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Abstract

Seed potato is the starting point in the potato (Solanum tuberosum L.) production chain. In order
to secure potato production in a variety of production conditions, plant diseases must be controlled
and the yield characteristics of the used cultivars ensured. In addition, production must be cost-
effective. Characteristics particular to northern production conditions include long periods of
daylight and a short growing season as well as a several months long seed potato storage period.
The focus of the present study is on northern production conditions and methods, including haulm
killing and sprout control, which are presumed to affect seed potato quality, as well as the initial
stages of the seed potato production chain, i.e. micro- and minituber production, which could
influence cost-effectiveness and propagation. 

Haulm killing is one of the methods used in seed potato production to regulate tuber size. It is
often carried out on unsenesced plants. The present results, however, indicate that cultivar
properties have a greater effect on the sprouting and crop yield of seed potatoes than production-
phase haulm killing or temperature sum accumulation. Nevertheless, haulm killing carried out
three weeks after flowering (75 DAP) accelerated emergence. When the effect of haulm killing
methods on seed potatoes was compared with natural haulm senescence, haulm killing was shown
to increase disease pressure. Black scurf (Rhizoctonia Solani) was present in seed tubers whose
haulm had been destroyed by mechanical or mechanical-chemical haulm killing. Naturally
senesced haulm had less black scurf, and crop quantity and starch content developed to a level
typical of the cultivar. Storage periods lasting several months make controlling seed potato
sprouting more challenging. Therefore, use of the plant hormone gibberellic acid (GA) in sprout
control was investigated. GA treatments at lower concentration (100 mM) increased the number
of tubers in the cultivar Fambo. Thus, the timing of haulm killing and in the case of Fambo, GA
treatment influenced the characteristics of seed potatoes. 

Conventionally, the first tuber generation is produced using microplants to produce minitubers
in greenhouses. This production method is, however, labour-intensive, and energy and investment
costs are high. With the aim of increasing production efficiency in northern production conditions,
the production of minitubers in the laboratory using a novel bioreactor technology and in growth
rooms using the hydroponic technique was investigated. The Liquid LabTM Rocker bioreactor
system was used in vitro, all the cultivars examined (Asterix, Timo, Van Gogh and Velox)
produced microtubers. The quantity of tubers produced per dish varied between 30 (for the cultivar
Asterix in eight weeks) and 75 (for the cultivar Velox in 11 weeks). The results showed
hydroponic production of minitubers to be successful in indoor conditions: the cultivars Desiree
and Van Gogh developed their first tuber three weeks faster than Asterix, and the minituber yield
was 4.5 per plant for Desiree, 7.5 for Van Gogh and 4.0 for Asterix. When the results indicate that
both the Liquid LabTM Rocker production method and the hydroponic production method are
suitable for mass production of seed potatoes. 

Keywords: gibberellic acid, haulm killing, microtuber, minituber, seed potato, Solanum tuberosum L.,
sprout, storage, technology





Virtanen, Elina, Varsistonhävityksen ja gibberelliinihapon vaikutuksia siemenperunaan
(Solanum tuberosum L.) sekä tuotantotekniikoita mini- ja mikromukuloille pohjoisilla
leveysasteilla. 
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Luonnontieteellinen tiedekunta, Biologian laitos;
MTT Maa- ja elintarviketalouden tutkimuskeskus, Biotekniikka- ja elintarviketutkimus
Acta Univ. Oul. A 623, 2014
Oulun yliopisto, PL 8000, 90014 Oulun yliopisto

Tiivistelmä

Siemenperuna on lähtökohta perunan (Solanum tuberosum L.) tuotantoketjussa. Jotta perunan-
tuotanto turvataan eri tuotanto-olosuhteissa, on hallittava siemenperunan kasvitaudit, taattava
sadontuotto-ominaisuudet ja tuotannon on oltava lisäksi kustannustehokasta. Pohjoisissa tuotan-
to-olosuhteissa erityispiirteinä ovat valoisuudeltaan pitkät päivät ja kestoltaan lyhyet kasvukau-
det. Lisäksi siemenperunoiden varastointijakso kestää useita kuukausia. Tässä tutkimuksessa sel-
vitettiin vaikuttavatko pohjoiset tuotanto-olosuhteet tai tuotannossa käytetyt varsistonhävitys tai
itämisen hallinta siemenperunoiden laatuominaisuuksiin. Lisäksi selvitettiin siemenperunoiden
ensimmäisen mukulasukupolven (mikro- ja minimukula) tuotantoa eri tekniikoilla. 

Siemenperunatuotannossa varsistonhävitystä käytetään mukulakoon säätelykeinona. Varsis-
tonhävitys tehdään usein tuleentumattomaan kasvustoon. Saatujen tulosten perusteella lajike-
ominaisuudet vaikuttivat itämiseen ja sadontuotto-ominaisuuksiin enemmän kuin varsistonhävi-
tys tai mukuloihin kerääntynyt lämpösumma. Varsistonhävitys kolme viikkoa kukinnasta (75
päivää istutuksen jälkeen) nopeutti kuitenkin siemenperunoiden taimettumista. Vertailtaessa var-
sistonhävitysmenetelmien vaikutusta siemenperunaan verranteena kasvuston luontainen tuleen-
tuminen, varsistonhävitys lisäsi kasvitautipainetta. Mekaanis-kemiallisesti ja mekaanisesti var-
sistonhävityissä satomukuloissa tuli esiin seittirupea (Rhizoctonia solani). Luontaisesti tuleentu-
neen kasvuston sadoissa oli seittirupea vähemmän ja myös sadon määrä ja tärkkelyspitoisuus
kehittyivät lajikkeelle luontaiselle tasolle. Useiden kuukausien varastointijakso vaikeuttaa sie-
menperunoiden itämisen hallintaa. Kun tutkittiin gibberelliinihapon (GA) käyttöä itämisen hal-
lintaan, alhaisemman konsentraation (100mM) GA –käsittely lisäsi Fambo –lajikkeen mukulalu-
kumäärää. Tulosten perusteella varsistonhävityksen ajoittamisella ja GA –käsittelyllä (Fambo
–lajike) vaikutettiin siemenperunoiden ominaisuuksiin.

Siemenperunan ensimmäisen mukulasukupolven eli minimukuloiden tuottaminen tapahtuu
perinteisesti kasvihuonekasvatuksena mikrokasveista. Tuotantotapa on työvoima-, energia- ja
invetointikustannuksia vaativaa. Tuotannon tehostamiseksi pohjoisissa tuotanto-olosuhteissa tut-
kittiin mikro- ja minimukuloiden tuotantoa eri teknologioilla. Mikromukuloita tuotettiin bioreak-
torimenetelmällä laboratoriossa ja minimukuloita hydroponisella menetelmällä kasvatushuoneis-
sa. Tulokset osoittavat, että kaikki tutkitut lajikkeet (Asterix, Timo, Van Gogh ja Velox) tuotti-
vat bioreaktorissa mikromukuloita. Mikromukuloiden määrä vaihteli 30:sta (Asterix, 8 viikon
kasvatus) 75:een (Velox, 11 viikon kasvatus). Myös minimukuloiden hydroponinen tuotanto
sisätiloissa on mahdollista; kaikki lajikkeet muodostivat mukuloita, Desiree ja Van Gogh 3 viik-
koa nopeammin kuin Asterix. Desiree tuotti minimukuloita 4.5 kpl/kasvi, Van Gogh 7.5 ja Aste-
rix 4.0. Tulokset osoittavat, että molemmat menetelmät (bioreaktori ja hydroponinen) soveltuvat
mikro- ja minimukuloiden massatuotantoon. 

Asiasanat: gibberelliinihappo, itäminen, mikromukula, minimukula, siemenperuna, Solanum
tuberosum L., varastointi, varsistonhävitys
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Abbreviations  

DAP day after planting 

DAH day after haulm killing 

L-L Liquid LabTM Rocker system 

HCS hydroponic crop system 

GA gibberellic acid 

PAI  physiological age index 

RTI relative thermal index 

GDD growing degree-day  

PAR photosynthetically active radiation 

CIPC chlorpropham 

DMN dimethylnaphthalene 
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1 Introduction 

The potato (Solanum tuberosum L.) is one of the most important food plant in the 

world (Braun 2010). Potato can be cultivated in many regions of the world and 

used for many purposes. Potato cultivation contributes to meeting the increasing 

need for food created by world population growth. Potato tubers accumulate large 

amounts of starch and are low in fat, and their protein content is comparable to 

that of grains. In addition, potatoes contain vitamin C (Rodríguez-Falcón et al. 
2006). In order to secure potato production in a variety of production conditions, 

plant diseases that affect seed potatoes must be controlled and yield 

characteristics ensured. In addition, production must be cost-effective (Corrêa et 
al. 2007). Potato production efficiency must be increased on a continent- and 

country-specific basis, as production conditions differ dramatically from one 

region to another. 

The potato production chain starts with the seed potato (Fig. 1). The life cycle 

of the seed potato begins with tuber formation and ends with the growth of a new 

plant and the production of new tubers in the following year (Celis- Gamboa et al. 
2003/4). Seed potatoes must be vigorous and free from plant diseases when 

producing new tubers. These yield characteristics are affected by many factors: 

the physiological state of the tuber (cultivar, age, size, growth, vigour), growing 

conditions (physical and chemical factors including light, temperature, 

precipitation, soil nutrients), harvesting techniques (haulm killing, harvest time) 

and crop storage (incl. temperature and humidity). Seed potato quality, i.e. its 

capacity to produce sprouts, shoots and daughter tubers, is measured only as it is 

producing a new crop (Struik & Wiersema 1999). 

Finland’s potato production area totals approximately 26,000 hectares and is 

among the northernmost in the world. Seed potato production covers 1,400 

hectares of this area and is concentrated in Northern Ostrobothnia – a region is 

characterized by long days and a short growing season. Seed potato production in 

these northern conditions is subject to a number of special requirements. 

Expertise in and management of seed potato quality, the use of cultivars with 

different production characteristics, and the use of new technologies and methods 

aimed at improving production throughout the supply chain are among the key 

future challenges of the Finnish seed potato industry. 
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Fig. 1. The developmental stages of seed potato from yield production to natural 

senescence (based on Hack et al. 1993). 

1.1 Northern production conditions 

In Northern Ostrobothnia, most seed potato production takes place in the 

municipalities of Tyrnävä and Liminka, which form one of the five High Grade 

areas named by the European Union (64°46’N, 25°32’E) (Fig. 2). In addition to 

Finland, other EU-designated High Grade areas are located in Ireland, Great 

Britain, Portugal and Germany, and these vary considerably in area (ETYp 

30.3.1993/231). Within the European Union, High Grade status is granted to a 

seed potato production area in which there are no dangerous potato plant pests or 

diseases or they have been successfully destroyed. Climate conditions affect the 

selection of seed potato production sites. In Finland the sites were selected based 

on the following key criteria: no potato plant disease, suitable soil and distinct 

summer and winter seasons. Although growing season conditions are the most 

important in terms of selecting seed potato production sites, year-round climate 

conditions also affect soil-borne plant disease control. Seed potatoes produced in 

the High Grade areas are an important part of European potato production. In 

Finland, a cluster of seed potato companies operate in the High Grade area and 

more than 20% of the seed potato production is exported. 
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Fig. 2. The High Grade –seed potato area (Tyrnävä-Liminka municipalities) in Finland 

is shown as star. 

1.1.1 Long days and short growing season 

Finland’s climate is strongly influenced by ocean currents, continental air masses, 

polar cyclones and the Gulf Stream. The climate is characterized by a clear 

seasonal rhythm: a snowy, cold winter, relatively short spring, warm but short 

summer and cloudy, chilly autumn. There are substantial variations in light 

conditions and temperatures along the parallels of latitude 64°–65°N. The winter 

is long and dark and the summer growing season is short (110–115 days) and 

bright. Annual precipitation is approximately 500–550 mm, 35–40% of which 

consists of snowfall (Finnish Meteorological Institute 2011).  

Crop quality and quantity are substantially affected by the growing site 

climate, with the best potato yields achieved in cool and humid climatic 

conditions. The optimum temperature for potato growth is 15–20 ºC, with a lower 

limit of 5–10 ºC and an upper limit of 25 ºC (Reilly et al. 1996). At high 

temperatures, plant respiration is accelerated, resulting in loss of the energy 

created during photosynthesis and cessation of growth (Valkonen 2004). In 
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addition, potatoes are more sensitive to disturbances in water economy than other 

arable crops (Gregory & Simmonds 1992). Insufficient humidity reduces crop 

quantity, whereas excessive humidity may, for example, increase the occurrence 

of bacterial diseases in the foliage. Potatoes need approximately 350–500 mm of 

water during the growing season.  

In Finland, dawn and dusk occur slowly, because as sunlight radiates to the 

polar regions it is refracted more steeply in the atmosphere than at the equator. As 

a result, the wavelength of light becomes longer and is experienced as twilight. At 

sunrise and sunset, sunlight travels longest through the atmosphere and the 

scattering of short wavelengths increases. As a result, the relative proportion of 

yellow and red light increases (Young & Freedman 2004) and, consequently, the 

daily quantity of far red light is higher in northern latitudes than in the further 

polar regions (Clapham et al. 1998). The long twilight periods in northern regions 

may substantially affect the photomorphogenetic (light-mediated development) 

properties of the plant. In some plants, long days increase the production of dry 

matter and flavour compounds (Hay 1990). According to Kozai et al. (1995), the 

fresh and dry weights of plants increase during long days, but no differences were 

found in dry-matter content in comparison to short days. The lengthening of 

shoots and internodes in the potato, caused by long periods of daylight and 

especially by far red light, has been observed in several different studies (Heyer et 
al. 1992, Yanovsky et al. 1998). In previous studies, long days and shading were 

found to delay tuber formation (Degamante & Vander Zaag 1988). However, 

sufficiently high quantities of illumination (a minimum of 400 μmol m−2 s−1) have 

been observed to reverse the tuber-formation-inhibiting effect of long days 

(Wheeler & Tibbitts 1986). Based on the results of the studies of De Temmerman 

et al. (2002) on the response of potato to elevated O3 and CO2 concentrations, 

climatic conditions create changes relative to potato growth and yield. The results 

show tubers growing larger in size in Northern Europe (higher latitudes) as a 

consequence of lower temperatures, air humidity (vapour pressure deficit, VDP) 

and long-day conditions (De Temmerman et al. 2002).  

In addition to environmental effects, plant development is also regulated by 

endogenous hormones, which serve as chemical messengers interacting with 

specific protein receptors linked to cellular signalling pathways (Taiz & Zeiger 

2010). The plant hormone groups include auxins, gibberellins, cytokinins, 

ethylene, abscisic acid, brassinosteroids and strigolactones, which have specific 

roles in plant development. Moreover, jasmonic acid, salicylic acid and small 

polypeptides have roles in defence against herbivores or resistance to pathogens 
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(Taiz & Zeiger 2010). Auxin maintains a strong apical dominance and cytokinins 

and gibberellins are among the phytohormones that promote cell division and 

longitudinal growth of cells (Yang et al. 1996, Taiz & Zeiger 2006). Long days 

increase auxin, cytokinin and gibberellic acid levels and decrease the 

concentration of abscisic acid.  

The potato stores glucose compounds formed during the growth season in the 

tubers as starch. Starch synthesis is an important factor in potato primary 

metabolism, as starch stored in the tubers functions as a carbohydrate reserve for 

new seed potato shoots and roots in the production of the next growth season’s 

yield (Davies 1984, Geigenberger et al. 2004). The amount of starch in the tubers 

varies during the periods of growth and maturing as well as between cultivars 

(Liu et al. 2003, Fischer et al. 2013). Even though long days increase the length 

of time the potato uses for daily photosynthesis and the amount of absorbed 

carbon (De Temmerman et al. 2002), research data is required on how potato 

allocates carbon reserves to above-ground shoot growth and tuber yield 

production. 

1.2 Special requirements for seed potato production 

One of the reasons why seed potato production differs from that of other crops is 

that seed potatoes can be latently infected with plant diseases and their quality 

may deteriorate during storage (Struik & Wiersema 1999). After storage, seed 

potatoes should be disease-free and their physiological characteristics should also 

be suitable for yielding a crop in any production conditions. Seed potato quality is 

critically important in terms of yielding a crop and therefore, seed potato 

production, harvesting and storage should be carried out carefully (Corrêa et al. 
2007).  

After harvesting, the tubers undergo a period of dormancy and physiological 

rest lasts for a few months depending on the potato genotype and the 

physiological state. According to Lang et al. (1987), dormancy is divided into 

three categories: endo-, eco- and paradormancy. During deep dormancy 

(endodormancy), tubers cannot sprout even under favourable environmental 

conditions for sprouting. After deep dormancy (ecodormancy), tubers begin to 

sprout if temperature conditions are favourable, and further sprouting and natural 

sprouting begin as a result of physiological characteristics (paradormancy) (Suttle 

2004, Chao et al. 2007). During dormancy, tubers undergo biochemical and 

physiological processes and, after dormancy, sprouting begins in phases: apical 
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dominance, normal sprouting, production of branched sprouts and incubation 

(tuber formation) (Struik & Wiersema 1999). In order to be able to control 

sprouting, particularly after a long storage period, methods or indicators are 

needed to indicate either dormancy or the seed potato physiological state (Caldiz 

et al. 2001). 

1.2.1 Haulm killing 

In northern production conditions, haulm killing is used in seed potato production 

primarily as a method of controlling tuber size, as tuber growth is relatively quick 

in long-day conditions (De Temmerman et al. 2002). Therefore, haulm killing is 

often carried out on highly immature plants that may still be flowering and the 

timing of haulm killing is not synchronized with foliage senescence or potato 

tuber maturation. According to Struik and Wiersema (1999), in conditions where 

the growing season is short, haulm killing can be used to advance harvesting, 

obtain a suitable tuber size, strengthen tuber skins before harvesting, and prevent 

plant pathogens from spreading among the foliage and crop. In particular, haulm 

killing aims to control soil-borne or seed-borne diseases including viral diseases, 

fungal or fungal-like diseases representing the genera Rhizoctonia solani (black 

scurf), Phytophthora infestans (late blight), Phoma foveata (gangrene) and 

Verticillium dahlie (Verticillium wilt) as well as bacterial diseases (Kempenaar & 

Struik 2007).  

Besides cultivar-specific differences in tuber development, the developmental 

stage of different tubers in the same hill may vary at the time of haulm killing 

(Struik & Wiersema 1999). The effects of the timing of haulm killing on the seed 

potato physiological state have been studied in different production conditions 

and cultivars. Brown et al. (2003) reported that the timing of haulm killing 

affected seed potato physiological characteristics, whereas Wurr et al. (2001) 

found no clear effects. Bethke & Busse (2010) reported that haulm killing and 

tuber maturity at harvest have long term effects on tuber quality. According to 

Struik and Wiersema (1999), the differences in disease resistance between plants 

must be taken into consideration in determining the timing of haulm killing; if the 

cultivar has low disease resistance, it is recommended that the haulm is destroyed 

earlier than in cultivars with higher disease resistance. The presence of aphids 

must also be considered, along with the virus infection pressure in the production 

area. Early haulm killing reduces crop quantities; however late haulm killing 

creates a greater risk of increasing the presence of pathogens and potato diseases 
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(Struik & Wiersema 1999). Even though haulm killing can be used to reduce the 

occurrence of viral or other seed- or soil-transmitted plant diseases, some haulm 

killing methods may, however, contribute to the occurrence of plant diseases 

(Dijst 1988, Kempenaar et al. 2008, Tsor 2010).  

There are several haulm killing methods; steaming, flaming, electrocuting, 

vine pulling and mechanical or chemical methods or combinations of both. In the 

studies of Misener & Everett (1981), disconnecting the haulm from the roots by 

pulling was found to be the most effective method: 98–100% of the haulm dried 

and re-growth appeared in only 2–3% of the tubers. Vine pulling is the quickest 

because it instantly inhibits haulm starch synthesis, prevents phloem transport of 

photosynthesis products to the tubers (Tiessen et al. 2002) and prevents the 

supply of growth-stimulating hormones (Weber & Bartel 1989). Regardless of the 

method used, haulm killing should be carried out when the haulm has already 

started to senesce naturally (van Evert et al. 2012). The use of haulm killing 

chemicals is recommended only when the haulm shows signs of natural 

senescence (Kempenaar et al. 2008, OEPP/EPPO 2010). The effects of the time 

between haulm killing and harvesting have become apparent primarily in the 

context of the physiological behaviour of seed potatoes (Wurr et al. 2001, Brown 

et al. 2003). The effects on external quality were not significant (Weber & Bartel 

1989, Kumar et al. 2009, Bethke & Busse 2010). The recommended time between 

haulm killing and harvest is 10–14 days. Skin set typically takes 10–14 days, 

depending on the cultivar and soil conditions (Halderson & Henning 1993). If 

harvest is delayed longer than the recommended time, there is a real risk of 

increasing the likelihood of plant disease (Lootsma et al. 1996, Struik & 

Wiersema 1999). Tuber crops are known to be exposed to infection by black scurf 

if the haulm is destroyed while the root system is still in operation and the time 

between haulm killing and harvest is prolonged (Tsror 2010). Black scurf caused 

by Rhizoctonia solani (Kühn AG-3) leads to substantial economic losses 

(Lootsma & Scholte 1996) and in seed potato production it may be an obstacle to 

certification.  

When determining the timing of haulm killing, methods and timing based on 

haulm senescence and production- as well as cultivar-specific requirements have 

to be taken into consideration (Ivany & Sanderson 2001, Pavlista 2001, Bethke & 

Busse 2010). More research is needed to optimize haulm killing to suppress the 

different soil- and seed-borne diseases and to create sensors or other methods to 

determine the timing or the amounts of chemicals used for haulm killing (van 

Evert et al. 2012). 
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1.2.2 Storage 

Seed potato storage should be such that tuber transpiration and respiration and 

plant disease progress in the tubers are minimized. If the storage period is too 

short (0–3 months), the seed potato is in dormancy at the time of planting, or 

sprouting is controlled by apical dominance. If the storage period is too long, the 

seed potato may be physiologically too old. Well-implemented storage allows the 

seed potato to sprout while retaining its physiological vigour even during a long 

storage period (Oliveira et al. 2012). 

In northern production conditions the seed potato storage period varies from 

6 to 8 months. Frost periods of several months’ duration place special structural 

and functional requirements on storage facilities, including optimization of 

temperature, relative humidity, ventilation and gas composition (Struik & 

Wiersema 1999). In order to manage respiration, the possible spread of bacterial 

diseases, and physiological decomposition, which reduce potato quality, the 

optimum potato storage temperature should be +4 °C, air humidity 90–95%, 

oxygen concentration 5–20% of storage air, and ventilation 15–20 m3/t/h (Larsson 

& Bengtsson 1987). Even though seed potatoes can retain their viability for up to 

3 years in the right storage conditions (+4 °C, 95% RH) (Weber 1990), in 

unfavourable conditions they may lose up to 4% of their moisture content in less 

than 6 months’ storage (Zabrouskov et al. 2002).  

The two developmental stages of seed potato occur in storage conditions – 

dormancy following tuber formation and sprouting following dormancy (Celis-

Gamboa et al. 2003/4). During the storage period, dormancy duration and sprout 

control are also affected by seed potato production techniques, geographical 

location of production, tuber maturation at harvesting, and the interactions of 

various growth factors (Daniels-Lake & Prange 2007). Dormancy-controlling 

factors internal to the tuber include carbohydrate fluxes, tuber hormone levels and 

aging-related phenomena, such as the accumulation of free radicals and the 

resulting injury to cellular structures (Burton 1989). Celis-Gamboa et al. (2003/4) 

and Bethke & Busse (2010) reported that seed potato storage prolongs dormancy 

and that seed potatoes age in storage. However, aging occurs more slowly in 

lower than higher temperatures, although according to Shahba et al. (2007), the 

effects of storage temperature may be cultivar-specific.  

Storage plays an important role in optimizing the agriculturally important 

characteristics of seed potatoes, because excessive sprouting of tubers occurring 

too early compromises seed potato production potential and results in reduced 
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yield (Veerman & Wustman 2005). Sprout control is important when seed 

potatoes are stored for long periods (Kleinkopf 2003). Research on tuber 

physiological aging and dormancy has led to the development of storage methods 

to delay sprouting and improve quality (Kerby et al. 2005). New sprout inhibitors 

have also been developed for use in storage conditions and have been introduced 

to the market (Daniels-Lake & Prange 2007). However, comprehensive sprout 

control still requires more in-depth knowledge of the potato’s physiological state 

(Jin-Cheol et al. 2008, Salimi et al. 2010). Eltawil et al. (2006) concluded that 

storage conditions should be defined individually for different potato cultivars, 

taking their production history into consideration. 

1.2.3 Sprout control 

In areas with short growing seasons, seed potatoes are pre-sprouted before 

planting to accelerate foliage growth and to ensure senescence during the growing 

season (Hagman 2012). The challenge lies in enabling seed potato sprouting to 

occur at the preferred time, not too late and not too early. This challenge is 

complicated by the effect of the production history and storage conditions 

(Daniels-Lake & Prange 2007). Unwanted seed tuber sprouting during the storage 

period decreases tuber vigour leading to economic losses (Sonnewald 2001, Suttle 

2004). 

Sprouting mobilizes the starch in the tuber and consumes part of the tuber’s 

biochemical reserves. This results in loss of tuber weight/biomass and withering. 

The loss in tuber quality is not desirable with respect to the production 

characteristics of seed potatoes, as sprout control after dormancy affects, in 

particular, the yielding capacity of seed potatoes (Daniels-Lake & Prange 2007). 

Sprouting should be controlled to occur at the preferred time and in the preferred 

manner (Daniels-Lake & Prange 2007, Teper-Bamnolker et al. 2010. 2012), as 

seed potato quality is measured by its ability to produce sprouts, shoots and 

daughter tubers.  

The physiological state of seed potato is known to affect sprouting and 

yielding capacity (Knowles & Knowles 2006, Delaplace et al. 2009), but no 

definitive method exists for determining it. Physiological state has been assessed, 

for example, by means of accumulated temperature sum (Shahba et al. 2007), 

incubation period, or by combining chronological age and incubation period 

(Caldiz et al. 2001). However, these methods have inadequacies and cannot be 

used to evaluate physiological state in all circumstances (Johansen et al. 2008). 
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Delaplace et al. (2008a) consider the physiological age index (PAI) to be suitable 

for potato, although it only partially determines tuber aging. Yuan & Bland (2005) 

used in their studies the new thermally diffused relative thermal index (RTI), 

which is based on the modified beta distribution model, growing degree-day 

(GDD), physiological summation (Pday) and cumulative photosynthetically 

active radiation (PAR).  

In northern production conditions, the temperature sum accumulated during 

the growing season is 1100–1200 degrees. This temperature sum is reduced by the 

haulm killing carried out in seed potato production. The physiological state of 

seed potato can be assessed by means of the temperature sum accumulated during 

the production history, i.e. in production during summer, in storage during winter, 

and during germination in the spring. The accumulated temperature sum (>4 °C) 

is registered per seed lot.  

The differences between physiologically young and old seed potatoes have 

been extensively studied. According to Delaplace et al. (2008b), only one sprout 

develops in physiologically young seed potatoes, whereas several sprouts develop 

in older ones but they lack apical dominance. Physiologically older seed potatoes 

are also known to emerge faster than physiologically younger ones (O’Brien et al. 
1986, Bodlaender & Marinus 1987, Knowles & Botar 1991, Jenkins et al. 1993, 

Essah & Honeycutt 2004, Eremeev et al. 2007). 

Numerous methods have been developed for chemical control of dormancy 

and sprouting. For example, tuber treatment with ethylene chlorohydrin or ethanol 

favours dormancy breaking (Claassens et al. 2005, Daniels-Lake 2013). Maleic 

hydrazide, such as CIPC (chlorpropham), DMN (dimethylnaphthalene) 

(Campbell et al. 2010), and also volatile components of caraway and peppermint 

oils have been applied for tuber dormancy induction and prolongation (Kleinkopf 

et al. 2003, Eshel et al. 2009, Gomez-Castillo et al. 2013). However, the 

phytotoxicity of these sprout inhibitors must be tested before application (Sorce et 
al. 2005). Of the plant hormones, gibberellic acid (GA) has shown to be effective 

in interrupting the dormancy of potato minitubers (Salimi et al. 2010, Kulen et al. 
2011). Other sprouting inhibitors (hydrogen peroxide, H2O2, bromoethane) have 

also been applied (Al-Mugharabi 2007, Akoumianakis et al. 2008), but the effects 

of the treatments on seed potatoes as carry-over effects have not been studied 

more widely (Jin-Cheol et al. 2008).  
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1.3 Technologies for micro- and minituber production 

The requirements for seed potato production are the production efficiency of the 

first tuber generation (including both technologies and propagation), tuber vigour 

and absence of plant diseases. Cultivars are selected for production based on the 

purpose of use – for table, food industry or as starch potatoes. Cultivars have 

genetic differences in terms of length of dormancy, sprout growth rate, number of 

developing sprouts, growing season development rate (early, middle-early/late) 

and disease resistance. 

In northern production conditions, lightness (long days) and relatively warm 

nights inhibit tuber formation (Degamante & Van de Zaag & van Loon 1987, 

Maladi & Burns 2007). Using conventional methods to produce the first tuber 

generation is not only labour-intensive but also causes extra costs in terms of 

furnishing greenhouses with the necessary equipment. Provision must be made 

for lighting and shading as well as for cooling and heating. Regardless of the 

investments, conventional greenhouse production enables only one additional 

production period when environmental conditions are utilized. 

Conventionally, minitubers are produced from in vitro produced plantlets in 

greenhouses or screenhouses and minitubers are directly field-planted. 

Microtubers have been described as an alternative to plantlets and utilized for 

minituber production (Dhital & Lim 2012). New kinds of micro- and minituber 

production technologies have been implemented and commercialized. The 

implementation of micro- or minituber production systems has contributed to 

improved self-sufficiency and cost-effectiveness. Despite these different 

production systems, many interactions between growth parameters have appeared 

to be genotype-specific (Donnelly et al. 2003).  

1.3.1 Cultivars 

Potato is worldwide propagated vegetatively via seed tubers (Dhital & Lim 2012). 

Potato develops tubers from underground stems called stolons. Its equatorial 

origin makes potato essentially short-day dependent for tuberization (Simmonds 

1997, Kloosterman et al. 2013). Cultivars processed in Europe are usually of 

Chilean origin, as tuber formation of the Peruvian potato – accustomed to short 

days – is relatively poor at European latitudes (Ames & Spooner 2005, ). Many 

potato cultivars begin tuber formation more quickly under short-day production 

conditions compared to long-day conditions (Brown 2011). Cultivars have also 
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been observed to react in different ways to long-day conditions (Almekinders & 

Struik 1994). European potato breeders usually test their cultivars in the largest 

and southernmost production areas, and the yield potential of these cultivars has 

not yet been systematically assessed in long-day production conditions. Finland's 

official cultivar list includes over 50 cultivars, the majority of which have been 

developed by European potato breeders. The most widely produced, certified seed 

potato cultivars are Van Gogh, Nicola, Fambo and Asterix .  

In short-day production conditions it is important that emergence, plant 

development and tuber formation occur undisturbed and as quickly as possible. 

Generally, long days, high temperatures and nitrogenous fertilizers delay tuber 

formation (Krauss 1985, Maladi & Burns 2007). Cultivar characteristics also have 

an effect and, therefore, sprouting rate can be classified by cultivar: 1) slow 

sprouting and quick senescence, 2) quick sprouting and slow senescence, and 3) 

quick sprouting and quick senescence (Reust 1986). Irrespective of the origin or 

properties of the cultivar, maximum tuber formation in production is the 

overriding priority, and attention must therefore be paid at the beginning of the 

production chain to the selection of cultivars suitable for northern production 

conditions (Ewing & Struik 1992, Brown 2011).  

1.3.2 Propagation techniques 

Starting seed potato field production with minitubers is the most viable option in 

terms of overall utility (Rolot & Seutin 1999). Viral, bacterial and fungal diseases 

easily infect tubers and are immediately passed on to the next generation, 

diminishing the production capacity of potato plants. In seed potato production, 

the source material must be disease-free.  

Regardless of the production technology used, the source material for micro- 

or minitubers is produced from in vitro microplantlets and propagation is 

conventionally achieved by distributing the plantlets (Fletcher et al. 1998) on a 

substrate containing both micro- and macro-nutrients (Murashige & Skoog 1962). 

In northern conditions, in vitro microplantlets have been used to produce 

minitubers in conventional peat-greenhouse production. In commercial minituber 

production, the aim is always to produce a large number of tubers per plant 

(Milinkovic et al. 2012).  

In northern production conditions, environmental factors restrict the 

utilization of light and temperature in conventional greenhouse production. Faster, 

more cost-effective technology solutions with a higher production capacity are 
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therefore sought for potato minituber production. Various soilless, hydroponic, 

aeroponic (Ritter et al. 2001, Chang et al. 2012) and bioreactor-type (Akita & 

Ohta 1998) production methods have already been developed and are in use. 

Hydroponic culture systems cover a range of techniques, including water culture 

(Wan et al. 1994), modified water culture, NFT (nutrient film technique) (Boersig 

& Wagner 1988; Wheeler et al. 1990, Molders et al. 2012), and aeroponic 

systems (Kang et al. 1996; Nichols & Christie 2002; Farran & Mingo-Castel 

2006). Deep-water culture systems (Lommen 2007) have the same buffer 

capacities for pH, nutrients, and temperature as aerohydroponics (Soffer et al. 
1991). These techniques differ in terms of water or nutrient input and how the 

plants utilize these liquids. Fermenters and bioreactors are used for microtuber 

production. Laboratories or different types of greenhouses can be equipped with 

new types of micro-minituber production technologies, enabling the elimination 

of disturbing conditions or plant-disease pressure caused by the production 

environment (Molders et al. 2012; Mateus-Rodriguez et al. 2013). 

Soilless production provides an alternative for reducing the cost of minituber 

production and possibly increasing production volume (Rolot & Seutin 1999, 

Scherwinski-Pereira 2009). The yields of the new technique are typically 

comparable with the minituber yields of conventional in vitro propagated plants. 

Even if it would be possible to make conventional minituber production more 

effective, conventional minituber production from in vitro plantlets involves a 

contamination risk, in addition to high production costs and relatively low tuber 

yield (Rolot & Seutin 1999). The objective of the basic pre-seed potato 

production concept is not only to increase the effectiveness and speed of the 

production chain, but also to gain more information on cultivars during 

propagation.  

1.4 Aims of the study 

The general aim of the thesis was to investigate seed potato (Solanum tuberosum 

L.) cultivation in the northern latitudes, High Grade cultivation area defined by 

the European Union. The study focused on 1) seed potato production conditions 

and methods, especially haulm killing and sprout control, which are presumed to 

affect seed potato quality (Papers I and II) and 2) propagation methods used prior 

to seed potato production (i.e. micro-minituber production) to influence the 

propagation efficiency and general cost-effectiveness of potato production 

(Papers III and IV). 
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Paper I: We studied the sprouting management strategies required in seed 

potato production areas in northern Finland, where storage lasts several months 

and the growing season is short. The hypothesis was that management strategies 

might differ between cultivars with differing maturing properties. Therefore, the 

study focused on the effects of haulm killing as a response to temperature 

accumulation, and the role of GA in sprouting control on early (Fambo) and 

middle-late (Van Gogh) maturing cultivars of seed potatoes. 

Paper II: We hypothesized that the haulm killing methods used in seed potato 

production along with the timing of haulm killing may affect the crop and quality 

characteristics of seed potatoes. The effects of the chemicals used in haulm 

killing, and the effect of haulm killing methods on seed potato quality as 

compared to naturally senesced seed potatoes were studied.  

Papers III and IV: The aim was to investigate and compare different new 

propagation technologies to accelerate and enhance the growing phase of first-

generation tubers as cost-effectively and productively as possible. Thus, we 

studied microtuber production using a novel Liquid-Lab bioreactor production 

method (III) and minituber production implemented using the hydroponic method 

(IV).  
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2 Materials and methods 

The materials and methods used are described in brief below. Detailed 

descriptions are presented in the original papers (I-IV).  

2.1 Seed potato history 

The seed potatoes used in the studies (I, II) were produced in the Tyrnävä-

Liminka High Grade Area (64°N, 25°E). The seed potato materials were produced 

in field experiments and factors related to soil conditions, the production method 

used and the production conditions were taken into consideration in the study. 

Cultivars were selected for field experiments based on how widely used the 

cultivars are and on differences in early-late senescence. In the study on the 

effects of production history (haulm killing, gibberellic acid) (paper I), the 

cultivars used were the early cultivar Fambo and the middle-late Van Gogh. In the 

comparative study of haulm killing methods (paper II), the cultivar used was the 

middle-late Matilda.  

2.1.1 Timing of haulm killing 

The haulm killing was carried out 50, 75 and 95 days after planting (DAP). The 

mechanical and mechanical-chemical haulm killing methods were used; natural 

haulm senescence was used as the control. Mechanical-chemical haulm killing 

was carried out by first crushing the haulm to a height of 20–30 cm, and by 

spraying it with a haulm-destroying chemical two days after crushing. In addition, 

the temperature sums accumulated in the seed potatoes were recorded at different 

haulm killing times. The temperature sums were collected from automatic 

observation stations located in the production areas. 

Harvesting was conducted ten days after haulm killing. The tubers were 

stored temporarily at +15 °C until the last experimental plot was harvested, and 

the total harvest from all plots was transferred to cold storage (+4 °C, relative 

humidity 90%). The harvested tubers were analysed for nutrient content, weight, 

starch content, tuber size distribution, and external quality. Tubers 30–40 mm in 

size were numbered and placed in egg cartons in the storage facility for sprout 

control and carry-over testing. After 25 weeks of cold storage (+4 °C) and three 

weeks of pre-sprouting at +14 °C, the seed potatoes were transferred to a grow 

tunnel for carry-over testing (paper I). The emergence dates of each individual 
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plant were noted and the developmental stages observed. The number and fresh 

and dry weight of the stems and roots and the number, fresh weight, starch 

content and external quality of the tubers were assessed individually.  

2.1.2 Method of haulm killing 

The effects of the haulm killing methods on haulm killing effectiveness and the 

external quality of the seed potatoes were studied (paper II). Haulm killing was 

carried out based on the size of the developing tubers in the tuber nest, i.e. when 

no more than 5% of the crop tubers were over 50 mm in size, which follows the 

general seed potato production practice.  

Both mechanical and mechanical-chemical haulm killing methods were used, 

and natural haulm senescence was the control. In mechanical-chemical haulm 

killing, the efficiency of two different chemicals (diquat dibromide and 

carfentrazone-ethyl) were compared. The efficiency of chemical haulm killing 

was observed as browning of the green parts of the foliage on a 0–100% scale at 

3, 7, 14 and 21 days after the chemical was sprayed (Paper I) and 10 days after 

haulm killing (Paper II). Plant re-growth was assessed on a scale of 0–100 (0=no 

growth, 100=growth in each plant). 

Harvesting was carried out 21–26 days after the haulm killing depending on 

the year (Paper II). Yields were weighed and graded (<35 mm, 35–55 mm, 55–70 

mm and >70 mm). External quality was assessed visually with damages divided 

into the following categories: damage caused by disease (healthy 1, damage types 

2–5; scab (Streptomyces scabies), black scurf (Rhizoctonia solani), soft rot 

(Pectobacterium carotovora ssp. carotovora), black leg (Pectobacterium 
carotovora ssp. atroseptica, Dickeya solani), other fungal (Fusarium sulphureum 
F. solani, Phoma foveata, Phytophthora infestans) or bacterial diseases 

(Phytophthora erythroseptica, Pythium ultimum). Damages due to physiological 

or other causes (damage categories 6–10); turgor or growth cracks, misshapes, 

greenings, black spots, hollow hearts, internal necrosis, other damage. As an 

additional definition of external quality, the quantity of black scurf was observed 

separately in each tuber as a percentage of tuber surface.  

2.1.3 Gibberellic acid treatment 

The effect of the plant hormone gibberellins (GA) on seed potato sprout 

development and yielding capacity was examined by immersing seed potatoes 
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taken from cold storage in two concentrations (100 mM and 400 mM) of 

gibberellic acid solution, water was as the control treatment. After these 

treatments, the seed potatoes were allowed to sprout and the number of sprouts 

was counted three times during the sprouting period. After cultivating seed 

potatoes in a greenhouse, at harvest, the number and weight of stems and tubers 

were determined individually plant by plant.  

2.2 Micro- and minituber production technologies 

The microtuber production-technology studies were carried out in a laboratory 

(paper III) and minituber production-technology in growth rooms (paper IV). The 

cultures in the Liquid LabTM (L-L) system (paper III) were illuminated with 22–

70 lmol m−2s−1 at room (20 °C) temperature. The stem elongation phase was 

carried out over a 16h photoperiod, and for induction and growth of microtubers, 

short-day conditions (10h light/14h dark) were applied. In the hydroponic system 

(paper IV) the light illumination was scaled for 2383–2509 μmol m−2s−1, and 

short daytime light conditions were implemented with a 14h (07:00 a.m.–09:00 

p.m.) /8h (10:00 p.m.–06:00 a.m.) day/night illumination. Growth room 

temperatures were adjusted to 20±2 °C for daytime and 14±2 °C for the night 

period, air humidity was adjusted to 60–80%.  

2.2.1 Liquid LabTM Rocker system 

The cultivars used in the Liquid LabTM (L-L) Rocker study included the early-

maturing Timo, the middle Velox, the middle-late Van Gogh and the late Asterix. 

The stock plants of the cultivars were regularly subcultured to obtain an 

appropriate number of shoots for L-L cultivation. For shoot growing and 

microtuber induction, thin-film cultivations were performed in the L-L system. 

The L-L vessels were equipped with microporous patches to allow gas exchange. 

Folded cotton cloth was placed on the bottom of the vessels (Fig. 3). The L-L 

cultivations were performed using a liquid MS medium with a sucrose 

concentration of 2% (w/v) for the stem elongation phase, and with 8% (w/v) 

sucrose for the microtuber induction and growth phase.  

The L-L rocker was adjusted to move liquid from one side to the other 

(regular pitch) once per hour in the stem elongation phase, and once every 2 min 

in the microtuber induction phase. The stem elongation phase in the L-L vessels 

varied between 4–5 weeks depending on the potato cultivar and its growth rate. 
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Microtuber induction periods of 8 weeks (short cultivation time) or 10–11 weeks 

(prolonged cultivation time) were tested. After the complete culture period in the 

L-L system, the microtubers were collected and divided into five classes primarily 

by weight. The five classes were >1.00 g, 0.99–0.50 g, 0.49–0.20 g, <0.20 g.  

Fig. 3. Liquid LabTM Rocker (L-L) system used for microtuber production of potato. The 

L-L system carrying vessels with potato explants (photo T. Kämäräinen-Karppinen). 

2.2.2 Hydro Crop system 

In the Hydro Crop system (HCS), the cultivars included the middle Desiree, the 

middle-late Van Gogh and the late Asterix. The roots of the microplantlets of 

cultivars grown on a regular semisolid MS medium were washed and the plants 

were transferred to hardening conditions. The hydroponic production system 
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consisted of a microplantlet hardening table and cultivation tables with growing 

trays. After 13 hardening days, the microplants were transferred to cultivation 

tables. In the hydroponic system, the plants are cultivated in growing trays; the 

roots are in contact with the cloth at the bottom of the tray and the cloth ensures 

uniform distribution of nutrient solution throughout the tray. The shoots of the 

microplantlets grow above a plastic sheet and the roots and the tubers develop 

between the cloth and the plastic sheet (Fig. 4.). The nutrient solutions recirculate 

via a filtersystem in the trays. Three different nutrient solutions were used in the 

circulation system depending on the plant developmental stage. During the 

microplantlet rooting phase and continuing until the initiation of tuber formation, 

nutrient solution 1 was used. At the initial phase of tuber formation, nutrient 

solution 2 was in the nutrient circulation. Solution 2 was then replaced by solution 

3 during yielding. The nutrient solutions used were developed for hydroponic 

production. Hydroponic production was compared to a conventional minituber 

production method, and for this reason, microplantlets were also planted in a peat-

based growing medium. Plant development and tuber formation were observed, 

and tubers were collected and divided into size classes of <20 and >20 mm. The 

dry matter and nutrient contents of leaf and tuber samples were analysed. After 

three months of cold storage (+4 °C) minitubers sized 10–-20 mm of the cultivars 

Van Gogh and Desiree were planted in a greenhouse for carry-over study. The 

emergence dates and the developmental stages were observed and at harvest, the 

number of stems, the number and weight of the tubers and the external quality of 

the tubers were assessed individually.  

Fig. 4. Hydro Crop system (HCS) used for minituber production of potato. The HCS 

system carrying trays with potato plants (photo E. Virtanen). 
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2.3 Statistical analyses 

The statistical analyses were conducted using the Mixed procedure of the SAS 

9.2/SAS Enterprise Guide 4.3 (SAS Institute Inc., Cary, NC, USA) program, 

using a variance analysis model in compliance with the experimental model 

design (papers I, II, IV). In the study III analysis of variance (ANOVA, SPSS 

vers. 16.0 for Windows), two independent samples t-tests and a Bonferroni test 

were conducted. 
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3 Results and discussion 

3.1 Seed potato history 

Northern production conditions (temperature accumulation during the growing 

season, short growing season, long periods of daylight, and haulm killing), 

storage conditions (pre-storage 2 weeks +15 °C, cold storage 25 weeks +4 °C) 

and pre-sprouting (2 weeks +14 °C) factors affected the growth and yielding 

capacity of the seed potatoes. The sprouting efficiency of cultivars Fambo and 

Van Gogh differed after 20 and 25 weeks in the cold storage study. The early 

cultivar Fambo required only three weeks of sprouting to produce the maximum 

number of sprouts per potato eye (%), while Van Gogh required a longer period 

(paper I, figure 1.). According to Delaplace et al. (2008b), only one sprout 

develops in physiologically young seed potatoes, whereas several sprouts develop 

in older ones in which apical dominance no longer occurs. 

3.1.1 Timing of haulm killing is important 

Different haulm killing times (50, 75, 95 DAP) related to temperature 

accumulation sums did not result in any significant differences in the number of 

sprouts after three weeks of pre-sprouting. After production, 25 weeks of storage 

and three weeks of pre-sprouting, the seed potatoes accumulated total temperature 

sums of 3,198 °C (50 DAP), 3,284 °C (75 DAP) and 3,336 °C (95 DAP). Haulm 

killing affected the emergence of cultivars Fambo and Van Gogh as carry-over. 

Seed potatoes whose haulms were destroyed three weeks after flowering (75 

DAP) emerged fastest, whereas those whose haulms senesced naturally until 

harvest (95 DAP) or were destroyed at the time of flowering (50 DAP) emerged 

more slowly. With regard to emergence rate, no significant difference was 

observed between the cultivars. The time of haulm killing in seed potato 

production has not previously been observed to have a carry-over effect on the 

emergence rate of seed potatoes as demonstrated by our study (paper I).  

Haulm killing also affected the root and stem bulk produced. The 

physiologically older the seed potato, the larger the root and stem bulk at 95 days 

after planting. Root and stem bulk production was lowest in seed potatoes whose 

haulm had been destroyed at the time of flowering. The cultivars also differed 

significantly with regard to root and stem bulk, with Van Gogh being the most 
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productive. Naturally matured seed potatoes showed physiological behaviour 

similar to old seed potato. In most previous studies, older seed potatoes have 

produced several main stems (Iritani & Weller 1987; Knowles & Knowles 2006), 

whereas in the studies by Ezekiel (2004), seed potato age had no influence on 

stem number. The temperature sum accumulation increases the number of stems 

in seed potato (Bodlaender & Marinus 1987, Jenkins et al. 1993), whereas 

growing season temperature and daylength do not influence the number of seed 

potato stems or bulk stems (Johansen et al. 2002, Johansen & Nilsen 2004). 

Northern origin and daylength also do not influence yield capacity (Ezekiel 1997, 

Johansen et al. 2002, Knowles & Knowles 2006, Johansen et al. 2008). In the 

present study, haulm killing in seed potato production had no carry-over effects 

on yield, size or number of tubers. Thus the results of the present study are 

consistent also with Wurr et al. (2001).  

3.1.2 Methods of haulm killing work well 

In the study of haulm killing methods (paper II), haulm killing was conducted 

when no more than 5% of the tubers were over 50 mm in size, and the time 

between destruction and harvest (21–26 days) was similar to seed potato 

production practice. Mechanical-chemical haulm killing was effective, destroying 

the haulm completely in two weeks (paper II, Figure 1). Of the herbicides, diquat 

dibromide (200 g/l) acted faster than carfentrazone ethyl (60 g/l). The differences 

in efficiency of the chemicals used for haulm killing are generally minor. In 

earlier studies diquat was also found to have a slightly more rapid effect than 

other chemicals (Ivany 2003). Mechanical haulm killing also worked well.  

However, when haulm killing was used to regulate tuber size in short 

growing-season production conditions, in many cases the haulm had to be 

destroyed while still completely green and capable of photosynthesis. Earlier 

studies have underlined that in order to reach adequate efficiency, more chemicals 

are needed to destroy vital foliage than to destroy more matured foliage (van 

Evert et al. 2012). To keep the use of haulm killing chemicals at a reasonable 

level, additional tuber growth and photosynthesis can be efficiently interrupted by 

means of mechanical-chemical haulm killing.  

However, when haulm killing was applied to unsenesced foliage, our study 

showed re-growth. Re-growth and reformation of photosynthetic capacity 

manifested in one year as increased yield levels following mechanical haulm 

killing, as compared to mechanical-chemical haulm killing. The results were 
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contrary to the studies of Waterer (2007) in which the yield levels after 

mechanical haulm crushing were lower compared to yield levels after 

mechanical-chemical haulm crushing. Compared to other haulm killing methods, 

re-growth was least following haulm pulling (Misener & Everett 1981, Halderson 

et al. 1988) because disconnecting foliage from the roots leads to instant cessation 

of phloem transport and interruption of growth (Tiessen et al. 2002). After haulm 

killing, previously synthesized metabolites may increase in the still green stems 

and in the remaining bottom leaves (Halderson et al. 1988) and growth-

stimulating hormones have an opportunity to exert their effect on re-growth 

(Tiessen et al. 2002). Regardless of the method used, haulm killing is most 

effective if carried out when the haulm has already started to senesce naturally 

(van Evert et al. 2012).  

As the control, naturally senesced haulm produced the largest yield (40.3 

t/ha) and the tuber starch content (17.2%) reached the level typical of the cultivar 

(paper II, Figure 2). On average, mechanical haulm killing affected yield 

quantities and starch contents in the same way as mechanical-chemical haulm 

killing. At the annual level, the variance was such that during the first year, both 

the yield quantity (31.4 t/ha) and starch content (14.8%) were higher in 

mechanical haulm killing than in mechanical-chemical haulm killing. During the 

other years, there were no significant differences. The average mechanical-

chemical yield level was 29.2 t/ha and starch content varied between 12.3–15.8%. 

The smallest <35 mm part, 7% of the total yield, was produced by the control 

(natural senescence). The <35 mm size fraction was 17% in mechanical haulm 

killing and 20% in mechanical-chemical haulm killing. The 35–55 mm fraction 

was 71% in the control (natural senescence), 78% in mechanical haulm killing 

and 76% on average in mechanical-chemical haulm killing. Only naturally 

senesced haulm produced >70 mm tubers (6%).  

The study showed that it is possible to regulate tuber size distribution by 

means of haulm killing. This is, however, achieved at the cost of yield quantity 

and starch content. As a method of controlling tuber size, haulm killing is easy to 

implement, and >70% of the tubers were distributed in the preferred size in our 

study. According to Struik & Wiersema (1999) and Kumar et al. 2009, the lower 

starch content and yield quantity produced by haulm killing, as compared to the 

yields produced by natural senescence, are the natural result of haulm killing 

carried out at an early stage. When haulm killing is used in seed potato production 

to achieve optimal tuber size distribution for commercial purposes, the 

physiological state of seed potatoes cannot be predicted. In addition to 
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physiological state, the relatively low starch content of seed potatoes to which 

haulm killing is applied, may affect their vitality (Sabba et al. 2007) to produce 

new sprouts and roots during the next growing season. 

There was abundant black scurf in the potato tubers (paper II, figure 3). The 

quantity of black scurf varied between 0–60% by treatments and there was also 

variance between different years of the study. In the first two years mechanical-

chemical haulm killing increased the occurrence of black scurf (30% on average) 

compared to other treatments. Mechanical haulm killing also increased the 

occurrence of black scurf (27% on average) compared to naturally senesced 

plants.  

A 10–14-day interval between haulm killing and harvest is considered 

adequate in terms of periderm maturity, depending on the cultivar and the 

conditions (Waterer 2007). In northern seed potato production conditions, haulm 

killing is applied to immature plants and harvest is delayed by more than three 

weeks after haulm killing, weather conditions permitting. Tuber crops are known 

to be exposed to infection by black scurf if the haulm is destroyed while the root 

system is still active and if the time between haulm killing and harvest is 

prolonged (Tsror 2010). Black scurf caused by Rhizoctonia solani (Kühn AG-3) 

leads to substantial economic losses (Lootsma & Scholte 1996), and in seed 

potato production, it may be an obstacle to certification. In the present study, 

especially mechanical-chemical haulm killing increased black scurf. The results 

are similar to those of Dijst (1988), which showed that chemical haulm killing 

and stem cutting, along with a prolonged period between haulm killing and 

harvest, stimulated the formation of black scurf. According to Dijst (1988), water-

insoluble components enable the formation of scleroses on the tuber surfaces, and 

the changes taking place in the relationship of inhibiting and stimulating factors 

after haulm killing could influence sclerosis formation. In addition, the 

colonization of R. solani on the ground before harvest is a factor that significantly 

influences the occurrence of black scurf in tubers. Weather conditions are also 

significant in terms of the occurrence of R. solani, and wet and low temperatures 

are in its favour (Lootsma & Scholte 1996). In the present study, black scurf 

occurrence in tubers was the lowest after a dry growing season and highest after 

cool and moist conditions.  
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3.1.3 Gibberellic acid is effective in interrupting dormancy 

Gibberellic acid (GA) treatments did not result in any significant differences in 

the number of sprouts after three weeks of pre-sprouting. GA treatments increased 

the number of stems in both cultivars, with a greater effect in Fambo than in Van 

Gogh when compared to the control treatment, even though the treatments did not 

affect the number of sprouts. The GA treatments had a negative effect on crop 

yield (g/plant), in particular when the cultivar Fambo was treated with 400 mM 

GA. Correspondingly, a 100 mM GA concentration increased the number of 

tubers in Fambo, in comparison to water and 400 mM GA treatment (paper I, 

figure 2).  

Salimi et al. (2010) have reported GA to be effective in interrupting the 

dormancy of minitubers. However, the sprouts that developed in the GA-treated 

tubers were easily broken during handling and planting. Other sprouting 

inhibitors (ethyle chlorothydrin, ethanol, CIPC, DMN) are also effective in 

interrupting dormancy or sprouting management (Beaver et al. 2003, Bajji et al. 
2007, Teper-Bamnolker et al. 2010, 2012, Saraiva & Rodrigues 2011, Daniels-

Lake 2013), but the effects of treatments on seed potatoes have not been studied. 

Alexopoulos et al. (2008) used GA at a concentration of 1–50 mg/l and found that 

treatment duration appears to be more important than GA concentration. In their 

sprouting management studies, Pruski et al. (2006) discovered that treatment of 

seed potatoes with ethylene during storage resulted in higher numbers of sprouts 

and tubers, but did not result in higher crop yield. In the present study, GA 

treatments were in line with the results of Pruski et al. (2006), i.e. 100 mM GA 

concentration increased the number of tubers in Fambo but did not affect crop 

yield.  

3.2 Micro- and minituber production technologies 

3.2.1 Liquid LabTM Rocker system for microtubers 

All cultures of the Liquid LabTM Rocker system (L-L system) were carried out at 

room temperature and without contamination problems. Each cultivar (Asterix, 

Timo, Van Gogh, Velox) formed microtubers in the L-L -system. The mean 

number of microtubers per vessel (50 explants) varied between 30 (Asterix in 8-

week tuber induction) and 75 microtubers (Velox in 11-week tuber induction). 

The majority (63%) of microtubers were of sufficient size and weight (above 200 
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mg) for further storage at dormancy. Velox yielded the highest number of 

microtubers with cultivation capacity. As a result of prolonged 2–3 week 

microtuber induction, more microtubers with potential for cultivation were 

obtained per cultivar, with the exception of Van Gogh. Nevertheless, the mean 

weight of the Van Gogh microtubers was significantly higher after prolonged 

microtuber induction (0.67g) compared to short induction (0.51 g). Thus, the 

microtuber yield was in accordance with that obtained by Nhut et al. (2006), but 

clearly less than reported by Jiménez et al. (1999) and Akita and Takayama 

(1994) (Paper III, Table 1). However, the amount of nutrient medium per explant 

in our experiment was lower in the tuber induction phase than that used by 

Jiménez et al. (1999) and Akita & Takayama (1994), which could explain the 

difference. The overall microtuber production time in the L-L system was 

reasonably short compared to other liquid cultivation techniques.  

Several types of semisolid media in various cultivation vessels have been 

used for microtuber production of potato in the past (Donnelly et al. 2003). In 

addition, liquid cultures (Estrada et al. 1986) together with different temporary 

immersion techniques (Piao et al. 2003), such as ebb and flow in glass fermenters 

(Akita & Takayama 1994), the RitaTM system (Teisson & Alvard 1999), the twin-

flask system (Jiménez et al. 1999) and nutrient mist bioreactor (Hao et al. 1998), 

as well as plastic bag cultivations (Grigoriadou & Leventakis 2003) have been 

studied for production of potato microtubers. Most of these techniques, however, 

involve the use of relatively high-cost machinery and compressed air to aerate the 

cultures. In the L-L bioreactor, porous patches attached to each side of the vessel 

permit gas exchange, which at least partially may eliminate the effect of ethylene. 

One advantage of the L-L system over rotatory shakers is that the plants can be 

grown in large vessels, which reduces mechanical stresses that can cause growth 

abnormalities. Furthermore, mechanical stress may generate the production of 

ethylene, which has a negative influence on the growth of potato plants (Zobayed 

et al. 2001). Our experiments were carried out without any growth regulators or 

retardants to enhance microtuber formation (Harvey et al. 1991) or to increase 

microtuber number and weight (Piao et al. 2003).  

3.2.2 Hydro Crop system for minitubers 

The production of minitubers in the Hydro Crop system (HCS) succeeds in indoor 

conditions with the cultivars Desiree, Van Gogh and Asterix. Within 37 days from 

planting on the trays, Desiree and Van Gogh foliage covered the entire tray. Tuber 
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formation started after 41 days of cultivation in the Desiree and Van Gogh 

cultivars. Asterix foliage development was almost 3 weeks behind Van Gogh and 

Desiree. Asterix tuber formation started 62 days after the microplantlet phase. 

When plants were cultivated in growth rooms in a peat-based growing medium, 

foliage development occurred almost 3 weeks later and also tuber formation 

started approximately 18 days later in all cultivars compared to hydroponic 

production.  

Hydroponically-grown tubers were harvested 96 days after planting on the 

hardening table. The minituber yield was 4.5 per plant for the cultivar Desiree, 

7.5 for Van Gogh and 4.0 for Asterix. The minitubers were graded in the 

following size categories <20 mm and >20 mm; 56.1–58.4% of the Desiree and 

Van Gogh cultivars and 95.3% of the Asterix cultivar were in the <20 mm size 

category. The average weight of the minitubers was 11 g for the cultivar Desiree, 

13 g for Van Gogh and 6 g for Asterix (paper IV, table 1). In peat-based 

production, Desiree produced 4.4 minitubers per plant, Van Gogh 4.6 and Asterix 

3.3. The peat-produced minitubers were all <20 mm in size and weighed 5–9 g. 

The number of tubers per plant in hydroponics was higher than in peat-based 

production. Our results are similar to Corrêa et al. (2008). 

Tuber formation of the Desiree and Van Gogh cultivars began similarly to 

that described by Chang et al. (2012) (within 30–65 days, depending on the 

cultivar and the production technique). Yields (4.5–7.5 per plant) are comparable 

to the hydroponic production levels obtained by Ritter et al. (2001) and Novella et 
al. (2008; also with regard to tuber weight (11–13 g). Tuber formation of the 

cultivar Asterix (63 days) was considerably slower than that of Desiree or Van 

Gogh, and also the average weight of the tubers was lower (6 g). According to 

Chang et al. (2008), hydroponic production techniques may not be favourable 

with late-maturing cultivars because the nutrient solutions may retard root and 

stolon growth.  

There were no significant differences in the nutrient concentrations of leaf or 

tuber samples between hydroponic potato production and potatoes cultivated in a 

peat-based growing medium. Calcium concentrations were slightly (not 

significantly) higher in hydroponically-produced tubers compared to tubers 

produced using a peat-based growing medium. Correspondingly, manganese and 

iron concentrations were slightly (not significantly) higher in peat-produced 

tubers. In the carry-over study conventionally produced minitubers emerged 

faster, and performed better. The carry-over effects indicate that the cultivars used 

should be studied further in order to optimize minitubers yielding.  



42 

The heat produced by the high-pressure sodium lamps could not be controlled 

in the present study with the air conditioning equipment used. This was 

particularly evident in the variation in day and night temperatures from ca. 20–

24 °C by day and 17–19 °C by night. However, this variation did not affect tuber 

formation, but but the total yields of cultivars could be higher. According to 

Vreugdenhil et al. (2007), long periods of daylight and high temperatures inhibit 

tuber formation and high night-time temperatures are more damaging than high 

daytime temperatures.  
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4 Conclusions 

The results show that effective management strategies and methods for seed 

potato production are especially important in conditions where potato storage 

lasts several months and the growing season is short. Even though the metabolism 

of seed potatoes (dormancy, sprouting management) can be controlled, the effects 

of production history have to be predicted and managed. In this study, the effect 

of northern production conditions indicate that the tubers behaved as 

physiologically young seed potatoes regardless of cultivar properties or haulm 

killing. The physiological state of tubers designated as seed potatoes needs to be 

better recognized in order to optimize pre-sprouting and the use of sprouting 

inhibitors. In the case of Fambo, gibberellic acid treatment influenced the 

characteristics of seed potatoes produced in the present study, revealing a 

potential way to improve seed potato production in northern conditions. 

The results of this study show that in seed potato production the timing of 

haulm killing should not be determined only by tuber size, even if the haulm 

killing methods used work effectively, as the most lucrative part of the potato 

yield in terms of tuber size may be lost due to plant disease. More research is 

needed to optimize the timing and methods of haulm killing to suppress the 

different soil- and seed-borne diseases. The results provide significant new 

insights regarding haulm killing in northern latitudes (65º40ºN), seed potato 

production of the cultivar Matilda, and potential haulm killing methods for use 

against plant diseases (e.g. black scurf).  

Cost-effective and high-yield production of the first tuber generations (micro- 

or minitubers) offers several benefits for the seed potato industry. In this study, 

novel, efficient and rapid systems for seed potato production were compared. The 

Liquid LabTM Rocker is liquid culture technique for mass propagation. Liquid 

cultures offer several advantages over cultivation on semi-solid media by which 

microtubers are generally produced. In the present study, the replacement of 

liquid medium in 30 Liquid-Lab vessels, containing altogether 1 500 shoots, was 

carried out within one working day. The Liquid LabTM system saves time as, 

dozens of explants can be made at once. The tuber formation was induced by 

alteration of sucrose concentration combined with change in light regime for 

short-day conditions. Each cultivar (Asterix, Timo, Van Gogh, Velox) was able to 

form microtubers in the system. The mean number of microtubers per vessel (50 

explants) varied between 30–75. In addition, the L-L machinery contains a 

lighting system, which together with the above-mentioned modifications enables 
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its use also in outside laboratory facilities. In conclusion, the L-L rocker system 

turned out to be very suitable for potato microtuber production. 

In the northern conditions the environmental factors limit the utilization of 

illumination and temperature in conventional minituber production in 

greenhouses. Thus, soilless and indoor production techniques provide an 

alternative for minituber production. In the present study we proved that indoors 

hydroponic production system and artificial simulation (light, temperature, 

humidity) of the production environment enabled minituber production. Yields 

(4.5–7.5 per plant) were comparable to the hydroponic production levels obtained 

by greenhouses. Tuber formation of the cultivars Desiree, Van Gogh and Asterix 

differed, Asterix was considerably slower. As a comparison, minitubers from in 

vitro plantlets were grown in a peat-based growing medium and the yield of 

minitubers were higher in Hydro Crop System. However, in the carry-over study 

conventionally produced minitubers emerged faster, and performed better. The 

carry-over effects indicate that the cultivars used should be studied further in 

order to optimize the minituber production methods. 

Our objective of seed potato studies was not only to use technology to 

increase the effectiveness and speed of the production chain, but also to gain more 

knowledge of the behaviour of the cultivars propagated by these techniques. This 

is, however, a good start for more in-depth studies at cultivar level to recognize 

the best cultivar / propagation technique combinations in order to lead cost 

effective high tuber yields.  
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