrocarbon-adsorbing 

zeolite was saturated. This caused a peak in hydrocarbon emissions o f around 

4000ppm downstream o f the catalyst during cold start. The peak was followed by a 

decrease in hydrocarbon emissions to lOOOppm after one minute, and a subsequent 

increase due to thermal desorption o f hydrocarbons by the zeolite when reaching 

150°C, Figure 3.1. The catalyst did not show evidence o f  reaching the light-off 

temperature during the Idle test, and hence there was no reduction in the 

hydrocarbon emissions associated with catalytic oxidation.
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Temperatures Catalyst (C)
First set of runs

Temperature, Idle

Time

Temperature, 1500rpm - 10kW

Time

Temperature, 2250 rpm - 15 kW

Time (min)

Figure 3.1. Catalyst tem peratures during cold start at idle, 1500rpm - lOkW and
2250rpm -  15kW. a) First set.
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Temperatures Catalyst (C)
Second set of runs

Temperature, Idle

Time

Temperature, 1500 rpm -10  kW

Time

Temperature, 2250 rpm -15  kW

Time (min)

Figure 3.1. Catalyst temperatures during cold start at idle, 1500rpm - lOkW and
2250rpm -  15kW. b) Second set.
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Temperatures Muffler 1 (C)
First set of runs

Temperature, Idle

Time

Temperature, 1500rpm - 10kW

Time

Temperature, 2250 rpm - 15 kW

Time (min)

Hgure 3.2. Exhaust gas and wall temperatures and temperature differences through
the exhaust system, a) First silencer, first set.
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Temperatures Muffler 1 (C)
Second set of runs

Temperature, Idle

Time

Temperature, 1500 rpm -10  kW

Time

Temperature, 2250 rpm - 15 kW

Time (min)

Figure 3.2. Exhaust gas and wall temperatures and temperature differences through
the exhaust system, b) First silencer, second set.
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Temperatures Muffler 2 (C)
First set of runs

Temperature, Idle

Time (min)

Temperature, 1500rpm - 10kW

Time (min)

Temperature, 2250 rpm -15  kW

Time (min)

Figure 3.3. Exhaust gas and wall temperatures and temperature differences through
the exhaust system, a) Second silencer, first set.
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Temperatures Muffler 2 (C)
Second set of runs

Temperature, Idle

Time (min)

Temperature, 1500 rpm -10  kW

Time (min)

Temperature, 2250 rpm -15  kW

0 1  2 3 4 5 6 7 8 9  10

Time (min)

Figure 3.3. Exhaust gas and wall temperatures and temperature differences through
the exhaust system, b) Second silencer, second set.
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Figure 3.4. Hydrocarbon emissions during cold start measured downstream o f the 
catalyst.

The Set-2 hydrocarbon results were very similar to those in Set 1, but with 

slightly higher values. The three-day test sequence in Set 2 was to start with the 

high-load 15kW condition, followed by the lOkW condition, and to end the 

sequence with the idle test. The lOkW test had a catalyst temperature above 300°C 

and this was above the hydrocarbon adsorber desorption temperature. Therefore, the
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adsorber should have been completely desorbed prior to the test. The hydrocarbon 

peak during cold start in Set 2 is thus difficult to explain for the cold-start Idle tests 

in Set 2, as it should have been eliminated by the hydrocarbon adsorber. The zeolite 

would not have carbon particles deposited on it, as the previous higher temperature 

test conditions should have ‘cleaned’ the zeolite. This effect was not seen at Idle, but 

it was at the lOkW conditions, whose description follows.

3.3.2. 1500rpm - lOkW

At the 10 kW  cold-start test o f  Set 1, despite having been run one day after an 

adsorber-saturating idle test, the hydrocarbon adsorber showed its effectiveness for 

the first minute, when the catalyst face temperature was below 200°C. Hydrocarbon 

emissions were kept under lOOOppm downstream o f the catalyst during that period. 

At the same time, the catalyst heated up rapidly and was above 200°C after the first 

minute, causing desorption o f hydrocarbons from the zeolite during the following 

four minutes. The hydrocarbon concentration during that period reached 4000ppm. 

Afterwards, the catalyst controlled the hydrocarbon emissions, decreasing the 

concentration to lOOOppm by the tenth minute o f test. This decreasing trend was 

kept for the following 15 minutes, down to less than 200ppm.

For the cold-start test at the same condition o f Set 2, which was preceded by a 

15kW cold-start test, there were no previously-stored hydrocarbons in the adsorber 

and hence the hydrocarbon desorption peak lasted for a much longer period than for 

the equivalent test o f Set 1. The peak in hydrocarbon emissions, which reached 

5000ppm, was rapidly controlled after the catalyst lit off, decreasing to 2000rpm 

around three minutes from cold start, below lOOOppm before ending the fourth 

minute, and below 200ppm at ten minutes from the start o f  the test.

3.3.3. 2250rpm  - 15kW

At 15 kW  the temperatures rose faster and the cold start hydrocarbon peak was 

below 500ppm. The catalyst reduced the hydrocarbon emission continuously from 

start up, as at these conditions the catalyst was above 200°C after just 30s and above 

300°C after 90s. After 2 minutes the UHCs were well below lOOppm and the 

oxidation catalyst was at its most effective condition.
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3.4. Filter Mass Concentration Changes Through the Exhaust 
System During Cold Start

3.4.1. Particulate C oncentrations at D ifferent Positions in the Exhaust 

Pipe System

The particulate mass emissions expressed as an Emission Index, g/kg fuel, 

against time from cold start are shown at the four simultaneous sampling positions 

in the exhaust in Figure 3.5., for the three test conditions o f  Sets 1 and 2. These 

results as emission rate in g/hr are shown in Figure 3.6. The data points are shown 

for the middle o f the time period for which the filter papers were sampled over.

These results show that, for all o f  the tests, there was considerable difference 

in the particulate emissions among the four sample positions. The differences 

changed with time, being greatest at the first particulate sample, this is, during the 

first two or three m inutes from cold start, when the most important disturbance due 

to changes in speed and acceleration occurred.

Owing to the effect o f  the silencers, the Emission Index measured at the 

sampling point downstream o f  the catalyst differed from that that at the tailpipe. At 

all conditions tested, the tailpipe emissions were higher than those downstream o f 

the catalyst, which indicated a particulate blow-out from the silencers section. 

Particulates re-entrained from the first silencer and then a fraction o f  them deposited 

in the second silencer. This problem was greatest for the Set 2 idle results, where the 

exhaust had been operated at the 15 and 10 kW conditions prior to the test and 

should have been relatively free o f deposits. The particulate emissions downstream 

o f  the catalyst were extremely low, at approximately 1 g/kg o f  fuel or 2 g/hr. 

However, particles already in the exhaust were still entrained by the low flow 

velocities at Idle with high particulate emissions upstream o f the second silencer and 

lower emissions at the tailpipe. This indicated that deposition o f  particles removed 

from the first silencer occurred in the second silencer. This movement o f particulates 

from one silencer to the other was also apparent at the lOkW condition.
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Emission Index within the exhaust system
First set of runs, power increased from Idle

Idle

Time (min)

------•------U/S Catalyst — ■ □— - D/S Catalyst

- - - a  - - - U/S Second m u ffle r----- X ----- Tail pipe

1500 rpm - 10kW

Tim e (min)

•  U/S Catalyst — - - D/S Catalyst

- - - a —  U/S Second muffler — X — Tail pipe

2250 rpm - 15kW

Time (min)

------*------U/S Catalyst —  o— • D/S Catalyst

—  a - - - U/S Second m uffler----- X ----- Tail pipe

Figure 3.5. Emission Index during cold start through the exhaust system, a) First set.
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Emission Index within the exhaust system
Second set of runs, power increased from Idle

Idle

Time (min)

------ 1------ U/S Catalyst — - o— - D/S Catalyst

• -  -  a -  - - U/S Second m u ffle r----- X ----- Tail pipe

1500 rpm - 10kW

Time (min)

------*------U/S Catalyst — - a — • D/S Catalyst

—  a —  U/S Second muffler — X — Tail pipe

2250 rpm - 15kW

Time (min)

------•------ U/S Catalyst — - a — - D/S Catalyst

-  -  -  a -  -  • U/S Second m uffler----- X ----- Tail pipe

Figure 3.5. Emission Index during cold start through the exhaust system, b) Second
set.
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The same events occurred for the 15kW condition for the Set 1 tests, which 

had started with the Idle test and the engine preconditioned at idle. For the Set 2 tests 

that started at 15 kW, with preconditioning at 15kW, the results were different. The 

first particulate samples showed evidence o f particulate deposition under cold start 

conditions. However, after 30 minutes the tailpipe emissions were the highest and 

greater than those emerging from the engine, upstream o f the catalyst. This is direct 

evidence o f  exhaust system blow-out.

The largest particulate emissions rate over the test period occurred for Idle, 

which also had the greatest particulate deposition rate in the second silencer. It was 

these high emission rates at Idle that led to the choice o f long periods o f engine idle 

as a means o f  exposing the exhaust system to high soot loadings. This did not have a 

direct equivalence to real world driving, but enabled deposits in the exhaust to be 

established the day prior to the tests. The preconditioning procedure was practical 

for laboratory conditions and was thus adopted as a repeatable method o f 

accumulating deposits in an exhaust pipe on a short timescale. It would reproduce 

the deposition achieved by driving at low-power, urban driving conditions for about 

a week, assuming a pattern o f  1-2 driving hours a day for five days. As an example, 

it is reasonable to think o f  this as the working week, which would be followed by a 

weekend when the driver would take a motorway to drive to the countryside, 

blowing out a fraction o f the deposits when driving at higher speed and power.

At Idle, 20-30g/hr o f  particulate would be deposited in the exhaust with about 

100 g stored over the 4-hour idle preconditioning. At 15 kW this was reduced to 5 

g/hr to 10 g/hr. An average exhaust deposition rate o f 10 g/hr is reasonable to 

assume for the low-power conditions used in this work. If a vehicle were used at 

these conditions for two hours per day and five days per week then 1 OOg per week 

would accumulate in the exhaust. This is a significant deposit level and if  this is 

blown out in one fast acceleration then a large soot cloud will be produced. It was 

shown above that for a low-emission engine, which will meet Euro 4 passenger car 

regulations, 4kg o f  particulates would be emitted in 160,000km. Hence, the lOOg 

accumulated by storage in the exhaust in about a week would represent the 

emissions o f  a low-emission vehicle for 4,000km. In this way, this work succeeded 

in reproducing in the laboratory the events that have been observed in real world 

driving.

3.4.2. Particulate Storage and Blow-out in the Exhaust Downstream  of 

the C atalyst

Particulate storage and blow-out results are expressed as a mass loss from the 

aerosol between two given sampling positions. I f  the result is positive, then
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particulate loss or storage between the sampling positions has occurred. I f  it is 

negative, then there has been a particulate gain or blow-out between them.

Emission rate within the exhaust system
First set of runs, power increased from Idle

Idle

Time (min)

------ 1------U/S Catalyst — - □— - D/S Catalyst

—  a —  U/S Second muffler — X ----- Tail pipe

1500 rpm - 10kW

Time (min)

------ 1------U/S Catalyst — - o— - D/S Catalyst

—  a  -  -  - U/S Second m uffler----- X — Tail pipe

2250 rpm - 15kW

Time (min)

------ 1------U/S Catalyst — • □— • D/S Catalyst

- - - a —  U/S Second muffler — X — Tail pipe

Figure 3.6. Emission rate during cold start through the exhaust system, a) First set.
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Emission rate within the exhaust system
Second set of runs, power decreased to Idle

Idle

Tim e (min)

------ *------U/S Catalyst — - □— ■ D/S Catalyst

—  a -  -  -  U/S Second m uffler----- X ----- Tail pipe

1500 rpm - 10kW

Tim e (min)

------•------U/S Catalyst — - □— - D/S Catalyst

—  a —  U/S Second muffler — X — Tail pipe

2250 rpm - 15kW

Tim e (min)

------•------U/S Catalyst — - - D/S Catalyst

- - - a —  U/S Second muffler — X — Tail pipe

Figure 3.6. Emission rate during cold start through the exhaust system, b) Second 
set.
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The particulate mass blow-out between downstream o f  the catalyst to 

downstream  o f  the first silencer and then between that point and downstream o f  the 

second silencer are shown in Figures 3.7. (Idle), 3.8. (1500rpm -  lOkW) and 3.9. 

(2250rpm -  15kW) for the three sets o f tests and the three test conditions. The 

results are expressed as a) Emission Index, g/kg o f  fuel, and b) the equivalent results 

as Emission rate in g/hr. The results show that, in most o f  the conditions tested, there 

was particulate blow-out from the first silencer and deposition in the second silencer. 

The particulate blow-out from the first silencer was greater than the deposition in the 

second silencer and was a significant fraction o f the tailpipe emissions. This is 

shown clearly in Figure 3.10., which plot the net particulate blow-out from the 

exhaust downstream o f  the catalyst as a percentage o f the tailpipe emissions. Also 

plotted is the particulate deposition in the second silencer as a percentage o f the 

tailpipe emissions.

At idle, Figure 3.7. and 3.10. show that deposition occurred across the second 

silencer for Sets 1 and 2 tests and this was at a peak rate o f 20g/kg o f fuel or about 

20 g/hr. The maximum deposition rate occurred after 20 minutes. At the initial cold 

start most o f the particles deposited on the catalyst and the movement o f particles 

from one silencer to the other was about half the peak deposition rate. Overall, from 

downstream o f  the catalyst to the tailpipe there was a net blow-out o f particulate 

material. This was due to a large blow-out from the first silencer, much o f  which 

was deposited in the downstream silencer and the rest was emitted from the tailpipe.

The particles emitted from the tailpipe that originated in the deposits in the 

first silencer were 30% o f  the tailpipe emissions after 2 minutes, and this fraction 

increased to 70% after 30 - 45 minutes. Clearly the existing deposits in the exhaust 

were a major factor in the tailpipe emissions at cold start idle conditions.

For the tests o f  Set 2, for which the engine had a previous operational history 

o f  10 and 15 kW tests prior to the idle test, the first silencer exhaust deposition was 

at a higher rate than for Set 1 after 8 minutes from cold start. The deposition peaked 

at 35 g/kg after 8-15 minutes, compared with 30 m inutes to reach this deposition rate 

in the Set-1 tests. These results showed that the first silencer was releasing more 

particulate material than that being deposited in the second silencer. The net blow­

out o f  particulates from the exhaust downstream o f the catalyst, as a percentage o f 

the tailpipe emissions, was approximately 90% after 7 minutes and close to 100% 

after 15 minutes. The tailpipe emissions were close to 100% and they were all 

generated by the first silencer blow-out throughout the 35 minute test. Consequently, 

it may be concluded that the 15 kW and 10 kW conditions prior to this idle test o f 

Set 2 was not sufficient to blow out all o f  the exhaust deposited material.
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Figure 3.7. Mass loss in the exhaust system section downstream o f  the catalyst
during cold start at idle, a) Emission Index.



- 135 -
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-  Mass Loss across second silencer

Idle, first set.
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Idle, second set.

X  Mass Loss across first silencer

♦  -  Mass loss DS CC - Tailpipe 

- ♦ —  Mass Loss across second silencer

Idle, cooled exhaust.

Figure 3.7. Mass loss in the exhaust system section downstream o f  the catalyst
during cold start at idle, b) Emission rate.
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1500 rpm, 10 kW, first set.

-  Mass Loss across first silencer 

-M ass loss DS CC - Tailpipe

- Mass Loss across second silencer

1500 rpm, 10 kW, second set.

— Mass Loss across first silencer 

—• — Mass loss DS CC - Tailpipe 

— ♦—  Mass Loss across second silencer

1500 rpm, 10 kW. cooled exhaust.

Figure 3.8. Mass loss in the exhaust system section downstream o f  the catalyst
during cold start at 1500rpm - lOkW. a) Emission Index.
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1500 rpm, 10 kW , first set.

—X — Mass Loss across first silencer 

—• —  Mass loss DS CC - Tailpipe 

—♦ —  Mass Loss across second silencer

1500 rpm, 10 k W , second set.

— — Mass Loss across first silencer 

—• — Mass loss DS CC - Tailpipe 

—♦ —  Mass Loss across second silencer

1500 rpm, 10 kW , cooled exhaust.

Figure 3.8. Mass loss in the exhaust system section downstream o f  the catalyst
during cold start at 1500rpm -  lOkW. b) Emission rate.
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Mass Loss across first silencer 

Mass loss DS CC - Tailpipe 

Mass Loss across second silencer

2250 rpm, 15 kW , second set.

2250 rpm, 15 kW , cooled exhaust.

Figure 3.9. Mass loss in the exhaust system section downstream o f the catalyst
during cold start at 2 2 5 0 rp m - 15kW. a) Emission Index.
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Mass Loss across first silencer 

Mass loss DS CC - Tailpipe 

Mass Loss across second silencer

2250 rpm, 15 kW , first set.

Mass Loss across first silencer 

Mass loss DS CC - Tailpipe 

Mass Loss across second silencer

2250 rpm, 15 kW , second set.

2250 rpm, 15 kW , cooled exhaust.

Figure 3.9. Mass loss in the exhaust system section downstream o f  the catalyst
during cold start at 2250rpm -  15kW. b) Emission rate.
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Particulate blowout in the exhaust system
First set of runs, power increased from Idle
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Figure 3.10. Particulate blow-out from the exhaust system section downstream o f  the
catalyst during cold start as a percentage o f  the tailpipe emissions, a) First set.
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Particulate blowout in the exhaust system
Second set of runs, power decreased to Idle
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Figure 3.10. Particulate blow-out from the exhaust system section downstream o f  the
catalyst during cold start as a percentage o f  the tailpipe emissions, b) Second
set.
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For the cooled catalyst and associated exhaust pipe, there was no blow-out o f 

particles in the first silencer, and there was the highest deposition in the second 

silencer, 35 g/kg. Also there was net deposition in the exhaust downstream o f  the 

catalyst. This was a substantially different result to that at the other Idle conditions. 

The whole exhaust was not cooled, only the catalyst region and hence a specific 

influence o f catalyst temperature was not expected to influence the results. It is 

possible that the change in behaviour o f  the exhaust in terms o f the location o f  the 

particulate storage was due to the differences in the previous history o f the use o f  the 

engine. The tests o f  Set 3, although carried out in the same order as Set 2, had an 8- 

day prior test sequence o f Idle - lOkW - 15kW - 15kW - lOkW - Idle - 15kW - 

lOkW compared with the 5 day prior test sequence o f  Idle - lOkW - 15kW - 15kW - 

lOkW - Idle for the Set-2 Idle tests. It will be shown below that at 15kW, deposits 

were moved from the first silencer to the second silencer and this could have been 

the cause o f  the blow-out o f  the first silencer and the filling o f the second silencer. 

This then left the second silencer with the deposits that were blown out in the final 

Set-3 Idle test.

At the lOkW condition, Figure 3.8. shows that deposition rates were much 

lower than at Idle. However, the trends o f  the results were similar, with deposition in 

the second silencer and blow-out o f  particles by the first silencer. The deposition 

rate in the second silencer after 7-8 m inutes was about 3 g/hr for Set 2 and 35 g/hr 

for Set 1. The associated blow-out o f particles by the first silencer was 5 g/hr and 45 

g/hr for Set 2 and 1 tests respectively. This produced net particulate blow-out rates, 

from the exhaust downstream o f  the catalyst, o f  2 g/hr and 10 g/hr respectively.

For the test at lOkW o f Set 1, the net blow-out o f  particulates from the first 

silencer that was not deposited in the second silencer was about 50% o f the tailpipe 

emissions after 2 minutes. This increased to 75% after 8 m inutes and was then 

reduced to 50% after 18-33 minutes. Thus, the exhaust deposits had a major role in 

determining the tailpipe emissions, just as they did at Idle. For the Set-2 results the 

exhaust pipe deposits had a greater role in the tailpipe emissions, accounting for 

80% o f the tailpipe emissions after 2 minutes. This was reduced to 50% after 7 

minutes and then increased again to 70% after 30 minutes.

For the Set 3 tests with the catalyst cooled to about 3°C, there was little 

deposition or blow-out from the first silencer. At the first cold-start sample, there 

was about 0.8g/kg fuel deposition in the second silencer, but this was rapidly 

reduced to negligible amounts by the time of the second particulate sample at 10 

minutes. These results showed that a cold catalyst appears to influence the 

particulate deposition downstream o f the catalyst in a way that decreases the



- 143 -

deposition in the exhaust system. This may be because at the lower catalyst 

temperature the hydrocarbon adsorber is more efficient and this produces a lower 

particulate SOF. This would then make the particles less sticky and hence with a 

reduced tendency to become part o f the deposition layer o f  the exhaust pipe 

surfaces.

At the 15kW condition, Figure 3.9., the mass storage and blow-out rates were 

lower than those at lOkW. For Set 1 tests, the initial blow-out rate was 25% o f  the 

storage rate in the catalytic converter. This decreased to nearly zero over the whole 

exhaust downstream o f the catalyst, between 5 and 15 minutes after the cold start. 

Subsequently there was a small increase in the overall blow-out rate over the exhaust 

pipe length downstream o f the catalyst. However, there was a large blow-out o f 

particulates from the first silencer and deposition in the second and the two rates 

were very similar, which was why the overall storage was low. This had a greater 

effect in the first few minutes after the cold start than at lOkW. The net blow-out o f 

particulates from the exhaust system was a lower proportion o f  the exhaust tailpipe 

emissions than at lOkW. However, the 15kW condition was not a sufficiently high 

exhaust velocity to clear out the exhaust, but it was very effective at moving 

particles from the upstream silencer to the downstream.

The Set-2 tests at 15kW had similar results to those o f  Set 1. Higher initial 

rates o f storage in the second silencer and blow-out from the first silencer occurred 

in the first five minutes and after 35 minutes. Between 5 and 25 minutes the 

movement o f particulates in the exhaust was less than 1 g/kg. Over all the exhaust, 

after the catalyst to the tailpipe, there was a net blow-out o f  particulates that 

averaged 1 g/kg. This was a very large fraction o f  the tailpipe emissions. In the first 

5 minutes 90% o f  the tailpipe emissions were accounted for by the blow-out o f 

particulates from the exhaust. The lowest overall exhaust blow-out rate occurred at 

13 minutes and this coincided with the minimum tailpipe emissions. However, the 

exhaust was undergoing mass deposition in the second silencer during this time and 

this was then followed by a blow-out at 35 minutes from the first silencer, not all o f 

which was deposited in the second silencer. This was responsible for the increase in 

the tailpipe emissions at 35 minutes.

W ith a pre-cooled catalyst and connecting exhaust pipe at 15kW, the 

particulate storage and blow-out in the exhaust system was relatively small. Most o f 

the deposition occurred across the catalyst. However, in the first 3 minutes there was 

a large mass deposition in the first silencer but a mass blow-out from the second 

silencer out o f the tailpipe. This was followed by a mass blow-out from both 

silencers after 8 minutes. The first silencer then had no further blow-out or
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deposition up to 33 minutes. However, there was a significant deposition in the 

second, cooler silencer over the period 10-25 minutes.

3.4.3. Particulate R em oval Efficiency o f  the Diesel Oxidation Catalyst 
with H ydrocarbon A dsorber

Particulate matter concentration can be reduced by the DOC with hydrocarbon 

adsorber in these ways:

• Storing particulates deposited on its walls by thermophoresis, diffusion or

inertial deposition.

• Adsorbing hydrocarbons from particles in its zeolite component during cold

start and cold operation o f the engine.

• Oxidizing hydrocarbons that are adsorbed on the carbon cores o f the particles

by its catalytically active component, Pt, during hot operation.

• Oxidizing gaseous hydrocarbons that could get adsorbed on the particles due to

cooling.

Combined mechanisms o f  deposition, adsorption and oxidation all contribute 

to the catalyst particle removal efficiency. As a combined unit, the catalyst 

efficiency is thus defined as the fraction o f particulate matter at the engine outlet that 

does not penetrate the catalyst due to those processes. An additional potential effect 

o f  the oxidation catalyst, as mentioned in the previous chapter, would be the 

generation o f new particles by H2SO4 • H20  nucleation, but since the sulphur content 

o f  the fuel used is so low, this contribution is negligible. These particle-removal 

catalyst efficiency results are shown in Figure 3.11.

3.4.3.1. Idle

During cold start at Idle with the catalyst starting at ambient temperature, the 

catalyst efficiency was over 70% in the first set o f  tests and over 90% in the second 

set. There was little dependence o f  the efficiency on time from the cold start, 

indicating a good retention o f  particles by the hydrocarbon adsorber during cold 

start. For 35 minutes there was no evidence that the particulate storage capacity o f 

the catalyst had been exhausted. The particle storage must be due to surface 

deposition on the very large surface area o f the catalyst, under conditions where the 

catalyst is not hot enough to oxidise hydrocarbons.

A different result was found when the catalyst temperature was 5-8°C when the 

test started. The catalyst efficiency for storing and oxidising particulates was only 

50% after 2 minutes, much lower than for the Sets 1 and 2 test sequences. 

Subsequently the efficiency was reduced to zero for 10-20 minutes after the cold
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start and then returned to 50% for 25-35 minutes. The reason for this unusual 

behaviour o f the catalyst with time as a particulate store is not known. It had been 

anticipated that the catalyst would more effectively store hydrocarbons and 

particulates when it was colder. Further work is required on the effect o f the catalyst 

initial temperature on particulate deposition.

3.4.3.2. Low speed and power (lOkW)

At 1500 rpm and 10 kW in the first set o f  tests, the catalyst efficiency was low 

(30%) during the first few minutes, increasing rapidly with time until it reached a 

maximum of about 85% after 10 minutes, with a decrease to 50% after 30 minutes. 

In the second set, the catalyst efficiency was over 90% during the first few minutes 

and decreased to a minimum o f around 75% after 15 minutes, showing a further 

increase over 80% towards the end o f the test, after 30 minutes. At 10 kW, the 

catalyst temperature was 350°C after 2 minutes. Hence, the main contribution to the 

catalyst efficiency was from a reduction in the gaseous hydrocarbons and hence in 

the particulate volatile fraction.

W hen the catalyst was cooled below 5°C prior to the test, the catalyst 

efficiency was much lower than when it was started at ambient temperature. This 

was the same trend as found at Idle for the 5°C catalyst temperature. Even though 

the exhaust temperatures after 5 minutes were not significantly different in both 

cases, the catalyst efficiency was well below the values for Set 2 at the same 

conditions.

3.4.3.3. High speed and power (15kW)

For the first set o f  tests, with the exhaust preconditioned the previous day by 

the 10 kW test and idle test the day before, The catalyst particulate removal was 

above 50% at all times, and was 75% for the first 15 minutes after the cold start. At 

15kW the catalyst was above 350°C after 2 minutes and hence most o f the efficiency 

would be due to oxidation by the catalyst. The 75% removal efficiency after the cold 

start could have been increased due to particulate deposits during the two minutes 

the catalyst was not at its light-off temperature.

For the Set-2 tests at 15kW, with preconditioning the previous day at 15 kW, 

the initial cold start results had a catalyst removal efficiency o f 90% in the first two 

minutes. This was probably contributed to by large particulate deposition on a 

catalyst that was cleaned prior to the test by operation above 350°C the previous day.
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Figure 3.11. Catalyst particle removal efficiency during cold start at various 
conditions.
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After five minutes the catalyst particulate removal efficiency had fallen to 70% 

and then 50% after 13 minutes. It is not clear why the efficiency should be different 

once the catalyst had lit o ff for Sets 1 and 2 tests and this needs further investigation.

W ith the catalyst pre-cooled at 3°C, its initial removal efficiency was very low, 

only 10% after two minutes. The main difference from the test o f Set 2 was that the 

prior test was idle rather than 15kW. At idle the Set 2 tests had over 90% removal 

efficiency. This was due to particulate deposition and adsorption o f  hydrocarbons. 

This state o f  the catalyst produced then little trapping capability for the 15kW test, 

and possibly the blow-out o f  the previously stored particulates from the idle test. 

The influence o f  the 3°C catalyst temperature was small in comparison with the 

influence o f  the previous history o f  the operation o f  the catalyst. Once the 15kW 

high exhaust temperatures had heated the catalyst and desorbed the hydrocarbons 

and particulates the catalyst particulate oxidation efficiency reached 70% and then 

roughly followed the Set-2 efficiency results.

3.5. Chem ical com position by TGA

Particulate filters were collected with the Richard Oliver Particulate Mass 

Determination Instrument during cold-start tests at idle and at 2250rpm - 15kW, as 

well as with Andersen Impactors at steady-state conditions at 2250rpm - 15kW. The 

filters were analysed for their chemical composition using the TGA instrument. The 

results are presented as SOF and carbon fractions. In this section, the carbon fraction 

will be used as the param eter to evaluate the changes in particulate composition 

against the time from cold start and the location in the exhaust. It is expressed here 

as a percentage o f the total mass fraction lost in the TGA, i.e. Carbon + SOF. This 

does not correspond to the total particulate mass, since the ash was not taken into 

account owing to errors in the laboratory procedure. Therefore any change in the ash 

fraction was not detected. According to Ahamed (Ahamed, 1999), the ash fraction in 

the exhaust particulate from the same engine was as low as 2%. The author has 

estimated that it may rise up to 14%, and at idle conditions it may be as high as 50%.

3.5.1. Chemical composition vs. particlc size

The particulate collection with the Andersen Impactors was carried out at 

2250rpm -  15kW at the four selected points along the exhaust system, for a period 

o f  two hours with the impactors in an oven at 100°C. A portion o f  each particulate 

filter was cut and analysed in the TGA instrument, following the procedure 

explained in Chapter 2.
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Particulate carbon content during cold start
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Figure 3.12. Exhaust particulate carbon content vs. particle size and location in the
exhaust. 2250rpm - 15kW.

Figure 3.12. shows the results o f  the analysis as carbon content for the 8 stages 

o f  each impactor. The corresponding carbon size distribution, calculated from the 

Emission Index and the TGA carbon content is shown in Figure 3.13. For all the 

stages, the carbon content decreased with increasing particle size. Its maximum was 

65% to 70% for particles collected on the back filter (smaller than 0.4|jm  

aerodynamic diameter), and particles above 0.7|im  have a carbon content not higher 

than 45%. Above 4.0|im , the carbon content was 15% or less. This decrease in the
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carbon content indicated that particle growth in the range measured was due to 

condensation o f  volatile material.

The particles experienced changes in the carbon content as they pass through 

the exhaust system. In all the stages, the carbon content increased through the 

catalyst, owing to oxidation or storage o f  the hydrocarbons that form the SOF, and 

then consistently decreased through the silencers. This was evidence that a fraction 

o f  the particulate SOF was transformed by the catalyst, and that further hydrocarbon 

condensation occurred as the exhaust aerosol cooled down through the silencers.

Carbon Emission Index Size Distribution
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Figure 3.13. Particulate Carbon Emission Index size distribution at 2250rpm - 
15kW.

3.5.2. Cold start at Idle

Particulate mass filters collected at four points through the exhaust system, at 

various times during cold start, were analysed with the TGA instrument using the 

procedure explained in Chapter 2.

The exhaust particulate carbon content during cold start at idle conditions was 

below 15% for the totality o f  samples, as observed in Figure 3.14. At the start o f  the 

cold start, the carbon content o f the particulate at the entrance o f the exhaust system 

was just 7.1%. Through the catalyst, it increased to 12.5%, owing to the 

transformation o f  some o f  the particulate SOF. There was no significant change 

through the first silencer, but through the second silencer, the carbon content 

decreased to 10.1%, indicating that SOF condensation occurred mainly through the 

second silencer, which was colder than the first silencer.
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Particulate carbon content during cold start
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Figure 3.14. TGA particulate carbon content during cold start at idle conditions.

At five minutes from the cold start, the carbon content had decreased to 5.0% 

upstream o f the catalyst, 7.9% downstream o f  the catalyst, 6.4% upstream o f  the 

second silencer and 8.1% downstream o f the second silencer. The increase in carbon 

content through the second silencer might have been due to some particulate 

resuspension since, as seen above, that carbon content should have decreased 

through the second silencer.
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From  10 minutes onwards, the carbon content throughout the system was very 

low, just around 0.2% upstream o f the catalyst, 1.6% downstream o f  the catalyst, 

and 0.5% downstream o f the silencers.

Particulate carbon  c o n te n t  during co ld  start
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Figure 3.15. TGA particulate carbon content during cold start at 2250rpm - 15kW.

3.5.3. Cold start at 2250rpm -1 5 k W

The particulate carbon content at the cold start, as observed in Figure 3.15. was

12.5% at the exhaust system entrance. The analysis o f the sample downstream o f  the

catalyst was, unfortunately, unsuccessful, but the evidence suggests that the
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particulate carbon content increased through the catalyst to not less than 25%, which 

was the value upstream o f  the second silencer. Through the second silencer, the 

carbon content decreased to 19.7%.

The carbon content decreased with time from cold start, so after 5 minutes it 

was lower than 8.7% upstream o f  the catalyst and between 9% and 10% downstream 

o f  the catalyst. Upstream o f the second silencer, however, the carbon content had a 

minimum at 5.9% at five minutes from cold start, then increasing to 12.9%. 

Downstream o f the catalyst, the carbon content was 12.5% at five minutes.

The values found for the particulate content o f the mass filter samples once the 

stabilisation condition has been reached, around 12%, were very low when 

compared to those measured for the Andersen Impactors at the same engine 

operation conditions, which suggested an overall carbon content not lower than 

50%. This difference was presumably due to the difference between collection 

temperature used for the Andersen Impactors and that used in the Richard Oliver 

mass determination technique. At a temperature o f 100°C, the particulate collected 

on the Andersen Impactor substrates included much less condensable material than 

the particulate on the mass filters, collected at 52°C. As a result, the relative amount 

o f  carbon in the Anderson samples became higher than in the mass filters. Therefore, 

a direct comparison between the carbon content o f the samples from these 

techniques was unreasonable.

3.6. Total N um ber Concentration, M ass Concentration and Particle 
Size Distribution Changes Through the Exhaust System During 
Cold Start Using the ELPI

The engine cold start introduces a disturbance into the exhaust system and the 

particle deposits o f  its walls, bringing them from a cold, quiet rest to a vibrating, 

warm state, in which they interact with the flowing exhaust aerosol. Its transient 

effects, as measured with an ELPI on a second-by-second basis, are described in this 

section.

Before starting the analysis, however, it is necessary to explain the 

implications o f assumptions and limitations inherent to the use o f the ELPI to 

produce particle mass distributions.

In the aerodynamic classification o f  aerosols, the diam eter o f  a particle is the 

equivalent diam eter to that o f a unit-density sphere with the same aerodynamic 

mobility as the particle in question. Therefore, the mass o f a particle deposited on a 

stage with a defined aerodynamic diam eter range is calculated as follows:
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mP = P, being pp the particle density, that is, unit-density in

assumptions for aerodynamic sizing. The real particle density, however, is not 

known, but has an effect on the resulting size distribution (Maricq, 1998; Ahlvik, 

1998; Moisio, 1997).

The particle mass distribution, calculated using the above expression involves 

the potential risk o f  exacerbating any small error in the detection o f large particles, 

i.e. 1.0|im to 10.0|im; only one lOjim particle extra detected by an electrometer o f 

the ELPI is 10<! times as heavy as a 0.1 jam particle and 109 times as heavy as a 

0.01 (am particle. In addition, the ELPI has potential calibration and detection 

problems in the large size range. Therefore, the mass distribution is very likely to be 

unreliable in a num ber o f cases. In order to make the data useful for the purposes o f 

this research work, a correction is attempted, as described in Chapter 6. Hence, the 

mass-distribution change analysis shown from this point onwards will use both the 

uncorrected and corrected mass calculated from ELPI number concentrations. 

Although both are mentioned, the author, anticipating one o f  the conclusions, will 

consider the correc ted  values as the most realistic from this point on, since they are 

closer to the gravimetric mass determination. The reader is asked to take this into 

account when examining the results. A detailed comparison with gravimetric results 

will be found in Chapter 7.

Another point that is worth m entioning at this point has to do with the various 

size-dependent phenomena taking place as a result o f  the interaction between the 

exhaust aerosol and the system walls. In the analysis, particles will be evaluated in 

three groups, corresponding to size ranges that show differences in particle growth 

and transport behaviour, since they are affected differently by physical processes, as 

observed in Chapter 1. These groups will be referred to as ultrafme or very fine 

particles (<0.01 (am), mid-sized particles (0.1 to 1.0 (im) and large particles (1.0 to 

10.0 jim). W ithin the ultrafme size range, a subgroup o f nanoparticles will 

occasionally be mentioned. Throughout the description o f the tests results many 

examples o f  the complex combination o f  the various physical processes will be 

observed. They will involve the increase or decrease in particle number and mass 

concentrations o f  the exhaust aerosol through the exhaust system devices.

In the fine size range, the increase in the number o f  particles may be due to the 

formation o f new particles by nucleation, particularly at low temperatures, although 

the extent at which this occurs with a low-sulphur fuel is very limited. In the fine 

size and mid-size ranges, particles grow by coagulation, and this also results in an 

increase in the number o f particles. The ELPI does not detect particles under
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0.035|im , but if  these grow by coagulation, the num ber o f  particles between 

0.035jam and 1.0|am will increase as a result. Coagulation virtually stops occurring 

over 1.0|J.m. Therefore, any increase in the number o f large particles is due to 

reentrainment o f  deposits from the exhaust system deposits. Reentrainment does not 

occur for particles smaller than 1.0|im, so this size becomes a clear limit in the 

consideration o f  physical processes affecting the interaction between the exhaust 

aerosol and the exhaust system walls.

On the other hand, the decrease in the particle number concentration is due to 

deposition, which can occur at all size ranges, and coagulation in the fine and mid­

size ranges. Deposition will be mostly thermophoretic for very fine particles; 

gravimetric and inertial for large size ranges; and a combination o f  both for mid­

sized particles.

3.6.1. Idle

The lowest degree o f  disturbance is reached when the engine is just started and 

no further acceleration is applied. Particulate number and mass emissions during 

cold start with no further acceleration showed the following characteristics, common 

to all sampling points:

• An initial mass burst for the first five seconds o f  start, represented by a 

local particle mass concentration peak with time, followed by a 

decrease to a much lower level.

• An increase in particle number concentration, having a peak 10 to 15 

seconds after the initial mass peak. At about the same time, a second 

mass peak appeared, although not necessarily similar to the first mass 

peak.

• A decrease in number and mass concentration to stabilisation levels.

Figure 3.16. shows the total num ber and mass concentration for all four 

sampling points against time. They show the different events described above and 

the point-to-point differences in mass and number concentration, particularly in the 

number-peak event. However, the concentration changes analysis is better visualised 

in a simplified chart for total number and mass concentration, as shown in Figure 

3.17., plotting the total number and mass concentration changes against the position 

in the exhaust. Each line in this figure represents a cold-start event.
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Figure 3.16. Total num ber and mass concentrations through the exhaust system
against time during cold start at Idle, a) Concentrations at sampling points.
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Figure 3.16. Total number and mass concentrations through the exhaust system 
against time during cold start at Idle, b) Detail o f  concentrations at sampling 
points during stabilisation.
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Particulate Blow-out (Number) through the Exhaust System. Cold 
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Figure 3.16. Total number and mass concentrations through the exhaust system
against time during cold start at Idle, c) Blow-out through the system.
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During the first mass burst, the particle number concentration upstream o f the 

catalyst was just over 4.0x10C’ cm"3, decreasing to just above one tenth o f this value 

when passing through the catalyst, 4 .7x l05 cm '3. This level increased by 10% 

through the first silencer, and increased through the second silencer to 7.5x105 cm’3, 

that is, a 50% increase. According to this, a great num ber o f  particles grew by 

coagulation, deposited and/or were adsorbed through the catalyst, and a much 

smaller number o f  particles were reentrained from the deposition layer on the walls 

o f  the second silencer, as a consequence o f the first disturbance to the system.

The decrease in number concentration through the catalyst during this event 

occurred for all size ranges measured; the decrease was much more significant for 

particles between 0.1pm and 0.5pm. In contrast, through the first silencer, the 

num ber o f particles between 0.1 pm  and 10pm increased as a result o f  particle 

growth by coagulation and particle blow-out from the walls, respectively, in the first 

mass burst event. The contribution o f these particles was very significant to the total 

particle number concentration downstream o f  the silencer, which nearly doubled that 

upstream. Finer particles, between 0.030pm  and 0.2pm, increased in number 

through the second silencer, most likely by coagulation o f  smaller particles and 

condensation o f volatile species, thus accounting for the 50% increase in particle 

number in the exhaust. About 5% o f  the larger particles entering the second silencer, 

in contrast, deposited through the device.

This first analysis showed that the simplest disturbance originated by the cold 

start has a complex effect on the transient growth (by coagulation and condensation), 

adsorption, deposition and re-entrainment o f  particles o f  different sizes through the 

exhaust system. Each device showed a different effect on the particle growth, 

deposition or blow-out, not coincident even in the size o f particles being deposited 

or reentrained. Naturally, the significance o f  the fine particles, that is, particles in the 

0.030pm  to 0.2pm  range, is larger when analysing changes in particle number 

concentration, owing to the characteristics o f  the number size distribution. But no 

single trend seemed to appear.

The uncorrected Emission Index decreased from 33.6 g/kg fuel upstream o f the 

catalyst to 9.99g/kg fuel downstream o f the catalyst. A new increase to 24.5g/kg fuel 

occurred through the first silencer and then it decreased again to 11.9g/kg fuel 

through the second silencer. The corresponding corrected Emission Index were 

3.4g/kg fuel to 0.8 g/kg fuel through the catalyst, then up to 1.6 g/kg fuel through the 

first silencer, and down again to 1.0 g/kg fuel through the second silencer.

3.6.1.1. First mass burst
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Figure 3.18. Particle size distributions for the first mass burst at various points
through the exhaust system (Idle).
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The effect o f the correction on particle mass concentration along the exhaust 

system when converting particle number concentration in the calculation process is 

shown in the mass distribution charts o f  Figures 3.18. and 3.19. The total mass 

concentration expressed as Emission Index, g/kg fuel, became one order o f 

magnitude lower when using the correction, being more significantly affected by the 

calculated mass o f particles in the large size range. This is the origin o f the initial 

disagreement between the Emission Index calculated from numbers and that 

measured gravimetrically. The use o f  the uncorrected function attributes most o f the 

mass to particles larger than 0.5pm , and therefore it is this size range in which 

significant deposition and release changes are found. In contrast, the use o f  the 

corrected function estimated that total particle mass as well as mass changes in the 

middle size range, 0.1 to 1.0pm, were as significant as the mass o f  large particles.

During the first mass burst, the catalyst adsorbed about 70% o f  the total 

particle mass, as calculated by either corrected or uncorrected functions, which was 

in agreement with the reduction in total particle number. M ostly the deposition o f 

large particles contributed to this change, although the corrected function suggests 

that mass changes in the middle size range were also significant.

The particle blow-out through the first silencer was also observed in particle 

mass, being more significant when using the uncorrected conversion into mass: 

150% against 50% increase in total mass through the silencer. Contrary to the blow­

out expressed number, which was due to middle sized particles, the change in mass 

was invariably due to large particles, with a small contribution, 15%, o f  middle- 

sized particles, when using the corrected mass conversion.

The increase in particle num ber through the second silencer was strongly 

affected by the conversion into mass. M iddle-sized and, mainly, large particles were 

actually deposited, so the total particle mass decreased through this silencer. The 

increase was more likely due to particle growth towards 0.030pm to 0.050pm 

particles than to fine particle blow-out.

In summary, the significant changes through the exhaust system during the 

first mass burst event were:

• particles deposited and coagulated through the catalyst with 

hydrocarbon adsorber;

• very fine particles became part o f  the deposition layer and large 

particles were released from it through the first silencer; and

• large particles deposited through the second silencer. Through the same 

device, ultrafme particles (around 0.030pm) were formed by gas-to-
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particle conversion (nucleation by condensing species) and coagulation 

o f  these ultrafm e particles owing to exhaust cooling.

3.6.1.2. Peak particulate em issions by num ber

The particulate num ber peak showed some problems in the electrical detection 

o f the particle current by the ELPI. The instrument's software is designed to correct 

the original current for fine particle losses by subtraction, so when the correction is 

as large or larger than the original current itself, a correction warning is produced, as 

negative currents are generated. Then, the corrected currents, and therefore the 

particle num ber concentration and emission index, adopt a zero value. This problem 

was unfortunately seen quite often in the large size range, 1.0pm to 10.0pm, during 

very rapid m ajor transients, for example, the number-peak event during cold start 

with no acceleration, Figure 3.20. Total number concentration was normally not 

affected by this problem, since the largest numbers were in the fine size range, but 

mass concentrations could have been affected, since they were normally strongly 

biased towards particles in the large size range.

The high reduction in particle number through the catalyst persisted during the 

number-peak event: only 33% o f  the 1 .2x l07 cm '1 penetrated the catalyst. Particles 

between 0.030pm  and 1.0pm deposited, but no data were available for larger 

particles owing to transient detection problems, as explained above. In contrast, 

there were more particles downstream o f the first silencer than upstream o f  it, owing 

to particle growth and blow-out. The particle number increased by 300% through the 

silencer, to 1 .6xl07 cm'3. An extrapolation o f  the size distribution curves in Figure 

3.20. may well suggest that larger particles were blown-out, although the exact 

numbers were not measured.

The second silencer acted during this event in a very similar way to the 

catalyst, particle number concentration decreasing to 4.0x10(> cm '3, which was a 

reduction by 75%. The total particle mass concentration and the particle mass 

distribution showed the same trends as their number equivalent, but this can not 

easily be taken as a certain result, owing to the lack o f  data in the large size range. 

However, it was observed that only the corrected values are in the same order o f  the 

gravimetrically determined Emission Index, whilst the uncorrected values were one 

order o f  magnitude higher.

In brief, the number by peak event o f  the cold start at idle provided evidence o f 

particle deposition, both thermophoretic and gravitational, through the catalyst and 

the second silencer. Particle blow-out occurred in the first silencer. Apparently, the 

deposition layer in the first silencer was more fragile than that in the second silencer 

or the thermal shock in the deposits in the first silencer was greater than in the
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second. The particle size distribution shifted slightly towards smaller sizes through 

the exhaust system. The uncorrected Emission Index tended to overestimate the 

gravimetric results and the corrected Emission Index to underestimate them.

3.6.1.3. S tab ilisa tion

Total num ber and mass concentration decreased with time at all sampling 

points after the number-peak event, until they reached a stabilisation level. This 

reduction was by 40% downstream o f the catalyst and downstream o f the second 

silencer, and nearly by 90% upstream o f  the same devices. The changes observed 

through the exhaust system after the stabilisation were much smaller than those in 

the previous events, so the total number and mass concentration profiles against 

position in the exhaust in Figure 3.17. look quite flat, at very similar concentration 

levels. However, there were still differences that could contribute to have an effect 

over the deposition layer if this condition was kept for a long period.

After reaching the stabilisation period at about 2 minutes from the cold start, 

both total number and mass concentrations increased through the catalyst by around 

30%, from 1.7xl06 cm '3 to 2 .2 x l0 6 cm"' and from 0.42 g/kg fuel to 0.54 g/kg fuel 

(corrected 0.133 g/kg fuel to 0.169 g/kg fuel), respectively. The increase in number 

concentration was due to a blow-out o f large particles from the catalyst surface, and 

nucleation -  coagulation processes in smaller size ranges. The change in mass, when 

using the uncorrected conversion, had a significant contribution o f  large particles, 

around 8pm, and, less importantly, particles around 0.2pm, as observed in Figures 

3.22. and 3.23. Nevertheless, the corrected conversion diminished, without 

neglecting, the significance o f large particle contribution, so the mass released was 

estimated to be mostly due to particles around 0.2pm.

When passing through the first silencer, 6% o f the particles -by number- were 

reduced, 14% by mass was deposited without correction and 9% by mass was 

deposited with the correction. The concentrations downstream o f this silencer were 

then 2 .1 x l0 6cm’3, and 0.47 g/kg fuel or 0.15 g/kg fuel, respectively. The reduction 

by deposition occurred for all sizes, and, as in the analysis o f the blow-out through 

the catalyst, it was more significant in the very fine and middle-size ranges by 

number, in the large and middle size ranges by uncorrected mass and in the middle 

size range by corrected mass. Again, the significance o f the large particles on the 

total uncorrected mass change diminished when including the corrected conversion.
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Figure 3.22. Particle size distributions for the stabilisation event at various points
through the exhaust system (Idle).
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Through the second silencer, the aerosol showed a very similar behaviour to 

that through the catalyst after the stabilisation at idle. Number, uncorrected and 

corrected mass increased by 11%, 24% and 15% respectively, the concentrations at 

the tailpipe being 2.3x106cm"3, 0.58g/kg fuel and 0.18g/kg fuel, respectively.

To sum up, the stabilisation period o f the cold start with no acceleration 

showed all the devices behaving differently from the critical transient events o f the 

first mass burst and the num ber peak. Particles were released from the catalyst and 

the second silencer, and deposited on the walls o f the second silencer. No significant 

change occurred in particle size distribution. The corrected Emission Index was 

closer to the gravimetric results than the uncorrected Emission Index.

3.6.2. 1500 rpm and 10 kW

To the basic disturbance to the exhaust system during cold start analysed in the 

previous section, which did not involve any acceleration o f the engine, a new 

disturbance was introduced, to observe the changes in particulate emissions. The 

acceleration was applied just after starting the engine, until the target conditions o f 

1500rpm and lOkW were reached. This will be referred to as a low-power condition. 

Owing to the slowness o f the hydraulic dynamometer when using automatic control 

o f  the throttle, the manual acceleration was preferred, since a rapid acceleration is 

needed to produce a more realistic effect. This practice, however, involves the 

potential risk o f  reducing the repeatability o f the experiment, because a manual 

operator is very likely to actuate on the throttle at a different speed in every test, 

which in real driving would correspond to different levels o f  aggressiveness. As it 

will be shown, the effect o f  different acceleration speeds due to manual operation 

was manifested as a lack o f  synchronization o f  the various events along the exhaust 

system or an introduction o f apparent irregularities in the concentration profiles with 

time.

The cold start with acceleration to low-power conditions showed, at all 

sampling points, total particle number and mass concentration profiles with the 

following characteristics against time (Figures 3.24. and 3.25.):

• an initial mass burst during the first few seconds from start;

• a peak in total number concentration, between 30 seconds and one 

minute after the mass burst;

• a valley following the peak by number, which had a tendency towards 

stabilisation in total particle number and mass, from 2 to 5 minutes 

from start; and,



- 170 -

Particle Number Concentration Through the exhaust system vs. time, 
1500rpm@10kW

Time [m in]

U/S C a t.-------- D/S Cat. -----------U/S 2nd. Sil. ---------- D/S 2nd. Sil.

Uncorrected Emission Index through the exhaust system vs. time, 
1500rpm@10kW

Time [min]

U/S C a t.-------- D/S C a t . ............U/S 2nd. Sil. --------- D/S 2nd. Sil.

Corrected Emission Index through the exhaust system vs. time, 
1500rpm@10kW

Time [m in]

U/S C a t.-------- D/S C a t. ........... U/S 2nd. Sil. D/S 2nd. Sil.

Figure 3.24. Total number and mass concentrations through the exhaust system
against time during cold start at 1500rpm -  lOkW. a) Concentrations
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Particulate Blow-out (Number) through the exhaust system vs. 
time, 1500rpm@10kW
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Particulate Blow-out (Uncorrected Emission Index) through the 
Exhaust System vs. time, 1500rpm@10kW
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Particulate Blow-out (Corrected Emission Index) through the 
Exhaust System vs. time, 1500rpm@ 10kW

<
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Figure 3.24. Total number and mass concentration changes through the exhaust
system against time during cold start at 1500rpm -  lOkW. b) Blow-out
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•  a new slow increase in total num ber and mass concentration, after 

which a new stabilisation level appeared to be reached, at 15 minutes 

from cold start.

The first three events were analogous to those observed during cold start 

without acceleration, the valley corresponding to the stabilisation at idle. The 

increase after minute 5 from cold start was a new feature introduced by the engine 

acceleration, and it was due to the opening o f  the EGR valve. This event was 

observed only in two o f  the four sample points, namely upstream o f  the catalyst and 

upstream o f  the second silencer, which was considered as evidence that the EGR 

valve opening was not reproducible during the various repeat tests. The valve 

opening responds to a complex set o f parameters in the engine control strategy, and 

one or more o f  such parameters may have not been met when running the tests in 

which the valve did not open. Nevertheless, this part o f the present work will 

analyse cold start only, so it will be restricted to the first 5 minutes from start, before 

the increase event took place.

3.6.2.1. First mass burst

As in the test at 1500rpm - lOkW, the first seconds o f the cold start showed at 

all points an initial mass burst. The total particle number concentration o f the 

exhaust aerosol coming out from the turbocharger in that period was just 2.2x10s 

c m '\  giving a mass concentration o f 31.1 g/kg fuel (uncorrected) or 2.1 g/kg fuel 

(corrected). The number concentration an Emission Index increased to 

9.86x105/cm 3, 68.8 g/kg fuel (uncorrected) and 4.2 g/kg fuel (corrected), 

respectively, through the catalyst, corresponding to a 339%, 121% and 104% 

increase, also respectively.

Large particles were released and many fine particles were formed by very 

rapid nucleation-condensation-coagulation combined processes. This differed with 

the same event in the test at Idle, in which particles were not blown out as in this 

case, but deposited through the catalyst, although the conditions were not very 

different in these first few seconds. Blow-out o f  large particles, 5.0fim to 8.0|im, 

was significant even when calculating Emission Index with the corrected 

conversion. This is observed in Figures 3.26. and 3.27.
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Owing to the still low temperatures, fine particles were formed from the first 

silencer in this event, increasing the total number concentration by 135%, to 2.3x106 

cm '3. In contrast, the total mass concentration calculated with the uncorrected 

conversion decreased to 57.1 g/kg fuel, by 17%, owing to the deposition o f particles 

larger than 5.0|im. The use o f the corrected function, however, reduced the 

significance o f the large-particle mass deposition, making the overall mass 

concentration to increase by 15%, to 4.9 g/kg fuel downstream o f the silencer. It is 

clear, then, that there was a different behaviour o f particles in different size ranges, 

fine particles were formed through the silencer and large particles deposited 

presumably by gravimetric and inertial separation.

A 30% increase in particle number concentration took place through the 

second silencer, to 3 .0 x l0 6 cm’3 at the tailpipe. The mass concentration also 

increased, by 8% and 3% with and without the corrected conversion, respectively. 

This was equivalent to 61.9 and 5.0 g/kg fuel. The behaviour o f the particles through 

this silencer was very similar to that through the catalyst, even in the size o f particles 

released, mainly around 0.2jam by number and 0.5|im  by mass. Nevertheless, 

particles between 0.8|im  and 1.2fim were actually deposited through the silencer, 

although not as significantly to affect the overall mass change.

In summary, the first mass burst event o f the cold-start test with acceleration to 

1500rpm and lOkW showed that, unlike the cold-start in the Idle test, a particle 

blow-out from the catalyst and the second silencer occurred. The apparent similarity 

in the behaviour o f  the particles through these two devices, as well as the opposite, 

off-phase behaviour through the first silencer as already observed during the cold- 

start test at idle, were confirmed.

3.6.2.2. Peak  by n u m b er

The aerosol leaving the turbocharger during the number-peak event had a total 

concentration o f 1 .5xl08 cm '3, one order o f magnitude higher than the corresponding 

number concentration in the cold-start test at Idle. This converted to a 14.1 g/kg fuel 

(uncorrected) or 3.3 g/kg fuel (corrected) Emission Index. Through the catalyst, the
7 ^number concentration was reduced by 50%, down to 7.6x10 cm"', owing to the 

deposition and coagulation o f very fine particles, those below O.lftm. Particles larger 

than this size were blown out, but their number concentration was not significant 

compared to that o f  the very fine particles. Their effect on the total mass 

concentration, however, was important, changing the decrease in number for an 

increase by 38% (up to 19.4 g/kg fuel, uncorrected) or 12% (up to 3.3 g/kg fuel, 

corrected) in particle mass through the catalyst. The particle size distribution shifted 

towards larger sizes through this device.
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Particle num ber concentration continued decreasing through the first silencer,
7 3this time by 31%, to 5.2x10 cm ' downstream. Fine particles, below 0.1pm, grew, 

and the particle size distribution shifted towards larger sizes in the middle-size 

range. Particles larger than 1.0pm were deposited. This deposition was likely to be 

thermophoretic. Such behaviour differences among particles in different size ranges, 

shown in Figures 3.28. and 3.29., caused uncertainty in the net effect on total 

particle mass concentration. I f  the uncorrected conversion to mass is used, the 

particle mass showed to decrease by 44%  (down to 10.9 g/kg fuel), owing to the 

deposition o f large particles. In contrast, the corrected conversion to mass reduces 

the significance o f this deposition and increased that o f the middle-sized particles 

that were formed and/or blown-out, so the total particle mass showed to increase by 

167%, up to 8.8 g/kg fuel. This is a m ajor question mark in the use o f the ELPI to 

determine transient mass emissions, owing to the trend to overestimate the number 

o f  large particles, which account for most o f  the mass when constant density 

throughout the size range is assumed.

The deposition and blow-out patterns through the second silencer differed 

greatly from those found through the previous devices during the number-peak 

event. Fine and large particles were blown out from the silencer, whereas middle- 

sized particles deposited on its walls. As a result, the total number concentration 

decreased to 4.1x107 cm '3 (21% decrease), and the total mass increased to 11.4 g/kg 

fuel (4% increase) when using the uncorrected conversion to mass, although it 

actually decreased to 3.0 g/kg fuel (66% decrease), if it is calculated with the 

corrected conversion.

In summary, during the number-peak event o f  the cold-start test accelerating to 

1500rpm and lOkW the behaviour o f  the aerosol particles was size-dependent, and it 

may be possible now to associate the change in behaviour to different size- 

dependent deposition and reentrainment mechanisms. The parallel behaviour o f  the 

fine and middle size particles through the catalyst and the first silencer, differing 

from that through the second silencer, suggests a relationship with the temperature 

level, -h igher in the former devices, lower in the latter-, enhancing the 

thermophoretic force. Unlike their fine and middle-sized counterpart, large particles 

showed a parallel behaviour through the catalyst and the second silencer, so a 

different mechanism affected them. Large particles are less strongly affected by 

thermophoresis than their finer counterpart. Therefore, flow characteristics 

determined their deposition and reentrainment patterns. The parallel behaviour, in 

this case, occurred between the catalyst and the second silencer. This parallelism 

was observed previously, when the conditions were also more favourable to flow 

effects than they were to thermophoretic effects at all sizes.
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Figure 3.28. Particle size distributions for the peak num ber at various points through
the exhaust system (1500rpm -  lOkW).
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3.6.2.3. Valley a fte r  peak

The valley-after-peak event at the 1500rpm lOkW condition was equivalent to 

the stabilisation event at idle. The total particle number concentration leaving the 

turbocharger was 5 .7 x l0 7 cm '3, roughly 30% o f  the number concentration at the 

same sampling point in the number-peak event. The corresponding Emission Index 

was 12.0 g/kg fuel (uncorrected) or 3.1 g/kg fuel (corrected). The total number 

concentration decreased through the catalyst by 39%, to 3.5x107 cm '3. Similarly, the 

total mass concentration decreased by 54% (to 5.5 g/kg fuel, uncorrected) or 36% (to 

1.9 g/kg fuel, corrected). This decrease in total number and mass concentration 

occurred for all size ranges, except those around 0.5|im , which did not change their 

concentration through the catalyst.

Through the first silencer, total number concentration decreased to 3.4x107 cm ' 

3 (2% decrease). The mass concentration, however, increased to 6.7 g/kg fuel (22% 

increase, uncorrected) or 2.5 g/kg fuel (31% increase, corrected). Only very fine 

particles, below 0.1 pin, deposited and coagulated through the silencer, accounting 

for the decrease in particle number. Larger particles, in contrast, were blown out, 

therefore increasing the mass concentration downstream o f  the silencer. The number 

and mass concentration o f  particles around 0.2|im  -  0.3pm barely changed. The size 

distribution shifted slightly towards larger particle sizes (Figures 3.30. and 3.31).

Particles deposited through the second silencer during this event. The number 

concentration decreased by 28%, to 2.5x107 cm '3, as the particle emission index did 

by 22% or 18%, that is, to 5.3 g/kg fuel (uncorrected) or 2.1 g/kg fuel (corrected), 

respectively. As in the case o f  the catalyst, the deposition occurred for all size 

ranges. The concentration o f particles around 0.2pm, however, barely changed.

In summary, particle deposition occurred through the catalyst and the second 

silencer at 1500rpm lOkW condition during the apparent stabilisation period after 

the peak number. Through the first silencer, a decrease in the number o f  very fine 

particles indicated deposition and growth by coagulation. Larger particles were 

blown out from the first silencer.



- 181 -

Valley after peak

—  1.0E+08 - 
* |  1.0E+07 - 
o  1.0E+06 - 
H  1.0E+05 - 
.g- 1.0E+04 - 
cn 1.0E+03 
:§ 1.0E+02
2  1.0E+01 
-o 1.0E+00

0.01 0.10 1.00 10.00

Da [m icrons]

 ♦ U/S Cat. a — D/S Cat.
 *  U/S 2nd Silencer ------------- D/S 2nd Silencer

Valley after peak

XQ)TJ
C.
C :o 
<n 
£ : UJ
D)>
<

1.E+02 -

~o 1.E+01
o
o

1.E+00
Q) 1.E-01
o 1.E-02
o
c 1.E-03 -
3 1.E-04 - 

1.E-05 -
0.01 0.10 1.00 

Da [m icrons]

10.00

— *-----U/S Cat.
— x—  U/S 2nd Silencer

D/S Cat.
D/S 2nd Silencer

Valley after peak

I  S -oC/) 0

" i S
O) t,—J o 

< -o

£
LU

1.E+01
1.E+00

1.E-01
1.E-02
1.E-03

1.E-04 -

1.E-05
0.01 0.10 1.00 

Da [m icrons]

10.00

-•-----U/S Cat.
-x—  U/S 2nd Silencer

D/S Cat.
D/S 2nd Silencer

Figure 3.30. Particle size distributions for the valley-after-peak event at various
points through the exhaust system (1 5 0 0 rp m - lOkW).
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During the test at 1500rpm lOkW, the EGR valve opened after 5 minutes from 

cold start. By then, the temperatures along the exhaust system had reached steady 

state and the catalyst had lit off. Therefore, the cold start period could be considered 

term inated and the analysis o f the changes in this period done. However, the total 

particle number and mass concentration levels after the EGR valve opened were 

significantly higher than those during the apparent stabilisation in the valley-after- 

peak event described above. For this reason, the new event is presented and 

discussed here.

After the EGR valve opened, the total particle number concentration o f the 

exhaust leaving the turbocharger reached a new stabilisation at 7.0x107 cm ', 25% 

higher than the previous stabilisation with the EGR valve closed. The corresponding 

Emission Index was 2.5% higher than the previous stabilisation, 12.3 g/kg fuel, 

uncorrected; or 36% higher than the previous stabilisation, 4.2 g/kg fuel, corrected). 

Through the catalyst, the number concentration decreased to 5.5x107 cm '1 (22% 

decrease). In contrast, the Emission Index increased to 14.5 g/kg fuel, uncorrected 

(18% increase) or 20.6 g/kg fuel, corrected (28% increase). Particles smaller than 

0.1 (im deposited and coagulated, changing greatly the number concentration, 

whereas a few particles larger than 0.1 (im, with a large mass, were blown out, this 

being the reason for the change in trend between total particle number and total 

mass.

Total number concentration increased through the first silencer by 34%, to 

7.3x107 cm '3. The corresponding increase in Emission Index was by 42% or 54%, to 

20.6 g/kg fuel (uncorrected) or 13.1 g/kg fuel (corrected). Particles o f all sizes were 

blown out, with the exception o f those around 40nm, which did not change in 

number or mass.

Through the second silencer, the total number concentration decreased to 

4.3x107 cm '3 (41% decrease), which converted to an Emission Index o f 13.1 g/kg 

fuel (37% decrease) or 5.5 g/kg fuel (33% decrease). Particles o f  all sizes deposited 

through the silencer. (Figures 3.32. and 3.33.)

In summary, after the EGR valve opened, large particles were blown out from 

the catalyst and the first silencer and very fine particles through the catalyst were 

deposited and grew. On the contrary, fine particles coagulated and large particles 

deposited through the second silencer. The particle size distribution shifted slightly 

towards larger particles as a result.

3.6.2.4. Increase after EGR
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A fter analysing the changes that occurred through the exhaust system at 

1500rpm and lOkW, a cold start involving a step change to a higher speed and 

power condition was tested, 2250rpm and 15kW. The expected effects were:

• Higher turbulence in the system, favourable for turbulence-enhanced 

deposition by diffusion.

• Enhanced particle blow-out o f particles due to more significant particle 

reentrainment from the deposition layer at higher speed.

• Quicker warming-up o f  gas and metal, with an increased temperature 

gradient during acceleration, and therefore an enhanced effect on 

thermophoresis.

• Increased potential for particle agglomeration due to turbulence, owing 

to the increase in the number and frequency o f collisions among 

particles. However, at the same time, the residence time through the 

exhaust system decreased, so changes due to coagulation would be seen 

only if  the coagulation occurred in a shorter period than the residence 

time.

During the cold start with the step-change to 2250rpm - 15kW, the total 

particle number and mass concentration (as Emission Index) profiles witn time in 

Figure 3.34. showed the same general features as the test at 1500rpm lOkW, namely 

First mass burst, Num ber peak, Valley after peak and Increase after the EGR valve 

opened. Once again, the events were not perfectly synchronised, owing to the test- 

to-test variability o f the manual operation o f  the throttle during acceleration, so the 

event-to-event analysis is preferred to a second-by-second one.

3.6.3.1. First mass burst

The total particle number concentration at the turbocharger outlet during the 

first mass burst was l . lx lO 5 cm '3, which converted to an Emission Index o f 8.4 g/kg 

fuel (uncorrected) or 0.6 g/kg fuel (corrected). From these levels, the number 

concentration increased to 5 .3x l06 cm '3, and the Emission Index to 59.5 g/kg fuel 

(uncorrected) or 7.0 g/kg fuel (corrected), through the catalyst. This corresponds to a 

47-fold increase in num ber concentration, and a 6-fold or 11-fold increase in 

Emission Index, uncorrected and corrected, respectively. The increase in number 

and mass through the catalyst was expected, since the exhaust system was pre­

conditioned at idle for a long period the day before the test, overloading the catalyst 

channels with particles.

3.6.3. 2250 rpm and 15kW
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Particle Number Concentration Through the exhaust system vs. time, 
1500rpm@10kW
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Figure 3.34. Total number and mass concentrations through the exhaust system
against time during cold start at 2250rpm -  15kW. a) Concentrations.
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Figure 3.35. Total number and mass concentrations for the main events during cold 
start at 2250rpm -  15kW against the position in the exhaust.

The increase in particle concentration occurred for all particle sizes, being 

more significant in number for particles around 0.2 |im  and in mass for those around
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8|am. The results indicate that oxidation catalysts may play a significant role in the 

blow-out phenomenon.

Through the first silencer, the total particle number and mass concentration 

decreased to very low levels, similar to those leaving the turbocharger. The decrease 

was as significant as 91%, 83% and 88% in total number concentration, uncorrected 

and corrected Emission Index respectively, the resulting levels being 4.8x105 cm"3, 

10.2 g/kg fuel and 0.9 g/kg fuel, also respectively. Particles o f  all size ranges 

deposited through the silencer. Again, particles around 0.2|im  and 8|jm  contributed 

more significantly to these changes.

As it occurred through the catalyst, the total particle number concentration 

increased considerably through the second silencer, emitting 6.2x106 cm '3 at the 

tailpipe, 12-fold as many particles as upstream o f  the second silencer. The Emission 

Index more than doubled (quadrupled, i f  using the corrected mass conversion) 

through the silencer. These changes occurred for all particle sizes, in the same 

fashion as through the catalyst (Figure 3.36. and 3.37).

In summary, exhaust particles over all the size range measured suffered 

deposition through the catalyst and the second silencer, in an exactly opposed 

behaviour to that through the first silencer, consisting o f blow-out. A very similar 

behaviour was observed during the first-mass-burst event o f  the 1500rpm lOkW 

cold-start test, which differed only in the change through the first silencer for 

particles smaller than 1.0|am. The difference in behaviour o f  the two silencers may 

be associated with the temperature differences, the second silencer being colder.

3.6.3.2. Peak hy num ber

As in the test at 1500rpm lOkW, the total particle number concentration 

increased considerably at all sampling points until reaching a peak. Upstream o f  the 

catalyst the peak was 1.3xl07 cm"3. The corresponding Emission Index was 4.0 g/kg 

fuel (uncorrected) or 0.9 g/kg fuel (corrected). The total number concentration 

decreased to 1 .2xl07 cm '3 (12% decrease) through the catalyst. The Emission Index, 

on the contrary, increased to 12.8 g/kg fuel (a two-fold increase) or 8.6 g/kg fuel (an 

8-fold increase), uncorrected and corrected, respectively. Particle deposition and 

coagulation accounted for the decrease in particle number concentration mainly 

below 0.3(am. Particles between 0.3|am and 2.0|im  were formed and blown out and 

particles larger than 2.0[im deposited, although to a lower extent than the deposited 

middle-sized particles.
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Figure 3.36. Particle size distributions for the first mass burst at various points
through the exhaust system (2250rpm -  15kW).
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Through the first silencer, total number concentration decreased by 19%, to 

9.4x106 cm '1. The Emission Index also decreased in both uncorrected and corrected 

conversion; by 77%, to 2.3 g/kg fuel, uncorrected; by 91%, to 0.7 g/kg fuel, 

corrected. The decrease in num ber concentration, and in Emission Index, was due to 

the deposition o f  particles between 0.2pm  and 3.0|im. Particles below 0.2|am an 

larger than 5|um were blown out, as observed in Figures 3.38. and 3.39.

7 3The total particle number concentration increased by 24%, to 1.2x10 cm ' , 

through the second silencer. The Emission Index also increased by 46%, to 4.4 g/kg 

fuel when uncorrected, and by 4 times, to 3.7 g/kg fuel when corrected. The changes 

by size were entirely parallel to those through the catalyst: deposition o f  particles 

below 0.2|im  and larger than 4 |im , and blow out o f  particles in the middle size 

range.

In summary, the behaviour o f the aerosol through the catalyst and the second 

silencer has shown to be similar and opposite to that through the first silencer. Fine 

and coarse particles were deposited through the catalyst and the second silencer, and 

were blown out from the first silencer, whereas middle-sized particles were 

deposited through the first silencer and increased their concentration through the 

catalyst and the second silencer. As a result o f  combined processes, the particle size 

distribution shifted towards larger sizes through the catalyst, back to finer sizes 

through the first silencer, and once again towards larger sizes through the second 

silencer.

3.6.3.3. Valley after peak

The peak particle number concentration was followed by a decrease to a 

temporary stabilisation level or valley for all sampling points. Upstream o f the 

catalyst, the valley number concentration was 7.32x106 cm '3, which converted to an 

Emission Index o f  1.6 g/kg fuel (uncorrected) or 0.68 g/kg fuel (corrected). These 

levels decreased, owing to coagulation, deposition and oxidation through the 

catalyst, to 4.67x106 cm '3, 1.01 g/kg fuel and 0.37 g/kg fuel respectively, which 

corresponds to 36%, 34% and 45% , respectively. The number o f particles o f  all size 

ranges was reduced.
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Through the first silencer, particle num ber concentration and Emission Index 

increased by 30% and 42% (uncorrected) or 88% (corrected) respectively, so 

6.06x106 cm"3 were measured downstream o f the silencer. This converted to 1.51 

g/kg fuel without the number-to-mass correction and 0.37 g/kg fuel with the 

correction. Only particles in the particle size range 0.1 pm  to 0.3pm  deposited 

through the silencer, whereas particles smaller than 0.1 pm  and larger than 0.3pm  

were blown out from it. M iddle-size particle deposition was insignificant either by 

mass or by number, so the overall effect in total mass was always particle blow-out.

The total particle num ber concentration did not change through the second 

silencer during the valley event, so it remained at 6.07x10(’ cm '3. The calculated 

mass, however, increased by 142%, when no correction was applied, or 12%, when 

corrected, owing to a change in the particle size distribution. The number o f particles 

around 0.035pm  was reduced through the silencer by coagulation and deposition, 

particles between 0.08pm and 0.5pm  were blown out, and those larger than 0.5pm  

hardly experienced any change in mass concentration, as shown in Figures 3.40. and 

3.41. The downstream Emission Index was, therefore, 3.67 g/kg fuel or 0.93 g/kg 

fuel, for uncorrected and uncorrected conversions respectively.

The valley-after-peak event at 2250rpm -  15kW showed once more that, when 

passing through the catalyst and the second silencer, the aerosol showed opposite 

deposition and/or blow-out trends from those observed when passing through the 

first silencer. The catalyst showed again a good capacity to reduce the particle 

number and mass by deposition and oxidation. Very fine and large particles showed 

parallel deposition/blow-out trends, opposite to those o f middle-sized particles. No 

significant change in particle size distribution was observed.

3.6.3.4. Increase a fte r  EG R

As mentioned above, the EGR valve opening caused an increase in particle 

number concentration after the temporary stabilisation described in the valley-after- 

peak event. In most cases this caused an increase in Emission Index, with some 

exceptions, as described below.

Particle number concentration upstream o f  the silencer reached 1.1 Ox 107cm ‘3 

and 2.26 g/kg fuel (or 0.96 g/kg fuel with the corrected conversion) after increasing 

as a result o f  the EGR valve opening. Through the catalyst, these values decreased to 

8.78x10'’ cm '3 and 2.10 g/kg fuel (0.86 g/kg fuel, corrected), which corresponds to a 

20% and 6% (10%, corrected) decrease by coagulation, deposition and oxidation. 

Figures 3.42. and 3.43. show that no large particles were blown-out from the catalyst 

walls for any size range, they all were deposited.
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Through the first silencer, particle number concentration increased by 28%, 

reaching 1.13x106 cm '3. The Emission Index increased by 10% (uncorrected) or 24% 

(corrected), reaching 2.33 g/kg fuel or 1.06 g/kg fuel respectively. The increase was 

due to the formation o f  fine particles and the blow-out o f  large particles from the 

silencer walls. Only particles around 0.5pm  deposited, but the extent o f  this 

deposition was negligible.

Particle num ber concentration decreased due to deposition through the second 

silencer by just 1% during this event, to 1 .12xl06 cm '3. Emission Index decreased to 

1.96 g/kg fuel (uncorrected) or 0.93 g/kg fuel (corrected), that is, by 16% or 12 %, 

respectively. The deposition occurred for particles larger than 0.1 |tm. Particles 

below that size were formed by nucleation-condensation-coagulation processes, 

although not significantly.

In summary, after the number concentration increase due to the EGR valve 

opening, the catalyst continued showing a good retention and conversion capacity 

for particles o f  all sizes. Particles were blown-out from the first silencer and 

deposited through the second silencer. These trends were observed in previous 

events o f  this test. No important change in particle size distribution was observed.

3.7. Key points from this chapter

3.7.1. Filter measurements

* The oxidation catalytic converter acted as a particulate trap during cold 

start at initial ambient temperature, with an efficiency that was higher 

at idle and low-speed conditions than at high-speed conditions. It acted 

as an efficient particle trap at idle.

■ The previous operational history o f the engine had a greater influence 

on the catalyst performance than did the initial temperature.

■ Particulate mass deposits were released from the section o f the exhaust 

located downstream o f the catalyst at all conditions studied, as an 

overall result o f  accumulation and release through the two silencers.

* Particulate mass was released from the first silencer o f the exhaust 

system and deposited in the second silencer in all cold-start tests for the 

three conditions studied. Mass accumulation and release rates at idle 

were more important than those at low and high speed.

■ The net release o f  particulates downstream o f the catalyst was a very 

large fraction o f the tailpipe particulate emissions at all test conditions.
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■ The deposition in the exhaust section downstream o f  the catalyst was 

greater than the tailpipe emissions at all test conditions.

■ The tailpipe emissions were greater than those downstream o f the 

catalyst at all test conditions. Consequently, exhaust system particulate 

deposition played an important role in tailpipe emissions and the 

transient emissions depended on the previous operational history o f  the 

engine.

■ For the three test conditions o f idle, 10 and 15kW all showed 

particulate deposition in parts o f  the exhaust. All three test conditions 

showed a net blow out from the exhaust, downstream o f  the catalyst. 

These low power test conditions are typical o f urban driving in dense 

traffic conditions. It was considered that a net blow from all parts o f  the 

exhaust required a higher flow rate condition. This was investigated, 

and the results are shown in Chapter 4.

3 .7 .2 . Size d is tr ib u t io n  m e a s u re m e n ts

■ Particle number concentrations at 1500rpm and 10 kW were between 

twice and ten times as high as those at 2250 rpm and 15 kW and idle.

■ The occurrence o f processes increasing the particle number 

concentration and Emission Index was demonstrated. These were gas- 

to-particle conversion in the ultrafine size range, condensation and 

coagulation in the mid-size range, and resuspension o f large particles 

stored on the catalyst and in both silencers. Fast accelerations promoted 

to a certain extent these processes throughout the exhaust. Resuspended 

particles had been accumulated from previous conditioning at idle.

■ At Idle, the catalyst and the second silencer accumulated particles 

during cold start. The first silencer promoted particle formation and 

resuspension in the same period.

■ At low and high speed, the catalyst promoted ultrafine particle 

formation during the first seconds o f  the cold start.

■ Particles through the first silencer showed a symmetrically opposite 

behaviour to that through the catalyst at low speed, being accumulated 

during the first minute and released afterwards. At high speed, particle 

growth was the predom inant process that occurred inside the silencer.

■ These opposite trends in the mass and number o f  particles emitted were 

due to differences in the particle size involved in the events. The
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engine-out mass emissions were dominated by particle sizes o f  3(xm - 

8|im , which had a negligible contribution to the total particle number. 

The peak particle num ber concentration was due to ultrafme 

(~0.040|im  -  0.080p.m) particles.

Further analysis o f  the effect o f  engine conditions, main events during transient 

and exhaust devices on particulate emissions and size distribution changes is given 

in Chapter 4, after describing the results from cold-start high engine speed and high 

engine load tests.
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Chapter 4. 
Cold Start Particulate M ass Emission and Particle Size Distribution  

Changes Through a Practical Exhaust System -  High Speed and 
High Power Tests

Particulate mass concentration, total particle number concentration and particle 

size distribution were measured during cold start at 2250rpm -35kW  and 3500rpm -  

15kW. Particulate mass tests were carried out using the gravimetric filter mass 

measurement technique; the number concentration and the number-weighed particle 

size distribution were measured with an ELPI, using an ejector-type, double dilution 

system for a 100:1 dilution ratio. Temperatures along the exhaust system were 

monitored and gas analysis downstream of the catalyst was carried out continuously. 

Two preconditioning procedures were used the day before for comparison, namely 

Idle for four hours, and high speed for ten minutes. The aim of the first procedure 

was to produce an important particulate deposition in the exhaust system in a short 

time, an amount o f mass equivalent to that deposited under urban driving conditions 

for about a week. The second procedure aimed to quickly clean the exhaust system 

o f  fluffy particulate deposits. In this way, the influence o f  the previous history o f the 

engine was investigated through a comparison between “dirty” and “clean” exhaust 

conditions at the moment o f running cold-start tests.

4.1. Exhaust Tem perature Changes During Cold Start: Catalyst 
light-off tem perature and aerosol - metal tem perature differences

As in the previous tests, gas and exhaust system wall temperatures were 

m onitored during cold start at the new conditions tested, with the aim o f  detecting 

the catalyst light-off temperature and determining the thermophoretic deposition 

potential (Figures 4.1. and 4.2.).

Catalyst temperatures show the moment at which the catalyst lights off, 

indicated at the first moment at which the temperature downstream o f the catalyst 

was higher than upstream o f it as a consequence o f the heat release by the oxidation 

o f CO and UHC once the catalyst is active. This occurred around 110 seconds from 

cold start at 3500rpm -  15kW and 30 seconds later at 2250rpm -  35kW, at a 

temperature around 240°C and 300°C respectively.

At high-load conditions, 2250rpm - 35kW, the exhaust gas temperature

increased from ambient to 650°C in 4 to 5 minutes, with a maximum gas-mctal

difference o f about 300°C after the first two minutes. At the tailpipe, the gas
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temperature decreased to 350°C and its difference with the metal temperature was 

around 100°C. The temperature difference between gas and metal was less than 

200°C in the first silencer and 100°C in the second during the same period.

Figure 4.1. Catalyst temperatures during cold start at various operation conditions, a) 
2250rpm - 35kW.
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In contrast, the gas temperature at the exhaust during the test at high speed and 

medium load conditions, 3500rpm 15kW, increased only up to 350°C in 4 minutes, 

with a maximum gas-metal difference o f  150°C after the first 2 minutes. This 

difference was just over 50°C in the first silencer and lower in the second silencer 

and at the tailpipe, where the gas temperature has decreased to just above 200°C.

Figure 4.1. Catalyst temperatures during cold start at various operation conditions, 
b) 3500rpm - 15kW.
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Tem peratures M uffle r 1, 2250rpm@35kW

Time

Tem peratures M uffle r 2, 2250rpm@35kW

Time

Gas - Metal Tem perature D ifference, 2250rpm@35kW

Time

DTDSCat DTDSMufflerl —  DTUSCat
DTUSMufflerl —r-—  DT USMuffler2 OT DSMuffler2

Figure 4.2. Exhaust gas and wall temperatures and temperature differences through
the exhaust system, a) 2250rpm - 15kW.
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Tem peratures M uffle r 1, 3500rpm@15kW

Time (sec)

Tem peratures M uffle r 2, 3500rpm@15kW

Time

Figure 4.2. Exhaust gas and wall temperatures and temperature differences through
the exhaust system, b) 3500rpm - 15kW.
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Different hydrocarbon profiles were observed at the various conditions tested. 

Hot-FID UF1C analysis downstream o f the catalyst shows in Figure 4.3. how, during 

the cold start at 3500rpm -  15kW with idle preconditioning, the hydrocarbon 

adsorber worked properly during the first twenty seconds, impeding a stronger 

increase in UHC to levels over 200ppm. However, the increase in temperatures over 

100°C caused thermal desorption o f  previously adsorbed hydrocarbons and a new 

increase occurred to nearly 350ppm UHC downstream o f the catalyst between 40 

and 90 seconds. A fter the desorption, and helped by the catalyst light-off, a decrease 

in UHC levels to lOOppm in half a minute and just a few ppm in the following three 

to four minutes occurred.

4.2. Hydrocarbon Emissions During Cold Start

400.0
350.0
300.0

I  250.0 £ 200.0 
x  150.0

100.0
50.0
0.0

0 100 200 300 . 400 500 600Time (sec)

600.0

500.0

£ 400.0 a
^  300.0 o
fE 200.0

100.0 

0.0
0 100 200 _.. 300 . 400 500 600Time (sec)

Figure 4.3. Hydrocarbon emissions during cold start measured downstream o f  the 
catalyst.

On the other hand, at 2250rpm -  35kW with high-speed preconditioning a 

higher initial peak in UHC occurred owing to a heavier acceleration, which was

THC d/s o f the ca ta ly tic  converte r 
FID - Hot A na lys is

THC d/s o f the ca ta ly tic  converte r 
FID - Hot A na lys is
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controlled by the hydrocarbon adsorber in a few seconds. Despite the higher increase 

in temperature caused by high-load conditions, the increase in UHC levels observed 

in the conditions explained above did not occur, since there were no deposited 

particles from which HC could be desorbed. Instead, a continuous decrease in HC 

levels under lOOppm was achieved before 100 seconds from cold start, with a 

further decrease in the following minutes.

4.3. Filter Mass Concentration Changes Through the Exhaust 
System During Cold Start

4.3.1. Particulate concentration changes at different positions in the 

Exhaust System

The particulate mass emissions, as g/kg-fuel (Emission Index), are shown at 

the four simultaneous sampling positions in the exhaust in Figure 4.4. Both high­

speed and high-load conditions, with idle and high-speed preconditioning, are shown 

as a function o f  the time from the cold start. The data points are shown for the 

middle o f  the time period for which the filter papers were sampled over. Similarly, 

Figure 4.5. shows the Emission Index as a function o f  time for high-speed 

preconditioning, but in this occasion the sampling time was extended to 2400 

seconds, approximately one sample every 600 seconds.

E m iss ion  Index during  co ld  s ta rt 
2250rpm - 35kW

Em ission  Index during  co ld  start 
3500 rpm - 15kW

Time (sec) Time (sec)

• - A- - - U/S Cat., grav. — -4k — D/S Cat., grav. 
— □ — U/S Second silencer — M  — Tail pipe

■ A- - -U/S Cat., grav. — -A — D/S Cat., grav.
- □ —  U/S Second silencer — •  — D/S Second silencer

Figure 4.4. Emission Index during cold start through the exhaust system after Idle
preconditioning.
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Emission Index during cold start
2250rpm@35kW

Time (sec)

Em ission Index du ring  co ld s ta rt 
3500 rpm - 15kW

Time (sec)
- - A- - U/S Cat., grav. — A  — D/S Cat., grav. - - A- - -U/S Cat., grav. — A  — D/S Cat., grav.

— □—  U/S Second silencer — •  — D/S Second silencer

Em ission Index during  Cold Start 
2250rpm@ 35kW,

Time (sec)

■U/S Cat., grav. — -A — D/S Cat., grav. 
-U/S Second silencer — •  — Tail pipe

Em ission Index during  co ld  s ta rt 
3500 rpm  - 15kW

Time (sec)
- &■ - - U/S Cat., grav. — -A — D/S Cat., grav.

— □ —  U/S Second silencer — ■» — D/S Second silencer

Figure 4.5. Emission Index during cold start through the exhaust system after high­
speed preconditioning.

As it was seen in the previous stage o f the work, the present results show that 

for all o f  the tests there was considerable difference in the particulate emissions 

between the four sample positions during cold start. However, for the new 

conditions tested, there was more complexity in the Emission Index profdes against 

time. A first overview reveals sim ilar profiles when running at 2250rpm -  35kW; 

Emission Index increased or decreased at the same time at different points and 

definite trends could be depicted. This similarity occurred for both Idle and high­

speed tests, though there were key differences between both tests that will be 

analysed below. In contrast, similar profiles were observed only for a short period o f 

the tests at 3500rpm -  l5kW  and there were no clear increases or decreases o f the 

Emission Index against time.

As a general rule, Emission Index profiles at high-load conditions showed an 

initial low level followed by an increase to a maximum level and a further decrease



- 2 1 2 -

to levels where a trend towards stabilisation was observed. The initial increase 

occurred between 10 and 15 minutes from cold start in the test with idle 

preconditioning, and between 5 and 10 minutes from cold start when running the test 

with high-speed preconditioning. The levels reached were also different: a maximum 

below 3.5 g/kg-fuel and an average around 1.75 g/kg-fuel for the test with Idle 

preconditioning; and a maximum o f 8.0 g/kg-fuel and an average around 3.0 g/kg- 

fuel for the test with high-speed preconditioning. These results were surprising, 

since a higher Emission Index was expected at all points downstream o f  the catalyst 

in the test with Idle preconditioning, when deposits had been built on the system 

walls. However, looking at the Emission Index upstream o f  the catalyst, which 

corresponds to the raw emissions from the engine, the same situation was observed, 

so there might have been a different factor affecting the particulate emission before 

they enter the exhaust system, and apparently, the EGR valve and EGR system in 

general were playing a role. A comparison o f tailpipe emissions at the stabilisation 

period (2.0 g/kg-fuel) with legislated levels indicated that emissions at these 

conditions greatly exceeded the limit o f 0.32 g/kg-fuel.

Emission Index profiles at 3500rpm -  15kW fell into a lower and narrower 

range than those described for 2250rpm -  35kW. An average between 1.0 g/kg fuel 

and 1.5 g/kg-fuel was observed in all tests, with some minimum values around 0.2 

g/kg-fuel and maximum around 2.4 g/kg-fuel. Tailpipe emissions fell normally 

around 0.5 g/kg-fuel, which still exceeded the legislated limit, though not so 

dramatically as in the high-speed conditions. In summary, emissions showed that 

both o f the high-speed and high-load conditions selected were unfavourable to the 

compliance o f  legislated limits.

Cold start with a step change to high-speed and high-load conditions showed 

differences in Emission Index along the exhaust system, which indicated that 

deposition and blow-out processes were occurring at these conditions, as well as the 

low-speed and low-load conditions tested in the previous stage o f this work.

4.3.2. Particulate Storage and Blow-out in the Exhaust Section  

Downstream  of the Catalyst

Figure 4.6. shows the particulate blow out from different exhaust sections 

downstream o f  the catalyst, expressed in g/kg-fuel, for both high-speed and high- 

load conditions, and for both Idle and high-speed preconditioning procedures. 

Positive values indicate that particulate blow out from the walls at the designated 

section occurred. Negative values, in contrast, indicate particulate deposition.
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a. Particulate blow out during cold start
2250rpm @ 35kW

d. Particulate blow out during cold start 
3500 rpm - 15kW 
Idle conditioning

T im e  (sec)

- - X -  -  -Particulate Blow out across first silencer

— O  — Particulate Blow out DS CC - Tailpipe

f  ■ -  Particulate Blow out across second silencer

b. Particulate blow out during cold start 
2250rpm@35kW

Tim e (sec)

- X - - Particulate blow out across first silencer
- O  —  Particulate blow out DS CC -  Tailpipe

— I------Particulate blow oul across second silencer

e. Particulate blow out during cold start 
3500 rpm - 15kW

- X - - ■ Particulate blow out across first silencer
■ O — Particulate blow out DS CC • Tailpipe

■ I 1" Particulate blow out across second silencer

c. Particulate blow out during cold start 
2250rpm@35kW 

High speed conditioning

! -2.00 

-3.00

0 *■' 500 \ 1000

' • o r '

/1500 2000 \  25C 
X

T im e  (sec)

- X - - Particulate blow out across first silencer

- -O —  Particulate blow out DS CC - Tailpipe

— h —  Particulate blow out across second silencer

f. Particulate blow out during colo start 
3500 rpm - 15KW 

High speed conditioning

-  X - - Particulate blow out across first silencer

-  O  — Particulate blow out DS CC - Tailpipe

— I------Particulate blow out across second silencer

Figure 4.6. Particulate mass blow-out loss through the section downstream o f  the 
catalyst at the high load and high-speed conditions, with idle and high-speed 
preconditioning.

During the test at 2250rpm -  35kW with Idle preconditioning, initial 

particulate deposition was observed, followed by blow out from the first silencer 

with increasing levels with time, with a maximum around l.O g/kg-fuel from 13 

minutes onwards. At the same conditions, virtually no deposition or blow out was 

observed through the second silencer for the first ten minutes, after which Particulate 

Matter was blown out at nearly 1.0 g/kg-fuel. The overall result was a clear blow out
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o f  particulates at these conditions. Results o f the first test with high-speed 

preconditioning showed the opposite behaviour. Particulate M atter was deposited 

through both silencers at all times during the test, at a higher rate for around five 

minutes from the cold start, decreasing gradually with time. A bigger mass was 

deposited through the first silencer than through the second. The extended test with 

high-speed preconditioning showed particulate deposition through the first silencer 

alternating with some blow-out at 30 minutes. Particulate M atter was blown out 

from the second silencer at all times, except for a situations with no deposition and 

no blow out at 30 m inutes mark, the same moment at which the opposite change in 

trend occurred for the first silencer.

The results from both tests suggested:

■ that the first silencer had a stronger trend to accumulate particles when 

it had been cleaned by high-speed operation;

■ that the deposition and blow out o f particles from each silencer tended 

to occur out-of-phase, as was observed in an earlier stage o f the work;

■ that the test-to-test repeatability at these conditions was still limited, 

owing to the manual operation o f  the dynamometer and the engine and 

sampling from only one point per test.

Results from the cold-start step to high-speed conditions after Idle 

preconditioning showed an opposite deposition and blow out pattern from that 

observed for the step change to high-load conditions in the corresponding tests. At 

3500rpm -  15kW with Idle preconditioning, deposition o f  particulates through the 

first silencer occurred throughout the test at a rate o f 0.6 to 1.0 g/kg-fuel. This 

accounted for most o f  the deposition downstream of the catalyst during the first two 

minutes and nearly all the deposition after the first five minutes, since there was 

little deposition at the beginning and virtually no deposition or blow-out over the 

late period through the second silencer.

This result was surprising since particulate matter was expected to be blown 

out during the cold start reaching high-speed conditions after an Idle 

preconditioning. However, this apparently contradicting result was reinforced when 

observing that during the test with high-speed preconditioning, which was run with a 

presumably clean exhaust system, particulate matter was blown out in the level ol

0.6 g/kg fuel to 1.2 g/kg-fuel from the first silencer during the first ten minutes, and 

deposited only from the 15 minute mark. Alternating particulate deposition and 

blow-out processes were observed through the second silencer. The longer test with 

high-speed preconditioning showed deposition through the first silencer and
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deposition through the second silencer at all times, with an overall deposition in the 

section downstream o f  the catalyst o f  the order o f  0.2 g/kg fuel to 0.6 g/kg-fuel. The 

off-phase trend in the deposition/blow out patterns through the silencers was also 

observed once more.

Particulate blow-out results are shown also in Figure 4.7. expressed as a 

percentage o f  the tailpipe emissions, which underlines the significance o f the role 

played by particulate deposition and blow out in the emissions. Deposition through 

the first silencer at the beginning o f the cold-start test, at 2250rpm -  35kW after Idle 

preconditioning, represented 50% o f  the tailpipe emissions, and the blow-out from 

the same device in the following minutes accounted for up to 60% o f  the total 

particulate emitted to the atmosphere. For the first test with high-speed 

preconditioning, the deposition through the first silencer was more than three times 

as high as the tailpipe emissions. The second tests showed less dramatic changes, 

with deposition or blow out through the first silencer around 40% to 60% o f the 

tailpipe emissions. The off-phase phenomena through the second silencer accounted 

for up to 60% o f the tailpipe emissions, thus reducing the overall effect through the 

section downstream o f the catalyst to levels around 25%, with some excursions to 

higher values.

Particulate deposition and blow out during cold start at 3500rpm -  15kW were, 

in general, more significant than at high-load conditions when expressed as a 

percentage o f  tailpipe emissions. An amount o f particulate between 50% and 200% 

o f  particulate tailpipe emissions deposited through the first silencer in the test with 

idle preconditioning. Similar deposition levels through this device were observed in 

the test with high-speed preconditioning. Blow out occurred, but only accounted for 

only 25% o f  tailpipe emissions. Similar percentages were observed through the 

second silencer. In the second test after high-speed preconditioning, blow out from 

the second silencer represented between 5% and 60% o f  tailpipe emissions, whereas 

deposition through the first was between 25% and 125% o f  the total emissions to the 

atmosphere.

4.3.3. C atalytic converter efficiency

During the first m inutes o f  cold start, particles could be deposited on or blown 

out from the walls o f the catalytic converter without being oxidised, since the 

catalyst had not lit off. Afterwards, not only this physical process but also catalytic 

oxidation o f the hydrocarbons adsorbed on the particles took place. In this work, 

catalytic converter efficiency is defined as the fraction o f particulate matter that is 

lost (deposited and converted) when passing through the catalyst. Figure 4.8. shows 

the catalytic converter efficiency at both conditions and preconditioning procedures.
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a. Particulate blow out during cold start
2250rpm@35kW

Time (sec)

d. Particula te  b low  ou t during  co ld  start 
3500 rpm • 15kW

Time (sec)

- - A- ■ Blowout from 1st silencer - - A- - Blowout from 1st silencer

— □ —  Total blowout from exhaust DS Cat — □ — Total blowout from exhaust DS Cat

. P articula te  b low  o u t during  co ld  start 
2250rpm@35kW 

High speed cond ition ing

e. Particula te b low  ou t during  co ld  s ta rt 
3500 rpm - 15kW 

H igh speed cond ition ing

- - A- - Blowout from 1st silencer - - A- - • Blowout from 2nd silencer

— □ — Total blowout from exhaust DS Cat — • — Blow-out from 1st silencer

c. Particula te  b low  out during  co ld  start 
2250rpm@35kW

t. Particula te  b low  ou t during  co ld  s ta rt 
3500 rpm - 15kW

Time (sec) Time (sec)

- - A- - Blowout from 1st silencer - - A- ■ • Blowout from 2nd silencer

— O—  Total blowout from exhaust DS Cat — » — Blow-out from 1st silencer

Figure 4.7. Particulate mass blow-out loss through the section downstream o f  the
catalyst at the high load and high-speed conditions, with idle and high-speed
preconditioning.
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Particulate m atter was blown out from the catalyst during the first two minutes 

o f  the cold start at 2250rpm -  35kW with idle preconditioning, in the order o f  1.5 

times as much particulate mass as entering the catalyst. In the following minutes the 

catalyst stored and converted particulate with an efficiency between 25% and 50%. 

This was an expected trend with Idle preconditioning. Unexpected were the results 

from the first high-load test after high-speed preconditioning, which showed a 

negative efficiency at all times, 20% in the first two minutes, 70% after ten minutes 

and 30% from 13 minute mark onwards. The second test with high-speed 

preconditioning produced an oscillating efficiency with positive values between 

30% and 60% and negative values between 10% and 20%. This was closer to what 

was expected from a test with high-speed preconditioning.

The test at 3500rpm -  15kW after Idle preconditioning had a similar result to 

the corresponding test at 2250rpm -  35kW. Particulates were blown out from the 

catalyst and then deposited and converted. However, in the high-speed test, the 

converter efficiency was positive just after 10 minutes from cold start, later than in 

the high-load test, even though the catalyst light-off temperature was reached at 

about the same time in both tests. The first high-speed test with high-speed 

preconditioning caused deposition o f particulate at all times, as expected for a 

previously cleaned catalyst, with efficiencies between 40% and 80%. The second 

test showed a similar trend, though a negative efficiency o f  20% was observed at 30 

minutes.

4.4. Chemical composition by TGA during cold start

The samples collected with the O liver filter mass measurement instrument 

during cold start at 2250rpm - 35kW  and 3500rpm - 15kW were analysed by TGA, 

following the procedures described in Chapter 2. The results are presented here as 

carbon content in relation to the (Carbon + SOF) fractions, against time and location 

in the exhaust system. Unfortunately, the ash content was not accurately determined 

owing to operational errors in the laboratory, so changes in the ash fraction were not 

detected. However, the Carbon and SOF variations were observed. The ash fraction 

was estimated to be between at most 14% in some cases and less than 10% in most 

o f  them, which is supported by Ahamed (Ahamed, 1999). It is possible, however, 

that this fraction can be as high as 50% at idle conditions.
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a. Catalyst e fficiency during cold start d. Catalyst e ffic iency during cold start
2250rpm@35kW 3500 rpm - 1 5kW

[- - A- - -Catalyst efficiency (%)~| |- - - -Catalyst efficiency (%j~|

b. Catalyst e ffic iency during cold start 
2250rpm@35kW 

High speed conditioning

e. Catalyst effic iency during cold start 
3500 rpm - 15kW 

High speed cond ition ing

[- - A- - -Catalyst efficiency (%)~j

Time (sec)

[- - A- - -Catalyst efficiency (%T|

c. Catalyst e fficiency during cold start 
2250rpm@35kW 

High speed conditioning

Time (sec)

[• - A- * -Catalyst efficiency (%) j

f. Catalyst efficiency during cold start 
3500 rpm - 15kW 

High speed conditioning

Time (sec)

- A- - Catalyst efficiency (%) I

Figure 4.8. Catalyst efficiency during cold start at various operation conditions.
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4.4.1. Cold start and stabilisation at 2250rpm  - 35kW

In contrast with the low power conditions analysed in Chapter 3, the carbon 

content o f the particulate emitted at high power conditions, 2250rpm - 35kW , was 

higher than 50% at all times during cold start, and reached levels as high as 81.4% in 

the process. In the first two minutes, the carbon content o f  the particulate entering 

the system was 50% average through the exhaust system, increasing with time until 

reaching an average 78% at 9 minutes from start, when the highest carbon levels at 

all sampling points were reached. Afterwards, the carbon content decreased to an 

average 67.1% at 19 minutes from start, 62% at 29 minutes from start, and 60% 

minutes at 39 minutes from start, when a trend was towards stabilisation around that 

value was observed. The low carbon content during the first five minutes were 

presumably due to a more significant condensation o f  species from the gas phase, 

since temperatures in the exhaust are the lowest during this period.

Regarding the changes through the exhaust system, only in the first two- 

minute sample did the carbon content decrease through the catalyst, from 55.2% to 

44.4%, to increase again through the silencers reaching 54.1 % at the tailpipe. Later, 

there was a continuous increase in carbon content through the exhaust system, more 

significant through the catalyst and the second silencer than through the first 

silencer. Then, the difference between the carbon content upstream o f the catalyst 

and downstream o f  the second silencer was typically 10%, from which not more 

than 1.6% was due to the first silencer. These changes are more difficult to explain 

than time-related changes, since they are caused by several opposite processes. 

Condensation would decrease the carbon fraction through the exhaust system. 

However, the resuspension o f particles would increase it.

4.4.2. Cold start at 3500rpm  - 15kW

The particulate carbon content at high-speed conditions, 3500rpm - 15kW, 

were between 13% and 26% at all times and for all exhaust sampling points, much 

lower than at high power conditions. The carbon content did not change much with 

time from start, being 20% average practically at all times, excepting only a decrease 

to 17% average around 5 minutes from start.

At all times, the carbon content decreased through the catalyst, increased again 

through the first silencer and decreased through the second silencer. The carbon 

content upstream o f  the catalyst was between 19.6% and 25.7%. Downstream o f  the 

catalyst, about 7% lower, between 12.8% and 17.1%. Upstream o f the second 

silencer, it was between 18.7% and 22.1%, about 5% higher than the previous point. 

And downstream o f  the second silencer, just 1% lower than upstream, between 

17.2% and 20.6%.
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Particulate carbon content during cold start

10 15 20 25 
Time (min)

30 35 40 45

-U/S Cat ••-♦-•-D/S Cat ■U/S 2nd Sil - -B - -D /S  2nd Sil

DS Cat. US 2nd Sil.
Location in the exhaust system

DS 2nd Sil.

-I— 2 min -  - -9 min - - - a - - -  19 min — x—-2 9  min -  - * - - 3 9  min

Figure 4.9. TGA particulate carbon content during cold start at 2250rpm - 35kW.
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Particulate carbon content during cold start 
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Figure 4.10. TGA particulate carbon content during cold start at 3500rpm - 15kW.

4.5. Total Number, Mass Concentration and Particle Size 
Distribution Changes Through the Exhaust System During Cold 
Start

Data from the ELPI were converted into num ber and mass distribution and 

total concentration. Mass data, expressed as Emission Index, were calculated by 

assuming that the particles were spherical, although it is well known that diesel 

particles are long-branched fractal-like agglomerates [Brasil, 1999; Skillas, 1998;
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Gorbunov, 1999]. The conversion from particle num ber to Emission Index included 

the same correction used in the previous cold-start tests and described in Chapter 6. 

The implications o f the assumption for the density values are o f  great importance for 

this study, since the particle blow-out events were essentially a mass related issue.

The EGR control strategy does not open the EGR valve during the cold-start 

tests for the high-speed condition, whereas it does open the valve when for the high- 

load condition, as shown in Figure 4.11, where the parameter on the right-hand side 

(EGR desired density or EGR_desddty) indicates the extent to which the EGR is 

used, given by the control strategy o f  the engine.

Speed and EGR Control, Speed and EGR control, 
3500rpm 15kW Cold start 2250rpm 35kW Cold start

4000 
3500 

_  3000 
|  2500 
 ̂2000 

S 1500 
m 1000 

500 
0

1

0.8 

0.6 I

0.4 I 

1 -  0.2 

0
100 200 300 400 

Time (s)

-■-rpm —♦— egr_desdty rpm egr desdty

Figure 4.11. EGR valve opening during cold start at high-speed and high-load
conditions.

Compared to previous results [12-14], the number concentration emissions at 

2250rpm - 35kW upstream o f the catalyst were comparable to those at the same 

speed but 15kW power. However, during the first three minutes o f  cold start, the 

num ber concentration was much higher, between two and fourfold the concentration 

at 2250rpm, when the speed increased to 3500rpm and 15kW. Downstream o f the 

catalyst, the number concentration levels at both high-speed and high-load 

conditions were comparable to those at 2250rpm - 15kW (Figure 4.12.).
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Number concentration during cold start at different operation conditions

Time (min)

— Id le  — —  1500rpm@ 15kW --------2250rpm@10kW ------3500rpm@15kW ---------2250rpm@35kW [

Number concentration during cold start at different operation conditions

Time (min)

[—— Idle — ^1500rpm@15kW — -2250rpm@10kW ------3500rpm@15NW ------2250rpm@ 35kw]

Figure 4.12. Total number concentration upstream and downstream o f  the catalyst 
during cold start at various conditions, a) Catalyst
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Number concentration during cold start at different operation conditions

Time (min)

[ - — Idle —  1500rpm@15k W ----- 2250rpm@10kW ------ 3500rpm@15kW ------ 2250rpm@35kW

Number concentration during cold start at d ifferent operation conditions

Time (min)

|------Idle"------ 1500rpm@15kW -------22S0rpm@10kW ------ 3500rpm@15kW------ 2250rpm@3SkW~|

Figure 4.12. Total num ber concentration upstream and downstream o f  the catalyst 
during cold start at various conditions, b) Second Silencer

Upstream o f the second silencer, number concentrations during the test at 

2250rpm - 35kW were about fivefold those at the same speed but lower power, 10 

kW, at all times. Num ber concentrations at this sort o f power level but higher speed, 

namely 3500rpm - 15kW, were about twofold those at 2250rpm - lOkW during the 

first three minutes o f cold start, but after minute 4 the situation changed, and the
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num ber concentration at the latter conditions were higher than at the former. 

N um ber concentrations at 1500rpm - lOkW upstream  o f  the second silencer were at 

the same sort o f level o f  those at 2250rpm - 15kW. Downstream o f  the catalyst, the 

situation was the opposite, suggesting that the 1500rpm - lOkW condition promoted 

the blow-out o f particulate from the first silencer.

Downstream o f  the second silencer, the number concentration comparison 

among different operating conditions showed a very similar situation to that 

upstream o f the silencer: high levels at 2250rpm - 35kW and 1500rpm - lOkW, 

lower levels at 2250rpm - 15kW, 3500rpm - 15kW and Idle. This means that the 

second silencer had a lesser effect on particulate emissions than the first silencer.

Cold-start total particle number concentration and Emission Index at the two 

conditions tested are shown in Figures 4.13. and 4.14. for high-speed tests, and 

Figures 4.29. and 4.30. for high-load tests. The following general characteristics at 

all sampling points are shown:

1. A mass burst occurred in the first 30 seconds, when the acceleration was not 

yet completely developed, followed by;

2. A peak in number between one and two minutes from cold start, as a 

product o f  the acceleration and;

3. A decrease in particle num ber concentration and Emission Index;

4. For the tests at high load, an increase in number as well as in Emission 

Index, which was not seen in the high-speed tests, occurred around three minutes 

from cold start.

The events o f  mass burst and peak number showed some variations among 

tests, such as oscillations during the same period, as observed for the 1500rpm - 

lOkW and the 2250rpm - 15kW tests. This was mainly due to the manual 

acceleration manoeuvre. The dynamom eter used in the tests used a water break, 

which was very slow for automatic control o f  a step change. For this reason, manual 

operation o f  the throttle was chosen to produce a fast acceleration, with the 

inconvenience o f affecting the synchronised repeatability o f the events. Hence, two 

successive peaks were the result o f  an irregular rather than a smooth acceleration.

The difference in the num ber concentration and Emission Index profiles 

against time after the first three minutes o f cold start appeared as a consequence o f 

the EGR system operation. Opening the valve showed a strong effect on particle 

number and mass emissions, which increased to levels even higher than those o f  the 

peak number observed during the first minute o f  cold start. This increase occurred
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for all four sampling points, indicating that the catalyst action was not strong enough 

to cope with the effect o f the EGR valve opening.

4.6. Deposition And Reentrainment Through The Exhaust System 
At High Speed and Load Conditions

4.6.1. 3500rpm  -  15kW , Idle preconditioning

As explained above, the cold-start test at 3500rpm - 15kW after Idle 

preconditioning showed three characteristic events, namely an initial mass burst, a 

peak number concentration and stabilisation. The number concentration and 

Emission Index changes through the exhaust system during these events are 

described below.

4.6.1.1. First mass burst

During the initial seconds o f cold start, when the first mass-burst event was 

observed, the total particle number concentration o f  the exhaust aerosol at the 

manifold was 6 .2x l06 cm '3, which converted to an Emission Index o f  74.8 g/kg fuel 

(uncorrected) or 6.4g/kg fuel (corrected). Through the catalyst, the number 

concentration increased to 3 .8 x l0 7 cm '3 (fivefold increase), indicating particle blow­

out from the catalyst walls. The uncorrected Emission Index, in contrast, decreased 

to 25.3 g/kg fuel, which corresponds to a 66%  decrease, but applying the correction 

the Emission Index increased to 13.8 g/kg fuel, that is, a 115% increase. This 

discrepancy arose from the difference in changes by size, as observed in the particle 

size distribution charts, Figure 4.15. W hereas particles below 1.0pm were formed, 

increasing the number concentration but not contributing significantly to the 

Emission Index, larger particles deposited through the catalyst. Therefore, when the 

correction was not applied, the large particle effect on the total Emission Index was 

very significant, producing a decrease. The correction, in contrast, gave more 

importance to the contribution o f  the ultrafine particle to the total Emission Index, 

hence increasing its value.

Through the first silencer, the total particle number concentration decreased to 

4.2x106 cm '3, just below the original concentration upstream o f the catalyst. This 

was equivalent to a decrease by 89%, due to particulate deposition. The Emission 

Index decreased by 81% (uncorrected) or 95% (corrected), to 4.7 g/kg fuel or 0.75 

g/kg fuel, respectively. Deposition occurred for particles at all size ranges.

The total particle number concentration increased by 70% through the second 

silencer, to 7.0x106 cm"3. The Emission Index also increased, either uncorrected and 

corrected, by 1.9 times or 87%, to 13.6 g/kg fuel or 1.4 g/kg fuel, respectively. All



- 2 2 7 -

this indicates that ultrafine particles formed and coagulated, and large particles were 

blown out from the silencer. Comparatively, however, the change was not 

significant, with respect to those occurred through the catalyst or the first silencer.

a. Total Particle Number Concentration during Cold S ta rt 3500rpm@15kW 
Idle Conditioning

Time [sec]

------U/S Cat., Idle Precond.-------D/S Cat., Idle Precond.-------U/S 2nd Silencer, Idle Precond.-------D/S 2nd Silencer, Idle Precond.

b. Total Particle Number Concentration changes during Cold Start, 3500rpm@15kW 
Idle Conditioning

------ Catalyst-------U/S 2nd Silencer, Idle Precond. Second Silencer

Figure 4 .13. Total number and mass concentrations vs. time during cold start at 
high-speed conditions after Idle preconditioning at various points through the 
exhaust system, a) Particle number concentration
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c. Emission Index Concentration during Cold Start, 3500rpm@15kW 
Idle Conditioning - Corrected

Time [sec]

----------U/S Cat., Idle Precond. — ----- D/S Cat., Idle Precond. ----------U/S 2nd Silencer, Idle Precond.
D/S 2nd Silencer, Idle Precond. - ■ ■i- - -  U/S Cat., grav. - - a - -  D/S Cat., grav.

d. Emission Index changes during Cold Start, 3500rpm@15kW 
Idle Conditioning - Corrected

|-------C a ta lyst------- First Silencer Second Silencer ]

Figure 4.13. Total num ber and mass concentrations vs. time during cold start at 
high-speed conditions after Idle preconditioning at various points through the 
exhaust system, b) Corrected Emission Index

In summary, the first mass-burst event o f  the cold start at 3500rpm - 15kW 

after Idle preconditioning showed a very significant particulate blow-out from the 

catalyst and a less important blow-out from the second silencer. Deposition occurred 

from the first silencer.
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e. Emission Index Concentration during Cold Start, 3500rpm@15kW 
Idle Conditioning - Uncorrected

Time [sec]

----------U/S Cat., Idle Precond. — ----- D/S Cat., Idle Precond. ---------U/S 2nd Silencer, Idle Precond.
--------- D/S 2nd Silencer, Idle Precond. • • • U/S Cat., grav. -  -a -  -  D/S Cat., grav.

f. Emission Index changes during Cold Start, 3500rpm@15kW 
Idle Conditioning - Uncorrected

| ------ Catalys t ------- First Silencer ....... Second Silencer [

Figure 4.13. Total number and mass concentrations vs. time during cold start at
high-speed conditions after Idle preconditioning at various points through the 
exhaust system, c) Uncorrected Emission Index

Again, the opposite trends in the particulate deposition/blow-out behaviour 

between the Catalyst/Second silencer and the First silencer were observed. Ultrafine 

particles, below l.Ojim, were formed through the catalyst and first silencer. The 

result o f  various processes caused a shift towards smaller sizes in the particle size 

distribution through the first silencer.
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The total particle number concentration o f the exhaust aerosol leaving the 

engine during the peak-num ber event was 3.4x108 cm"3, two orders o f magnitude 

higher than the concentration at the same point during the first-mass-burst event. 

The corresponding Emission Index was 24.35 g/kg fuel or 6.22 g/kg fuel, when 

using the uncorrected or corrected conversion, respectively. Through the catalyst,
8 3the total particle number concentration decreased to 1.2x10 cm ' (64% decrease) 

and the uncorrected Emission Index, to 17.5 g/kg fuel (28% decrease). The corrected 

Emission Index, on the contrary, increased to 7.5 g/kg fuel (21% increase). The 

difference was due to the opposite behaviour o f particles in different size ranges. 

Particles smaller than 0.2pm  were oxidised, and coagulated to form larger particles; 

particles larger than 2pm  were deposited through the catalyst, and the number o f 

those within that interval increased by coagulation. A shift towards larger particles 

occurred through the catalyst, as a result o f  particle coagulation.

Through the first silencer, the total particle num ber concentration decreased by 

84%, to 2.0x107 cm '3. The Emission Index also decreased significantly, both 

uncorrected and corrected: by 85% and 89%, to 2.71 g/kg fuel and 0.85 g/kg fuel, 

respectively. Particles at all size ranges were deposited.

Through the second silencer, the total particle number concentration decreased 

to 1 .7xl07 cm '3 (by 12%) and the uncorrected Emission Index, to 2.25 g/kg fuel (by 

17%). The corrected Emission Index, in contrast, increased to 1.08 g/kg fuel (by 

26%). Through this silencer, very fine particles, below 0.1pm, deposited and 

coagulated; large particles, above 2pm , deposited; and the number o f middle-sized 

particles within those limits increased by coagulation, and perhaps some 

resuspension from the silencer walls in the large particle end o f the range. This was 

very similar to what occurred through the catalyst in the same period, although the 

shift in particle size distribution did not occur.

The parallel behaviour o f the exhaust aerosol through the catalyst and the 

second silencer, opposite to that through the first silencer, was observed once more 

in the peak-number event. Blown-out particles from the catalyst and the second 

silencer were in the middle-size range only. Very fine particles were oxidised, 

deposited or coagulated, and large particles deposited through those devices. 

Particles o f all sizes deposited through the first silencer.

4.6.1.2. Peak by number
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Figure 4.17. Particle size distribution during the peak-number event o f  the cold start
at 3 5 0 0 rp m -  15kW after Idle preconditioning.
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Once the stabilisation in the readings with the ELPI was reached, around 5 

minutes after the peak-num ber event, the total particle number concentration o f the 

exhaust aerosol leaving the engine was 9.6x107 cm '3 (28% of the maximum level 

reached in the peak-num ber event), with a corresponding Emission Index o f  9.76 

g/kg fuel (uncorrected) or 3.11 g/kg fuel (corrected). The total number concentration
7 ^decreased by 54% through the catalyst, to 4.4x10 cm ' . The uncorrected and 

corrected Emission Index, on the contrary, increased by 18% or 20%, to 11.6 g/kg 

fuel or 3.72 g/kg fuel, respectively. The decrease in particle number concentration 

was due to coagulation, deposition and oxidation o f  very fine particles, below 0.1 

pm, and the increase in Emission Index, to the blow-out o f  particles larger than that 

size.

Through the first silencer, the total particle number concentration decreased to 

l.OxlO7 cm '3, one fourth o f the value downstream o f  the catalyst. The uncorrected 

and corrected Emission Index decreased by nearly 90%, to 1.42 g/kg fuel 

(uncorrected) or 0.43 g/kg fuel (corrected). Particles o f  all sizes deposited through 

the silencer.

The second silencer had a lower effect on the aerosol than the first silencer. 

Through it, the total number concentration decreased to 8.3x10° cm '3 and the 

Emission Index to 1.12 g/kg fuel (uncorrected) or 0.36 g/kg fuel (corrected), the 

decrease for all cases being around 20%. Particles o f all sizes deposited through the 

silencer, with the only exception o f  particles around 0.14pm, which increased in 

number concentration, presumably by coagulation.

In summary, once the stabilisation was observed, particle coagulation 

increased mid-sized particle number concentration through the catalyst, and large 

particles were blown out from it. Particles o f  all sizes deposited through both 

silencers, more significantly through the first silencer.

4.6.I.3. Stabilisation
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Figure 4.20. Particulate blow-out for various size ranges during the stabilisation
event o f  the cold start at 3500rpm -  15kW after Idle preconditioning.
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The high-speed preconditioning procedure consisted o f ten minutes running at 

3500rpm - 15kW with the aim o f  blowing out fluffy deposits from the walls o f the 

exhaust system, in contrast with the idle preconditioning procedure, which was 

designed to produce those deposits. After this, the engine was soaked overnight and 

a cold-start test at 3500rpm - 15kW was run, with the results described in this 

section.

The general characteristics o f the particulate emissions at the conditions tested 

were the same as those observed during the test after idle preconditioning, showing a 

first mass burst, followed by a peak number concentration in the first minute o f cold 

start, and a stabilisation in particle number concentrations and Emission Index four 

to five m inutes later.

4.6.2.1. First mass burst

During the first seconds o f cold start, when the first mass burst occurred, the 

total particle num ber concentration o f  the exhaust aerosol leaving the engine was 

1 .4xl07 cm’3, converting to an Emission Index o f  327 g/kg fuel (uncorrected) or 24 

g/kg fuel (corrected). Through the catalyst, the number concentration increased to 

2.0 xlO7 cm '3 (by 38%). However, the Emission Index, uncorrected and corrected, 

decreased significantly, by 91 and 82%, to 29 g/kg fuel ar.d 4 g/kg fuel, respectively. 

Ultrafine particles, below 0.1 |tm , were formed and larger particles deposited through 

the catalyst. As a result, the trend o f  the number concentration was opposite to that 

o f  the Emission Index, and the particle size distribution shifted towards lower sizes.

Through the first silencer, the total particle number concentration decreased by 

70%, to 5.9x106 cm '3. The uncorrected and corrected Emission Index decreased by 

81% and 74%, to 5.43 g/kg fuel and 1.14 g/kg fuel, respectively. Particles o f  all 

sizes deposited through the silencer, and there was no significant change in the 

particle size distribution.

Through the second silencer, the total particle number concentration decreased 

by 31%, to 4.1x10° cm ’3, and the uncorrected Emission Index, by a similar 

percentage, to 3.76 g/kg fuel. The corrected Emission Index decreased by 41%, to 

0.67 g/kg fuel. Particles o f  all sizes deposited through the second silencer, as 

occurred through the first silencer, and no significant change in size distribution was 

observed.

4.6.2. 3500rpm  -  15kW , High-speed preconditioning

In summary, particle deposition occurred throughout the exhaust system during

the first mass-burst event o f  the cold-start test at 3500rpm - 15kW after high-speed
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preconditioning, and the only increase in num ber concentration was due to the 

formation o f ultrafme particles through the catalyst.

a. Total Particle Number Concentration during Cold Start, 3500rpm@15kW 
High Speed Conditioning

Time [sec]

------ U/S Cat., High Speed Precond. ------D/S Cat., High Speed Precond.
------U/S 2nd Silencer, High speed Precond.------ D/S 2nd Silencer, High speed Precond.

b. Total Particle Number Concentration changes during Cold Start, 3500rpm@15kW 
High Speed Conditioning

-------Catalyst-------First Silencer------- Second Silencer

Figure 4 .2 1. Total num ber and mass concentrations vs. time during cold start at 
high-speed conditions after high-speed preconditioning, at various exhaust 
points, a) Particle number concentration.
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c. Emission Index Concentration during Cold Start, 3500rpm@15kW 
High Speed Conditioning - Corrected

- - h - - - U/S Cat., grav. — i—  D/S Cat., grav. ----------U/S Cat., High Speed Precond.
--------D/S Cat., High Speed Precond. -----— U/S 2nd Silencer, High speed Precond.-----  D/S 2nd Silencer, High speed Precond.

d. Emission Index changes during Cold Start, 3500rpm@15kW 
High Speed Conditioning - Corrected

|-------Catalyst------- First Silencer------- Second Silencer |

Figure 4 .2 1. Total number and mass concentrations vs. time during cold start at 
high-speed conditions after high-speed preconditioning, at various exhaust 
points, b) Corrected Emission Index.
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e. Emission Index Concentration during Cold Start, 3500rpm@15kW 
High Speed Conditioning - Uncorrected

• -A--- U/S Cat., grav. - - a - -  D/S Cat., grav. --------- U/S Cat., High Speed Precond.
-------- D/S Cat., High Speed Precond. --------- U/S 2nd Silencer, High speed Precond. D/S 2nd Silencer, High speed Precond.

f. Emission Index changes during Cold Start, 3500rpm@15kW 
High Speed Conditioning - Uncorrected

------ Catalyst------- First Silencer-------Second Silencer |

Figure 4.21. Total number and mass concentrations vs. time during cold start at 
high-speed conditions after high-speed preconditioning, at various exhaust 
points, c) Uncorrected Emission Index.
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preconditioning.
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Figure 4.23. Particle size distribution during the first mass-burst event of the cold
start at 3500rpm -  15kW after high-speed preconditioning.
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Figure 4.24. Particulate blow-out for various size ranges during the first mass-burst
event o f  the cold start at 3500rpm -  15kW after high-speed preconditioning.
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After the first mass-burst event, the total particle num ber concentration peaked 

at 3 .9 x l0 8 cm '3, the corresponding Emission Index being 38.76 g/kg fuel 

(uncorrected) or 6.84 g/kg fuel (corrected). Through the catalyst, the particle number 

concentration decreased to 1.6xlOx cm '3 (59% decrease). The Emission Index, 

uncorrected and corrected, also decreased, by 40%  and 14%, to 23.1 g/kg fuel and 

5.89 g/kg fuel, respectively. Particles below 0.2|am were oxidised, coagulated and 

deposited, whereas particles larger than 1 .Ojim deposited and particles within those 

limits were formed by coagulation through the catalyst. As a result, the particle size 

distribution shifted towards larger sizes.

Through the first silencer, the total particle number concentration decreased to 

1 .2x l07 cm"3, which was a 90% decrease. The uncorrected and corrected Emission 

Index decreased to 8.58 g/kg fuel and 1.02 g/kg fuel, by 63% and 83%, respectively. 

Particles o f all sizes deposited through the silencer.

Through the second silencer, the decrease in total particle number 

concentration was just by 7%, so the concentration at the tailpipe was 1.4xl07 cm '3. 

The decrease in uncorrected Emission Index was more significant, by 65%, so 3.05 

g/kg fuel o f  particulate were emitted at the tailpipe. The corrected Emission Index, 

however, decreased by just 19% through the second silencer, to 0.83 g/kg fuel. The 

deposition occurred for particles at nearly all size ranges, with the exception o f 

particles between 0.1|Jm and 0.4|im , whose number concentration increased slightly 

as a result o f  coagulation.

In summary, the general trends in the behaviour o f the exhaust aerosol during 

the peak-num ber event at 3500rpm - 15kW after high-speed preconditioning were 

identical to those observed for the same event at the 3500rpm - 15kW test after Idle 

preconditioning, showing parallel size-dependent changes through the catalyst and 

the second silencer, and deposition for all particle sizes through the first silencer. 

Through the catalyst, the formation o f  ultrafine particles made the particle size 

distribution shift towards larger sizes.

4.6.2.2. Peak by number
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Figure 4.25. Particle size distribution during the peak-number event o f  the cold start
at 3500rpm -  !5kW after high-speed preconditioning.
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Figure 4.26. Particulate blow-out for various size ranges during the peak-number
event o f  the cold start at 3500rpm -  15kW after high-speed preconditioning.
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The total particle number concentration o f  the exhaust aerosol leaving the 

engine decreased with time after the num ber peak and reached a stabilisation level at 

1 .3xl08 cm '3 after 5 minutes. The uncorrected Emission Index during this period 

was 13.74 g/kg fuel, and the corrected, 3.98 g/kg fuel. The catalyst produced a 

decrease by 47% in particle number concentration and by 28% (uncorrected) or 22%
n

(corrected) in Emission Index, so the levels downstream o f  the catalyst were 6.7x10 

cm"’ and 9.83 g/kg fuel or 3.12 g/kg fuel, respectively. Particles were deposited 

through the catalyst at most sizes, except those between 0.3pm and 1.0pm, whose 

concentration increased as a result o f  coagulation, making the size distribution shift 

slightly towards larger sizes.

Through the first silencer, the total particle number concentration decreased to 

1 .2xl07 cm '3, and the Emission Index, to 2.10 g/kg fuel (uncorrected) and 0.55 g/kg 

fuel (corrected). The decrease in both particle number concentration and Emission 

Index was by around 80%, due to particle deposition for all size ranges.

Particles at all size ranges deposited through the second silencer, although less 

significantly than through the first silencer. Total particle number concentration 

decreased by 31%, and Emission Index, by 39% (uncorrected) or 28% (corrected), 

so an 8.4xlOfi cm"3 aerosol was emitted at the tailpipe. This converted to a tailpipe 

Emission Index o f  1.28 g/kg fuel (uncorrected) or 0.39 g/kg fuel (corrected).

In summary, the stabilisation period o f the cold-start test at 3500rpm - 15kW 

after high-speed preconditioning showed similar features to those observed for the 

test at the same conditions after idle preconditioning, showing deposition throughout 

the exhaust system, and the formation by coagulation o f middle-sized particles 

through the catalyst. These results indicate that preconditioning has a lesser 

influence for high-speed cold start compared with low-speed cold start. This may be 

due to the higher exhaust temperatures as well as the high exhaust flow rates. The 

greater temperature gradient had lead to more thermophoretic deposition on the wall 

followed by ‘baking’ o f the deposits at the higher temperatures.

4.6.2.3. Stabilisation
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Figure 4.27. Particle size distribution during the first mass-burst event o f  the cold
start at 3500rpm -  15kW after high-speed preconditioning.
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High power step-change cold-start tests, at 2250rpm - 35kW, were run after 

both idle and high-speed preconditioning, as in the case o f high-speed tests 

described in the previous section. After idle preconditioning, the exhaust system was 

expected to have a considerable amount o f  fluffy particulate aggregates onto the 

deposition layer. Results from the high-power cold-start test are presented here.

In contrast with the high-speed cold-start tests, the high-power tests showed 

the effect o f  the EGR-valve opening after 150 seconds from cold start. The total 

particle num ber concentration and Emission Index increased as a result o f  the event, 

as shown in Figure 4.29 and 4.30. The details o f  the changes in the exhaust aerosol 

throughout the exhaust system during this and other events are shown below.

4.6.3.1. First mass burst

During the first seconds from cold start, during the first mass-burst event, the 

total particle number concentration o f the exhaust aerosol upstream o f the catalyst 

was 1.1x10* cm '3. The equivalent uncorrected Emission Index was 37.42 g/kg fuel, 

and the corrected, 3.08 g/kg fuel. Through the catalyst, the number concentration 

was reduced to 4.7x107 cm '3, a 59% decrease. The Emission Index, however, 

increased by 21% when uncorrected and 192% when corrected, to 45.2 g/kg fuel and 

8.97 g/kg fuel, respectively. As in other cases, the opposite changes were due to 

size-dependent increase or decrease in particulate number. Very fine particles, below 

0.1pm, accounted for the decrease in particulate number, as they oxidised, 

coagulated and deposited by diffusion through the catalyst. Middle-sized and large 

particles were blown-out o f  the catalyst, with the only exception o f particles around 

8pm, which deposited through it. The particle size distribution shifted towards larger 

particles, as shown in Figure 4.31.

Through the first silencer, the total particle number concentration decreased by 

69%, to 1 .7xl07 cm '3. The Emission Index also decreased, to 18.25 g/kg fuel 

(uncorrected) and 2.84 g/kg fuel (corrected), that is, a 60% and 68% decrease, 

respectively. Particles at all size ranges deposited through this silencer.

Through the second silencer, the total particle number concentration increased 

by 68%, so it was 2.4x107 cm '3 when emitted at the tailpipe. Only very fine particles, 

below 0.2pm, were formed, accounting for the increase in number concentration. 

M iddle-sized and large particles deposited and, therefore, the Emission Index 

decreased. It reached 16.15 g/kg fuel (uncorrected) or 2.31 g/kg fuel (corrected), for 

a 12% or 19% decrease from the Emission Index upstream o f  the silencer. The 

particle size distribution shifted slightly towards smaller particles, owing to the

4.6.3. 2250rpm  - 35kW , Idle preconditioning
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formation o f ultrafme particles by outgassing, nucleation, condensation and 

coagulation processes.

a. Total Particle Number Concentration during Cold Start 
2250rpm@35kW Idle Conditioning

Time [sec]

------U/S Cat., Idle Precond.-------D/S Cat., Idle Precond.-------U/S 2nd Silencer, Idle Precond.-------D/S 2nd Silencer, Idle Precond.

b. Total Particle Number Concentration changes during Cold Start 
2250rpm@35kW, Idle conditioning

|------Catalyst-------First silencer-------Second silencer J

Figure 4.29. Total num ber and mass concentrations vs. time during cold start at 
high-load conditions after Idle preconditioning at various exhaust points, a) 
Particle num ber concentration.
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c. Emission Index Concentration during Cold Start, 2250rpm@35kW 
Idle Conditioning - Corrected

Time [sec]

—  4- - • U/S Cat., grav. - -A - -D /S  Cat., grav. ---------U/S Cat., Idle Precond.
--------- D/S Cat., Idle Precond. ---------U/S 2nd Silencer, Idle Precond. - D/S 2nd Silencer, Idle Precond.

d. Emission Index changes during Cold Start, 2250rpm@35kW 
Idle conditioning - Corrected

|------Catalys t-------First silencer-------Second silencer |

Figure 4.29. Total number and mass concentrations vs. time during cold start at 
high-load conditions after Idle preconditioning at various exhaust points, b) 
Corrected Emission Index.
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e. Emission Index Concentration during Cold Start, 2250rpm@35kW 
Idle Conditioning - Uncorrected

■ -x- - • U/S Cat., grav. -  -a-  -  D/S Cat., grav. ---------U/S Cat., Idle Precond.
---------D/S Cat., Idle Precond. ---------U/S 2nd Silencer, Idle Precond.--------- D/S 2nd Silencer, Idle Precond.

f. Emission Index changes during Cold Start, 2250rpm@35kW 
Idle conditioning - Uncorrected

| ------Catalyst ——  First silencer-------Second silencer

Figure 4.29. Total number and mass concentrations vs. time during cold start at 
high-load conditions after Idle preconditioning at various exhaust points, c) 
Uncorrected Emission Index.
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U/S Cat., Idle D/S Cat., Idle U/S 2nd Sil., Idle D/S 2nd Sil., Idle 
Cond. Cond. Cond. Cond.

—•—  First mass burst —□— Peak by number 
—«— Valley after peak------- After increase

Figure 4.30. Total number and mass concentrations for the main events o f  the cold
start at high-load conditions after Idle preconditioning vs. location in the
exhaust system.
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Figure 4 .3 1. Particle size distribution during the first mass-burst event o f  the cold
start at 2250rpm -  35kW after Idle preconditioning.
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Figure 4.32. Particulate blow-out for various size ranges during the first-mass-burst 
event o f the cold start at 2250rpm - 35kW after Idle preconditioning.

The first mass burst was the first observation o f  an opposite behaviour o f the 

exhaust aerosol through the catalyst and the second silencer, which had shown
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parallel changes in previous tests. The general trend throughout the exhaust system 

in this event was particle deposition. As exceptions, the number concentration of 

middle-sized particles increased by coagulation and large particle were blown out 

from the catalyst; also, very fine particles were formed through the second silencer.

4.6.3.2. Peak by num ber

The total particle number concentration o f  the exhaust aerosol leaving the 

engine peaked at l^ x lO 8 cm '1 just before the first minute from cold start. The 

corresponding Emission Index was 9.65 g/kg fuel (uncorrected) or 2.38 g/kg fuel 

(corrected). Through the catalyst, the number concentration decreased by 41%, to 

l . lx lO 8 cm '3, and the Emission Index, by 31% or 19%, to 6.70 g/kg fuel or 1.93 g/kg 

fuel, uncorrected or corrected, respectively. M ost o f the particles deposited through 

the catalyst, with the exception o f  particles between 0.3pm and 0.5pm, the number 

o f  which increased, presumably by coagulation, with the corresponding loss o f  finer 

particles.

The total particle number concentration decreased by 53% through the first 

silencer, reaching 5 .2 x l0 7 cm” downstream o f  it. The Emission Index decreased to 

3.17 g/kg fuel (uncorrected) or 0.92 g/kg fuel (corrected), which was a 29% or 52% 

decrease, respectively. Particles o f  all size ranges deposited, with the exception o f 

particles around 0 .14pm, whose concentration increased by coagulation, and those 

around 5pm, which were blown out.

In a similar way to the first mass burst, ultrafine particles were formed through 

the second silencer, and particles larger than 1.0pm, which deposited. This caused 

an opposite change in total particle number concentration in the Emission Index. The 

number concentration, dominated by ultrafine particles, increased by 29%, reaching 

6 .7 x l0 7 cm '3. In contrast, the Emission Index decreased by 30% or 32%, to 3.30 

g/kg fuel or 0.60 g/kg fuel, uncorrected and corrected, respectively.

Again, the exhaust aerosol passing through the second silencer showed 

opposite trends from those observed through the catalyst, which was an important 

difference from previous tests at different operating conditions. Apparently, the 

temperature drop in the second silencer triggered a marked ultrafine particle 

formation mechanism through the second silencer. As a result, it was the first 

silencer that was in phase with the catalyst in terms o f  the effects on the exhaust 

particles. The most likely cause for these changes was the increased temperature o f 

the exhaust gas, which created a w ider temperature drop through the exhaust system.
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Figure 4.33. Particle size distribution during the peak-number event of the cold start
at 2250rpm -  35kW after Idle preconditioning.
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Figure 4.34. Particulate blow-out for various size ranges during the peak-number
event o f  the cold start at 2250rpm - 35kW after Idle preconditioning.



- 2 6 2 -

The total particle num ber concentration decreased after the peak o f  the first 

minute from cold start at all points, except the tailpipe, to a comparatively low value 

or “valley” event. This could have been due to a re-deposition period after the initial 

blow out. There are internal engine deposition in the water cooled exhaust port walls 

as well as in the piston and cylinder crown areas. These can cause the transient in 

engine-out particulate. Upstream o f  the catalyst, the number concentration for the
7 3valley was 5.1x10 cm" , which was 26% o f  the peak value. The corresponding 

Emission Index was 4.96 g/kg fuel (uncorrected) and 1.63 g/kg fuel (corrected), a 

51% or 68% o f the Emission Index during the number peak. Through the catalyst,
7 3the total particle num ber concentration decreased to 2.9x10 cm" (44% decrease), 

and the Emission Index increased to 5.99 g/kg fuel (21% increase) and 1.66 g/kg 

fuel (2% increase). Particles below 0.3|im  were oxidised, coagulated or deposited 

through the catalyst, but larger particles increased in number concentration by 

coagulation and were blown out from it. The particle size distribution shifted slightly 

towards larger sizes through the catalyst.

Through the first silencer, the total particle number concentration increased 

just by 1%, remaining around 2.9x107 cm"3. The uncorrected Emission Index 

decreased by 47%, to 3.17 g/kg fuel, and the corrected Emission Index, by 37%, to 

1.04 g/kg fuel. Most o f the particles deposited through the silencer with the 

exception o f those around 0.04 and 0.14|im , which were formed through it, 

increasing their number concentration. As a result, the particle size distribution 

shifted towards smaller sizes.

Through the second silencer, the total particle number concentration increased 

very significantly, reaching 7.6x107 cm '3, 162% higher than upstream o f the catalyst. 

The Emission Index also increased, to 5.40 g/kg fuel, uncorrected, or 1.53 g/kg fuel, 

corrected, 70% or 47% higher than upstream o f the catalyst, respectively. The 

num ber o f  particles o f  all sizes increased, by coagulation o f  ultrafine particles as 

well as blow out o f  large particles from the silencer walls. The particle size 

distribution shifted slightly towards smaller sizes.

4.6.3.3. Valley after peak
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Figure 4.35. Particle size distribution during the valley-after-peak event o f  the cold
start at 2250rpm -  35kW after Idle preconditioning.
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The exhaust total particle num ber concentration at the inlet o f  the exhaust 

system during the test period after the EGR-valve opening was 1.3xl08 cm"3, which 

was nearly 70% o f  the total num ber concentration during the number peak, and 2.5 

times as high as that during the valley. The corresponding Emission Index was very 

high, 52.74 g/kg fuel when uncorrected and 14.02 g/kg fuel when corrected. The 

uncorrected Emission Index at this point was higher than tenfold -and the corrected, 

more than eightfold- higher than the Emission Index during the valley event.

Through the catalyst, the total particle number concentration decreased to 

7.7x107 cm"3 and the Emission Index to 24.67 g/kg fuel (uncorrected) or 9.25 g/kg 

fuel (corrected), which was a 40%, 53% and 34% decrease, respectively. Very fine 

particles were oxidised, coagulated or deposited, and the rest o f the particles 

deposited through the catalyst. No significant change in particle size distribution was 

observed.

Through the first silencer, the total particle number concentration increased to 

8.0x107 cm"3, for a 4% increase. The Emission Index decreased by 23% or 13%, to 

18.99 g/kg fuel or 8.08 g/kg fuel, uncorrected or corrected, respectively. Changes 

through this silencer were very similar to those occurred during the valley event, 

most o f  the particles deposited through the silencer, except those around 0.04|am and 

0.14 p n .

Through the second silencer, the total particle number concentration increased 

by 19%, to 9.6x107 cm"3, as a result o f  the formation o f ultrafine particles, those 

below 0.2|im  increased. Larger particles, however, deposited through the silencer, 

causing an Emission Index decrease by 28% or 24%, to 13.58 g/kg fuel or 6.13 g/kg 

fuel, uncorrected or corrected, respectively.

In summary, particulate matter deposited throughout the exhaust system during 

the stabilisation period following the EGR valve opening, with the exception o f 

particles below 0.3|im , which were formed, increasing their concentration through 

the second silencer. No significant change in particle size distribution was observed.

4.6.3.4. Increase after EGR-valve opening
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Figure 4.37. Particle size distribution during the increase-after-EGR event of the
cold start at 2250rpm -  35kW after Idle preconditioning.
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High-power step-change cold-start tests were also run after high-speed 

preconditioning, to provide a comparison basis to the Idle-preconditioning tests. 

High-speed preconditioning consisted of a ten-minute run at 3500rpm - 15kW, that 
had the objective o f blowing out fluffy deposits from the exhaust system walls, in 

contrast to the idle preconditioning, which aimed to produce such deposits. The 

general features o f the particulate emissions with time during the cold start were 

similar to those previously observed. There was a first mass burst during the first 

few seconds, followed by a peak and a decrease to a flat “valley” in total particle 

number concentration, and a new increase both in number concentration and 

Emission Index, due to the EGR-valve opening.

4.6.4.1. F irst m ass burst

The initial particle number concentration during the step-change cold-start test 
at 2250rpm - 35kW after high-speed preconditioning, in the first mass-burst event, 
was 3.7x107 cm '1 at the sampling point upstream of the catalyst. The Emission Index 

was 28.97 g/kg fuel (uncorrected) or 6.05 g/kg fuel (corrected), about 30% lower 
than the Emission Index at the same point and same event in the test after idle 

preconditioning. Through the catalyst, the aerosol particle number concentration 
decreased to 1.6xl07 cm '3 and the Emission Index, to 2.68 g/kg fuel (uncorrected) or
1.55 g/kg fuel (corrected). This represented a 56% decrease in total particle number 

concentration; 90% and 74% in uncorrected and corrected Emission Index, 

respectively, which suggests that the catalyst was very effective in particulate 

adsorption at low temperatures if following a high-speed preconditioning. Particles 

coagulated were oxidised, or deposited to the catalyst walls. Hence particles of all 
sizes accounted for the significant total number and mass reduction.

Through the first silencer, the total particle number concentration decreased 

through the silencer by only 2%, staying around 1.6xl07 cm"3. The Emission Index, 

in contrast, increased very significantly, as much as fivefold, uncorrected, or by 

103%, corrected. The resulting Emission Index downstream of this silencer was 
17.21 g/kg fuel, uncorrected, or 3.14 g/kg fuel, corrected. As in previous cases, size- 

dependent changes caused the different trends in number concentration and 

Emission Index. Particles below 0.2pm accounted for the reduction in number 
concentration as they deposited or coagulated from the silencer, whereas the number 

of mid-sized particles increased by the effect o f the coagulation and large particles 
were blown out, accounting for the increase in Emission Index. A very slight shift of 

the particle size distribution towards smaller sizes was observed.

4.6.4. 2250rpm  - 35kW , H igh-speed preconditioning
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a. Total Particle Num ber Concentration during Cold Start, 2250rpm @ 35kW
High Speed Conditioning

Time [sec]

-------U/S Cat., High Speed Precond. ------- D/S Cat., High Speed Precond.
-------U/S 2nd Silencer, High Speed Precond.--------D/S 2nd Silencer, High Speed Precond.

b. Total Particle Number Concentration changes during Cold Start, 2250rpm@35kW 
High Speed Conditioning

-------Cata lyst--------First silencer Second silencer

Figure 4.39. Total number and mass concentrations vs. time during cold start at
high-load conditions after high-speed preconditioning at various points of the 
exhaust system, a) Particle number concentration.

The second silencer’s effect on exhaust particulate was opposite to that o f the 

first silencer. Through it, the total particle number concentration increased by 8% 
and the Emission Index decreased by 23%, corrected, or 4%, uncorrected. At the 

tailpipe, as a result, the total particle number concentration was 1.7xl07 cm'3, and 

the Emission Index, 13.27 g/kg fuel and 3.02 g/kg fuel, uncorrected and corrected, 

respectively.
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c. Emission Index Concentration during Cold S ta rt 2250rpm@ 35kW
High Speed Conditioning - Corrected

0 100 200 300 400 500 600
Time [sec]

---H --- U/S Cat., grav. — ^ —  D/S Cat., grav. — ------U/S Cat., High Speed Precond.
---------- D/S Cat., High Speed Precond. ---------- U/S 2nd Silencer, High Speed Precond. — ------D/S 2nd Silencer, High Speed Precond.

d. Total Emission Index changes during Cold Start, 2250rpm@35kW 
High Speed Conditioning - Corrected

-------Catalyst--------First silencer --------Second silencer [

Figure 4.39. Total number and mass concentrations vs. time during cold start at
high-load conditions after high-speed preconditioning at various points of the 
exhaust system, b) Corrected Emission Index.

The changes in different size ranges varied, and were very small. The number 

of particles below 0.2pm and a few between 0.5pm and 2pm increased through the 

silencer, the former accounting for the increase in number concentration. Particles 

between 0.2pm and 0.5pm, and those larger than 2pm deposited through it, the latter 

accounting for the main decrease in Emission Index.



Em
is

si
on

 
In

de
x 

[g
/kg

 
fu

el
] 

n
—

— 
Em

is
si

on
 

In
de

x 
[g

/kg
 

fu
el

]

-271  -

e. Emission Index Concentration during Cold Start, 2250rpm@ 35kW
High Speed Conditioning - Uncorrected

-H- -U /S  Cat., grav. - - a- - D / S  Cat., grav. ---------- U/S Cat., High Speed Precond.
D/S Cat., High Speed Precond. ---------- U/S 2nd Silencer, High Speed Precond.-----------D/S 2nd Silencer, High Speed Precond.

f. Total Emission Index changes during Cold Start, 2250rpm@35kW 
High Speed Conditioning - Uncorrected

------ Catalyst--------First silencer - ..... -  Second silencer]

Figure 4.39. Total number and mass concentrations vs. time during cold start at 
high-load conditions after high-speed preconditioning at various points o f the 
exhaust system, c) Uncorrected Emission Index.
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Figure 4.40. Total number and mass concentrations for the main events o f  the cold
start at 2250rpm - 35kW after high-speed preconditioning vs. location in the
exhaust.
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Figure 4.41. Particle size distribution during the first mass-burst event o f the cold
start at 2250rpm -  35kW after high-speed preconditioning
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Figure 4.42. Particulate blow-out for various size ranges during the first-mass-burst 
event o f the cold start at 2250rpm - 35kW after high-speed preconditioning.

In summary, the first mass-burst event o f  the step-change cold-start at

2250rpm - 35kW after high-speed preconditioning showed the effective deposition



-2 7 5  -

at particles at all size ranges through the catalyst. This trend continued for middle- 
sized and large particles, but not for very fine particles, through the silencers. Many 

particles below 0.1|im were formed through the silencers mainly by coagulation.

4.6.4.2. Peak by num ber

The total particle number concentration increased after the first seconds o f cold 
start, peaking by the end o f the first minute at all sampling points. Upstream of the 

catalyst, the number peaked at 7 .1xl07 cm '3, converting to an Emission Index of 

13.07 g/kg fuel, uncorrected, or 1.80 g/kg fuel, corrected. Through the catalyst, the 

particle number concentration decreased to 3.8x107 cm'3, and the Emission Index, to 

0.88 g/kg fuel, uncorrected, or 0.56 g/kg fuel, corrected. This corresponded to a 46% 
decrease in particle number concentration, and 93% or 69% in uncorrected and 

corrected Emission Index, respectively. Particles at all size ranges contributed to 

these changes, no particulate formation or blow-out was recorded at any size.

The total particle number concentration decreased through the first silencer by 

7%, to 3.6x107 cm"3. The Emission Index, in contrast, increased by as much as 

fivefold, uncorrected, or 81%, corrected, to 5.6 g/kg fuel or 1.02 g/kg fuel, 

respectively. The reduction in particle number concentration was due to the 

oxidation, coagulation or deposition of very fine particles, whereas the increase in 
Emission Index was caused by the blow-out of particles larger than 0.1 |im.

Through the second silencer, as occurred during the first mass burst, the 

particle number concentration increased and the Emission Index decreased. The 

particle number concentration increase was as high as by 92%, reaching 6.8x107 cm' 

3 at the tailpipe, and the Emission Index decreased by 40% or 2%, to 5.6 g/kg fuel or 

1.00 g/kg fuel, uncorrected or corrected, respectively. Particles below 0.2|jm were 

formed through the silencer, larger particles deposited through it, with the exception 
o f very few particles around 0.5|am, whose number concentration increased by 

coagulation.

In summary, the peak-number event o f the step-change cold-start at 2250rpm - 

35kW after high-speed preconditioning, the catalyst retained and transformed 
particles at all size ranges, large particles were blown out from the first silencer and 

deposited through the second, and the number o f ultrafme particles increased as a 

result o f outgassing, nucleation, condensation and coagulation from the second 

silencer.
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Figure 4.43. Particle size distribution during the peak-num ber event o f the cold start
at 2250rpm -  35kW after high-speed preconditioning.
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Figure 4.44. Particulate blow-out for various size ranges during the peak-number
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During the valley-after-peak event, the total particle number concentration 

upstream of the catalyst decreased to 4.6x107 cm"3, 33% lower than the 
concentration at the same point during the number peak event. On the other hand, 

the Emission Index decreased to 6.8 g/kg fuel, uncorrected, and 1.85 g/kg fuel, 

corrected. The latter was practically equal to that during the peak-number event.

Through the catalyst, the number concentration decreased to 2.4x107 cm"3, and 

the Emission Index, to 1.07 g/kg fuel and 0.83 g/kg fuel, uncorrected and corrected, 

respectively. This corresponded to a 49% decrease in particle number and an 85% or 

55% decrease in Emission Index, uncorrected or corrected, respectively. Particles 

were oxidised, deposited and coagulated so that their number and mass decreased for 

all size ranges.

Through the first silencer, the total particle number concentration and the
7 3Emission Index increased very significantly, to 5.1x10 cm" , and 6.00 g/kg fuel, 

uncorrected or 2.34 g/kg fuel, corrected. This was 118%, and 461% or 181% higher 

than upstream of the silencer, respectively. The increase occurred for particles of all 
size ranges, by coagulation for ultrafine and mid-sized particles, and large particle 

resuspension from the silencer walls.

The second silencer produced a 24% increase in particle number concentration 

and a 14% or 12% decrease in Emission Index, uncorrected or corrected,
7 3respectively. The downstream aerosol, as a result, was 6.4x10 cm"', and 5.15 g/kg 

fuel or 2.05 g/kg fuel. The increase in particle number concentration was due to the 

formation of particles below 0.2pm by nucleation, condensation and coagulation, 

and the decrease in Emission Index, to deposition o f larger particles.

From these observations, the second silencer affected the fine particles in a 

similar way to the first silencer, and large particles in a similar way to the catalyst. 
Through the first silencer and the catalyst, the aerosol showed opposite changes. No 

significant change in the particle size distribution was observed.

4.6.4 3 . Valley after peak
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Figure 4.45. Particle size distribution during the valley-after-peak event o f the cold
start at 2250rpm -  35kW  after high-speed preconditioning.
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Figure 4.46. Particulate blow-out for various size ranges during the valley-after-peak
event o f  the cold start at 2250rpm - 35kW after high-speed preconditioning.
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The total particle number concentration o f the exhaust aerosol leaving the 

engine, after the EGR-valve opened, stabilised around 9.5x107 cm'3, nearly 34% 

higher than the peak number o f the first minute from cold start. The corresponding 

Emission Index was 33.54 g/kg fuel, uncorrected, or 9.92 g/kg fuel, corrected, 17% 

or 64% higher than the Emission Index during the first mass burst at the same 
sampling point. Through the catalyst, the total particle number concentration 

decreased to 4.6x107 cm'3, for a 48% decrease. The Emission Index decreased to

3.56 g/kg fuel, uncorrected, or 2.86 g/kg fuel, corrected, for an 89% or 71% 

decrease, respectively. The decrease occurred for all particle size ranges, and the 

particle size distribution did not changed significantly.

The first silencer released particles after the EGR valve opened. Through it, the 

total particle number concentration increased by 155%, to 1.2x10s cm'3. The 

increase in Emission Index was even more significant, a sevenfold increase, 

uncorrected, or 265%, corrected, or to 28.99 g/kg fuel or 10.45 g/kg fuel, 

respectively. The increase in particle concentration occurred as a result o f ultrafine 

particle formation and coagulation, as well as large particle resuspension.

Through the second silencer, the changes were opposite to those through the 

first silencer during the same period. The particle number concentration decreased to 

9.3x107 cm'3, and the Emission Index, to 21.91 g/kg fuel, uncorrected, or 8.85 g/kg 
fuel, corrected. This represented a 21% decrease in particle number concentration 
and 24% or 15% decrease in uncorrected or corrected Emission Index, respectively. 

The decrease occurred for particles of all size ranges.

In summary, the stabilisation period after the increase in number concentration 

and Emission Index at 2250rpm - 35kW was characterised by a parallel behaviour of 

the exhaust aerosol through the catalyst and the second silencer, and an opposite 

behaviour in the first silencer. The particle size distribution underwent only a slight 

swift towards smaller sizes, owing to the formation of ultrafine particles by 

nucleation, condensation and coagulation.

4.6.4.4. Increase after EGR-valve opening
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Figure 4.47. Particle size distribution during the increase-after-EGR event o f the
cold start at 2250rpm -  35kW after high-speed preconditioning.
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4.7. Comparative summary of the cold start results

4.7.1. Direct deposition/blow out comparison

The results from the cold-start tests were shown in detail and the complexity of 

the particulate deposition/resuspension issue, combined with particle formation and 
growth by condensation and coagulation, became evident. Direct conclusions were 

very difficult to draw from the results, since no simple trends were observed and 

there were many factors involved. In this section, an attempt to find more common 

aspects between some o f such factors is made.

Figure 4.49 shows a summary o f the blow out and deposition through each one 

o f the exhaust system devices, expressed as the changes in number concentration 

and Emission Index vs. time during cold start.

For the catalyst, Figure 4.49. a) shows that in both number concentration and 

Emission Index, particle deposition and conversion was greatly predominant over 

particle blow out, and it occurred at significantly higher levels than blow out at 

3500rpm - 15kW after both idle and high-speed conditioning. This was presumably 

due to higher temperatures, reached in shorter times at high-power and high-speed 

conditions than at other conditions, enhancing the catalyst performance to retain and 

oxidise particles. Particle number blow-out occurred only during the first 30 seconds 
o f cold start at 3500rpm - 15kW after Idle preconditioning and during the first 50 

seconds of the cold start tests at 2250rpm - 15kW. Particle mass blow out (expressed 

as Emission Index -corrected-) occurred only during the first 30 seconds o f the cold 

start tests at 2250rpm - 15kW, 3500rpm - 15kW after Idle preconditioning, 1500rpm 
- lOkW and 2250rpm - 35kW after Idle preconditioning. Mass blow out was very 

significant at 2250rpm - 15kW. On the other hand, deposition was more significant 

at 3500rpm - 15kW than at any other engine operation condition.

For the first silencer, Figure 4.49. b) shows a very similar situation to that 

observed for the catalyst. Particle deposition (in number) predominated over particle 

blow-out for most conditions during the first 150 seconds o f the cold start tests, and 

was particularly significant in the tests at 3500rpm - 15kW (after both idle and high­

speed preconditioning) and 2250rpm - 35kW after Idle preconditioning. However, 
particle number blow-out was observed after 150 seconds from cold start for most 

conditions, more significantly at 2250rpm - 35kW, 2250rpm - 15kW, 1500rpm - 
lOkW. Particle deposition after 150 seconds from cold start occurred only in the 

tests at 3500rpm - 15kW. Regarding particle mass, as Emission Index -corrected-, 

the situation was very similar to that observed in particle number concentration. The 

only major difference was that the most significant particle mass deposition during
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the first 150 seconds occurred at 2250rpm - 15kW, for which the deposition in 

number was not important.
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Figure 4.49. Summary o f the particulate blow-out during cold start for all the engine 
operation conditions studied, expressed as number concentration and Emission 
Index blow out vs. time, a) Catalyst.

For the second silencer, Figure 4.49. c) shows that particle blow out, expressed 

as number concentration, occurred in important levels for the tests at 2250rpm - 
35kW after both idle and high-speed preconditioning. It was also important in the 

test at 2250rpm - 15kW for the first 150 seconds. Deposition was significant during 

the first 150 seconds o f the test at idle during the whole test at 1500rpm - lOkW. In 

particle mass, expressed as Emission Index, blow out occurred significantly during
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the first 150 seconds of the test at 2250rpm - 15kW. Deposition was predominant for 

all other conditions, and was significant at Idle and 1500rpm - 1 OkW during the first 

150 seconds, and also at 2250rpm - 35kW afterwards.
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Figure 4.49. Summary o f the particulate blow-out during cold start for all the engine 
operation conditions studied, expressed as number concentration and Emission 
Index blow out vs. time, b) First silencer.

From this general picture, there is clear evidence that the catalyst reduced the 

particle number concentration and Emission Index for most conditions during cold 

start. However, this trend does not discard the possibility o f particles occasionally 

being blown out o f the catalyst at important concentrations, as in the case o f the 

2250rpm - 15kW test. There is also evidence that the changes in particle
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concentration through the first silencer are opposite to those occurring through the 
second silencer in most cases. This indicates that deposition and reentrainment 

mechanisms, as well as other parallel processes such as condensation and 

coagulation are affected in an opposite manner through each silencer.
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Figure 4.49. Summary of the particulate blow-out during cold start for all the engine 
operation conditions studied, expressed as number concentration and Emission 
Index blow out vs. time, c) Second silencer.

4 .7 .2 . A n a ly s is  b a sed  on  th e  n u m b e r  o f  d e p o s it io n /b lo w  o u t ca ses

Table 4.1. shows a summary of the most likely processes observed during the 

cold-start tests, based on the particulate number and mass differences between 

consecutive sampling points along the exhaust system. Each cell of the table was
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considered as a ‘case’ for the analysis, and corresponded to one o f the particle size 
ranges that showed common behaviour in the vast majority of the tests, namely, 

particles smaller than 0.1pm, particles between 0.1pm and 1.0pm, and particles 
larger than 1.0pm. Processes that contributed to reduce the particle number cases 

appear in italic characters, and those that increased the particle number cases, in 

underlined characters. For the cases in which particles within these ranges showed 
both increase and decrease, the cells are shown in dotted:underlined characters. In 

some cases, the change was not measured by the ELPI, as a result of correction 
warnings that are explained elsewhere in this work. The cases were counted for each 

process related to the effect of the various devices in the exhaust, transient events 

and engine conditions. The counts were compared in Figures 4.49. to 4.51., which 

illustrate the differences in the contribution o f each factor. Each figure has two 

components, the first for the ultrafme particles (<0.1 pm) and the other for medium 

(0.1pm to 1.0pm) and large (1.0pm to 10pm) particles.

The analysis of these cases will be made with the aim of identifying those 
conditions that showed evidence of promoting the increase in particulate 

concentration through the exhaust system. For the ultrafme particles, this implies the 

formation o f finer particles by nucleation and their growth by condensation or 
coagulation. However, the coagulation can imply also the reduction in their number 

concentration, if they form medium size particles. On the other hand, in the large 

size range, the increase in particle number concentration is directly related to 

resuspension processes.

From the cold-start tests, Figure 4.50. shows that ultrafme particle deposition 
and coagulation to form larger particles overwhelmed the formation processes in 

virtually all conditions, except 1500rpm - lOkW and 2250rpm - 15kW. No direct 

relationship was found to explain this, but a high saturation ratio o f condensable 

species when running the tests at these conditions, which was unfortunately not 
measured, might have been the determining factor. For medium and large particles, 
the number o f deposition cases overwhelmed the number of cases for which 

processes increased the number of particles, such as coagulation of finer particles to 

form mid-sized particles, and reentrainment o f large particles, in most cases, for all 

test conditions. This would indicate that significant levels of particle resuspension 

are rather unusual, but may be critical when they occur.

The formation of ultrafme particles occurred mainly at 1500rpm - lOkW, 

2250rpm - 15kW and Idle, when low temperatures favoured the condensation 

processes. Also the 2250rpm - 35kW test after high-speed preconditioning
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contributed with a number of cases o f ultrafine particle formation, but in this case 

this was more likely due to enhanced coagulation than condensation.

The conditions under which the number o f both mid-sized and large particles 

increased most significantly, which would indicate a clear trend towards particulate 
blow-out from the exhaust system, were, unexpectedly, 1500rpm - lOkW and 

2250rpm - 15kW. The high-speed test after Idle preconditioning contributed to a 

number o f cases increasing the concentration of mid-sized particles, but not very 

significantly to the number o f resuspension cases, in opposition to what was 

expected. This was presumably due to enhanced coagulation o f fine particles owing 

to the increased turbulence, and the lack o f significance of resuspension forces even 

at high engine speeds. High power conditions showed a small contribution to both 

particle concentration-increasing processes through the exhaust system.

Event Device

Size range

Small Middle Large 

0.01-0.1nm 0.1-1.0nm 1.0-10.0|im

Size range 

Small Middle Large 

0.01-0.^m 0.1-1.0jim 1.0-10.0nm

Idle 1500rpm-10kW

Catalyst

First mass First 
burst Silencer 

Second 
Silencer

CD e p o s iZ & Deposition Deposition

Coagulation & Coaaulation Blow-out 
Deposition a — - ■
Formation Deoosrf/on/Coaqulation Deposition

Formation Coaaulation Blow-out

Formation Coaaulation Deposition

Formation Coaaulation BISWHUlA 
Deposition

Catalyst

Number peak Silencer
Second
Silencer

Coagulation & ___...___  Not
Deposition ^  11 measured

Formation Coagulation meas°ured
Coagulation & _____ ... Not

Deposition measured

C°Deposition& eaa3ulatlon Blow-°ut 

°\Deposition& poaaulalion Deposition 

Formation Deposition Blow-out

Catalyst

Valley after First 
peak Silencer 

Second 
Silencer

i0Depositton& Deposition Deposition

C°Deposit°on& Copulation Blow-°ut
Coagulation & _

Deposition Deposition Deposition

Catalyst

Stabilisation Silencer
Second
Silencer

Formation Coaaulation Blow-out

Coagulation & Deposition Deposition 
Deposition
Formation Coaaulation Blow-out

^Deposition ̂  Coaqulation Bl°w-°“ t 

Formation Coaaulation Blow-out

C°D epos itZ& Deposi,i° n Deposition

Table 4.1. a) Summary o f deposition and blow-out cases for the cold-start tests, 
including the exhaust devices, three size ranges - idle and low speed 
conditions.
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Small 

0.01 -0.1nm

Size range 

Middle 

0.1-1.0nm

Large

1.0-10.0jimEvent Device

2250rpm -1 5kW

Catalyst Formation Coaaulation Blow-out

First mass burst First Silencer Coagulation 5 Deposition Deposition Deposition

Second Silencer Formation Coaaulation Blow-out

Catalyst Coagulation & Deposition Coaaulation Deposition

Number peak First Silencer Formation Deposition Blow-out

Second Silencer Coagulation & Deposition Coaaulation Deposition

Catalyst Coagulation & Deposition Deposition Deposition

Valley after peak First Silencer Formation Deposition Blow-out

Second Silencer Coagulation & Deposition Coaaulation Deposition

Catalyst Coagulation & Deposition Deposition Deposition

Stabilisation First Silencer Formation Coaaulation Blow-out

Second Silencer Formation Deposition Deposition

Table 4.1. b) Summary o f deposition and blow-out cases for the cold-start tests, 
including the exhaust devices, three size ranges - medium speed, low-power 
conditions.

Event Device

Size range 

Small Middle Large 

0.01-0.1(im 0.1-1.0pm 1.0-10.0pm

Size range 

Small Middle Large 

0.01-0.1pm 0.1-1.0pm 1.0-10.0pm

3500rpm@15kW, Idle preconditioning 3500rpm@15kW, High-speed preconditioning

First mass burst Catalyst

First Silencer

Second
Silencer

Formation Coaaulation Deoosition 

deposition ' ^  Deposition Deposition 

Formation Coaaulation Blow-out

Formation Deoosition Oennsitinn 

D°eap9ositiTnn & Dep0S" 'OT Deposition 

deposition*& DeP°silion Deposition

Catalyst

Number peak First Silencer

Second
Silencer

Coagulation & coaaulation Deposition 
Deposition

deposition & Deposition Deposition

Coagulation & Coaaulation Deposition 
Deposition

deposition* *  Coagulation Deposition 

d e la tio n  & DeP°sition Deposition 

D e p S o T *  Coagulation DeP°s/f/on

Catalyst
Valley after pjrst silencer 

peak
Second
Silencer

Catalyst

Stabilisation First Silencer

Second
Silencer

Coagulation & CoaQu|ation B|ow.out 
Deposition
Coagulation & Deposition Deposition 
Deposition
Coagulation & Deposition Deposition 
Deposition

deposition*& Coa3Ulalion Depos/"on 

D e p o s ta " 4 DeP°si,l'°n Deposition 

deposition* ^  DeP°sition Deposition

Table 4.1. c) Summary o f deposition and blow-out cases for the cold-start tests, 
including the exhaust devices, three size ranges - high-speed conditions.
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Event Device

Size range

Small Middle Large 

0.01-0.1 tun 0.1-1.0nm 1.0-10.0;

Size range

Small Middle Large 

0.01-0.1nm 0.1-1.0um 1.0-10.0nm

2250rpm@35kW, Idle preconditioning 2250rpm@35kW, High-speed preconditioning

Catalyst

First mass First 
burst Silencer 

Second 
Silencer

Coagulation & Coaaulation Blow-out 
Deposition a
Coagulation & Deposition Deposition 
Deposition
Formation Deposition Deposition

Coagulation & Deposition Deposition 
Deposition
Formation Deposition Deposition 

Formation Coaqufatm Deposition

Catalyst
Number First 

peak Silencer 
Second 
Silencer

Coagulation & Coaaulation Deposition 
Deposition -  —
Coagulation & Deposition Deposition 
Deposition r
Formation Deposition Deposition

^^positio r?  ^  Deposition Deposition

Coagulations. Coaaulation Blow-out 
Deposition
Formation Deposition Deposition

Catalyst
Valley after First 

peak Silencer 
Second 
Silencer

Coagulation & Deposition & g|ow j 
Deposition Coaaulation
Coagulation & Deposition Deposition 
Deposition
Formation Deposition Deposition

D epos/fcn"5 Deposition Deposition 

Formation Coaaulation Blow-out 

Formation c S t a  Deposition

Catalyst

Stabilisatio First 
n Silencer 

Second 
Silencer

Coagulation & Deposition Deposition 
Deposition
Coagulation & Deposition Deposition 
Deposition

Formation C o a S o n "  Deposition

CDCeap lUs Z 0n & Deposition Deposition 

Formation Coaqulation Blow-out 

D e p S r  *  Deposition Deposition

Table 4.1. d) Summary o f deposition and blow-out cases for the cold-start tests,
including the exhaust devices, three size ranges - high-power conditions.

Although the analysis above appears to contradict the expected results, this 
does not mean that the deposition was absolutely more significant during high-speed 

conditions or that blow-out was absolutely more significant during low-speed 
conditions, since the number concentration and Emission Index levels were 
significantly higher at high-speed and high-power conditions. What this means is 

that the natural trend o f the particles at high-speed and high-power conditions was to 

deposit through the system, but when blow-out occurred, it did at high levels. At 

low-speed conditions, in contrast, there were more particulate blow-out cases, but in 

low concentrations compared to those observed at higher speeds.
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Contribution of the engine conditions to the total of fine 
particles coagulation/formation cases.

14.0%

■  Idle

□  1500-10

□  2250-15

□  3500-15 Idle

□  3500-15 High speed 

02250 -35  Idle

□  2250-35 High speed

Coagulation/Deposition Formation

Contribution of the engine conditions to the total of 
medium and large particles deposition and blow-out

cases

■  Idle

□  1500-10

□  2250-15

□  3500-15 Idle

□  3500-15 High speed 

02250 -35  Idle 

0 2 250 -35  High speed

Deposition Coagulation Blow-out

Figure 4.50. Contribution o f the engine conditions to the total o f increase and 
decrease in particle number during cold-start tests.
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Contribution of the transient events to the total of fine 
particle formation and coagulation cases

30.0%

25.0%

20.0%
C/)0)(/>
s  15.0%

10.0%

5.0%

0.0%

■  Start-up
□  Acceleration
□  Thermal stabilisation

Coagulation/Deposition Formation

Contribution of the transient events to the total of medium  
and large particles deposition and blow-out cases

25.0%

20.0%

8 15.0% (/>(BO

v o  1 0 . 0 %

5.0%

0.0% K

■  Start-up
□  Acceleration
□  Thermal stabilisation

Deposition Coagulation Blow-out

Figure 4.51. Contribution o f transient events to the total of blow-out and deposition 
cases during cold-start tests.
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Contribution o f the Exhaust Devices to the to ta l o f fine particle 
form ation and coagulation cases.

30.0% ---------------------------------------------------------------------------------------------------------------------

Coagulation/Deposition Formation

Contribution o f the Exhaust Devices to the to ta l o f medium and large 
partic les deposition and b low -out cases

25.0%

20.0%

15.0%

10.0%

5.0%

0.0%

■  Catalyst
□  First silencer
□  Second silencer

Deposition Coagulation of fine Blow-out

Figure 4.52. Contribution o f exhaust devices to the total o f blow-out and deposition 
cases during cold-start tests.

The comparison of the contribution o f the main events during cold start, Figure
4.51., shows that the engine start-up (mass burst), which was the first disturbance 

over the system, contributed more to the number o f cases o f ultrafine and mid-sized 

particle formation, as well as large particle resuspension, than the acceleration 

(peak-number) and the thermal stabilisation. The particle size distribution during
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start-up was found to have larger size modes, and therefore a higher Emission Index, 
so it is this event where visible clouds would be more likely. The acceleration 

contributed to as many cases of mid-sized particle formation as the start-up, but less 

cases o f large particle resuspension, in contrast with what was expected for visible 

particulate clouds to be likely.

Finally, Figure 4.52. shows that the catalyst contributed to the highest number 

of fine particle deposition or reduction cases compared to the silencers. This was 

expected from its channel geometry, high surface area and also catalytic activity. 
However, the number of cases of deposition of mid-sized and large particles was the 

highest through the second silencer. The second silencer contributed to an increase 
in the number of ultrafme particles in more cases than the other devices, owing to its 

cooler condition and therefore enhanced condensation. Something similar occurred 

through the catalyst for mid-sized particles and the resuspension of large particles.

The analysis of number of cases was useful in identifying the natural trends in 

the particulate behaviour through the exhaust system. The results did not agree with 
the expected effects, in the sense that there was no statistical evidence that the 

acceleration to a high-speed or high-load condition during cold start would 

unmistakably cause particulate blow-out.

It was observed that the changes through the exhaust system did not follow 

single condition-dependent trends, but they were the result of opposing processes of 

particulate formation, growth, deposition and resuspension. The preponderance of 
one process over others opposing to it apparently depends on very subtle differences 

in the aerosol flow and temperature conditions but this can make a significant 

difference in the overall results.

4.8. Key points from this chapter

4.8.1. Filter measurements

■ Tests at high-speed and high-load conditions resulted in a 
preconditioning-dependent performance o f the catalyst. Negative 

efficiencies were observed during the first minutes of cold start in most 

o f the tests, excepting that at high-speed cold start with high-speed 

preconditioning. The efficiency recovered after the catalyst lit off, 

though it was lowered owing to the high particulate emission by the 

engine at high-load conditions.

■ Particulate deposition and blowout processes during the cold start 

through the silencers downstream of the catalyst resulted in very
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complex trends that were dependent on the preconditioning o f the 

exhaust system.

■ High mass concentrations at high load produced levels of particulate 

deposition and blowout about fourfold the level of high-speed 

conditions during cold start, with a maximum at 6.0g/kg-fuel and 

1.2g/kg-fuel respectively. In terms o f percentage o f tailpipe emissions, 
deposition and blowout reached significant levels at both conditions, 

with both preconditioning modes. Deposition reached levels as high as 

300% o f the tailpipe emissions at high-load and 150% at high-speed 

conditions, whereas maximum blowout remained under 60% at high- 

load and under 80% at high-speed conditions.

■ Higher deposition and blow out levels occurred through the first 

silencer compared to those through the second, in most cases. This may 

be explained by their different geometry and temperatures. Higher 

temperatures o f the exhaust gas through the first silencer may have 

promoted either thermophoresis or thermal outgassing, whose effect is 

reduced for the cooler exhaust gas through the second silencer.

■ During cold start at high-load conditions, particulate blowout 

predominated after idle preconditioning whereas deposition did when 

the exhaust system had been cleaned up during high-speed 
preconditioning. High-speed cold-start produced opposite effects, since 

the exhaust flow effect became more important than temperature 

gradient effects that are predominant at high-load conditions.

4.8.2. Particle size distribution measurements

■ For the conditions tested, net particulate mass release from the catalyst 
predominated only during the first thirty seconds o f cold start, after a 

preconditioning procedure of 4 hours at idle the day prior to the test 

and an overnight cold soak.

■ Tests after the preconditioning procedure at high speed and overnight 

cold soak showed no net mass release from the catalyst. Little release 

of particles between 0.1 pm and l|im  was observed in the test reaching 

3500rpm -  15kW, and no release at any particle size was observed 

during the whole test at 2250rpm -  35kW.

■ The catalyst reduced the number and the mass o f diesel particles during 

cold start, although its efficiency was affected by the preconditioning 

procedure. High-speed preconditioning enhanced the capacity of the



catalyst to retain particulates during the first seconds of cold start. Only 
in the tests after high-speed preconditioning, did particles smaller than 

0.1pm penetrate the catalyst. Idle preconditioning, in contrast, not only 

reduced this capacity, but also slightly promoted the mass release of 

particles between 0.1pm and 10pm.

Particle growth, according to Fujiwara and Fukazawa (35), is very 

significant for particles with a mean particle size by volume between 

0.030pm and 0.045pm when the exhaust cools down, especially in the 

200°C- 50°C temperature region. In these tests, the gas temperature was 

under 200°C during the first 100 seconds. Therefore, particle growth is 

an important mechanism causing a decrease in number and mass of 

very fine particles in this period. Although ultrafme particle formation 
would counteract this effect, it is less likely when the saturation ratio is 

not very high, so coagulation becomes the predominant process.

Larger particles, between 1pm and 10pm, deposit by inertial separation 
when the temperature gradient is not significant, and this occurred to a 

greater extent at 2250rpm -  35kW than at 3500rpm -  15kW. The gas 
How rate at 2250 rpm was too low, in comparison to the 3500rpm 

condition, to keep these large particles suspended, so the particles 

deposited.

The particles that were released, especially during high-speed 
operation, were considered to be particles that deposited on the catalyst 

walls during the 4-hour idle preconditioning period. To be easily 

removed by the gas flow at high speed indicates that they were fluffy 

deposits.

The combined hydrocarbon adsorber and oxidation catalyst was shown 
to be effective at retaining particulate matter during cold start, with 

60% to 70% of the total emissions number and 10% to 60% in 
corrected mass. Inertial separation was the main process for the 

reduction of large particles, and the particle growth that occurred in the 

middle size range.

Particulate deposit formation during city driving conditions, simulated 

by a 4-hour idle preconditioning procedure, reduced the capacity of the 

catalyst to retain particles larger than 1.0pm. Instead, these were 
released from the catalyst walls, especially at high-speed conditions. 

They appeared to have formed easy-to-remove catalyst deposits during



idle operation. In addition, the number o f mid-size particles increased 
through the catalyst as a consequence o f coagulation processes.

The particle number-to-mass correction for the measurements by the 

ELPI reduced the large overestimation in particle mass that the original 
conversion algorithm o f this instrument produced. However, this 

inaccuracy in the measurement of particle number concentrations in the 
1.0|im - lOjim size range was still significant in some cases, indicating 

that more work on this kind of correction is necessary.

Fine particle coagulation and deposition were the predominant 

processes taking place through the exhaust system at all times and for 

all engine conditions. The engine start-up was the main process that 

made the particle gas-to-particle conversion and resuspension processes 
predominate over coagulation and deposition.

The catalyst acted in many cases as a fine particle agglomerator and 

promoted fine particle deposition, but did not retain very effectively 

large particles. Through the second silencer, ultrafine particles 
formation by gas-to-particle conversion was promoted.

There was not enough evidence in these tests that the acceleration to a 

high-speed or high-load condition during cold start would a'ways cause 

particulate blow-out. No single condition-dependent trends occurred 

through the exhaust system, since opposing gas-to-particle conversion 

and resuspension processes acted over particles in a very complex 

fashion. The preponderance o f one process over others opposing to it 

apparently depended on very subtle differences in the aerosol flow and 

temperature conditions.

Transient cold-start emissions in step-change cycle tests such as those 

carried in this work may be used to estimate changes in emissions due 
to transients, with respect to multi-mode steady-state legislative cycles 

such as the R49 and the ESC. This is explained and illustrated in 

Chapter 7.



Chapter 5. 
Rapid Acceleration Particulate Mass Emission and Particle Size 

Distribution Changes Through a Practical Exhaust System in Place 

5.1. Total Exhaust Outlet Measurements: Total Particulate Number 
and Mass Emissions during free Accelerations from Idle

Prior to the use o f an ejector-type dilution system, a dilution tunnel was used to 

allow the measurement o f the total number concentration and size distribution of 

diesel exhaust. The air flow was controlled to give an approximately constant 180:1 

dilution ratio during the acceleration periods of the engine, in two dilution stages, 
the dilution ratio o f the first stage being 2:1. The overall dilution ratio is within the 

range used by most laboratory engine-emissions studies. It is much lower than the 
atmospheric dilution ratio, which is around 1000:1 after just Is from the moment of 

emission at the tailpipe and much higher afterwards.

The use of the low dilution ratio in the primary stage, 2:1, can produce artifices 
in the total number measurement owing to gas-to-particle conversion processes, 

which are extensively explained by Kittelson et al. (Kittelson, 1999; Abdul-Khalek, 
1999). However, most o f these changes fall between 7nm and 30nm, wed below the 
cut-off point of the ELPl’s particle size range, 35nm. The low primary dilution was 

due to installation difficulties o f supplying clean air total dilution of the total 

exhaust. This pre-dilution air was extracted from the main filtered air to the dilution 

tunnel.

The total particle number concentrations and Emission Index vs. time during 
acceleration tests using the double-stage dilution tunnel are shown in Figures 5.1., 
5.4. and 5.5. for the three acceleration targets from Idle, namely 4100rpm (two 

tests), 3000rpm and 2000rpm. Once again, the total Emission Index was calculated 

from the sum of number concentrations converted into Emission Index for each of 

the twelve size ranges classified by the ELPI, for both unit and corrected densities, 

as explained in chapters 3 and 4, and derived in Chapter 6. The resulting profiles for 

each acceleration cycle showed very similar characteristics to the cold start 

transients, and consisted o f an increase in both number concentration and Emission 
Index, causing a mass burst peak followed by a number concentration peak. 

Subsequently, particle and number concentration decreased to stabilisation levels. 
Deceleration to Idle caused a consequent reduction in particle number concentration 

and Emission Index. The second acceleration cycle (and a third acceleration in some
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tests) showed similar characteristics, but the first peak in number had much lower 
values than that o f the first cycle. This was the first indication of a cleared exhaust 

after the first acceleration cycle. In most cases, however, the Emission Index 

calculated with unit densities did not show this difference between the peaks o f first 

and second cycles, indicating that the difference in numbers were related to the 
formation and coagulation o f very fine particles during the first acceleration, when 
temperatures are colder. These particles do not contribute much to the total mass. 

The effect was not observed when using the correction for Emission Index.

Particle size distribution for the most significant events are shown in Figures

5.2., 5.3., 5.4. and 5.5. These illustrate the changes in particle size for the main 
events of the transients and show the difference between the Emission Index 

calculations with and without the correction.

5.1.1. Acceleration to 4100rpm (2 tests)

The number concentration peak for the first cycle of the acceleration tests from 

idle to 4100rpm were 1.94x10* cm'3 (test 1) and 1.62 xlOR cm'3 (test 2), as can be 

observed in Figure 5.1. The uncorrected Emission Index peaks were 80.6 g/kg fuel 

and 105.0 g/kg fuel, respectively, and the corrected Emission Index, 6.7 g/kg fuel 

and 7.4 g/kg fuel, also respectively. This was the order o f variability that can be 
expected from these peak events, which might have depended on the variability in 

the manual operation o f the throttle and the dilution air flow.

For the stabilisation period, the number decreased to 1.47x10s cm"3 in the first 

test and 1.35x10* cm’3 in the second, still somewhat different to the same event at 

the same conditions in the first cycle. The uncorrected Emission Index was 6.7 g/kg 

fuel in the first test and 3.8 g/kg fuel in the second, which converted to 5.9 g/kg fuel 

and 2.9 g/kg fuel when applying the corrected density.

The second cycle of the first test showed a less evident peak in number 

concentration than that in the first cycle, which was expected as a result of the first
8 3acceleration. The maximum number concentration was 1.67x10 cm' , 14% lower 

than the peak o f the first cycle. The maximum uncorrected Emission Index was 44.7 

g/kg fuel, practically half the value of the peak in the first cycle, and the corrected 

Emission Index also halved with respect to the first cycle, being 2.7 g/kg fuel. All 

this showed that the particle release caused by the second acceleration cycle was 

lower than that o f the first cycle, presumably because o f the much shorter Idle period 

previous to the second cycle, 10 min., compared to the 4h conditioning before the 
first acceleration. The third acceleration cycle o f the same test mirrored perfectly the 

second cycle, showing that the short idle period between cycles had the same effect 
on the system.
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Figure 5.1. Total particle number concentration during acceleration tests from idle to 
4100rpm using the ELPI with total-exhaust dilution.

The same comparison applied to the second test at the same conditions, which 

was somewhat contradictory with the previous observations. The second and third 

acceleration cycles, which perfectly matched each other, showed higher number
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concentrations than those of the first acceleration cycle, so there was no clear 
evidence o f a larger deposition in the system left by the long preconditioning period.

The Emission Index, however, showed exactly the same kind of behaviour as 

in the first test, with a high peak in the first acceleration cycle and lower peaks in the 
second and third cycles. The stabilisation periods of the second and third cycles 

showed very similar number concentrations to those o f the second and third cycles 

o f the first test, suggesting that the difference was only in the first cycle and that the 

main systematic error in the measurement was the manual operation o f the throttle 

and air flow controls. The most likely error was a higher dilution in the first cycle of 

the second test, which affected the total particle number, but did not affect 

significantly the Emission Index.

The particle size distributions by number and Emission Index plotted in Figure

5.2. for the first test and Figure 5.3. for the second test, do not show major 

differences for the corresponding periods o f consecutive acceleration cycles, with 

the exception o f the number peak events. In the first peak number, the particle size 
distribution showed a larger mode than in the subsequent acceleration events. Two 
curves for idle periods were coincident, with a slight difference in the particles 

below 0.1 |im; and stabilisation curves also matched each other very closely, with the 
exception of particles between 0.1 (im to 0.3pm, which were slightly higher in the 

first cycle. The particle size distribution of the exhaust aerosol showed a shift 

towards finer particle sizes for the acceleration events when compared to Idle 
conditions: the accumulation mode decreased from 0.3pm to 0.20pm in the first 

peak-number event and 0.15pm in the subsequent events.

Particles associated with the number peak of the first event showed a trend 

towards larger sizes than the same event of the second cycle, particularly in the 

range between 0.1pm and 0.6pm. Considering that the key difference between both 

acceleration cycles was the duration of the Idle period previous to each cycle, the 
larger particle size was due to outgassing and recondensation of the higher mass of 

volatile components deposited on the walls during the Idle preconditioning. 

Enhanced coagulation process, owing to lower temperatures in the first cycle, also 

contributed to the formation of more particles between 0.1pm to 2.0pm than in the 

second cycle. Apparently, no significant large particle resuspension occurred.

5.1.2. Acceleration to 3000 rpm

Total particle number concentration showed a peak at 4.7x107 cm"3 in the first 
acceleration cycle to 3000rpm and 5.2x107 cm'3 in the second cycle. The 

corresponding stabilisation periods averaged 4.0x107 cm’3 and 4.3x107 cm"3. These 

measurements were practically in the same order and suggested that there was no
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clear difference in the particulate changes through the system walls after the 

significantly different durations o f the Idle preconditioning before each cycle.

Acceleration 4100rpm
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- First Peak Cycle 1

- Stabilisation Cycle 1
- Stabilisation Cycle 2
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□  Idle

------------Second Peak Cycle 1
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Acceleration 4100rpm
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..........Stabilisation Cycle 2

Figure 5.2. Particle size distribution during the first acceleration test from idle to
4100rpm using the ELPI with total-exhaust dilution.
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Figure 5.3. Particle size distribution during the second acceleration test from idle to
4100rpm using the ELPI with total-exhaust dilution.
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A similar conclusion was inferred from the observation of the uncorrected 
Emission Index profiles with time. For both acceleration cycles, the peak Emission 

Index was also very similar, 30.5 g/kg fuel and 29.2 g/kg fuel. Likewise, during the 

stabilisation period, the Emission Index averaged 6.1 g/kg fuel and 6.3 g/kg fuel for 

the first and second cycles, respectively.

Acceleration to 3000rpm

Time (min)

—  Particle Number Concentration --------Emission Index - Uncorrected —  Emission Index - Corrected

Figure 5.4. Total particle number concentration during acceleration tests from idle to
3000rpm using the ELPI with total-exhaust dilution.

Nevertheless, the corrected Emission Index did show some differences 

between the acceleration cycles: the first cycle had a number peak of 3.6 g/kg fuel 

followed by a stabilisation period at 1.9 g/kg fuel, whereas the second cycle did not 
show a peak, but only increased to a stable 1.9 g/kg fuel. If the assumptions about 

the corrections for the particle number concentrations measured by the ELPI were 

correct, this would indicate that a longer Idle preconditioning period contributed to a 

higher deposition o f particles on the system walls with higher mass release during 

the first acceleration cycle.
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Figure 5.5. Particle size distribution during the second acceleration test from idle to
3000rpm using the ELPI with total-exhaust dilution.



307

Figure 5.5. shows that there were no significant differences between the 
particle size distributions o f the various corresponding events of the acceleration 

cycles. As in the test at 4100rpm, the distributions for two separated idle periods 

were coincident, and so were the distributions for stabilisation events, and they 
showed larger particle size distribution modes than the events during acceleration. 
During peak number events, which showed that a larger number of particles between 

0.1|am and 1.0)im was measured in the number peak the first cycle than in the 

second cycle. This contributed also to a higher Emission Index, both uncorrected 

and corrected. Also, a smaller number of particles between 1.0|J.m and 10.0|am was 
measured in the peak number o f the second cycle. These observations supported the 

evidence given by the corrected Emission Index above, that enhanced coagulation 
processes, outgassing, nucleation and condensation of volatile material from the 

deposition layer occurred to a greater extent during the first acceleration cycle than 

the second.

—  Particle Number Concentration --------Emission Index - Uncorrected ——— Emission Index - Corrected

Figure 5.6. Total particle number concentration during acceleration tests from idle to 
2000rpm using the ELPI with total-exhaust dilution.

5 .1 .3 . A c c e le r a tio n  to  2 0 0 0 rp m

Total particle number concentration vs. time is shown for two consecutive 

acceleration cycles from idle to 2000rpm in Figure 5.6. The first cycle showed a
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peak number concentration of 2.6x107 cm'3, followed by a quick stabilisation at 

1.4xl07 cm'3. The second cycle did not show the peak in number concentration, 

indicating that the duration of the Idle preconditioning prior to acceleration affected 
the particulate formation and reentrainment during acceleration in particle number 

terms. Mass release during the second acceleration period did occur, according to 
the uncorrected Emission Index profile vs. time that showed a peak at 1.3 g/kg fuel, 
slightly lower than the 1.8 g/kg fuel peak in the first acceleration cycle. The 

stabilisation Emission Index for both cycles averaged 0.55 g/kg fuel. The 

significance of the Emission Index peaks during the acceleration was, however, 

diminished with the correction: the corrected Emission Index did not show such 

peaks, but step changes to a stable value around 0.35 g/kg fuel for both cycles.

The particle size distribution charts in Figure 5.7. shows the differences 
between the number peak o f the first acceleration cycle and the stabilisation levels. 

Fine particles, between 0.035|im and 0. lpm  had the most significant contribution to 

the number concentration peak, whereas the distributions were coincident for larger 

particles.

5.2. Changes Through the Exhaust System During Fast acceleration

Fast acceleration tests to the same conditions used during cold-start tests were 
run after exhaust preconditioning using the ELPI at various points along the exhaust 

system, to determine which of both transient processes was more significant for the 

deposition or blow-out of particulate. This comparison also aimed to define whether 

the difference in the performance o f the engine when cold or warm produced 

differences in the particulate emissions during transient.

The preconditioning procedure for these tests consisted, as in the day-before 

preconditioning for cold start tests, in running the engine at idle for four hours. 

Immediately after this, a step-change in the engine speed and power conditions was 

applied. After 10 minutes running at the target conditions, stabilisation was achieved 

and the engine was taken back to idle conditions, where it was kept for ten minutes. 
A second step-change/idle cycle with the same characteristics was then applied, to 

determine whether a short period at idle could have a significant effect on the system 

in terms o f particulate deposition.
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3000rpm using the ELP1 with total-exhaust dilution.
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The target conditions of the acceleration tests were 2250rpm -  15kW and 
3500rpm - 15kW, which were taken from the cold-start tests’ targets as a reference. 

Unfortunately, the intended acceleration test to high power conditions, namely 

2250rpm - 35kW, was not possible to ran owing to problems in the delivery o f fuel 

to the combustion cylinders, presumably related to a failure in the fuel pump or in 
the engine control strategy.

5.3. Exhaust Temperature Changes

Temperature profiles against time at various points along the exhaust system, 

as well as the corresponding temperature differences between the exhaust gas and 
metal for the points downstream of the catalyst, are shown in Figure 5.8., for the 

acceleration cycles to 3500rpm - 15kW, and Figure 5.9., for those to 2250rpm - 

15kW.

From temperatures between 50°C and 100°C and gas-metal temperature 

differences around 20°C in the exhaust system at idle conditions, the acceleration in 

the 3500rpm - 15kW first cycle caused a rapid and steady increase during the first 
150 to 180 seconds, to temperatures between 250°C and 350°C. At the end o f this 

period, when the target conditions were reached, gas-metal temperature differences 
peaked, being 142°C at the entrance o f the first silencer, 110°C at the entrance o f the 

second silencer and 59°C at the tailpipe. As a result o f the stabilisation at the target 
condition, the temperatures increased more slowly in the following minutes o f the 
cycle, and seemed to stabilise at 360°C upstream of the catalyst, 355°C at the 

entrance of the first silencer, 345°C at the entrance of the second silencer and 300°C 

at the tailpipe. The gas-metal temperature differences stabilised very quickly, around 

66°C at the entrance o f the first silencer, 58°C at the entrance of the second silencer 

and 40°C at the tailpipe.

The temperature profiles during the second acceleration cycle had virtually 

identical characteristics as those during the first cycle, differing only in the starting 
temperature around 30°C higher before the second cycle than before the first cycle. 

The corresponding gas-metal temperature differences, however, were virtually 

identical for both cycles.
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Figure 5.8. Exhaust Temperature Changes and gas-metal temperature differences 
during acceleration to 3500rpm - 15kW after idle preconditioning.
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Figure 5.9. Exhaust temperature changes and gas-metal temperature differences
during acceleration to 2250rpm - 15kW after idle preconditioning.
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During the acceleration cycles to 2250rpm - 15kW, exhaust temperature 
profiles against time showed very similar general characteristics to those at high­

speed conditions, characterised by a rapid, steady increase during the first 150 to 180 

seconds, and a slower increase afterwards, reaching stable temperatures by the end 

o f the cycles. Stabilisation temperatures were higher than those reached during fast- 

speed cycles: 453°C upstream of the catalyst, 450°C upstream of the first silencer, 

395°C downstream of the second silencer and 350°C at the tailpipe. Gas-metal 
temperature differences also increased quickly at the beginning o f the acceleration 

cycles and reached a maximum once the target condition was reached, around 150°C 

upstream of the first silencer, 130°C upstream of the second silencer and 75°C at the 

tailpipe. Afterwards, the differences decrease until stabilising around 95°C, 81°C and 

56°, respectively. Both exhaust gas temperatures and gas-metal temperature 

differences were higher than at high-speed conditions.

5.3.1. Hydrocarbon Emissions

Total Hydrocarbon Emissions measured by FID at 190HC upstream and 

downstream of the catalyst during the acceleration cycles at high-speed and high- 

load conditions are shown in Figure 5.10. The diagrams show a quick increase in 
THC concentration peaking in the first 5 to 20 seconds after starting the test. 

Upstream of the catalyst, the peaks were around 2500ppm and lOOOppm for the tests 

at high-speed and high-load conditions, respectively. Downstream of the catalyst, 

the corresponding THC concentrations were 216ppm and 82ppm, also respectively. 

After peaking, THC concentrations decreased very quickly. In the tests at high 
power, THC stabilised around 17ppm and 15ppm, upstream and downstream of the 

catalyst, respectively. High-speed cycles showed a second peak at lOOOppm 

upstream of the catalyst and 340 downstream of the catalyst, after one minute from 

cold start. Afterwards, THC decreased and stabilised at 40ppm upstream of the 
catalyst and 1 Oppm downstream of the catalyst.

The sharp decrease in THC levels indicated that the catalyst activity was very 

good during acceleration. However, when very low UHC levels were emitted from 

the exhaust during the thermal stabilisation of the engine, the catalyst efficiency 

value was markedly reduced, and the THC levels upstream and downstream of the 

catalyst were very similar.
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THC during acceleration
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Figure 5.10. Hydrocarbon emissions during acceleration to 3500rpm - 15kW (left)
and 2250rpm - 15kW (right) after idle preconditioning.

5.3.2. Total Number Concentration, Emission Index and Size Distribution 
Changes

5.3.2.1. A cceleration  from  Idle to 3500rpm  -  15kW

Total particle number concentration vs. time profiles during acceleration for 
the four sampling points along the exhaust system are shown in Figure 5.11. 

Similarly to the cold start profiles performed with this target condition, the 
acceleration profiles showed an increase in total number concentration during the 
first two minutes, until reaching a peak, followed by a decrease to a stabilisation 

level. This profile was observed in both acceleration cycles.

As general observations, the number peak and the mass burst o f the first 

acceleration cycle were much higher than the corresponding events o f the second 
cycle for all sampling points, and the stabilisation levels were about the same for 

both cycles. This indicated that the increase in number concentration was an effect 

o f the transient only, and that the previous history o f the engine, represented by the 

duration o f the idle period, was an important factor in the transient emissions.

Another characteristic that can be observed from the profiles was that the 

increase in number concentration was not monotonous, but had two or three stages 
that included temporary peaks other than the maximum. These stages are related to 

the manual acceleration o f the engine and the slow response o f the hydraulic 
dynamometer. Although the manual operation was executed most carefully, this 

control mode made the speed profiles not as smooth as desirable, clearly affecting 

the appearance o f the number concentration profiles.
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Total Particle Number Concentration during Acceleration, 3500rpm@ 15kW
After 4h Idle Conditioning

Time [sec]

-------U/S C a t.------- D/S Cat. — — U/S 2nd S ilen ce r------- D/S 2nd Silencer

Total Particle Number Concentration changes during Acceleration to 3500rpm@15kW 
After 4-hour Idle Conditioning

j—— Catalyst-------First S ilencer------- Second Silencer

Figure 5.11. Total number and mass concentrations vs. time during acceleration to
high-speed conditions, 3500rpm -  15kW, after a 4-hour Idle preconditioning at
various points through the exhaust system, a) Particle num ber concentration.
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Emission Index during Acceleration to 3500rpm @ 15kW
After 4-hour Idle Conditioning - Corrected

Time [sec]

[•—— U/S C a t.-------D/S C a t.--------U/S 2nd S ilencer------- D/S 2nd Silencer

Emission Index changes during Acceleration to 3500rpm@15kW 
After 4-hour Idle Conditioning - Corrected

-------C a ta lyst-------First S ilencer------- Second Silencer

Figure 5.11. Total num ber and mass concentrations vs. time during acceleration to
high-speed conditions, 3500rpm -  15kW, after a 4-hour Idle preconditioning at
various points through the exhaust system, b) Corrected Emission Index.
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Emission Index during Acceleration to 3500rpm @ 15kW
After 4-hour Idle Conditioning - Uncorrected

Time [sec]

-------U/S C a t.------- D/S C a t.------- U/S 2nd S ilencer------- D/S 2nd Silencer]

Emission Index changes during acceleration to 3500rpm@ 15kW  
After 4-hour Idle Conditioning - Uncorrected

j - — C ata lyst------ First S ilencer--------Second Silencer j

Figure 5.11. Total number and mass concentrations vs. time during acceleration to
high-speed conditions, 3500rpm -  15kW, after a 4-hour Idle preconditioning at
various points through the exhaust system, c) Uncorrected Emission Index.
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Figure 5.12. Speed vs. time profiles for several acceleration cycles to 3500rpm - 
15kW.

Engine speed during acceleration

4000

2500

9 - 2000

Figure 5.12. shows the speed profiles vs. time for 8 acceleration cycles in 

different tests (2 tests per sampling point), illustrating the variability in the manual 

operation. This certainly reflects to a certain extent what occurs in real life. 
However, this was a serious inconvenience for the analysis o f the results owing to 

the reduced repeatability. The target speed being 3500rpm, an intermediate speed of 
2500rpm was achieved in a period as short as 15 seconds for a couple of cycles, and 

as long as 80 seconds for other two cycles, with intermediate periods for the 

remaining cycles. The stabilisation at the target speed was reached in 90 to 150 
seconds. It was observed that the number-peak event appeared during acceleration 

and not when a constant speed was reached.

From the previous observations, it was considered that a second-by-second 

comparison of the number concentration and the associated Emission Index would 

be significantly affected by the variability in the manual operation. Therefore, an 

event-to-event comparison, similar to that performed for cold-start tests, will be used 

to simplify the analysis. This is shown in Figure5.13., where the total particle 
number concentration and Emission Index are plotted against the location in the 

exhaust for the main events of the acceleration cycles.
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----- ♦— - Idle average — x—  Acceleration peak mass burst
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Figure 5.13. Total number and mass concentrations vs. location in the exhaust
system for the main events o f  the acceleration to high-speed conditions,
3500rpm -  15kW, after a 4-hour Idle preconditioning.
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The exhaust aerosol was sampled during idle periods in order to obtain a 
baseline for the subsequent acceleration cycles. The total particle number 

concentration of the exhaust aerosol leaving the engine at these conditions was 
7.88xl06 cm '3, which converted to an Emission Index o f 3.22 g/kg fuel or 0.38 g/kg 

fuel, uncorrected or corrected, respectively.

Through the catalyst, the number concentration decreased to 5.08x106 cm"3 (by 

36%) and the Emission Index, to 1.85 g/kg fuel (by 43%) or 0.21 g/kg fuel (by 

45%). This decrease occurred for all size ranges, as shown in Figure 5.15., and was 

presumably due to different processes, depending on the particle size. Very fine 

particles, below 0.1pm, mainly tend to diffuse and undergo thermophoretic 

deposition onto the walls and those larger than 1.0pm experience mostly gravimetric 

and inertial deposition. Particles in the mid-size range have higher transport 

efficiency, and no significant deposition was thus expected. There was no evidence 
o f coagulation through the catalyst in the size range measured.

The total particle number concentration increased through the first silencer to 

8.40x106 cm"3 (a 65% increase). The Emission Index also increased, to 2.39 g/kg 

fuel (by 29%), uncorrected; or 0.31 g/kg fuel (by 48%), corrected. The important 

increase in mass indicated that particulate was formed by nucleation and 

condensation, and also reentrained from the silencer walls. Ultrafine particle 
formation took place, and large particles were reentrained. The concentration of 

mid-sized particles did not change significantly.

Through the second silencer, there was a significant decrease, by 75%, in the 

total particle number concentration, to 2.05x10h cm"3, and in Emission Index, to 0.43 
g/kg fuel or 0.07 g/kg fuel (by 82% or 77%, in uncorrected or corrected Emission 

Index, respectively). This indicated that even after a 4-hour conditioning period, the 
second silencer still preserved a large capacity for particulate deposition on its walls. 

The deposition occurred for all size ranges and it was more significant for particles 

below 0.1 pm and above 1.0pm than for middle-sized particles.

In summary, the baseline idle scenario from which the acceleration cycles were 

run showed a reduction in particle number and Emission Index for all particle sizes 

through the catalyst and the second silencer. Through the first silencer, ultrafine 

particle formation occurred. The combined processes affected the particle size 

distribution modes only through the catalyst, where it shifted slightly towards finer 
sizes.

5.3.2.1.1. Idle preconditioning scenario



320

Idle average

o 1.0E+08
c
n 1.0E+07 -
O 1.0E+06
i—
CD CO 1.0E+05 -
-Q
r

1
F 1.0E+04 -

=5 o 1.0E+03 -
Z 1.0E+02
O) 1.0E+01
< 1.0E+00 4

0.01

8

0.10 1.00 

Da [microns]
10.00

-  USCat.
-  U/S 2nd Silencer

D/S Cat.
D/S 2nd Silencer

Idle average

X 
03 T3

i =  i "O

c = - So »  o

- 0 ) 0  E o
U l r o C
ch>
<

100.0000

0.0010
0.01 0.10 1.00 

Da [microns]
10.00

USCat.
U/S 2nd Silencer

D/S Cat.
D/S 2nd Silencer

Idle average

Da [microns]

♦ USCat. a D/S Cat.
 *  U/S 2nd Silencer D/S 2nd Silencer

Figure 5.14. Particle size distribution at idle



321

Idle average

Da [microns]

—  Catalyst — o—  First S ilen ce r------------Second Silencer

Idle average

Da [microns]

♦—  Catalyst — o—  First Silencer ------------Second Silencer

Idle average

X
0
"O

"O
2.0E-01
1.5E-01

o 1.0E-01 -
0)

5.0E-02
£_
o o

C) O.OE+OO -
(/) 1 -5.0E-0*);
E "(T) -1.0E-01 -
LD -1.5E-01 -
CD>

CT) -2.0E-01 -
< O) -2.5E-01 -

-3.0E-01 -I

Q1

Da [microns]

Catalyst - First Silencer Second Silencer

Figure 5.15. Particulate blow-out for various size ranges at Idle.

The opposite behaviour of the particulate matter through the devices was 

observed very often in different events during previous cold start tests, indicating
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that this was the natural trend o f particulate matter through the system. The changes 
indicated that the situation was quite dynamic, and the deposition and release 

processes, together with particulate formation by gas-to-particle processes and 

coagulation, represented a significant fraction o f the emissions.

5.3.2.1.2. Acceleration mass burst, both cycles

The disturbance introduced to the engine and the exhaust system at the start of 

an acceleration cycle causes a particulate mass (Emission Index) increase that 
reaches a local maximum in time, even before the speed and power condition had 

not been reached by the engine. This is previous to the peak in particle number 

concentration and, as it will be seen, the significance o f the first mass burst, relative 

to the Emission Index at the number peak event varied. Sometimes the Emission 

Index was significantly higher in the first mass burst than in the peak number, 

sometimes it was much lower, and sometimes they were nearly at the same level. 
Perhaps the relationship between the Emission Index values in both events was 

given by the aggressiveness o f the acceleration. These results indicate that mass 
emissions were controlled by the blow out of large particles from wall agglomerates 
and the peak number was controlled by fine (<0.1 pm) particles.

At the entrance to the exhaust system, the total particle number concentration 
was 1.79x107 cm'3, 2.2 times as high as the idle concentration at that sampling point. 
The corresponding Emission Index was 41.43 g/kg fuel, uncorrected, or 3.06 g/kg 
fuel, corrected, nearly 13 and 8 times as high as the respective Emission Index at 

idle. At this point it is interesting to make a comparison with the corresponding 
event in the second cycle. In it, the total particle number concentration was 1.36 

xlO7 cm'3, 76% of that o f the same event in the first cycle. On the other hand, the 

Emission Index was 28% or 34% of that of the first cycle. These figures show that 

the duration of the idle preconditioning did affect the deposition layer of the system 

upstream of the catalyst (including the combustion chamber, exhaust valves, the 

turbocharger and the EGR system), and this layer was affected by the acceleration.

In the first cycle, the catalyst did not reduce the particle number concentration 
but, in contrast, this increased to 2.1 lx l0 7 cm'3, by 18%. However, this did not 

imply an increase in the Emission Index, which on the contrary decreased to 27.12 
g/kg fuel, uncorrected, or 2.19 g/kg fuel, corrected (by 35% and 28%, respectively). 
The contrasting trends between particle number concentration and Emission Index 

was due to the distinct behaviour of particles of different sizes, as seen in Figures 

5.16. and 5.17. Only ultrafine particles, smaller than 0.2|im, left the catalyst in 

higher numbers than those entering, presumably because of nucleation, so particles 

in this size range dominated the increase in total particle number concentration. In
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contrast, the number o f larger particles decreased, owing mainly to deposition of 
very large particles (~8pm) and mid-sized particles, causing the decrease in 

Emission Index.

USCat. D/S Cat. U/S 2nd 
Silencer

D/S 2nd 
Silencer

Avg. Number 
Cone, [cm-3]

Acceleration 
peak mass burst

1.79E+07 2.11E+07 3.22E+07 2.34E+07

Acceleration 
mass burst 2nd 
cycle

1.36E+07 2.32E+07 2.38E+07 1.04E+07

Avg. Emission 
Index [g/kg fuel]

Acceleration 
peak mass burst

41.43 27.12 35.16 17.49

- Unit density
Acceleration 
mass burst 2nd 
cycle

11.48 8.21 9.55 2.22

Avg. Emission 
Index [g/kg fuel]

Acceleration 
peak mass burst

3.06 2.19 4.33 1.98

- Corrected 
density

Acceleration 
mass burst 2nd 
cycle

1.03 0.96 0.86 0.29

Table 5.1. Comparison between the first and second acceleration cycles regarding
the acceleration mass burst event, 3500rpm -  15kW.

In the second cycle, the catalyst also caused an increase in particle number 

concentration, this time to 2.32x107 cm'3, by 71%, which was much higher than the 
increase in the first cycle. The Emission Index increased by a similar fraction to that 

in the first cycle, when uncorrected, by 29%, to 8.21 g/kg fuel. However, the 

corrected Emission Index decreased just by 7%, to 0.96 g/kg fuel, much lower than 
the decrease by 18% in the first cycle. This disagreement was due to the distinct 

behaviour o f particles according to their size. In the first mass burst of the second 

acceleration cycle, particles between 0.2|im and 0.4pm were emitted from the 

catalyst in higher numbers than those entering, which did not occur in the first cycle, 

making the total number concentration increase more significantly and the corrected 

Emission Index decrease less significantly than in the first cycle.

Through the first silencer, the total particle number concentration increased to 

3.22xl07 cm'3 in the first cycle, and to 2.38 xlO7 cm'3 in the second silencer, which 

represented an increase by 53% and 3%, respectively. The uncorrected Emission 

Index also increased, by 30% and 16% in the first and second cycles respectively, to 

35.16 g/kg fuel and 9.55 g/kg fuel, also respectively. The corrected Emission Index 
increased in the first cycle by 98%, to 4.33 g/kg fuel, but decreased in the second 

cycle by 11%, to 0.86 g/kg fuel. The changes through the first silencer were more 
significant in the first cycle than in the second, and the size dependent behaviour of 

the particles also differed between both cycles. In the first cycle, particles o f all 
sizes, only excepting those around 0.035pm, were emitted in higher numbers than 

those entering the silencer, as a result of nucleation, condensation and resuspension 

processes. In the second cycle, in contrast, only particles around 0.04pm and those
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higher than 4.0|am were emitted in slightly higher numbers than those entering, 
whereas the number of mid-sized particles was slightly reduced through the silencer. 

Comparatively, the changes through the silencer in the second cycle were much less 

significant in net mass change (not in mass percentage) than in the first cycle in this 

event.

Through the second silencer, the total particle number concentration decreased
7 ^by 27% in the first cycle, to 2.34x10 cm" , nearly the same value as that upstream of 

the first silencer. In the second cycle, it decreased to an even lower value, 1.04xl07 

cm'3, which is a decrease by more than 50%. The uncorrected Emission Index 
decreased by 50% in the first cycle, to 17.49 g/kg fuel, and by 77%, to 2.22 g/kg 

fuel, in the second cycle. When corrected, the decrease showed similar significance, 

by 54% in the first cycle, to 1.98 g/kg fuel, and by 66% in the second cycle, to 0.29 
g/kg fuel. This is evidence that through the second silencer the particles tended to be 

deposited very effectively on the walls, in contrast to the more significant particle 

formation and resuspension characteristics from the first silencer. In both cycles, the 
number o f particles and therefore the Emission Index decreased for all size ranges.

In summary, the behaviour o f the particles through the second silencer was a 
nearly perfect mirror of that described through the first silencer. The deposition and 

formation/resuspension processes occurred off-phase between both silencers, as seen 
in many occasions during cold start tests. The increase in particle number 

concentration and Emission Index through the first silencer occurred at the same 

time as the decrease through the second silencer and changes in both devices were 

exactly opposite to each other even by size, as can be seen in the particulate blow­
out vs. particle size profiles in Figure 5.17. In the first cycle, the particle size 
distribution shifted towards smaller sizes through the first silencer, but did not 

change significantly through the catalyst and the second silencer. In the second 
cycle, no significant change in particle size distribution was observed through the 
exhaust system.
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Figure 5.16. Particle size distribution for the mass burst event o f the acceleration 
cycles, 3500rpm - 15kW.

5.3.2.1.3. Acceleration num ber peak, both cycles

The acceleration number peak occurred once the target speed/power condition 

was reached. The increase in number with respect to the mass burst event was very 
significant in the first acceleration cycle and only slightly significant in the second 

cycle, for all sampling points. At the entrance to the exhaust system, the number
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concentration peak was 6.06x107 cm'3 in the first cycle and just 2.57 xlO7 cm'3 in the 
second cycle.
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Figure 5.17. Particulate blow-out for various size ranges at the mass burst events for 
both acceleration cycles, 3500rpm -  15kW.

The uncorrected Emission Index was 1.14 g/kg fuel in the first cycle and 7.55 
g/kg fuel in the second. The corrected Emission Index was 1.23 g/kg fuel in the first 

cycle and 1.22 g/kg fuel in the second. The size distribution in the number peak was 

characterised by a smaller size distribution mode than that measured at idle 

condition and in the mass-burst event for all sampling points, although this is not
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easy to see in the number size distribution charts, but is seen when the Emission 

Index is calculated.

USCat. D/S Cat. U/S 2nd 
Silencer

D/S 2nd Silencer

Avg. Number 
Cone. [cm-3]

Acceleration 
peak number 6.06E+07 6.99E+07 5.20E+07 2.65E+07

Acceleration 
peak 2nd cycle 2.57E+07 3.07E+07 2.90E+07 1.33E+07

Avg. Emission 
Index [q/kq fuel]

Acceleration 
peak number 1.14 12.38 8.34 10.69

- Unit density Acceleration 
peak 2nd cycle 7.55 2.22 3.59 1.14

Avg. Emission 
Index [q/kq fuell

Acceleration 
peak number 1.23 2.55 1.77 1.80

- Corrected 
density

Acceleration 
peak 2nd cycle 1.22 1.11 0.61 0.28

Table 5.2. Comparison between the first and second acceleration cycles regarding
the peak number event.

The total number concentration increased through the catalyst, by 15% in the 

first cycle, to 6 .99x l07 cm"3, and by 20% in the second cycle, to 3 .07x l07 cm '3. 

However, the Emission Index showed different trends from one cycle to the other. In 

the first cycle, the uncorrected Emission Index increased to 12.38 g/kg fuel, nearly 

11 tim es the value upstream o f  the catalyst, although it was just more than twice that 

value for the corrected Emission Index, 2.55 g/kg fuel. In the second cycle, in 

contrast, the Emission Index decreased by 71% when uncorrected and by 9% when 

corrected, reaching 2.22 g/kg fuel or 1.11 g/kg fuel, respectively. The change in 

trends between total number and total Emission Index in the second cycle was due to 

the relative contributions o f the various size ranges. Particles larger than 1.0(im 

deposited through the catalyst in the peak number event o f the second cycle, 

whereas in the first cycle the evidence indicated that they had been blown out from 

the catalyst. Particles below 1.0|a.m increased in Emission Index through the catalyst 

in both cycles, more significantly in the second than in the first cycle, as shown in 

Figure 5.18. The increase was related to gas-to-particle formation and coagulation 

processes.

Through the first silencer, the total number concentration decreased by 26%, to 

5 .2 0 x l0 7 cm '3 in the first cycle, and by 5%, to 3 .07x l07 cm '3 in the second cycle. 

The uncorrected Emission Index decreased by 33%, to 8.34 g/kg fuel in the first 

cycle, but decreased in the second cycle by 62%, to 3.59 g/kg fuel. And the 

corrected Emission Index decreased by 31%, to 1.77 g/kg fuel in the first cycle, and 

by 45%, to 0.61 g/kg fuel, in the second cycle. Hence, the only increase through the 

first silencer occurred for the Emission Index in the second cycle, as a consequence 

o f  the blow-out o f  large particles, i.e. larger than l.Opm, which dominated the total 

Emission Index, giving an overall increase as a result. For the total number
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concentration and the corrected Emission Index, this blow-out o f  large particles 

became unimportant. Particles smaller than 1.0|xm deposited through the first 

silencer in both cycles.

The total particle num ber concentration decreased through the second silencer 

by 49% in the first cycle, to 2.65x107 cm '3, and by 54%, to 1.33x107 cm '3, in the 

second cycle. The uncorrected Emission Index, however, increased by 28% in the 

first cycle, to 10.69 g/kg fuel, but decreased by 68%, to 1.14 g/kg fuel, in the second 

cycle. W hen corrected, the Emission Index increased just by 2% in the first cycle, to 

1.80 g/kg fuel, and decreased by 53% in the second cycle, to 0.28 g/kg fuel. The 

main difference between cycles was that particles larger than 1.0|nm deposited 

through the silencer in the event during first cycle and were blown out from it in the 

corresponding event o f  the second cycle. Particles smaller than 1.0|im  deposited 

through the silencer in both cycles, with the only exception o f  some particles around 

0.2|am -  0.3|im , which increased in number concentration by coagulation in the first 

cycle.

In summary, the acceleration peak number event showed mid-sized particle 

numbers increasing through the catalyst, presumably because o f  coagulation o f 

ultrafine particles (those not measured by the ELPI), and decreasing through both 

silencers. Large particles, larger than 1.0|im , deposited through the second silencer 

when blown out from the first silencer and vice versa, showing that the dominant 

deposition and resuspension mechanisms are very different through these two 

devices. In the second cycle, the particle size distribution shifted towards smaller 

sizes as a result o f  combined processes.

5.3.2.1.4. Stabilisation, both cycles

The stabilisation event gave very similar results for both cycles throughout the 

catalyst, as summarised in Table 5.3. The particle num ber concentration upstream o f  

the catalyst, starting point for this analysis, was identical for both cycles, 2.14x10 

cm’3. The uncorrected Emission Index was 3.00 g/kg fuel for the first cycle and 3.19 

g/kg fuel for the second cycle, which diverged because o f  slight differences in the 

particle size distributions. Likewise, the corrected Emission Index was 0.65 g/kg 

fuel for the first cycle and 0.72 g/kg fuel for the second silencer.

Through the catalyst, the particle number concentration increased by 12% in
7 ^ 7the first cycle and by 9% in the second cycle, reaching 2.40x10 cm ' and 2.32x10 

cm '3, respectively. Despite this increase, the uncorrected Emission Index actually 

decreased, by just 1% in the first cycle and by 21% in the second cycle, to 2.99 g/kg 

fuel and 2.52 g/kg fuel, respectively, because o f deposition o f very large particles.
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Figure 5.19. Particulate blow-out for various size ranges at the peak number events
for both acceleration cycles, 3500rpm -  15kW.

When corrected, the decrease in Emission Index was by 6% and 15%, to 0.61 

g/kg fuel and 0.62 g/kg fuel, for the first and second cycles, respectively. The 

changes occurred nearly in an identical m anner for both cycles; particles below 

0.1 |im  increased their number concentration, presumably by gas-to-particle 

conversion and coagulation, whereas those between 0.1 (.tm and 1.0|im deposited 

through the catalyst. Larger particles were blown out from the catalyst, except those 

around 10|am, which deposited. These very large particles originated the largest
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difference observed, since they deposited more effectively during the second cycle 

than during the first cycle.

USCat. D/S Cat. U/S 2nd 
Silencer D/S 2nd Silencer

Avg. Number 
Cone, rcm-31 Stabilisation 2.14E+07 2.40E+07 1.53E+07 9.51 E+06

Stabilisation 2na 
cycle 2.14E+07 2.32E+07 1.83E+07 1.17E+07

Avg. Emission 
Index [g/kg fuel] Stabilisation 3.00 2.99 1.43 0.64

- Unit density Stabilisation 2na 
cycle 3.19 2.52 1.56 0.68

Avg. Emission 
Index [g/kg fuel]

Stabilisation 0.65 0.61 0.26 0.16

- Corrected 
density

Stabilisation 2"a 
cycle 0.72 0.62 0.32 0.19

Table 5.3. Comparison between the first and second acceleration cycles regarding
the stabilisation event.

The particle number concentration decreased through the first silencer by 36% 

in the first cycle and by 21% in the second cycle, to 1 .53xl07 cm '3 and to 1 .83xl07 

cm '3, respectively. This also caused a decrease in the uncorrected Emission Index by 

52% in the first cycle and by 38% in the second cycle, to 1.43 g/kg fuel and 1.56 

g/kg fuel, respectively. The decrease in the corresponding corrected Emission Index 

was somewhat higher, by 57% in the first cycle and 49%  in the second cycle, to 0.26 

g/kg fuel and 0.32 g/kg fuel, respectively. The higher decrease in the first cycle was 

dominated by particles smaller than 0.1 |im . Larger particles had practically identical 

changes in both cycles, with the only exception o f particles around 8|im, the 

concentration o f  which decreased more significantly in the first cycle than in the 

second.

Finally, through the second silencer, the particle number concentration 

decreased by 38% in the first cycle, to 9.56x106 cm"3, and by 36% in the second 

cycle, to 1.17x 107 cm"3. The decrease in the uncorrected Emission Index was nearly 

identical in both cycles, by 55% and 56%, to 0.64 g/kg fuel and 0.68 g/kg fuel. The 

corrected Emission Index decreased by 38% and 34%, to 0.16 g/kg fuel and 0.19 

g/kg fuel, in the first and second cycles, respectively.

In summary, particle deposition throughout the exhaust system was the main 

feature during the stabilisation event in both cycles. Only through the catalyst, 

particles smaller than 0.1 |am and those between l.Ojam and 8.0(im increased in 

number, presumably by the coagulation o f newly formed particles, which were 

originated from outgassed components. The particle size distribution shifted slightly 

towards smaller sizes through the first silencer.
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cycles, 3 5 0 0 rp m - 15kW.



333

Stabilisation 1st cycle

Da [microns]

Catalyst — o—  First Silencer —— -—  Second Silencer

Stabilisation 2nd cycle

Da [microns]

Catalyst — a—  First Silencer ----------- Second Silencer

Stabilisation 2nd cycle

■i

Da [microns]

- Catalyst - First Silencer Second Silencer

Stabilisation 1st cycle

1.0E-01

Da [microns]

i Catalyst - First Silencer Second Silencer

Stabilisation 2nd cycle

1.0E-01
X  "O
® ■§ O.OE+OO
£  £ 0 
c  g  -1.0E-01
.2 o
Jg i -2.0E-01 

W J  -3.0E-01
rj) O)
>  =* -4.0E-01 < a>

-5.0E-01

♦ Catalyst — □—  First Silencer Second Silencer

Da [microns]
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5.3.2.2. Acceleration from Idle to 2250rpm -  15kW

The total particle number concentration and Emission Index for the 

acceleration tests to 2250rpm - 15kW after a 4-hour conditioning period are plotted 

against time in Figure 5.22., where each line corresponds to one o f the four sampling 

points. Also, the changes through the three sections, namely catalyst, first silencer 

and second silencer, are plotted as a particulate blow-out, so that positive values
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represent an increase in the corresponding parameter through the device, and 

negative values, a decrease, or deposition.

The profiles against time showed the same basic characteristics as those 

observed during acceleration to 3500rpm - 15kW, namely a mass burst at the 

beginning o f each acceleration cycle, followed by a peak number and then a 

stabilisation in both total number concentration and Emission Index. The 

stabilisation event, however, took more time to be reached in this low-speed 

condition than at high-speed condition, mainly because o f the influence o f  the EGR 

system and the instabilities created by the higher breaking effort in the 

dynamometer. This was reflected by fluctuations in the emissions after the peak 

number event.

As in the acceleration tests to 3500rpm - 15kW, the num ber peak and mass 

burst events o f  the acceleration to 2250rpm - 15kW showed higher levels in the first 

cycle than in the second, although the difference was less significant for the latter 

condition in most cases. Nevertheless, in the case o f the second silencer the number 

concentration in the peak num ber event o f  the first cycle was lower than that o f the 

second cycle, but the Emission Index showed the opposite result.

A new interesting feature was observed in two o f the profiles shown in Figure 

5.22., namely downstream o f  the catalyst and downstream o f  the second silencer. 

There was a significant increase in both particle number concentration and Emission 

Index when starting the deceleration, at the end o f  the first cycle. This occurred 

when the speed was taken down significantly more quickly than the load from the 

engine by the manual control o f the dynamometer.

In the same way as the acceleration tests to 3500rpm - 15kW, the speed 

profiles are plotted against time in Figure 5.23., for the acceleration to 2250rpm - 

15kW, showing the variability in the manual control o f  the speed during transient 

tests when using the hydraulic dynamometer. Also, the particle number 

concentration and Emission Index for the main events o f  both cycles against the 

position in the exhaust system are shown in Figure 5.24.
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Total Particle Number Concentration during Acceleration to 2250rpm@ 35kW After 4-hour Idle Conditioning

Time [sec]

------U/S Cat., Idle Precond.-------D/S Cat., Idle Precond.-------U/S 2nd Silencer, Idle Precond.-------D/S 2nd Silencer, Idle Precond. |

Total Particle Num ber Concentration changes during Acceleration to 
2250rpm @ 35kW  after 4-hour Idle conditioning

I------ Catalyst-------First silencer ------ Second silencer I

Figure 5.22. Total num ber and mass concentrations vs. time during acceleration to
low-speed conditions, 2250rpm -  15kW, after a 4-hour Idle preconditioning at
various points through the exhaust system, a) Particle number concentration.
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Emission Index Concentration during acceleration to 2250rpm @ 35kW  after 4-hour Idle Conditioning - Corrected

Time [sec]

------U/S Cat., Idle Precond.-------D/S Cat., Idle Precond.-------U/S 2nd Silencer, Idle Precond.-------D/S 2nd Silencer, Idle Precond. |

Emission Index changes during acceleration to 2250rpm @ 35kW  after 4-hour Idle Conditioning - Corrected

------Catalyst-------First silencer-------Second silencer

Figure 5.22. Total num ber and mass concentrations vs. time during acceleration to
low-speed conditions, 2250rpm -  15kW, after a 4-hour Idle preconditioning at
various points through the exhaust system, b) Corrected Emission Index.
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Emission Index Concentration during acceleration to 2250rpm @ 35kW after 4-hour Idle Conditioning - Uncorrected

Time [sec]

------U/S Cat., Idle Precond.-------D/S Cat., Idle Precond.-------U/S 2nd Silencer, Idle Precond.-------D/S 2nd Silencer, Idle Precond.

Emission Index changes during acceleration to 2250rpm @ 35kW  after 4-hour Idle Conditioning - Uncorrected

------ Catalyst-------First silencer------ Second silencer |

Figure 5.22. Total number and mass concentrations vs. time during acceleration to
low-speed conditions, 2250rpm -  15kW, after a 4-hour Idle preconditioning at
various points through the exhaust system, c) Uncorrected Emission Index.
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Engine speed during acceleration

Tim e (sec)

[------ First 22/06/01 -------Second 22/06/01 ------- First 31/05/01 -------Second 31/05/01 ------- First 28.06.01 -------First 10.07.01 -------Second 10.07.01

Figure 5.22. Speed vs. time profiles for several acceleration cycles to 2250rpm -
15kW. The deceleration was not recorded.

5.3.2.2.1. Preconditioning at idle

The starting point o f the test, idle condition, showed an aerosol entering the 

exhaust system with a total particle number concentration o f 2.0x106 cm '3, an 

uncorrected Emission Index o f  0.77 g/kg fuel and a corrected Emission Index o f 

0.14 g/kg fuel. Through the catalyst, the particle num ber concentration increased to 

5 .5x l06 cm '3 (nearly three-fold) and the Emission Index, to 1.18 g/kg fuel (53% 

increase) when uncorrected and to 0.65 g/kg fuel (more than three-fold) when 

corrected. The increase occurred for all size ranges, with the exception o f  those 

between 3.0pm  and 5.0pm, which underwent not a very significant decrease in 

number concentration and Emission Index. The increase was presumably due to 

nucleation and coagulation o f particles, since the temperature along the system at 

idle was low.

Through the first silencer, the particle num ber concentration decreased 

dramatically, by one order o f  magnitude, to 5.4 xlO5 cm ’3. The uncorrected Emission 

Index decreased to 0.18 g/kg fuel (a decrease by 85%) and the corrected Emission 

Index, to 0.04 g/kg fuel (a decrease by 94%). The changes were exactly the opposite 

o f those through the catalyst and occurred by deposition for all size ranges.
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Figure 5.23. Total num ber and mass concentrations vs. location in the exhaust
system for the main events o f the acceleration to low-speed conditions,
2250rpm -  15kW, after a 4-hour Idle preconditioning.
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Finally, through the second silencer, the particle num ber concentration 

increased again, to 1 .3xl06 cm '3; the uncorrected Emission Index nearly doubled, 

reaching 0.34 g/kg fuel, and the corrected Emission Index increased even more 

significantly, to 0.11 g/kg fuel. These changes, however, were less important in 

absolute terms when compared to those through the catalyst and the first silencer. In 

the second silencer, the most likely process was particle resuspension from the 

silencer walls, and coagulation may have played also an important role.

The tailpipe emission was very close to that entering the exhaust system, as a 

result o f  significant, opposite changes through the different devices. However, the 

particles coming out o f the exhaust were not wholly those that entered it, but those 

previously deposited in the second silencer. The particle size distribution remained 

virtually unchanged through the exhaust system, and only through the catalyst did it 

shift slightly toward larger sizes.

5.3.2.2.2. Acceleration mass burst (both cycles)

The mass burst event occurred in the first few seconds o f  the acceleration 

cycles, and had a very short duration, two to four seconds. Table 5.4. shows a 

comparison between both acceleration cycles in terms o f total particle number 

concentration and Emission Index. The aerosol entering the system showed, in the 

first cycle, a number concentration o f  6.0x106 cm '3 and an Emission Index o f 6.39 

g/kg fuel (uncorrected) and 0.59 g/kg fuel (corrected). In the second cycle, the 

number concentration was slightly higher, 6.4 xlO6 cm '3, and more significantly 

higher was the Emission Index: 9.47 g/kg fuel (uncorrected) and 0.90 g/kg fuel 

(corrected).

The particle num ber concentration decreased through the catalyst in both 

cycles during this event; by 47%  in the first cycle, to 3.2x106 cm"3, and by 38% in 

the second cycle, to 4.0x106 cm '3. The uncorrected Emission Index also decreased, 

by 49% in the first cycle, to 3.25 g/kg fuel, and by 85% in the second cycle, to 1.37 

g/kg fuel. A similar reduction was observed for the corrected Emission Index, which 

decreased by 50% in the first cycle, to 0.30 g/kg fuel, and by 77% in the second 

cycle, to 0.21 g/kg fuel. The reduction occurred for all size ranges, presumably by 

deposition and adsorption, in similar absolute terms for both cycles.
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USCat. D/S Cat. U/S 2nd 
Silencer

D/S 2nd 
Silencer

Avg. Number 
Cone, fcm-3]

Acceleration 
peak mass burst 6.0E+06 3.2E+06 6.0E+06 4.0E+06

Acceleration 
mass burst 2nd 
cycle

6.4E+06 4.0E+06 8.5E+06 5.7E+06

Avg. Emission 
Index [g/kq fuel]

Acceleration 
peak mass burst 6.39 3.25 6.77 3.93

- Unit density
Acceleration 
mass burst 2nd 
cycle

9.47 1.37 9.34 1.86

Avg. Emission 
Index [g/kq fuel]

Acceleration 
peak mass burst 0.59 0.30 0.84 0.76

- Corrected 
density

Acceleration 
mass burst 2nd 
cycle

0.90 0.21 1.07 0.28

Table 5.4. Comparison between the first and second acceleration cycles regarding
the acceleration mass burst event, 2250rpm -  15kW.

Through the first silencer, the particle number concentration increased again, 

to 6.0x10° cm"3 in the first cycle and 8 .5x l06 cm’3 in the second cycle, which was 

equivalent to an increase by 88% and 115%, respectively. The uncorrected Emission 

Index increased even more dramatically, to 6.77 g/kg fuel in the first cycle and 9.34 

g/kg fuel in the second cycle, that is, by a factor o f 1.1 and 5.8 times the incoming 

concentration. Similarly, the corrected Emission Index increased to 0.84 g/kg fuel in 

the first cycle and 1.07 g/kg fuel in the second cycle, by 1.8-fold and 4.1-fold the 

incoming concentration, respectively. This clear increase showed once again that the 

deposition layer in the first silencer was severely affected by transients such as 

acceleration, particularly in this case when the vibration o f the system was 

significant. As a result, a large amount o f  particulate was released from the silencer 

walls. The release or resuspension occurred for all size ranges, and was nearly as 

significant in both cycles, as shown in Figure 5.28. Also, new particles were formed 

from outgassed components, and then coagulated to form larger particles, thus 

contributing to the increase in total num ber and Emission Index. Evidence o f  this 

was the increase in the mode o f  the particle size distribution through the first 

silencer, which can be observed in Figure 5.27.

Through the second silencer, a new increase in total particle number 

concentration occurred, by 33% in the first cycle, to 4.0x10° cm"3, and by the same 

percentage in the second cycle, to 5.7x106 cm"3. The uncorrected Emission Index 

decreased by 42%  in the first cycle, to 3.93 g/kg fuel, and by 80% in the second 

cycle, to 1.86 g/kg fuel. When corrected, it decreased by 10% in the first cycle, to 

0.76 g/kg fuel, and by 74% in the second cycle, to 0.28 g/kg fuel. The difference 

between cycles was due to the contrasting behaviour o f the mid-sized particles: in 

the first cycle, their concentration increased through the silencer, presumably by
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condensation; in the second cycle, in contrast, these deposited, together with fine 

and large particles.
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5.3.2.2.3. Acceleration num ber peak (both cycles)

The number peak event occurred between 30 seconds and one minute after the 

start o f  the acceleration cycles and, as the mass burst event, it was very short. In this 

event, the aerosol entering the system had a total particle num ber concentration o f 

l . lx lO 7 cm '3 in the first cycle and somewhat lower, 8.2x10'’ cm '3, in the second 

cycle. The corresponding uncorrected Emission Index was 0.66 g/kg fuel in the lirst 

cycle and nearly twice as high, 1.15 g/kg fuel, in the second cycle. The corrected
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Emission Index was 0.56 g/kg fuel in the first cycle and slightly lower, 0.48 g/kg 

fuel, in the second cycle. Through the catalyst, the particle num ber concentration 

increased by 22%  in the first cycle, to 1 .3xl07 cm '3, but decreased in the second 

cycle by 34%, to 5 .4x l06 cm '3. This divergence was reflected also in the uncorrected 

Emission Index, which increased by more than 6-fold in the first cycle, to 4.61 g/kg 

fuel, and decreased by 68% in the second cycle, to 0.37 g/kg fuel. The increase in 

the corrected Emission Index in the first cycle was by 3.5-fold, to 2.48 g/kg fuel, and 

the decrease in the second cycle was by 40%, to 0.29 g/kg fuel. The difference 

between both cycles was due to mid-sized and large particles, larger than 0.1 |im , 

which were either formed by coagulation and condensation or blown out from the 

catalyst in the first cycle. In the second cycle, in contrast, particles deposited and 

were adsorbed through the catalyst regardless o f  their size.

Through the first silencer, the particle number concentration increased by 78%
7 3in the first cycle, reaching 2.3x10 cm ' , and by more than 3-fold in the second 

cycle, reaching the same value than in the first cycle, 2.3x107 cm '3. Despite the 

increase in num ber concentration, the uncorrected Emission Index decreased by 7% 

in the first cycle, to 4.28 g/kg fuel. In the second cycle, it increased significantly, by 

14-fold, to 5.55 g/kg fuel. The corresponding changes in the corrected Emission 

Index were a decrease by 17% in the first cycle, to 2.06 g/kg fuel, and an increase by 

6.5-fold in the second cycle, to 2.15 g/kg fuel. In the first cycle, particles smaller 

than 0.2|im  and those between 0.5|am and 2.0(im were blown out from the silencer, 

but the remaining particles, between 0.2|j.m and 0.5(im, as well as those larger than 

2.0|im , deposited through it. On the other hand, in the second cycle, the 

concentration o f  ultrafine and mid-sized particles increased by gas-to-particle and 

coagulation processes, and large particles were blown out from the silencer. This 

difference accounted for the divergence in the overall changes in number 

concentration and Emission Index.

Finally, through the second silencer, the particle number concentration 

decreased by 76% in the first cycle, to 5 .5x l06 cm '3, and by 61% in the second 

cycle, to 8 .8 x l0 7 cm '3. The uncorrected Emission Index decreased by 89% in the 

first cycle, to 0.46 g/kg fuel, and by 90% in the second cycle, to 0.56%. When 

corrected, it decreased by 86% in the first cycle, to 0.28 g/kg fuel, and by 84% in the 

second cycle, to 0.33 g/kg fuel. These changes were very similar, and occurred in 

the same m anner for all size ranges in both cycles: all particles deposited through the 

silencer.

In summary, differential behaviour o f particles o f  different sizes determined 

contrasting overall trends in the first and the second acceleration cycles through the
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catalyst and the first silencer. Mid-sized increased concentrations by coagulation and 

condensation occurred, and large particles were easily resuspended from the catalyst 

in the first cycle, just after the long idle preconditioning period. The first silencer 

accumulated these particles. Afterwards, in the second cycle, the behaviour was 

exactly the opposite. The catalyst had recovered its accumulating capacity and the 

particles previously accumulated in the first silencer were resuspended by the second 

disturbance. The behaviour o f the particle deposits in the second silencer was 

practically unaffected by the duration o f  the conditioning period, being equivalent 

for both cycles. The particle size distribution mode did not change significantly 

through the exhaust system.

USCat. D/S Cat. U/S 2™ Silencer D/S 2"a Silencer
Avg. Number 
Cone, [cm-3]

Acceleration 
peak number 1.1E+07 1.3E+07 2.3E+07 5.5E+06

Acceleration 
peak number 
2nd cycle

8.2E+06 5.4E+06 2.3E+07 8.8E+06

Avg. Emission 
Index [g/kg fuell

Acceleration 
peak number 0.66 4.61 4.28 0.46

- Unit density
Acceleration 
peak number 
2nd cycle

1.15 0.37 5.55 0.56

Avg. Emission 
Index [g/kg fuell

Acceleration 
peak number 0.56 2.48 2.06 0.28

- Corrected 
density

Acceleration 
peak number 
2nd cycle

0.48 0.29 2.15 0.33

Table 5.5. Comparison between the first and second acceleration cycles regarding 
the acceleration peak number event, 2250rpm -  15kW.

5.3.2.2.4. Stabilisation (both cycles)

Once the disturbance introduced in the system by the acceleration was over, 

there was a stabilisation in particle number concentration and Emission Index at a 

level lower than the acceleration peak. The particle num ber concentration o f  the 

aerosol system during this event was 7.6x106 cm '3 in the first cycle and 6.0x106 cm '3 

in the second cycle. The uncorrected Emission Index was 0.58 g/kg fuel in the first 

cycle and 0.47 g/kg fuel in the second cycle, and the corresponding corrected 

Emission Index, 0.32 g/kg fuel in the first cycle and 0.26 g/kg fuel in the second 

cycle. Through the catalyst, the particle number concentration decreased to 5.4x106 

cm '3 in both cycles, a decrease by 29% and 10% in the first and second cycles, 

respectively. The uncorrected Emission Index decreased by 31% in the first cycle 

and increased by just 5% in the second cycle, reaching similar levels o f 0.40 g/kg 

fuel and 0.50 g/kg fuel, respectively. Similarly, the corrected Emission Index 

decreased by 33% in the first cycle and increased by 8% in the second cycle, 

reaching 0.22 g/kg fuel and 0.28 g/kg fuel, respectively. Particles o f  all sizes 

deposited through the catalyst in both cycles.
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Figure 5.28. Particle size distribution for the peak number events o f  the acceleration 
cycles, 2250rpm -  15kW.
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Figure 5.29. Particulate blow-out for various size ranges at the peak number events 
for both acceleration cycles, 2250rpm -  15kW.

Through the first silencer, the particle number concentration increased to 

1 .9xl06 cm"3 in both cycles, an increase by 250%. The uncorrected Emission Index 

increased by 8.5-fold in the first cycle, to 3.81 g/kg fuel, and by 8.1-fold in the 

second cycle, to 4.54 g/kg fuel. The corrected Emission Index increased to 1.54 g/kg 

fuel in the first cycle, and to 1.90 g/kg fuel in the second cycle, which was an 

increase by 6.1-fold and 5.9-fold, respectively. These changes were nearly identical 

for both cycles through this silencer, consisting o f increase in particle concentration
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by gas-to-particle and coagulation processes for fine particles, and blow-out o f large 

particles, as can be observed in Figure 5.31.

USCat. D/S Cat. U/S 2nd 
Silencer D/S 2nd Silencer

Avg. Number 
Cone, [cm-3]

Acceleration 
peak mass burst 7.6E+06 5.4E+06 1.9E+07 4.5E+06

Acceleration 
mass burst 2nd 
cycle

6.0E+06 5.4E+06 1.9E+07 4.5E+06

Avg. Emission 
Index [g/kg fuel]

Acceleration 
peak mass burst 0.58 0.40 3.81 0.39

- Unit density
Acceleration 
mass burst 2nd 
cycle

0.47 0.50 4.54 0.37

Avg. Emission 
Index [g/kg fuell

Acceleration 
peak mass burst 0.32 0.22 1.54 0.21

- Corrected 
density

Acceleration 
mass burst 2nd 
cycle

0.26 0.28 1.90 0.21

Table 5.6. Comparison between the first and second acceleration cycles regarding
the stabilisation event, 2 2 5 0 rp m - 15kW.

Through the second silencer, the particle number concentration decreased to 

4.5x106 cm"3 in both cycles, which corresponded to a 76% and 77% decrease, for the 

first and second cycles, respectively. The decrease in uncorrected Emission Index 

was by 90% and 92%, to 0.39 g/kg fuel and 0.37 g/kg fuel in the first and second 

cycles, respectively. The corrected Emission Index decreased to 0.21 g/kg fuel in 

both cycles, a decrease by 86% and 89% in the first and second cycles, respectively. 

As through the first silencer, the changes were nearly identical for both cycles, and 

consisted o f  deposition o f  particles o f all sizes.

In summary, the stabilisation events were shown to be identical in both cycles, 

which indicated that the disturbance and the duration o f  the conditioning period 

caused only transient effects and that differences in deposition/resuspension 

occurred only for the mass burst and num ber peak events, but their effect was small 

after the end o f  the transient acceleration.

5.4. Comparative analysis of the acceleration results

In the same way as the cold start tests, a comparative analysis o f the 

acceleration results was made as an attempt to find behavioural trends through the 

system at different conditions. The summary o f processes is shown in Table 5.7., 

using the same convention as that in Chapter 4, namely italic characters for an 

increase in number concentration, underlined characters for deposition or reduction 

in num ber concentration, and dotted-underhned characters for mixed processes 

within the three previously defined particle size ranges. Again, the main aim ot the
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analysis was to identify the conditions at which the particle concentration increases 

(formation and resuspension, or blow-out events).
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Figure 5.30. Particle size distribution for the stabilisation events o f the acceleration
cycles, 2 2 5 0 rp m - 15kW.
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Figure 5.31. Particulate blow-out for various size ranges at the stabilisation events 
for both acceleration cycles, 2250rpm -  15kW.

The number o f  deposition cases overwhelmed the number o f particle formation 

and resuspension at all conditions. Figure 5.33. shows that the high-speed 

conditions, 3500rpm - 15kW, contributed to more cases o f  formation o f  ultrafme 

particles than its low speed counterpart, 2250rpm -  15kW, but the opposite occurred 

for larger particles: the high-load condition contributed to more cases o f  mid-size 

particle formation and large particle resuspension, presumably by enhanced
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coagulation and thermal effects on the deposition layer at the higher temperatures. 

To a certain extent, a higher speed was expected to produce more blow-out cases. 

However, the higher turbulence at high speeds can actually enhance deposition. As it 

was said for the cold start tests, the higher contribution to the number o f deposition 

cases does not necessarily mean that, when blow-out occurs, it is less significant. 

The blow-out events during acceleration tests to high-speed produced higher 

changes Emission Index than those during acceleration to low-speed.

Size range Size range

Small M iddle Large Small M iddle Large

Event Device 0 .0 1 -0 . 1  mm 0 .1 -1 .0 mm 1 .0 -1 0 .0 mm 0 .0 1 -0 .1 mm 0 .1 -1 .0 mm 1 .0 -1 0 .0 mm

3500rpm - 15kW 2500rpm - 15kW

Catalyst

First
Silencer
Second
Silencer

Coagulation 8. 
Deposition

Formation

Deposition

Coaaulation

Deposition Formation Coaaulation Blow-out

Idle Blow-out
Coagulation & 
Deposition

Formation

Deposition Deposition

Coagulation & 
Deposition

Deposition Deposition Coaaulation Blow-out

Catalyst Formation Deposition Deposition
Coagulation & 
Deposition

Formation

Deposition Deposition

First mass burst 
1 st cycle

First
Silencer
Second
Silencer

Formation Coaaulation Blow-out Coaaulation Blow-out

Coagulation & 
Deposition

Deposition Deposition Coagulation & 
Deposition

Coaaulation Deposition

Catalyst Formation
Deposition & 
Coagulation

Deposition

Deposition
Coagulation & 
Deposition

Formation

Deposition Deposition

First mass burst 
2 nd cycle

First
Silencer
Second
Silencer

Coagulation & 
Deposition 
Coagulation <£ 
Deposition

Deposition Coaaulation Blow-out

Deposition Deposition
Coagulation & 
Deposition Deposition Deposition

Catalyst Formation Coaaulation Blow-out
Coagulation & 
Deposition

Formation

Coaaulation Blow-out

Number peak First
Silencer
Second
Silencer

Coagulation & 
Deposition 
Coagulation & 
Deposition

Deposition Deposition
Deposition & 
Coagulation

Deposition

Blow-
out/ Deposition 

DepositionDeposition Blow-out
Coagulation & 
Deposition

Catalyst Formation Coaaulation Deposition Coagulation & 
Deposition

Formation

Deposition Deposition

Number peak 
2 nd cycle

First
Silencer
Second
Silencer

Coagulation & 
Deposition 
Coagulation & 
Deposition

Deposition Blow-out Coaaulation Blow-out

Deposition Deposition Coagulation & 
Deposition

Deposition Deposition

Stabilisation

Catalyst

First
Silencer
Second
Silencer

Formation

Coagulation & 
Deposition 
Coagulation & 
Deposition

Deposition

Deposition

Blow-
out/Deposition 

Deposition

Coagulation & 
Deposition

Formation

Deposition

Coaaulation

Deposition

Blow-out

Deposition Deposition Coagulation & 
Deposition

Deposition Deposition

Catalyst Formation Deposition
Blow-
out/Deposition 

Deposition

Coagulation & 
Deposition

Formation

Coaaulation Deposition

Stabilisation 2nd 
cycle

First
Silencer
Second
Silencer

Coagulation & 
Deposition 
Coagulation .S 
Deposition

Deposition Coaaulation Blow-out

Deposition Deposition Coagulation & 
Deposition

Deposition Deposition

Table 5.7. Summary o f deposition and blow-out cases for the acceleration tests, 
including the exhaust devices, three size ranges, target conditions and 
acceleration cycle.

From the comparison between cycles, Figure 5.33. shows that more blow-out 

cases were observed during the first cycle than during the second cycle. This was an 

expected result, since the idle preconditioning before the first cycle was significantly 

much longer than the idling period before the second cycle, so there was much more 

particulate matter likely to be blown-out during the first cycle.
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Contribution of the engine conditions to the total of fine 
particles coagulation/formation cases.

■  3500-15 Accel. 

□  2250-15 Accel.

Coagulation & Deposition Formation

Contribution of the engine conditions to the total of medium and large 
particles deposition and blow-out cases

40.0% 

35.0% 

30.0% 

M 25.0%
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8 20.0% «4—O
55 15.0% 

10.0% 

5.0% 

0.0% t t h

■  3500-15 Accel. 

□  2250-15 Accel.

Deposition Coagulation Blow-out

Figure 5.32. Contribution o f engine target conditions to the total o f  blow-out and 
deposition cases during acceleration tests.
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Contribution of the acceleration cycles to the total of fine 
particles coagulation/formation cases.
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Figure 5.33. Contribution o f  acceleration cycles to the total o f blow-out and 
deposition cases during acceleration tests.

Figure 5.34. shows that the start-up contributed to more ultrafine particle 

formation cases than the acceleration and the thermal stabilisation. For mid-sized 

particles, start-up and acceleration contributed to the same number o f  particle

■  First cycle 

□  Second Cycle
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formation cases, higher than during stabilisation, and it was the acceleration the 

main contributor to large particle blow-out or resuspension cases. Once thermal 

stabilisation was reached, particle deposition was the main trend observed.

Contribution of the transient events to the total of fine 
particle formation and coagulation cases

! 2 .0% -j-----------------------------------------------------------------------

Coagulation & Deposition Formation

■  Start-up
□  Acceleration
□  Thermal stabilisation

Contribution of the transient events to the total of medium 
and large particles deposition and blow-out cases

30.0%

25.0%

20.0%
</>O(/>
2 15.0% 
o
55

10.0%

5.0%

0.0%

1 h

............—

- - — .......... —  - ......—

r  .

■  Start-up
□  Acceleration
□  Thermal stabilisation

Deposition Coagulation Blow-out

Figure 5.34. Contribution o f  transient events to the total o f  blow-out and deposition 
cases during acceleration tests.
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Contribution of the Exhaust Devices to the total of fine particle 
formation and coagulation cases.

18.0%

16.0%

14.0%

Coagulation & Deposition Formation

Contribution of the Exhaust Devices to the total of medium and large 
particles deposition and blow-out cases

30.0% -i--------------------------------------------------------------------------------------------------------------

25.0%

Deposition Coagulation of fine Blow-out

Figure 5.35. Contribution o f  exhaust devices to the total o f  blow-out and deposition 
cases during acceleration tests.

Finally, Figure 5.35. shows that, in the acceleration tests, the first silencer 

contributed significantly to the num ber o f  particle formation and resuspension cases. 

The catalyst contribution to the number o f such cases was less important than the 

first silencer, but still significant. In contrast, the second silencer showed no case o f 

ultrafme particle formation predominating over particle deposition and only very
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few cases o f  particle resuspension. Perhaps the initial temperature o f the catalyst in 

the acceleration tests, which was higher than in the cold start tests, deteriorated the 

adsorption capacity o f the catalyst when the disturbance appeared, relegating the 

catalyst to be less effective a particulate accumulator than the second silencer.

5.5. Key points from this Chapter

Cold start tests allowed determining that important levels o f  particle formation 

and resuspension through the exhaust system were likely to occur at high-speed and 

high-load conditions, but were inconclusive regarding the frequency at which these 

events take place. The results from this Chapter, after the analysis o f the number o f 

particle concentration-change cases during the acceleration tests, identified the 

following factors to favour fine particle formation and large particle resuspension:

■ Relatively high loads and therefore high exhaust temperatures, rather 

than high speed but low temperatures.

■ Long preconditioning at Idle (or low speeds), rather than short periods 

under the same conditions, represented by the differences between first 

and second acceleration cycles.

■ The start and the whole duration o f the acceleration, rather than the 

stabilisation at the target condition.

■ The flow through the first silencer and the catalyst, rather than through 

the second silencer.

■ Nevertheless, the number o f cases for which deposition was 

predominant over particle formation and resuspension overwhelmed 

the number o f  cases for which the opposite situation occurred, even in 

the most likely conditions to promote particle formation, growth and 

resuspension.

■ Transient acceleration emissions in step-change cycle tests such as 

those carried in this work may be used to estimate changes in emissions 

due to transients, with respect to multi-inode steady-state legislative 

cycles such as the R49 and the ESC. This is explained and illustrated in 

Chapter 7.



Chapter 6. 
New Exhaust Tests

In the last stage o f  this research, the exhaust system downstream o f the catalyst 

was replaced with a new section with identical configuration. Cold-start tests were 

performed without any prior use o f  the exhaust. The aim was to study wall 

deposition losses when there was no prior wall deposits. There was no exhaust 

preconditioning in the tests, the aim being to undertake tests with no presence o f 

particles in the exhaust. The emissions were monitored continuously with the ELPI 

at four sampling points, so that the changes through the exhaust system with clean 

walls could be observed. Total number concentration and number-weighted size 

distribution were recorded eveiy second and converted into total Emission Index and 

mass-weighted size distribution. The same correction applied to previous tests was 

used here, reducing the contribution o f large particles in the mass-weighted size 

distribution and thus reducing the total Emission Index by about one order o f 

magnitude. No filter measurements were carried out with the new exhaust to 

compare with the mass estimations from the ELPI, so it was assumed that the 

correction was still valid. The discussion on this issue can be found in section 2.11.

Since it was not possible to have several instruments to perform simultaneous 

measurements, which would have been the ideal situation to observe the real time 

effects o f the clean walls, each test was kept very short, so as not to produce 

important alterations to the system. The sampling time for each test was 10 minutes 

from cold start. After each test, the engine was shut down and allowed to cool down 

to ambient temperature to perform  the following test. In the first test, the sample was 

taken at the tailpipe. For subsequent tests, the sampling point was moved backwards 

in the exhaust system, finishing upstream o f  the catalyst.

The Emission Index profiles vs. time in Figure 6.1. showed that, during the 

first seconds o f cold start, a mass-burst event occurred, as was observed in all 

previous cold-start tests. This lasted around 15s, during which the number 

concentration also increased. After reaching a maximum, the Emission Index 

decreased quickly, but the number concentration kept increasing for another 10 

seconds to reach a maximum and then decrease slightly. From this point on, there 

were several oscillations in the particle number concentration at levels increasingly 

higher than the first temporary maximum. Oscillations occurred also in the Emission 

Index profiles, but at lower levels than the mass burst at the start o f  the test. This
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was the first indication that these changes were produced in the fine-particle size 

range.

Total Particle Number Concentration during Acceleration, 2250rpm@ 15kW

Time [sec]

------U/S C at.-------D/S C at.-------U/S 2nd Silencer-------D/S 2nd Silencer

Total Particle Number Concentration changes during Cold start to 2250rpm@ 15kW

------Catalyst-------First Silencer------- Second Silencer |

Figure 6 .F  Total number concentration and Emission Index vs. time during cold
start at 2250rpm - 15kW for various points through the brand new exhaust
system.
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Emission Index during Cold start to 2250rpm@ 15kW
Corrected

Time [sec]

------- U/S C a t . -------- D/S C a t . ---------U /S  2nd S ile n c er--------D/S 2nd SilenceT]

Emission Index changes during Cold start to 2250rpm@ 15kW  
Corrected

------- C a ta lyst--------First S ile n c er-------- Second Silencer I

Figure 6.1. Total number concentration and Emission Index vs. time during cold 
start at 2250rpm - 15kW for various points through the brand new exhaust 
system, b) Corrected Emission Index.
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Emission Index during Acceleration to 2250rpm@ 15kW  
Uncorrected

Time [sec]

------ U/S C at.-------D/S C at.------- U/S 2nd Silencer-------D/S 2nd Silencer I

Emission Index changes during acceleration to 2250rpm @ 15kW  
Uncorrected

------Catalyst-------First Silencer-------Second Silencer

Figure 6.1. Total number concentration and Emission Index vs. time during cold 
start at 2250rpm - 15kW for various points through the brand new exhaust 
system, b) Uncorrected Emission Index.
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——  After increase - New Exhaust

Figure 6.2. Total num ber concentration and Emission Index vs. position in the new 
exhaust for the main events during cold start at 2250rpm - 15kW.

One o f  the cycles was particularly significant in the increase o f both particle 

number concentration and Emission Index, and was related to the EGR valve 

opening, as observed in previous tests. After 300s, the particle num ber concentration 

and Emission Index tended to stabilise for most o f  the tests, except when sampling
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downstrcam o f the second silencer, which took around 100s more to reach a stable 

condition.

As in previous tests, the particle num ber concentration and Emission Index 

variations with time were summarised in a set o f the most significant events, to 

determine the changes through the exhaust system. This is shown in Figure 6.2. 

Before starting the description o f the changes in particulate emissions during the 

main events o f the cold start test, it is worthwhile noticing that the particle number 

and mass concentrations in Figures 6.1. and 6.2. are between one and two orders o f 

magnitude higher in the tests with the new exhaust system than in the corresponding 

tests with the old exhaust system at the same conditions. This occurs for both 

number and mass emissions, as shown in Figure 6.2., and for all sampling points, 

including upstream and downstream o f the catalyst, which were not supposed to 

change, or at least not to this extent. The reasons for which the emissions were so 

different are not clear, but the following factors may have played an important role 

in this change:

■ The tests were performed with a two-year and a half difference, period 

over which a major maintenance and several minor changes were 

performed to  the engine. During the m ajor maintenance period, the 

engine was totally dismantled and then rebuilt with new spare parts 

such as the gasket sealing plates. Also, cooling-system hoses and the 

fuel pump were replaced, but it is not well understood why this 

increased particulate emissions.

■ The fuel was always bought from the same retailer and under the same 

specifications. However, it is likely that some o f  its characteristics 

changed, so that the fuel used for the new exhaust tests may have had 

different combustion characteristics, m ainly regarding particulate 

formation. The main parameter in this respect may be the fuel sulphur 

content.

■ There was a change in the technician performing the engine 

maintenance and operation around the middle o f  the testing period for 

this work. Different practices and maintenance procedures may have 

been important in the engine overall performance and, therefore, 

emissions. The author, however, was not aware o f these changes.
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From  these considerations, the results from the tests with the new exhaust were 

not really comparable to those from the previous tests. Therefore, the new exhausts 

results were considered rather independently, in terms o f  emission levels, although 

the trends in deposition or reentrainment processes were taken into account to make 

as many contributions as possible to the conclusions o f  this work.

The following sections describe the changes through the system for the 

different events.

6.1. First mass burst

During the first mass-burst event, analysed for particle size distribution 

changes in Figure 6.3., the exhaust aerosol entering the exhaust system had a particle 

number concentration o f  1.15x10"'' cm3, an uncorrected Emission Index o f  5.70 g/kg 

fuel and a corrected Emission Index o f 0.40 g/kg fuel. Through the catalyst, an
c 'l

increase by 61% took the particle num ber concentration to 2.06x10 cm , and the 

Emission Index increased by 17% and 34%, to 6.67 g/kg fuel and 0.54 g/kg fuel, 

uncorrected and corrected, respectively. Particle coagulation and reentrainment 

occurred through the catalyst.

Through the second silencer, the particle number concentration increased by 

11%, to 2 .06x l06 cm '3. The uncorrected Emission Index increased by 5%, to 7.0 

g/kg fuel, and the corrected Emission Index, by 4%, to 0.559 g/kg fuel. The increase 

in number occurred for particles smaller than 0.08pm, and the increase in Emission 

Index, for particles larger than 2.0pm. Particles between 0.08pm and 2.0pm were 

deposited through the silencer. Since the test sampling from the points involved, 

namely upstream and downstream o f  the first silencer, was carried out after running 

the engine for some time, the blown-out particles larger than 2.0 were, presumably, 

part o f the first deposition layer formed on the clean walls during the first test, which 

sampled the exhaust aerosol from the point downstream o f  the catalyst. The increase 

in the number and Emission Index o f particles finer than 0.08pm was presumably 

due to very fast condensation and coagulation processes.

Through the second silencer, the particle number concentration nearly doubled, 

to 5.58x106 cm -3. However, the Emission Index decreased by 34%, to 4.59 g/kg fuel 

when uncorrected, and 0.37 g/kg fuel when corrected. The increase in number 

occurred for particles between 0.035pm and 0.3pm and was presumably due to 

condensation and agglomeration processes, whereas the decrease in Emission Index 

occurred for particles larger than 0.3pm, which deposited on the second silencer 

walls.
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In summary, the analysis o f  changes through the exhaust system in the mass- 

burst event gave evidence that there was a new deposition layer developing on the 

walls o f  the new exhaust, formed mainly by mid-sized and large particles, and that 

increases in particle number through the exhaust system was due to condensation 

and coagulation processes.
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6.2. First temporary peak-number event

Together with the mass-burst event, the first peak-num ber event, shown in 

Figure 6.4., was considered in this analysis to represent the transient -acceleration- 

effects on the deposition/resuspension processes through the exhaust system. Further 

changes introduce the thermal equilibration processes in the engine and exhaust 

system once the target conditions have been reached.

The particle number concentration o f  the exhaust aerosol leaving the 

turbocharger during the peak-num ber event was 1 .54xl06 cm '3, one order o f 

magnitude higher than during the mass-burst event. The corresponding Emission 

Index was, in contrast, one order o f magnitude lower, 0.43 g/kg fuel when 

uncorrected, and 0.083 g/kg fuel when corrected. Through the catalyst, the particle 

number concentration increased by 56%, to 2.40x106 cm '3, but the Emission Index 

decreased by 56% or 33%, to 0.19 g/kg fuel or 0.056 g/kg fuel, when uncorrected or 

corrected, respectively. The increase in number occurred for particles smaller than 

0.1pm and was mainly due to agglomeration, whereas the decrease in Emission 

Index occurred for particles larger than 0.1pm, which deposited through the catalyst. 

Some o f these large particles around 4.0pm  actually were blown out as a result o f 

the partial contribution o f  particle reentrainment processes, but their contribution to 

the overall change in Emission Index was negligible.

Through the first silencer, the particle number concentration increased by 51%, 

to 3.62x10h cm"3 owing to the formation o f  fine particles by condensation. The 

Emission Index decreased by 48% , to 0.099 g/kg fuel when uncorrected, and by 

58%, to 0.077 g/kg fuel, when corrected, owing to deposition o f large particles. This 

contradictory trend between number concentration and Emission Index was due to 

the size-dependent differences. There was evidence that large particles tended to 

deposit through the silencer, even at the higher exhaust gas speeds during this event.

Through the second silencer, the particle num ber concentration increased by 

only 3%, to 3 .72x l06 cm '3. The uncorrected Emission Index nearly tripled, to 0.295 

g/kg fuel, and the corrected Emission Index increased by just 10%, to 0.099. 

Particles smaller than 0.4pm  tended to deposit by thermophoresis, although the 

num ber o f those around 0.1pm  actually increased, presumably by coagulation o f 

finer particles. The number o f particles larger than 0.4pm increased and caused a 

m arked increase in the overall uncorrected Emission Index, but this effect was 

reduced with the correction.

In summary, there was evidence that coagulation o f fine particles occurred 

throughout the exhaust system and that larger particles tended to form a stable
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deposition layer on the new walls. However, this layer was unstable owing to the 

change in speed and temperature, which caused the resuspension o f large particles in 

the section downstream o f  the first silencer. Changes in the deposition layer were 

extremely fast.
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The valley after the temporary peak-number event, Figure 6.5. represented an 

intermediate point between the disturbance caused by the main acceleration towards 

target conditions and the thermal-stabilisation o f  the engine and the exhaust system. 

The valley event would have been nearly equivalent to a stabilisation condition 

should the EGR valve have not opened. But the action o f  the EGR control 

interrupted this trend towards stabilisation just a few seconds after the low level was 

reached. During this short period, the total particle number concentration at the 

entrance to the system was 1 .25xl06 cm"3, 19% lower than in the peak-number 

event. The corresponding uncorrected and corrected Emission Index values were 

0.24 g/kg fuel and 0.033 g/kg fuel, respectively, 44%  and 60% lower than during the 

peak-number, also respectively.

Through the catalyst, the particle number concentration increased by 63%, to 

2.03x10ft cm '3, unlike the uncorrected Emission Index, which decreased by 38%, to 

0.148 g/kg fuel. The corrected Emission Index, however, did increase by 49% , to 

0.049 g/kg fuel. As in other similar cases, the difference in trends was due to size- 

dependent opposite changes through the system: the number o f  particles smaller than 

1.0pm increased through the catalyst by condensation and coagulation o f finer 

particles, whereas the majority o f  larger particles actually deposited.

Through the first silencer, the particle num ber concentration increased by 20%, 

to 2.44x10° cm"3; the uncorrected Emission Index, by 1.7 times, to 0.399 g/kg fuel; 

and the corrected Emission Index, by 58%, to 0.077 g/kg fuel. The number o f  

particles increased for virtually all size ranges, with the only exception o f  those 

around 0.3pm, which underwent a very slight decrease. The increase in the num ber 

o f particles smaller than 1.0pm was presumably due to condensation and 

coagulation o f finer particles, and larger particles were presumably released from the 

newly formed deposition layer.

Through the second silencer, the particle num ber concentration increased by 

only 3%, to 2 .51x l06 cm"3; the uncorrected Emission Index, by 1.2 times, to 0.865 

g/kg fuel; and the corrected Emission Index, by 42%, to 0.110 g/kg fuel. The 

increase in number o f particles occurred at virtually all size ranges, except just the 

smallest measured by the ELPI, around 0.035pm. Particles smaller than 1.0pm 

formed presumably by outgassing, condensation and coagulation processes, 

increasing the number concentration in this size range. Particles larger than 1.0pm 

were reentrained as a result o f  the equilibration processes in the deposition layer at 

the target condition reached.

6.3. Valley after peak
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In summary, there was evidence that the equilibration processes in the 

deposition layer on the walls o f  the exhaust system section downstream o f  the 

catalyst originated the reentrainment o f particles during the valley-after-peak event 

and an increment in the number concentration o f fine particles by outgassing o f 

semi-volatile components. The increase in number o f  particles occurred also through 

the catalyst, but larger particles deposited on it walls.
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The particle number concentration underwent a number o f  oscillations to 

increasingly higher levels until reaching a stabilisation after a rather long period, 

about 300s. Both particle number concentration levels reached were significantly 

higher than those observed during the peak num ber event. Similarly, Emission Index 

levels were sim ilar to those during the mass burst event. This was a consequence o f 

the increased particulate emission levels originated after the EGR valve opened.

Once stabilised, the particle number concentration upstream o f  the catalyst was 

3.15x10*' cm"’, and the Emission Index was 0.810 g/kg fuel and 0.351 g/kg fuel, 

uncorrected and corrected, respectively. Through the catalyst, the particle number 

concentration increased by 42%, to 4.46x10(> cm '3. In contrast, the uncorrected 

Emission Index decreased by 22%, to 0.632 g/kg fuel, and the corrected Emission 

Index also decreased, by 30%, to 0.245 g/kg fuel. The increase in num ber occurred 

for particles smaller than 0.3|im , as shown in Figure 6.6., presumably by outgassing, 

condensation and coagulation o f  finer particles, and the decrease in Emission Index 

was dominated by the reduction in emissions o f larger particles due to deposition.

Through the first silencer, the particle number concentration increased by 1.7 

times, to 1 .20xl07 cm '3; the uncorrected Emission Index more than doubled, 

reaching 1.315 g/kg fuel, and the corrected Emission Index underwent even a higher 

change, to 0.526 g/kg fuel. This considerable increase in number and Emission 

Index occurred for all size ranges, and was the result o f  outgassing, condensation 

and coagulation processes, for fine particles, and reentrainment o f large particles. As 

observed in previous tests this kind o f  changes are not rare through this section, 

including the first silencer, in which the characteristics o f  the flow may be not 

favourable for the formation o f a stable deposition layer.

Through the second silencer, the particle number concentration decreased by 

15%, to l.O lx lO 7 cm '3; the Emission Index decreased by 21%  or 25%, to 1.039 g/kg 

fuel or 0.392 g/kg fuel, uncorrected or corrected, respectively. The decrease 

occurred for all size ranges, by thermophoretic, gravitational and inertial deposition, 

presumably enhanced by turbulence.

In summary, the mirrored behaviour o f the particles through the first and 

second silencers observed in previous tests occurred again for the clean walls o f  the 

brand new exhaust system once the stabilisation conditions were reached after the 

first cold start set o f tests. This indicated that the flow characteristics through the 

system plays a more significant role than the roughness o f the new or old systems in

6.4. Stabilisation after increase
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the behaviour o f the deposition layer and, therefore, in the particle deposition and 

reentrainment processes.
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6.5. Summary of the cold-start with the new exhaust

W ith the new exhaust section downstream o f the catalyst (the catalyst was not 

changed), the deposition o f  ultrafine particles through the catalyst and the first 

silencer was nil, as shown in Figure 6.7. Ultrafine particles were formed through
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these devices in most cases, by gas-to-particle conversion processes. Ultrafine 

particles deposition occurred only through the second silencer, although in fewer 

cases than ultrafine particle fonnation.

Contribution of the transient events to the total of fine 
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Figure 6.7. Contribution o f particle size, transient events and exhaust devices to the 
total o f  deposition and blow-out cases during cold start at 2250rpm - l5kW  
with the brand new exhaust, a) Fine particles.
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Contribution of the transient events to the total of medium 
and large particles deposition and blow-out cases
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Figure 6.7. Contribution o f  particle size, transient events and exhaust devices to the 
total o f deposition and blow-out cases during cold start at 2250rpm - 15kW 
with the brand new exhaust, b) Mid-sized and large particles.

Large particles were deposited mainly through the catalyst and the second 

silencer, and resuspended from the newly formed deposition layer on the first
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silencer walls. The first silencer also promoted condensation and ultrafine particle 

coagulation in more cases than the catalyst and the second silencer.

Ultrafine particle formation by gas-to-particle formation occurred mainly 

during acceleration, when virtually no deposition o f these particles occurred through 

the exhaust system. Fine particle coagulation and large particle resuspension were 

predominant during the start o f  the acceleration, but not during the whole 

acceleration period. After the first few seconds o f acceleration, particle deposition 

through the system was the prevalent process.

6.6. Idle steady-state with the new exhaust

The engine was run at idle for 4 hours to observe the changes in particulate 

emissions through the brand new exhaust system. Figure 6.8. shows the average 

particulate number concentration and Emission Index vs. location in the exhaust 

system, including the error bars given by the standard deviation o f  the measurements 

at each point, and Figure 6.9., the size distribution changes.

The particle num ber concentration at the entrance o f  the exhaust system was 

1 .73xl06 cm '1; the uncorrected Emission Index, 0.626 g/kg fuel; and the corrected 

Emission Index, 0.100 g/kg fuel. Through the catalyst, the particle number 

concentration decreased by 42%, to 9.96x105 cm"3; the Emission Index decreased by 

35% and 42%, to 0.407 g/kg fuel and 0.058 g/kg fuel, uncorrected and corrected, 

respectively. The decrease occurred for all size ranges by thermophoretic and 

gravitational deposition processes, as well as catalytic oxidation. There were no 

significant changes in the size distribution through the exhaust system.

Through the first silencer, the particle number concentration increased by 11%, 

to l . l l x l 0 6 cm"3; the Emission Index increased by 24%, to 0.510 g/kg fuel and 

0.072 g/kg fuel, uncorrected and corrected, respectively. The change occurred for all 

size ranges, by condensation and coagulation o f  very fine particles, and by 

resuspension o f  large particles.

Through the second silencer, a new decrease in particle number concentration 

occurred, by 10%, to 9.92x105 cm"3; the uncorrected Emission Index decreased by 

7%, to 0.473 g/kg fuel; and the corrected Emission Index, by 4%, to 0.069 g/kg fuel. 

The decrease in num ber concentration occurred for all size ranges, although it was 

negligible for particles between 0.3|im  and 3.0|im. The decrease in particle number 

concentration was m ainly due to deposition and coagulation o f  particles below 

0.1 |im , and the decrease in Emission Index was the result o f the deposition o f large 

particles, with some contribution o f  the coagulation o f  particles around 0.2|um.
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system at idle steady-state conditions.
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size at Idle steady state conditions through the new exhaust system.

6.7. Key points from this chapter

The cold-start and idle tests with the new exhaust were performed with the aim 

o f  investigating the influence o f a new exhaust system on the particulate deposition 

processes and comparing the resulting emission levels with previous results. This 

objective, however, was not thoroughly fulfilled owing to reasons that are not totally
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understood. The main influencing factors were identified as the most likely 

contributors to this:

■ a m ajor maintenance that included the total dismantling and rebuilding 

o f the engine

■ several maintenance inspections and replacement o f spare parts, some 

o f them as important as the fuel pump

■ variability in the fuel quality, despite buying it from the same retailer

■ variability in the maintenance performed by different technicians 

The measurements from the new exhaust tests showed evidence that:

■ the particulate deposition layer was formed very quickly on the walls o f  

the exhaust system, mainly by deposition o f  mid-sized and large 

particles;

■ processes o f  reentrainment were present whenever deposition takes 

place, and there was evidence that both processes were simultaneous 

even with an incipient deposition layer;

■ ultrafme particles were not deposited throughout the new exhaust, but 

formed by gas-to-particle processes.



Chapter 7. 
Discussion

7.1. Analytical summary of the results

7.1.1. Comparison of ELPI measurements vs. engine conditions 
throughout this work

Continuous monitoring o f  a diesel engine’s cold-start and acceleration 

transients throughout this work showed recurring characteristics that have been 

identified as an initial mass burst followed by a peak in number concentration and 

subsequent changes leading to a stabilisation in particle number concentration and 

Emission Index, which may include an increase in these parameters if  the EGR 

valve opens in the process.

The summary o f  the exhaust-system-average total particle number 

concentration and Emission Index from ELPI measurements for the peak-number 

and stabilisation events o f  the various tests is shown in Table 7.1. and Figure 7.1. 

Table 7.2. and Figure 7.2. show the corresponding Emission Index measurements 

with total mass filters for cold-start tests.

The lowest average particle number concentration during the peak-num ber 

event occurred at idle, at 9.0x106 cm '3. For the same event, the acceleration cycles to 

2250rpm - 15kW showed the second lowest average number concentrations, 1 .3xl07
t 7 3

cm ' and 1.1x10 cm ' . Higher concentrations were measured for the second cycle o f 

the acceleration to 3500rpm - 15kW, 2 .5 x l0 7 cm"'1, and the first cycle o f  the same
7 3test, 5.2 xlO cm ' . The latter level was very close to the concentration in the cold- 

start tests at 2250rpm - 15kW and 2250rpm - 35kW after high-speed conditioning, 

5.2x107 cm '3 and 5.3x107 cm '3, respectively. The cold-start test at 1500rpm - lOkW 

showed a peak num ber concentration at 8.0x107 cm 3. The remaining tests, namely 

the cold-start test at 2250rpm - 35kW after idle conditioning, and both cold-start
o

tests at 3500rpm - 15kW, showed the highest peak number concentrations: 1.0x10
3 8 3 8 3cm ''; 1.2x10 cm ' and 1.4x10 cm"', respectively. Overall, the number concentration 

during the peak-num ber event showed a factor-of-15 difference among the various 

tests.

The particle num ber concentration during the stabilisation event showed a 

similar relative relationship to the test conditions as that during the peak-number 

event. The lowest concentrations occurred in the cold-start test at idle and 

acceleration tests to 2250rpm - 15kW, 2.1x10° cm '3, 9.0x107 cm"3 and 8.8x107 cm"3,



368

respectively; and the highest in the cold-start tests at 2250rpm - 35kW, 9.5x107 cm '3 

and 8 .8x l07 cm '3. The acceleration tests to 3500rpm - 15kW showed intermediate 

concentrations, around 1 .8xl07 cm"3, and the cold-start tests to the same conditions, 

4 .0 x l0 7 cm '3, and 5 .4x l07 cm '3. Similar values were observed for the cold-start tests 

at 1500rpm - lOkW and 2250rpm - 15kW, 6 .0x l07 cm '3 and 4 .6 x l0 7 cm '3, 

respectively. The variation between the lowest and highest average number 

concentrations in this event was a factor o f 38 higher than that in the peak-number 

event.

Number 
concentration, cm'3

Uncorrected E 
Index, g/kc

Imission
fuel

Corrected Emission 
Index

Condition Peak
number

Stabilisation Mass
burst

Peak
number

Stabilisation Mass
burst

Peak
number

Stabilisation

Idle 9.01 E+06 2.05E+06 20.01 4.66 0.50 1.69 2.77 0.16

1500-10 8.00E+07 6.03E+07 54.73 13.96 15.12 4.04 4.49 5.84

2250-15 5.20E+07 4.57E+07 147.80 30.85 11.26 16.34 17.81 4.88

2250-35 Idle 
conditioning

1.04E+08 9.55E+07 29.26 6.09 27.50 4.30 1.46 9.37

2250-35 High-speed 
conditioning

5.33E+07 8.81 E+07 15.53 5.73 22.00 3.44 1.09 8.02

3500-15 Idle 
conditioning

1.24E+08 3.96E+07 29.59 11.70 5.96 5.60 3.92 1.90

3500-15 High-speed 
conditioning

1.44E+08 5.36E+07 91.32 18.37 6.74 7.63 3.65 2.01

2250-15 
Acceleration 1

1.29E+07 9.05E+06 5.09 2.50 1.30 0.62 1.35 0.57

2250-15 
Acceleration 2

1.13E+07 8.84E+06 5.51 1.91 1.47 0.61 0.81 0.66

3500-15 
Acceleration 1

5.22E+07 1.75E+07 30.30 8.14 2.01 2.89 1.84 0.42

3500-15 
Acceleration 2

2.47E+07 1.86E+07 7.87 3.63 1.99 0.78 0.80 0.46

Table 7.1. Average Particle Num ber Concentration and Emission Index from ELPI
m easurements throughout this work.

The Emission Index calculated from the ELPI particle size distributions 

showed also great changes among the various tests. In the initial mass burst event, 

the Uncorrected Emission Index showed an average as high as 147 g/kg fuel during 

the cold-start test at 2250rpm - 15kW. This, which appears to be an unrealistic value 

when compared to filter measurements, converted to 16.34 g/kg fuel when corrected. 

Other high Emission Index in this event occurred in the cold-start test at 3500rpm - 

15kW after high-speed conditioning, at 1500rpm - lOkW, and at 2250rpm - 35kW 

after Idle conditioning, as well as in the first cycle o f  the acceleration test to 

3500rpm - 15kW: 91.3 g/kg fuel (7.63 g/kg fuel corrected), 54.7 g/kg fuel (4.0 g/kg 

fuel corrected), 29.3 g/kg fuel (4.3 g/kg fuel corrected) and 30.3 g/kg fuel (2.9 g/kg
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fuel corrected), respectively. The lowest values were measured in the acceleration 

cycles to 2250rpm - 15kW and the second acceleration cycle to 3500rpm - 15kW: 

5.1 g/kg fuel (0.6 g/kg fuel corrected), 5.5 g/kg fuel (0.61 g/kg fuel corrected) and 

7.9 g/kg fuel (0.8 g/kg fuel corrected). Overall, in the mass-burst event, the 

uncorrected Emission Index was between 5 g/kg fuel and 50 g/kg fuel, and the 

corrected Emission Index, between 0.6 g/kg fuel and 7.0 g/kg fuel.

Condition Emission Index first 2 min. 
(Cold start), q/kq fuel

Emission Index after 2 min. 
(Stabilisation), q/kq fuel

Idle 19.31 22.15

1500 rpm, 10 kW 13.98 5.72

2250 rpm, 15 kW 2.25 4.29

2235-15, Idle conditioning 1.15 1.68
2235-15, High-speed conditioning 2.33 3.27

3500-15, Idle conditioning 1.49 1.41

3500-15, High-speed conditioning 1.10 0.54

Table 7.2. Average Emission Index from total mass filter measurements in cold-start
tests.

The stabilisation event was equivalent to steady-state operation after the effect 

o f  the transient changes in engine speed and load had ceased. However, some 

differences in Emission Index were observed during the stabilisation event at the 

same conditions, depending on the type o f test performed. The stabilisation 

Emission Index was the lowest at Idle, 0.5 g/kg fuel (0.2 g/kg fuel corrected). The 

second lowest level occurred at 3500rpm - 15kW in the acceleration tests, 1.4 g/kg 

fuel (0.6 g/kg fuel corrected) and at 2250rpm - 15kW also in the acceleration tests, 

2.0 g/kg fuel (0.4 g/kg fuel corrected). At 3500rpm - 15kW, in the cold-start tests, 

the Emission Index was around 6.3 g/kg fuel (2.0 g/kg fuel corrected). The highest 

levels were measured in the cold-start test at 2250rpm - 15kW, 1500rpm - lOkW and 

2250rpm - 35kW: 11.3 g/kg fuel (4.9 g/kg fuel corrected), 15.1 g/kg fuel (5.8 g/kg 

fuel corrected) and 24 g/kg fuel (9.0 g/kg fuel corrected).
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U ncorrected  E m ission Index vs. Engine C onditions

■  Mass burst

□  Peak number

□  Stabilisation

C orrected  Em ission index vs. Engine  Conditions

1500-10 2250-15 2250-35 Idle 2250-35 3500-15 Idle 3500-15 2250-15 2250-15 3500-15 3500-15 
conditioning High-speed conditioning High-speed Acceleration Acceleration Acceleration Acceleration 

conditioning conditioning 1 2  1 2

Figure 7.1. Average Particle Num ber Concentration and Emission Index from ELPI
during the main events o f cold start and acceleration tests.
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Figure 7.2. Average Emission Index from total mass filter measurements during cold
start tests.

The particle size distribution had a great impact on the calculation o f  Emission 

Index from particle num ber concentrations, especially for particles larger than 

l.Ojim, since it was assumed, for this calculation, that particles were spherical. From 

the bimodal lognormal distribution fit, the accumulation and coarse modes revealed 

this impact, as differences between number-weighed and mass-weighed size 

distribution modes. The modes and standard deviations o f  the distributions were 

calculated as the geometric median diameters in the appropriate size range 

(accumulation and coarse ranges), using equations 1.6., 1.7. and 1.8.

Operation conditions, as well as the various transient events during cold-start 

and acceleration tests, also affected the distribution modes. These effects are shown 

in Figure 7.3., for the accumulation mode (particles between 0.1 |im  and ljam, and 

Figure 7.4., for the coarse mode (particles larger than l|im ). The number-weighed 

accumulation mode had a maximum range between 0.06|Jm and 0.24jim. During the 

cold start tests, the accumulation mode in the mass-burst event was higher than in 

the number-peak event. At idle, 1500rpm - lOkW and 2250rpm - 15kW, the 

accumulation mode in the mass-burst event was in the high edge o f the range, 

around 0.2|Ltm, indicating the preferential emission o f mid-size particles in this 

event. For the high-speed and high-power conditions, the aerosol emissions in the 

mass-burst event had a smaller accumulation mode, around 0 .12|im. Only in the 

cold-start test at 2250rpm - 35kW  did the aerosol show a mass-burst accumulation 

mode at 0.07|^m. This was the most recurring mode for the number-peak event o f 

cold start tests instead. The only tests showing a peak-number accumulation mode 

larger than 0.1 (im were those at Idle and 2250rpm - 15kW. In the stabilisation event, 

most cold-start tests showed an accumulation mode around 0.1 jam, with the 

exceptions o f  idle (0.08|im ), and 3500rpm - 15kW (0.07|am). The acceleration tests
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showed a lesser influence o f  the transient events: in the acceleration tests to 

3500rpm - 15kW, the accumulation mode tended to the lower end o f the range, 

between 0.07p.m and 0.08pm  for all events, whereas at 2250rpm - 15kW, the 

accumulation mode was closer to 0.1 [im. This indicated that larger particles were 

emitted at high-power conditions, presum ably owing to the higher carbon content o f 

the particles, which acted as a prom oter o f  heterogeneous condensation.

Emission Index Accumulation Mode for Different Engine Conditions and Events 

1.0 --------------------------------------------------------------------------------------

Figure 7.3. Accumulation mode diameter (calculated as the geometric mean 
diam eter in the accumulation size range) based on Number and Corrected 
Emission Index Size Distributions for the main events o f  cold start and 
acceleration tests.

The Em ission-Index based accumulation mode diam eter did not keep an 

apparent relationship with its number-based counterpart. It varied between 0.18|am 

and 0.76|am, being one order o f  magnitude larger than the number-based Emission 

Index accumulation mode. The highest values were around 0.7|im , corresponding to
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the mass-burst events o f  the cold-start tests at 1500rpm - lOkW, Idle, 3500rpm - 

15kW after high-speed conditioning and 2250rpm - 15kW. The lowest values 

occurred in the peak-number event o f the acceleration cycles to 3500rpm - 15kW 

and the cold-start at 2250rpm - 35kW  after Idle preconditioning.

10.0

inco
o
E
a>T3O

1.0

Figure 7.4. Coarse mode diam eter (calculated as the geometric mean diameter in the 
coarse size range) based on Num ber and Emission Index Size Distributions for 
the main events o f  cold start and acceleration tests.

Similarities were found between the cold-start tests at Idle, 1500rpm - lOkW 

and 2250rpm - l5kW , for which the Emission Index accumulation mode in the 

m ass-burst event was over 0.6|Jm, decreasing in the number-peak event and settling 

around 0.25fim in the stabilisation event. For the cold-start tests at 2250rpm - 15kW, 

the test after idle preconditioning had lower mode values in the mass-burst and 

stabilisation events, 0.35|im , compared to 0.46(im for the test after high-speed
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preconditioning. The peak-num ber accumulation mode in both cases was around 

0.2|im. For the cold-start tests at 3500rpm - 15kW, the stabilisation accumulation 

mode was higher in the test after idle preconditioning (0.3|im ) than after high-speed 

preconditioning (0.2|im ). Around this latter value were measured all the 

accumulation modes during the acceleration cycles to the same high-speed 

conditions. Thus, 3500rpm - 15kW emerged as a fine-particle-emitting operating 

condition for the engine in question. The opposite can be said for the 2250rpm - 

15kW conditions, which showed a large Emission-Index accumulation mode during 

the peak-num ber and stabilisation events, around 0.4p.m.

Bimodal, lognormal Number size distribution fit for the mass- 
burst event of the cold start at 3500rpm-15kW

dp (microns)

h— Measured data -rfc— Analytical fit

Bimodal, lognormal Emission-Index size-distribution fit for the 
mass-burst event of the cold start at 3500rpm-15kW

Q.TDCDO
X 3

100

10

1 -

0.1

0.01

0.001 - 
0.01 0.1 1 10 

dp (microns)

4— dN/dlogdp Sample 1 —*-~Total

Figure 7.5. Example o f analytical fit o f  a bimodal, lognormal size distribution to 
ELP1 data, from which the accumulation and coarse modes were estimated.
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The number coarse mode showed an interesting difference between the cold- 

start tests and the acceleration tests. For most o f  the cold-start tests, with the only 

exception o f  the test at 2250rpm - 35kW  after idle preconditioning, the number 

coarse mode in the mass-burst event was around 3.0(im, decreasing to 1.0|im in the 

stabilisation event. The number coarse mode was lower for the mass-burst event o f 

the acceleration cycles, around 1.3|im for three o f  the four cycles, 0.4|im  for the 

remaining, the second acceleration cycle to 3500rpm - 15kW. From here, the engine 

appeared to emit larger particles in the mass-burst event o f the cold start cycles. In 

the peak-num ber event the number coarse mode was similar to that o f the cold-start 

tests at high-speed and high-power conditions in the corresponding event.

The Emission Index coarse mode did not show any discernible trend related to 

the engine operation conditions. Its value was between 4.2[im and 6 .8|am, but this 

was precisely the range with the poorest fit between the measured data and the 

analytical bimodal, lognormal size distribution. An example o f such fit is shown in 

Figure 7.5.

7.1.2. Impact of cold-start and acceleration on total emissions for 
legislative purposes

The integration o f number and mass emissions allowed determining the net 

percentage o f  emissions during transients, namely cold start and acceleration. 

Emission values at the tailpipe are shown in Figure 7.6. For most o f  the tests, 

particulate mass emissions during cold start or acceleration accounted for more than 

20% o f  the total emissions at the tailpipe, with the exceptions o f the cold-start tests 

with the high-power target condition, 2250rpm - 35kW, and the second cycle o f  the 

2250rpm - 15kW acceleration test. The most dramatic cases were the first cycle o f 

the acceleration test to 3500rpm - 15kW, with 46%  o f  the emissions produced 

during the transient period, and the first cycle o f  the acceleration test to 2250rpm - 

15kW, with 36%. This is a very significant fraction o f the emissions, considering 

that during the transient period the engine delivered only 7% to 10% o f the total 

work delivered by the engine throughout each test, as shown in Figure 7.7 (the work 

delivered by the engine is the area under the curve power vs. time). The work- 

specific particulate mass emissions in Figure 7.8., show clearly that emissions 

during transients are much higher than those running at steady conditions in most 

cases, with the exception o f  the cold start tests at 2250rpm - 35kW and the second 

cycle o f the acceleration test to 2250rpm - 15kW. Despite this, the transient 

emissions do not dominate the total work-specific emissions for these tests, which 

are indicated by the dots between the bars showing transient and steady emissions in 

Figure 7.8., owing to the low ratio between transient and steady engine work.
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Distribution of Tailpipe Mass Emissions (Corrected) during 
transient and steady segments of the test cycles

100% —— -----— ------— ----- — ----- — -----— ------— ----- — —

90% - 

80% - 

70% - 

60% - 

50% - 

40% -

30% ___  __ _

20%  - 

10%  -

0%

□  Steady
□  Transient

IDLE

66%
34%

72%
28%

75%
25%

3500-15 
Idle cond.

71%

3500-15 
High sp. 
cond.

77%
23%

2250-35 
Idle cond.

2250-35 
High sp. 

cond.

96%

2250-15 
Accel. - 1st 

cycle

64%

2250-15 
Accel. - 2nd 

cycle

91%

3500-15 
Accel. - 1st 

cycle

54%

3500-15 
Accel. - 2nd 

cycle

77%

ure 7.6. Percentage o f corrected mass emissions during transient and steady 
segments o f the tests.

Engine power during tests: transient and steady segments

Time (sec)

Figure 7.7. W ork delivered by the engine during the step-change tests.
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Tailpipe Power-specific Mass Emissions (corrected) during 
Transient and Steady segments of the tests

10

0.1

1500-10 2250-15
3500-15 

Idle cond.

3500-15 
High sp. 

cond.

2250-35 
Idle cond.

2250-35 
High sp. 

cond.

2250-15 
Accel. - 1st 

cycle

2250-15 
Accel. - 2nd 

cycle

3500-15 
Accel. - 1st 

cycle

3500-15 
Accel. - 2nd 

cycle

5.89193301 0.50464816 0.5450383 0.15395378 0.19075101 0.16867595 0.03200859 0.81834805 0.18717993

□  Steady 0.49213214 1.51924827 1.66644039 0.03048522 0.814186 0.1835128 0.23675832

•  Combined 1.93248191 0.52196589 0.49430908 0.48182097 1.37621742 1.51184436 0.04377279 0.73897663

Figure 7.8. W ork-specific corrected mass emissions during the tests.

Penalty on Tailpipe Mass Emissions due to Cold-start or Acceleration

3500-15 
High sp. 

cond.

Figure 7.9. Change in mass emissions due to cold-start or acceleration during the test 
cycles.

The change introduced by a transient period on the total work-specific test 

emissions was calculated as the ratio between total work-specific emissions and



378

steady-state work-specific emissions. The result is shown in Figure 7.9., which 

indicates the change in emissions due to a single step-change transient period, either 

cold-start or acceleration. It is interesting to see that transient emissions actually 

decreased the value o f total work-specific emissions in a number o f tests.

The change introduced by a single step-change in emissions may be used to 

estimate the total emissions in different cycles that involve not only one but several 

acceleration/deceleration changes. Taking the steady-state emissions as a basis, the 

change introduced by a transient period was defined as:

Ic is the emissions change for the step-change cycle (dimensionless) 

mwc is the work-specific particulate mass emissions for the step-change cycle, 

in g/kW h, and

mws is the work-specific particulate mass emissions for the steady segment o f 

the cycle, in g/kWh.

where

mKt is the work-specific particulate mass emissions for the transient segment 

o f  the cycle, in g/kWh.

ws is the engine work during the steady segment o f  the cycle, and

w, is the engine work during the transient segment o f  the cycle.

Including Equation 7.2. in Equation 7.1., and defining cts=w,/w*, the change 

introduced by the transient becomes:

This equation is useful to calculate the change introduced by, for example, one 

cold start and several acceleration periods, if transient and steady work-specific 

emissions are considered constant values (emission factors) for a given condition 

and the ratio between the power delivered by the engine in each segment o f the cycle

/ (Equation 7.1.)

where

m (Equation 7.2.)
w, + w

I (Equation 7.3.)
'» « 0  + c,v)
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is known. As an illustrative example, let us estimate the total emissions in a cycle 

with the following characteristics:

■ Cold start with a step change to 1500rpm - lOkW.

■ Short steady segment for the cold start, so Cts for the cold start subcycle 

equals 0.2 .

■ Acceleration to 3500rpm - 15kW.

■ cts for the acceleration subcycle: 0.16.

■ The power delivered by the engine during the cold-start subcycle is 

40% o f  the total power throughout the cycle.

From Figure 7.8., the work-specific particulate emissions for the cold start with 

a step change to 1500rpm - lOkW are: ( m M )cold.star, =  5.89g/kW h and ( m ws ) coid-sta rt=

1.66g/kWh. For the acceleration to 3500rpm - 15kW (taken as a second cycle), 

(m w, )a c c e i=  0.19g/kW h and (m ws ) accci, =0.24g/kW h. The change in emissions, as 

given by the Equation 7.3. for each subcycle, is:

Then the total work-specific emissions are:

^  = 0.4 x (1.42 x 1.66) + 0.6 x  (0.97 x 0.24) =  1.08 g/kWh

The emissions o f  the whole cycle in this example were 4.5 fold the steady-state 

emissions at 3500rpm - 15kW and 65% o f  the steady-state emissions at 1500rpm - 

lOkW. W ithout taking into account the transient effect, the emissions would have 

been:

Therefore, the transients contributed to an increase by 33% with respect to the 

emissions estimated with only steady-state emission factors in this example. This is 

relevant to the multi-mode legislative test cycles such as the R49 and the ESC, 

where only steady-state emissions are measured and then weighted to estimate total 

emissions during the cycle. Steady-state based factors for these cycles would 

underestimate real emissions, and many vehicles that may be high emitters during 

transients would be considered as low emitters as a result.

The main difficulty o f  this approach is that transient emissions have been 

shown to be highly variable, and therefore cannot be considered constant.

1.66 + 5 .89x0 .2  , ^
-----------------------= 1.42

1.66x ( l  + 0 .2)

( '« )C )  accel.

0.24 + 0 .19x0 .16  
0.24 x  (1 + 0.16)

wc /  no-transients = (0.4 x 1.66) +  (0.6 x 0.24) = 0.81 g/kWh
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Furthermore, they can be strongly affected by the previous history o f the engine, as 

has been shown in this work. However, as the example above has shown, measuring 

transient emissions and applying the resulting factors to the estimation o f total 

emissions during cycles is useful and can help to prevent the underestimation o f 

emissions in multi-mode legislative cycles.

7.1.3. ELPI vs. Total-Mass Filters Emission Index

The average Emission Index values, both uncorrected and corrected, were 

compared for various engine conditions during cold start, and the results were 

expressed as ELPI/Filter Emission Index ratio in Figures 7.10. and 7.11., for the 

first, or ‘cold-start’, filter and an average o f subsequent, or ‘stabilisation’ filters. The 

cold-start filter (First two minutes o f test) was compared to both mass-burst and 

peak-number events identified with the ELPI, to determine which o f  the events from 

the ELPI was closer to representing the gravimetric value. The stabilisation filters 

collected afterwards were compared to the stabilisation event from ELPI 

measurements.

For the cold-start filter, taking the mass-burst as a reference for comparison, 

the ELPI uncorrected Emission Index in Figure 7.10. a) overestimated the 

gravimetric Emission Index by as much as 83 fold at 3500rpm - 15kW after high­

speed preconditioning, and other high values for medium speed conditions. The only 

exact agreement in this case occurred at idle, and at 1500rpm - lOkW the 

overestimation was the lowest among other conditions, 3.9 fold. The correction in 

the ELPI reduced these values by 5 to 14 times, and even so, the ELPI overestimated 

the Emission Index for most o f the tests by as much as seven fold. At idle and 

1500rpm - lOkW, the ELPI actually underestimated the Emission Index, reaching 

only a 10% to 30% o f the gravimetric value. The closest agreement occurred at 

2250rpm - 35kW , where an overestimation o f  1.5 took place.

The ELPI overestimation o f  the Emission Index decreased significantly for the 

cold-start filter when using the peak-number event as a reference. When 

uncorrected, the maximum ELPl/filter ratios were 16.7 and 13.7, for 3500rpm - 

15kW after high-speed preconditioning and 2250rpm - 15kW, respectively, and 

below 10 for other conditions. Exact agreement occurred at 1500rpm - lOkW. The 

correction reduced all ratio values by 1.7 to 5.2 times, to below 10 in all cases, and 

the maximum overestimation occurred at 2250rpm - 15kW, 7.9. Once again, idle 

and 1500rpm - lOkW values were underestimated with the correction.
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ELPI/Filter Emission Index ratio for various engine conditions during cold start using 
mass-burst event average

conditioning speed conditioning conditioning speed conditioning

[ — i— Uncorrected ELPI/Filter —*— Corrected ELPI/Filter - ■— Uncorrected/Corrected ELPl]

ELPI/Filter Emission Index ratio for various engine conditions during cold start using 
peak-number event average

conditioning speed conditioning conditioning speed conditioning 

Uncorrected ELPI/Filter —*— Corrected ELPI/Filter — »— Uncorrected/Corrected ELPI |

Figure 7.10. ELPI / Filter Emission Index ratio during cold start using mass-burst 
and peak-number event as references, a) Mass burst; b) Number peak.

For the stabilisation filter, the maximum overestimations by the ELPI, when 

uncorrected, occurred at 2250rpm - 35kW after Idle preconditioning, when the 

ELPI/filter ratio was 16.4, and at 3500rpm - 15kW after high-speed preconditioning, 

with a 12.5 ratio. The correction ratio was between 2.3 and 3.3, so the maximum 

corrected ELPI/filter ratios were 5.6 at 2250rpm - 35kW  and 3.7 at 3500rpm - 15kW 

after high-speed preconditioning. Corrected ELPI and filters Emission Index agreed 

exactly at 1500rpm - lOkW and 2250rpm - 15kW, and the ELPI/filter ratio was just 

1.3 at 3500rpm - 15kW after idle preconditioning. As expected, there was an 

increased agreement during the stabilisation period.



382

The fact that the ELPI overestimated the total particulate mass in a different 

fashion for the various conditions tested may be due to the changes in particulate 

structure (expressed by the fractal dimension) and composition with those 

conditions. According to Skillas et. al., 1998, as much as one order o f magnitude 

more primary particles are produced under high load conditions, which also have 

higher temperatures. The resulting aggregates are more compact than those produced 

under low load conditions, and therefore their correction in the ELPI would be less 

significant than that needed for particles produced under low load conditions. This is 

reflected by the lower Uncorrected/Corrected Emission Index ratio for the 1500rpm

- lOkW (2.6:1), 2250rpm - 15kW (2.3:1) and 2250rpm - 35kW (2.7:1, 2.9:1) 

conditions, for which the load is relatively higher than for other conditions. 

Unfortunately, it was not possible to corroborate this argument because the fractal 

dimension was measured only for high load conditions.

ELPI/Filter Emission Index ratio for various engine conditions during stabilisation

conditioning speed conditioning conditioning speed conditioning

|— • — Uncorrected ELPI/Filter —*— Corrected ELPI/Filter — <— Uncorrected/Corrected ELPI |

Figure 7.11. ELPI / Filter Emission Index ratio during stabilisation.

7.1.4. Comparisons with results from other studies

A number o f  researchers have carried out particle number and size distribution 

measurements, mostly over legislated cycles, expressing the results in km ' 1 rather 

than cm '3. This makes the comparisons with the present results difficult, apart from 

having the same sort o f difficulties and limitations that legislators have foreseen in 

the definition o f  an emission standard based on total particle number concentration, 

owing to the great sensitivity o f  this parameter. Number concentration, unlike total 

mass, ‘is not conserved and it may change dramatically by nucleation and 

coagulation during dilution and sam pling’ (Kittelson, 1998).
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Any comparison is also affected by the m easurement techniques, which are 

based on different principles and therefore show different measurement ranges and 

sensitivity. Previous evaluations, such as a study by CONCAW E involving seven 

light-duty diesel vehicles, have shown the SMPS to have the best repeatability 

among other instruments such as the EAA and DMA (CONCAW E, 1998). For total 

mass measurements in the same study, the legislated gravimetric technique and the 

BLPI showed very good repeatability, and the QCM was considered unreliable. In 

respect o f  this, a report by Donald et al. remarked that there were conflicting results 

between the number-mode and mass-mode o f the ELPI, which may have been the 

result o f  the original conversion from current signals to number concentration. 

However, the ELPI, the TEOM and the Andersen impactor gave similar mass 

particle flux measurements for the different engines and loads tested (Donald, 1997). 

This work has shown that corrections in such conversions are needed for the 

calculated mass concentrations to agree with gravimetric measurements.

Particle Number 
concentration, km '

Uncorrected Emission rate, g/km Corrected Emission rate, g/km

Condition Peak
number

Stabilisation Mass
burst

Peak
number

Stabilisation Mass
burst

Peak
number

Stabilisation

Idle 4.04E+13 9.21E+12 1.58 0.37 0.04 0.13 022 0.01

1500-10 1.87E+14 1.41E+14 4.32 1.10 1.19 0.32 0.35 0.46

2250-15 9.05E+13 7.95E+13 11.68 2.44 0.89 1.29 1,41 0.39

2250-35 Idle 
conditioning

1.67E+14 1.53E+14 2.31 0.48 2.17 0.34 0.12 0.74

2250-35 High-speed 
conditioning

8.56E+13 1.42E+14 1.23 0.45 1.74 0.27 0.09 0.63

3500-15 Idle 
conditioning

1.91E+14 6.10E+13 2.34 0.92 0.47 0.44 0.31 0.15

3500-15 High-speed 
conditioning

2.21E+14 8.26E+13 7.21 1.45 0.53 0.60 0.29 0.16

2250-15 Acceleration 1 1.99E+13 1.39E+13 0.40 0.20 0.10 0.05 0.11 0.05

2250-15 Acceleration 2 1.74E+13 1.36E+13 0.44 0.15 0.12 0.05 0.06 0.05

3500-15 Acceleration 1 8.04E+13 2.70E+13 2.39 0.64 0.16 0.23 0.15 0.03

3500-15 Acceleration 2 3.80E+13 2.87E+13 0.62 0.29 0.16 0.06 0.06 0.04

Table 7.3. Summary o f particle number and mass emission rates in particles/km and 
g/km in the present work.

Num ber concentration and Emission Index results from Table 7.1. were 

converted to emission rates, expressed in particles/km and g/km, using a standard 

diesel fuel consumption factor o f 79 g/km, equivalent to 12.7 km/kg fuel. This 

allowed establishing an approximate comparison with results from other studies in 

such units. The converted figures are shown in Table 7.3.
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In the CONCAW E study (Hall, 1998), mass emission rates from diesel 

passenger car engines during the cold-start ECE + EUDC cycle averaged 0.040 

g/km for a 1.9L IDI engine equipped with a DOC (V I) and 0.168 g/km for a 1.9L 

TC DI engine (V2). In this work, the average emissions over the first ten minutes 

from cold start, as m easured with the ELPI and total mass filters with the Ford XLD 

418T diesel engine were around 0.250 g/km. It would not be sensible to compare 

directly these figures, but apparently this indicates that the Ford XLD 418T was a 

more polluting engine in terms o f  mass emissions. Total num ber emissions, 

however, were very similar in both studies, being between lx lO 14 km ' 1 and 2 x l0 14 

km ’1 for V I and V2, respectively -  the average from the Ford engine was 1 .57x l014 

km"1 for the first minutes o f  cold start and 1.1 x 1014 km "1 for the stabilisation period. 

Regarding the size distribution, the num ber modes were 0.085pm for V I engine and 

0.150pm  for V2, both within the range o f  modes found in this work. The Ford XLD 

418T engine, however, tended to emit aerosols with lower modes, around 0.060pm, 

during peak number events, indicating a higher emission o f  ultrafme and very fine 

particle during acceleration periods.

Pattas et al. (Pattas, 1998) used the ELPI size analyser on a Renault T1100D 

2.5 litre passenger car fitted with a Corning EX47 particle trap, running at three 

steady-state conditions within the UDC and EUDC cycles. The total number o f 

particles at idle was 5 x l0 6/c m \  at 30 km/hr (similar to 1500rpm - lOkW or 2250rpm

- 15kW in this work) it was 1 .8xl07/cm 3 and at 120km/hr (sim ilar to 3500rpm - 

15kW in this work) it was 3.2x107/c m \ The mode o f  the number size distribution 

was between 60nm and 110 nm for the UDC and EUDC cycles, similar to the modes 

found in this work. The number concentration results were in the same order o f 

magnitude o f stabilisation events o f various conditions in this work. On the other 

hand, number concentrations were up to one order o f magnitude lower than number- 

peak events in this work.

A number o f tests at the University o f  M innesota reviewed by Kittelson 

(Kittelson, 1998) have shown diesel particle num ber concentrations in emissions 

from various models (1984 to 1995) to vary by as much as three orders o f magnitude 

when measured with an EAA. A 1995 DI diesel engine emitted between 3 x l0 6 cm '3 
and lx lO 7 at 1600rpm and around 2 x l0 7 at 2600rpm, and at the same level o f  a 1984 

IDI diesel engine. These were lower than those at similar conditions in this work (a 

1995 IDI diesel engine) for the cold-start tests, although somewhat higher than this 

work for the acceleration tests. Much higher number concentrations were measured 

in the exhaust aerosol o f older engines, around 108 cm '3 for the 1988 DI diesel

7.1.4.1. Particulate Mass and Number levels
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engine and lx lO 9 for a 1991 DI diesel engine. Such high concentrations, although 

not higher than 1.5xlOx cm '3, were measured in this work only in the first m inute o f 

some cold start tests at high-power and high-speed conditions. Regarding the 

num ber size distribution modes, Kittelson reported a nuclei mode between 0.01 l |im  

and 0.020|im  for the 1991 1DI and the 1995 DI engines, and an accumulation mode 

around 0.070|im. Mass size distributions showed an accumulation mode around 

0.125|^m. No mass coarse mode was reported, since this was out o f  the range 

measured by the EAA. These results are in good agreement with those from the 

present work.

Abdul-Khalek et al (Abdul-Khalek, 1998) used an SMPS instrument to 

determine the particle size distribution on a number basis for a Perkins T4.40 DI 

TCIC engine. At idle the total number o f particles was 7 x l0 6/cm 3 (4 x l0 6/cm 3 in this 

work). For the other modes in the 13-mode tests the particle total number varied 

between 2 x l0 7 cm 3 and 9 x l0 7 cm ’3. This instrument, however, is not appropriate for 

transient cycles. Then the same author characterised the emissions from a 1991 

Detroit Diesel Corporation Series 60, 12.7L TC/IC DI diesel engine with an ELPI 

during the FTP transient cycle. He observed monomodal distributions with number 

distribution modes between 0.085|im  and 0.14|im , the smallest mode corresponding 

to idle conditions and the highest to acceleration events. Mass distribution modes 

were higher, around 0.15pm to 0.2pm. The total number emissions were between 

lx lO x cm '3 and 7xlO l() cm '3, being higher during the Los Angeles modes o f the test 

than during the New York modes. The ELPI overestimated particulate mass 

emissions by 50% with respect to the total mass filter determination, in agreement 

with findings by other authors. Overestimation in this work was much greater. This 

m ay indicate either a real overestimation due to the structure o f the particles 

produced by the Ford XLD 418T or, more likely, a failure in the calibration o f  the 

piece o f  equipment used.

Tsakumoto et al. evaluated the mass emissions for a Nissan 13.3L N/A DI Diesel 

PG6, showing an ELPI/filter ratio o f 1.5 to 2 for 25%+ loads at 1050rpm and 

1680rpm (Tsakumoto, 2000). The reasons for the much higher ratios in this work are 

not clear, but presumably they have to do with the assumptions o f constant charger 

efficiency and constant density. Particle properties may vary with the engine 

technology, and with them, the charger efficiency and particle density, which are 

involved in the num ber and mass concentration calculations, respectively. However, 

a failure in the calibration o f the piece o f equipment used appears to be a more likely 

explanation.
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Rickeard et al. (Rickeard, 1996) compared particulate emissions from both 

Spark Ignition and Diesel engines. They found that, at high-speed cruising 

conditions, emissions from spark-ignition engines, around l.OxlO14 km '1, were very 

close to the diesel 1 .5x l014 km "1 emissions. The num ber distribution mode was 

around 60nm for Spark Ignition engines and 11 Onm for diesel engines. The number 

emission rates in the present work were lower than those from the diesel engine 

tested by Rickeard. The size distribution mode was similar for a number o f  events, 

but in general, this work showed lower values for the num ber accumulation mode 

during the stabilisation events.

Ji Ping Shi et al. (ETH, 2000) carried out particle number concentration 

measurements o f the emissions from vehicles passing the sampling point on the road 

with a condensation particle counter, CPC. Dilution ratio was estimated measuring 

CO2 and using it as a tracer, resulting in a 1000:1 dilution ratio in the plume. They 

showed reductions when using a diesel oxidation catalyst, from lx l0 6 cm '3 to 3 x l0 5 

cm"3 during cruising conditions, and from 4 x l0 6 cm"3 to 7 x l0 5 cm "3 during 

acceleration conditions. Although the num ber concentrations were lower than those 

measured in this work, the reductions through the catalyst were similar, and the 

evidence that the particle num ber concentration increases with the vehicle 

acceleration is in agreement with the present results.

In the summary report o f  the results from the DETR/SM M T/CONCAW E 

Particulate Research Programme 1998-2001 (Andersson, 2001; W edekind, 2000) the 

particulate mass emissions from a diesel passenger car were around 0.02 g/km over 

the EDC. For the same cycle, a light-duty diesel engine emitted between 0.05 g/km 

and 0.07 g/km. In both cases, the particulate emissions were much lower than those 

from the Ford passenger car diesel engine in the cold-start tests in this work. As in 

other comparisons, the results from cold-start tests this work exceeded cycle 

emissions as a consequence o f  the performance o f  the engine during cold conditions. 

However, results from the stabilisation events o f  the acceleration tests, which started 

with a warm engine, showed emission rates around 0.04 g/km, which agreed with 

the results reported by Andersson for the light-duty diesel engine. The integrated 

particle num ber emissions were between 2x l 0 ! ' km "1 and 2x l 0 14 km "1 for the 

passenger car engine and between 6 x l0 13 km "1 and 4 x l0 14 km"1 for the light-duty 

engine. The number emission rates from this work were within this range. 

Andersson reported number accumulation modes between 70nm and lOOnm in the 

emissions from diesel engines, and also a nuclei mode between l l n m  and 25nm 

when high-sulphur fuel was used. At high-speed conditions, they showed high 

emissions from Spark Ignition engines, comparable to those from diesel engines,



387

although much more particles were in the nano-size range, showing a nucleation 

mode around 1 lnm.

An evaluation o f  diesel aftertreatment technologies by Khair et al. (Khair,

1999) showed that diesel oxidation catalysts (DOC) reduced particulate m atter by 

30% when the EGR system is present in the vehicle over the 13-mode FTP cycle. 

The reduction, however, was not observed for all cycle modes. They observed that 

particulate matter increased through the catalyst by nearly 15% in mode 3 and was 

unaffected in mode 5.

Tanaka et al. (Tanaka, 1999) analysed the particle composition for the different 

fractions o f  diesel particulate collected by the ELPI. They found that adsorbed SOF 

increased the size o f  particles. Large particles have in general a higher SOF content 

than fine particles, although SOF-only particles are finer than 0.050|im  themselves. 

This was in some agreement with the results from this work, which showed 90% 

SOF in large particles and 10% SOF in fine particles. The higher SOF content in the 

present work may be attributable to the cold engine conditions, which promote 

condensation and adsorption o f  volatile material on the particle surface. Their mass- 

weighed size distribution data showed three apparent modes: one below 0.032|am, 

corresponding to nuclei mode; 0.20|im , accumulation mode; and 1.5pm to 2.0(im, 

coarse mode. The mass accumulation and coarse modes were observed in this work, 

but the nucleation mode was not shown by the ELPI, and presumably did not occur 

because o f  the low sulphur content o f the fuel used in this work compared to that 

used by Tanaka: 50ppm vs. 500ppm and 2000ppm, respectively.

7.1.4.2. Particulate resuspension

Explanations to the various changes observed through the exhaust system 

during transients are directly related to particle deposition and reentrainment 

processes, and also with chemisorption, in the case o f the catalyst. Particle 

deposition on exhaust walls, as shown in the calculations in Chapter 3, was 

promoted mainly by thermophoresis and gravitational forces, the former being more 

significant for very fine particles, below 0.1 |um, and the latter, for large particles, 

those larger than l.Ojim. Reentrainment processes still require much more detail on 

basic research to be applicable in real world conditions, since the exact mechanism 

o f  particle detachment is not well understood. However, practical contributions to 

this work come from the study by Adhiwidjaja et al (Adhiwidjaja, 2000), briefly 

described in Chapter 1.
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Exhaust mass 
flow (kg/s)

Exhaust 
volumetric 
flow (mVs)

Exhaust gas 
velocity 

(m/s)
Idle 0.034 0.039 24
1500rpm - lOkW 0.042 0.081 51
2250rpm - 15kW 0.050 0.114 72
3500rpm - 15kW 0.082 0.127 80
2250rpm - 35kW 0.115 0.265 167

Table 7.4. Exhaust mass and volumetric flow and exhaust gas velocity for steady
state conditions.

As observed in the theoretical deposition calculations in Chapter 2, the engine 

produces a certain exhaust mass flow for each given operation condition, and 

therefore a certain gas velocity through the exhaust pipe. These parameters are 

summarised for steady state conditions in Table 7.4. For steady state conditions 

(equivalent to the stabilisation period o f  the cold start tests), the average particle 

number concentration and Emission Index are related to the Exhaust mass and 

volumetric flow, and hence to the exhaust gas velocity as observed in Figure 7.12.

Under equilibrium conditions such as the stabilisation period o f the cold start 

tests, for which the parameters shown above are valid, a striped pattern forms on the 

walls and moves at constant velocity, provided that the material has a low 

roughness, e.g. the collision/adhesion-moment ratio is higher than 1 (Adhiwidjaja, 

2000). During transients, however, such behaviour is not expected. From the cold 

start tests, Figures 7.13. to 7.14. show the particulate blow out, expressed as number 

concentration and Emission Index, plotted against various exhaust aerosol 

parameters, namely exhaust mass flow, exhaust volumetric flow, and exhaust gas 

velocity. The particulate blow out is also plotted against two factors from the engine 

operation, the Air/Fuel ratio (AFR) and Fuel consumption, as well as against the 

particle load, expressed as number o f particles per second and particle mass per 

second. The data were very scattered, indicating the great complexity o f  the 

processes affecting particle deposition and reentrainment. As observed earlier, 

deposition was preponderant over particulate blow out for most o f the conditions, 

which complicates the analysis o f  reentrainment causes from the experimental 

evidence.
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state.
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An acceleration disturbance to the equilibrium state implies: an increase in the 

gas velocity through the exhaust pipe; an increase in the temperature o f the gas; a 

change (either increase or decrease) in the particle concentration in the aerosol and, 

probably, some changes in the size distribution; a decrease in the particulate mass 

concentration per unit area in the deposition layer, towards a new equilibrium.

The possible consequences o f  these changes are described below.

■ The increase in velocity may increase the collision velocity o f particles 

in the aerosol against particles in the deposition layer and, therefore, 

the collision/adhesion-moments ratio. As a result, the motion velocity 

o f the deposition layer downstream o f the exhaust pipe would also 

increase. However, higher gas velocities produce higher turbulence, 

and changes in the collision angles o f  impinging particles, which may 

become unfavourable for the collision forces to act over the particles in 

the deposition layer. This would actually decrease the 

collision/adhesion-moments ratio.

■ The increase in the aerosol temperature increases the deposition flux by 

thermophoresis and hence the collision moment, promoting the motion 

o f the deposition layer. It causes also an increase in the metal 

temperature, causing outgassing o f volatile compounds. This may 

affect the properties o f the particles in the deposition layer, reducing 

the particulate concentration by unit area. In response, particle 

deposition would be promoted to keep the layer equilibrium. The net 

effect would depend on the relative magnitude o f  the deposition and 

resuspension fluxes.

■ The aerosol particle concentration may either increase or decrease with 

the gas velocity, as a result o f  combined, opposite effects o f 

combustion time, mixing and temperature: the higher the engine speed, 

the shorter the mixing and reaction times, to the detriment o f  the 

efficiency and in favour o f  the particulate formation, but also the higher 

the temperature and the turbulence, which produce the opposite effect. 

I f  the particle concentration increases, so does the deposition flux, and 

the deposition layer may increase its velocity, blowing out more 

particles.
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Figure 7.13. Particulate blow out from the Catalyst (a) as Num ber concentration vs. 
various exhaust aerosol parameters.

■ If, in contrast, it decreases, the deposition layer decreases its velocity 

and it may even stop moving, despite o f the increased gas velocity. 

Particle concentration, however, is not a good enough parameter to 

determine the deposition or reentrainment fluxes, and particle size 

distribution becomes a very important factor here. Approximately, the 

force o f  adhesion is proportional to the diam eter o f  the particles, 

whereas the force o f collision is proportional to the ( l/5 ) lh power o f  the 

particle diameter. Therefore, if  the particle size distribution during the 

transition has a lower mode than that at the previous condition, it
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becomes less likely that the collision momentum increases and, 

therefore, that the particulate blow out occurs.
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exhaust aerosol parameters.
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Figure 7.14. Particulate blow out from the First silencer (a) as Number 
concentration) vs. various exhaust aerosol parameters.

■ The equilibrium particle concentration per surface area for the 

increased gas velocity is lower than at a lower velocity. This suggests 

that, as long as the particle concentration in the aerosol is constant or 

lower during the transition between low and high gas velocity 

(acceleration), many more particles would be resuspended than 

deposited, causing a noticeable particulate blow-out.
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Figure 7.14. Particulate blow out from the First silencer (b) as Emission Index vs. 
various exhaust aerosol parameters.

As it is shown, the effects o f the acceleration depend on a complex set o f 

opposite conditions around a delicate equilibrium between particulate deposition and 

reentrainment occurring simultaneously. This would explain the difficulty in finding 

single trends in the particle motion for the various test conditions.
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Figure 7.15. Particulate blow out from the Second silencer (a) as Number 
concentration vs. various exhaust aerosol parameters.

The clearest evidence on the reentrainment o f particles as a consequence o f 

transient cold-start and acceleration emissions was the significant contribution o f  the 

mass-burst and peak-num ber events to the number o f blow out cases: they accounted 

for 53% o f  the total o f  blow-out cases. These were the events that really show the 

effect o f the transients, since they were associated with short-term responses, in the 

time range reported by Adhiwidjaja et al. (Adhiwidjaja, 2000) to be needed by the 

deposition layer to be fully developed, less than 100s.
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Figure 7.15. Particulate blow out from the Second silencer (b) as Emission Index vs.
various exhaust aerosol parameters.

Changes in further events were due to the subsequent thermal equilibration in 

the engine and exhaust pipe systems. In their study on Spark Ignition engine 

emissions during start-up and transient operation, Kayes et al. (Kayes, 1999) showed 

very similar transient responses in the particulate matter emissions (e.g. 

reentrainment) to those resulting from this work, described as an increase with a 

peak concentration during start-up followed by a level concentration. They also 

showed an additional increase during the engine shutdown. The mode o f  the num ber 

size distribution increased between the number peak and the stabilisation as a result 

o f  the transient, which also agreed with the findings in this work. The causes o f  this
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were mainly particle resuspension and particle formation from vapours outgassed 

from the deposition layer followed by their coagulation.

In the study on Spark Ignition emissions during transients by Hall et al. (Hall,

2000), the release o f  previously stored particles from the exhaust and dilution system 

walls was found to be related to the engine operation temperature: after prolonged 

operation o f  both vehicle and tunnel at high-speed and temperature, low particulate 

emissions were measured, suggesting that the system and the dilution tunnel was 

‘cleaned’ during high temperature operation and then the actual, low emissions from 

the engine were measured. This was partially true, although the authors did not 

include part o f  the argument: the emissions measured after the high-temperature 

operation may have been reduced by deposition through the system, since the 

deposition layer structure may have started recovering for new low temperature 

conditions.

This work showed that the exhaust system was partially ‘cleaned’ by the 

engine operation at high load conditions, which produce high temperatures in the 

exhaust system. On the other hand, the high-speed, low load tests, for which the 

temperatures were not as high as in the high-load tests, this “cleaning” effect was not 

observed. Also, the results from the multiple acceleration tests showed that the 

deposition layer formed during a long conditioning period accumulated more 

particles than that formed in the 10-minute conditioning period (much higher 

num ber o f particles released in the first acceleration cycle), but this did not produce 

a large difference in the mass released by the transient operation (slightly higher 

Emission Index in the first acceleration cycle), meaning that the recovery o f the 

deposition layer was a very fast process.



Chapter 8. Conclusions and final remarks

8.1. Conclusions

The Ford XLD 418T, 1.8L TC/IC IDI diesel engine used in this work was 

shown to emit high particulate emissions during cold-start and acceleration 

transients, but once it was hot and running at steady state conditions, these emissions 

decreased to comparable levels to those produced by sim ilar engines in studies by 

other authors. Transient particulate emissions were strongly influenced in both 

number concentration and Emission Index by changes through the various 

components o f  the exhaust system, including pipes, the oxidation catalyst and 

silencers. These changes were dependent themselves on various conditions related to 

the time from the start o f  the transient events, such as exhaust aerosol and system 

walls temperatures, engine speed and acceleration regime.

The dependence relationships between the particulate changes and the 

conditions o f  the exhaust system were not easy to discern, because o f  the great 

sensitivity and complexity o f the physical processes that produce such changes. 

Particles o f all sizes were shown to be deposited by the action o f thermophoresis, 

gravitational and inertial forces. The number o f ultrafine and mid-sized particles 

increased as a consequence o f gas-to-particle conversion and coagulation processes;. 

Particles larger than 1.0|.un were resuspended from the exhaust walls by the action 

o f  shear and lift forces and by the impact o f  particles in the aerosol. Some o f these 

processes oppose each other, and they all occur simultaneously. The prevalence o f 

one process, or a set o f  processes, over the others occurred at very different 

conditions, which suggested that very subtle differences in the conditions o f the 

system were sufficient to produce significant changes in the processes and hence in 

the resultant emissions.

Simultaneous measurements with total mass filters at various points along the 

exhaust system showed that the amount o f particulate deposited, or resuspended and 

formed, through the exhaust system constituted a significant fraction of, the tailpipe 

emissions, or even exceeded them  by more than one order o f  magnitude. Thus, a 

single transient event may have the capacity to produce a highly visible tailpipe 

particulate emission, even when the engine does not produce it itself.

Total mass filter measurements showed also that the particulate mass changes 

through the system were dependent on the immediately previous operational history 

o f the engine. Idle operation was selected and proved to reproduce a good condition
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for particle deposition, so this was adopted as a fast preconditioning period that 

would reproduce the deposition o f an amount o f  particulate mass similar to that 

deposited in a driving period o f  a week under urban conditions, following a pattern 

o f  1-2 hours drive per day. In contrast, a high-speed operation for ten minutes was 

used to reproduce an exhaust-system cleaning condition. These were adopted as 

preconditioning procedures for cold start tests with filters and the ELPI. The 

acceleration tests showed that high transient num ber concentrations and Emission 

Index were emitted after a long idle preconditioning, but was much lower after a 

short idle period.

Total mass measurements gave evidence that particulate matter tended to be 

easily resuspended from the first silencer and then deposited through the second 

silencer. This trend was also observed in the measurements with the ELPI during the 

cold-start tests and confirmed during the acceleration tests. This was not a 

permanent situation, but was observed in several cases. In addition, the changes in 

particulate concentration through the second silencer tended to be parallel to those 

observed through the catalyst, and opposite to those through the first silencer, in a 

number o f  cases. This was even size related: when ultrafme particles, for example, 

were being formed through the catalyst and the second silencer, they deposited or 

coagulated through the first silencer. Likewise, when particles larger than 10.0|im 

were being deposited through the catalyst and the second silencer, they were 

resuspended from the first silencer walls. Again, such behaviour was not a 

permanent situation, but it was observed in a good number o f events, which 

indicated that the trend was real and recurrent.

In the cold-start tests, the catalyst was shown to promote fine particle 

coagulation and large particles were resuspended from its walls. The second silencer 

promoted fine particle formation and large particle deposition, and through the first 

silencer there was significant particle growth and large particles were resuspended in 

many cases. In the acceleration cycles, which only tested high-speed and medium­

load conditions, the catalyst and the second silencer promoted particle deposition, 

ultrafme particles formed and coagulated through the catalyst and the first silencer, 

and large particles were reentrained mainly from the second silencer walls and to a 

certain extent from the catalyst.

Real-time tests with the ELPI showed that the relationship o f  deposition and 

resuspension processes with the target conditions reached during cold-start tests was 

not simple, given the large differences in particle number and mass emissions in one 

condition or another. Some results even apparently contradicted the expected effects 

o f the target conditions on the changes through the system. Low-speed tests showed
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many more cases o f  large particle resuspension and fine particle formation, and 

fewer cases o f  large particle deposition, than high-speed and high-load tests. 

However, the particle num ber concentration and Emission Index emitted during 

high-speed and high-load conditions were one or two orders o f magnitude higher 

than at low-speed and low-load conditions. The former contributed much more 

significantly to the total particle formation, deposition and resuspension when 

comparing the total particle num ber and mass emissions.

The most significant emissions, and therefore the most significant absolute 

changes through the exhaust system, occurred in the first few seconds after the 

engine start up. Great numbers o f ultrafine particles were formed and large particles 

were resuspended during this short period. The subsequent acceleration contributed 

mostly to the coagulation o f  ultrafine particles to form mid-sized particles, but it did 

not actually contribute significantly to large particle resuspension. Once the system 

was stabilised at the target condition, particle resuspension still occurred in many 

cases.

The acceleration tests showed that large particles were reentrained from the 

exhaust system walls mainly during acceleration. However, they also made clear that 

all processes predominated over their opposite in a similar number o f  cases, 

confirming that very subtle differences were sufficient to change the particulate 

behaviour through the system.

Acceleration tests also showed that the higher temperatures found during high- 

load operation promoted ultrafine particle coagulation and large particle 

resuspension at a higher extent than high-speeds. High-speed operation, in contrast, 

promoted ultrafine particle formation and large particle deposition in more cases 

than high-load operation.

Regarding the chemical composition, particles emitted during high-load 

operation had a much lower SOF than those emitted at high-speeds, with 40%  and 

80%, respectively. The high SOF content may explain the higher significance o f 

ultrafine particle formation at high-speed conditions. On the other hand, the lower 

SOF content at high-load conditions may be related to the observed trend towards 

large particle resuspension. The SOF content did not change significantly through 

the exhaust system. A slight increase through the catalyst at high speed was related 

to gas-to-particle conversion processes, and the decrease in SOF, mainly through the 

first silencer, was presumably due to large particle resuspension from the walls, 

m ostly formed by particles with high carbon content.

A correction function was derived in this work in an attempt to reduce the 

effect o f the ELPI’s original over-correction in the calculation o f large particle
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number concentration from measured current values. The correction was based on 

comparison o f ELPI mass concentration data with filter mass data at steady-state 

conditions. The use o f the derived correction reduced significantly, and in some 

cases eliminated, the overestimation produced by the ELPI. The correction was 

limited, and not applicable for all cases, sincc the particle structural and physical- 

chemical characteristics, and therefore their impaction behaviour, change with 

operational conditions.

Transient and steady-state emissions from the tests were used to estimate the 

effect o f transients on driving cycles different from the step-change cycles used in 

this work. The methodology to do this, using work-specific emisisons in transient 

and steady-state segments o f the cycles, was shown. In some step-change cycles run 

in this work, transient emissions may reduce and not increase total cycle emissions 

under certain operational conditions such as a cold-start with a target high-power 

steady-state condition.

Transients have the potential to affect (in many cases, increase) significantly 

the emissions from a driving cycle that originally takes into account only steady- 

state modes, such as the R49 and the ESC. An illustrative example o f this, using the 

emission factors from this work, was shown.

Cold-start tests with the new exhaust were not comparable to those at the same 

conditions with the old exhaust, owing presumably to a major maintenance o f  the 

engine and changes that may have reduced the particulate emissions to values one to 

two orders o f magnitude lower than those in previous tests. These tests, however, 

were useful to show that the incipient deposition layer was formed very quickly over 

the walls o f the new exhaust and that particulate resuspension processes started 

being important since the very beginning o f the life o f the new exhaust.

Particle images from TEM and SEM allowed measuring the fractal dimension 

o f particulate matter collected during high-load engine operation. Fractal dimension 

was 1.82 with a correlation factor R2=0.88.

8.2. Remarks and recommendations for future work

This work gave useful evidence about the changes undergone by diesel 

particulate matter through a practical exhaust system under laboratory cold-start and 

acceleration test conditions. The main limitations inherent to the equipment for the 

planned objectives were:
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■ The low response speed o f  the hydraulic dynamometer in automatic 

mode. This did not allow reproducing the real-world transient 

acceleration more closely.

■ The manual operation o f  the throttle during transient step changes. This 

caused variability in the time needed to reach the target conditions, and 

may have affected the num ber concentration and Emission Index levels 

in the various transient events.

■ The lack o f  a real-time mass measurement technique, e.g. TEOM. The 

filter mass measurements only suggested the particle mass changes 

with time, but its time resolution was too poor.

■ The use o f only one ELPI instrument per test, per sampling point. The 

great sensitivity o f the particulate changes through the exhaust system 

shown in this work justifies the use o f at least two ELPI instruments 

simultaneously in different sampling points.

From these limitations, the following recommendations were derived, to 

enhance the understanding o f the particulate changes through the exhaust systems:

■ The use o f a fast-response totally automated electrical dynamometer.

■ The use o f  at least two TEOM instruments for simultaneous real-time 

total particulate mass measurements and the comparison o f  these mass 

values with the ELPI derived values. This will allow finding a better 

correction strategy for the mass calculation from ELPI num ber 

concentrations.

■ The simultaneous use o f  two particle-size-distribution measurement 

instruments, either two ELPIs or one ELPI and one SMPS, in different 

sampling points along the exhaust system. The SMPS is not a real time 

measurement instrument, but it can be used to track near real-time 

changes in a narrow particle size range. In addition, the use o f both 

ELPI and SMPS is an useful combination to understand more 

thoroughly the particle characteristics.

Additionally, the following recommendations should be considered:

■ Further work is required on the effect o f  the catalyst initial temperature 

on particulate deposition and reentrainment.

■ The use a real-time technique to determine the particulate chemical 

composition, such as laser-based techniques (Schraml, 1999) or charge 

diffusion/photoelectric techniques (ETH, 2000) is recommended.
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■ The development o f  a comprehensive CFD model that takes into 

account the majority o f factors and processes involved in the complex 

changes o f the exhaust aerosol through the exhaust system is necessary. 

The Fluent® code has been used for turbulent deposition with 

thermophoresis, including the Saffman lift force (Chunghong, 1998), 

but not a more accurate model for resuspension as that suggested by 

Adhiwidjaja et al (Adhiwidjaja, 2000).
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