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The objective is to examine sources of productivity change on Finnish dairy farms in 
the 1990s. The decomposition of productivity change into technical change and 
technical efficiency change is widely recognized but it neglects the price and scale 
effects. The generalized decompositions incorporating all four components are 
calculated in a sample of Finnish dairy farms for 1989-2000. The period is of interest 
because of the drastic change in agricultural policy when Finland joined the European 
Union (EU) in 1995. The results show that productivity growth has been on average 
low, approximately 1% per year. Technical change is identified to be the most important 
source of productivity growth. Technical efficiency change does not vary systematically 
over time. The role of scale is also minor in productivity change. Cumulative price 
effects are small but considerable price distortions could be observed at the time of EU 
accession. In the detailed analysis of efficiency, the extended Kolmogorov-Smirnov 
tests of first and second order stochastic dominance in distribution of inefficiency were 
employed. Partial control for time and many farm-specific attributes, such as size, 
location and production factor intensities by comparing group cells were offered. A 
number of strong second order rankings between groups was found. 
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 �������� Malmquist index; technical efficiency; technical change; scale effect; price 
effect; SFA; stochastic dominance, bootstrap, inefficiency distribution, testing. 
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1. Introduction 
In measuring productivity, a ratio between output(s) and input(s) is computed. In the 
case of single output and single input, this is trivial but when the number of inputs and 
outputs increases, a method of aggregation is needed to compute productivity. In the 
latter case, we could employ some index numbers like the Fisher (1922) ideal or 
Törnqvist (1936) superlative productivity indices (see Diewert and Nakamura 2003 for 
a detailed discussion). Both of these indices require price and quantity data but no 
modelling and estimation are needed. In addition, assumptions about technology and 
behaviour of the decision-maker have to be made. Indices like the Fisher and Törnqvist 
indices can be used to show whether the quantity index of outputs changes at a different 
rate compared to the quantity index of inputs, i.e. to show the rate of productivity 
change. The problem is that we cannot separate the sources of productivity change in 
these indices (Kumbhakar and Lovell 2000). 

Productivity measures may encompass several components the identification and 
quantification of which are crucial to different economic decision makings. If we 
assume constant returns to scale and efficiency of production, productivity growth 
equals technical change, i.e. the shift of production frontier (or production function). 
Technical change over time is realized as improvements in output-input relationship. In 
practice, it is possible that there exists increasing economies of scale1 such that 
proportional increase in output is more than corresponding proportional changes in 
inputs. Thus, technical change and the increase in farm size may be related. Technical 
change may also be biased towards some inputs so that the share of certain inputs (e.g. 
capital) increases compared to others (e.g. labour) over time. Output bias is also 
possible. In this case technical change, effects the efficient allocation of inputs and 
outputs. 

If we allow for technical inefficiency (and constant returns to scale) but assume 
allocative efficiency, then productivity growth equals the change in technical efficiency 
multiplied by the rate of technical change (Nishimizu and Page 1981). By the term 
technical efficiency, we follow Farrell’s (1957) definition of technical efficiency.2 If we 
allow for allocative inefficiency, the farm may be technically efficient lying on the 
isoquant but it is not producing the output by minimum cost (or producing maximum 
revenue by given inputs). Inefficiency in allocation of inputs effects the cost shares 
(return shares) which are often utilized in the aggregation of inputs and outputs to 
construct the quantity indices.  

In principle, we can decompose the productivity change to four components: technical 
change, technical efficiency change, scale effect and price (allocative) effect.  

In the case of several inputs and outputs, it is possible to apply the Malmquist 
productivity index (1953) to measure total factor productivity. The Malmquist index 
serves also our purpose in identifying various sources of productivity change since 

                                                           
1  If we are talking about economies of size, the minimum cost combination of inputs is dependent on 

the size of operation. 
2  Efficiency is measured the ratio between observed and potential output using the best practice 

technology as reference. The ratio indicates possible equiproportional increase in outputs keeping 
inputs constant or equiproportional decrease in inputs keeping outputs constant by using frontier 
technology. 
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several decompositions for this index have been proposed (Färe et al. 1994, Orea 2002, 
Lovell 2003). This index has the advantage that it does not require price information or 
behavioural assumptions, however a representation of the production technology is 
needed in the form of distance functions, which is applicable to cases with multiple 
inputs and outputs. In case of only single output (or input), the analysis is similar to 
production function analysis. The index can be calculated or estimated using 
nonparametric or econometric techniques3. The distance function applications were at 
first almost entirely based on nonparametric data envelopment analysis (DEA) models. 
Recently several authors have developed parametric counterparts for those distance 
functions (see e.g. Coelli et al. 1999 and Brümmer et al. 2002 and references there). 

The advantage of the nonparametric techniques is the minimum requirements needed 
about the technology for the calculation of distance functions but on the other hand, 
only an econometric approach may allow for stochastic circumstances affecting 
production and productivity. On the other hand, econometric techniques require 
assumptions to be made about the functional form, which despite limited testing 
possibilities may not be correctly chosen. 

In earlier Finnish studies of productivity change, both econometric estimation (Hemilä 
1982, Ylätalo 1987, Ryhänen 1994, Sipiläinen and Ryhänen 2002) and index numbers 
(Ihamuotila 1972, Sims 1994, Myyrä and Pietola 1999) have been applied. The majority 
of these studies is relatively old. One exception is Myyrä’s and Pietola’s (1999) 
research in which they used data covering almost the entire 1990s and applying index 
number techniques. Sipiläinen (2003) has studied the productivity growth on dairy and 
cereal farms applying nonparametric methods and the Malmquist index. No recent 
research on Finnish data has been conducted applying up-to-date econometric 
techniques on productivity and efficiency analysis.  

The 1990s are a period of interest since Finland joined the European Union (EU) in the 
middle of the decade. When Finland became a member in the EU at the beginning of 
1995, there followed a fundamental change in national agricultural policy, resulting in 
drastically lower output prices as well as somewhat lower input prices.4 The immediate 
threat of a corresponding fall in agricultural income was softened by an increase in 
direct payments. A five-year transition period with decreasing support and a range of 
investment subsidies were applied to help farmers adjust to the changes following on 
EU membership. In addition, prior to membership, several restrictions on agricultural 
production were already introduced. Therefore, an evaluation of the effects of EU 
membership and restrictions imposed on agricultural production is highly desirable.  

The aim of this paper is to investigate the sources of productivity change by 
decomposing the Malmquist productivity index. This paper provides a detailed analysis 
of productivity changes for a sample of specialized Finnish dairy farms in the 1990s. 
We present a decomposition, which can recognize all essential productivity change 

                                                           
3  Important links between index number and econometric estimation techniques have been shown to 

exist. For instance, Nadiri (1970) showed that the underlying function for the Laspeyres total factor 
productivity (TFP) index is constant elasticity of substitution (CES) production function. Diewert 
(1976) also showed that the Törnqvist total factor productivity (TFP) index is exact for a linearly 
homogeneous translog function. Later, Diewert (1992) states that Fisher TFP index (geometric mean 
of Laspeyres and Paasche index) is exact for a flexible variable profit function.  

4  The cereal and beef prices were cut to half and even more. 
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effects like technical change (both neutral and non-neutral) and technical efficiency 
change, but also price effects. The latter may be important in restrictive production 
conditions (milk quotas, set-aside, etc.) and in cases of considerable regime changes 
(EU accession). Technical efficiency changes and factors affecting technical efficiency 
are also carefully tested. The efficiency is estimated both when data is measured per 
farm and per cow levels. We employ the extended Kolmogorov-Smirnov tests of first 
and second order stochastic dominance in distribution of inefficiency by controlling for 
the time period and several farm-specific attributes. This allows for the statistical 
comparison of the whole distribution rather than points of inefficiency. 

The structure of the paper is the following. First, in Section 2, we present the concept of 
productivity, in general, and the Malmquist productivity index, in particular, and 
introduce different ways to decompose the index. Then, we show how these indices can 
be calculated applying parametric distance functions. The data is described in Section 3. 
Empirical specification of the parametric distance function is outlined in Section 4. In 
Section 5, we discuss results from identification of the sources of productivity and the 
decomposition of the productivity index. The analysis of dominance in the distribution 
of inefficiency by various farm attributes is discussed. The final Section concludes. 

  

2. The Methodology 

In this paper, we apply econometric methods for measurement and analysis of total 
factor productivity (TFP). Let’s assume that the production technology can be presented 
using output set Y(x), which defines the set of output vectors My R+∈  that can be 
produced by an input vector Nx R+∈ . That is MY(x) {y R : x can produce y}+= ∈ . The 
output distance function can be defined as OD (x, y) min{ : y / Y(x)}= θ θ ∈ . DO(x,y) is 
non-decreasing, positively linearly homogenous and convex in y, and decreasing in x. 
The value of the distance function is less than or equal to one for all feasible output 
vectors. On the outer boundary of the production possibilities set, the value of DO(x,y) 
is one. Thus, the output distance function indicates the potential radial expansion of 
production to the frontier. Stochastic frontier production function analysis can be 
extended to stochastic output distance function analysis if there are several outputs. 
Assuming a translog specification and technical change represented by a time trend, it 
can be written as (Coelli et al. 1999, Fuentes et al. 2001): 

(1) 

ph h h
t t t t t t t
O i i 0 k ki kj ki ji m mi

k 1 k j 1 m 1

p p ph h
t t t t 2 t

mn mi ni km ki mi t tt kt ki
m n 1 k 1 m 1 k 1
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t

mt mi
m 1

1ln D (x , y ) ln x ln x ln x ln y2

1 1ln y ln y ln x ln y t t ln x t2 2

ln y t

= ≤ = =

≤ = = = =

=

= β + β + β + β
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�� �� �

�

 

where x:s are inputs, y:s outputs, t is time, β :s are coefficients to be estimated and DO 
is the output distance function. The symmetry of coefficients is also assumed. 

It is not possible to estimate the function in (1) in its current form unless the property of 
linear homogeneity in outputs is applied. The output distance function is by definition 



 4 

linearly homogenous in outputs. Dividing the outputs by one of the outputs imposes the 
linear homogeneity in outputs. This follows by the following constraints:  

(2)  
1 1 1 1

1; 0; 0 0
p p p p

m mn km mt
m m m m

andβ β β β
= = = =

= = = =� � � �   

Homogeneity in output implies that: 

(3)  ( , / ) ( , ) /t t t t t t t t
O i i mi O i i miD x y y D x y y=    

Transforming the variables in logarithms and rearranging the equation gives the translog 
functional form (TL is an abbreviation): 

(4)  ln ( , / , ; ) ln ( , )t t t t t t t
mi i i mi O i iy TL x y y t D x yβ− = − .    

Setting t
it O it itu ln D (x , y )=  and adding a stochastic error term, our presentation is similar 

to that of a parametric stochastic frontier with a decomposed error term: 

(5)  ln ( , / , ; )t t t t
mi i i mi it ity TL x y y t u vβ− = + +  

where itu  are time-varying inefficiency effects. The estimated parameters can now be 
used to construct the output oriented Malmquist productivity index for each production 
unit in the analysis. 

At early stages of development of the productivity analysis methodology, productivity 
change was considered identical with technological change. Technological change 
describes how the sets of feasible input-output combinations expand or contract. Later 
on, technical efficiency change has been invented as an important factor in productivity 
growth. When technological change is related to shifts of the frontier, efficiency change 
shows if the firm is getting closer to or further away from the frontier. The use of the 
Malmquist index enables us to combine these changes. However, according to Balk 
(2001, p. 160) there remain two problems: first, whether to use actual or artificial 
technology and secondly, how to take scale effect (scale efficiency) into account. The 
scale of production may affect the productivity (in the sense of output-input relation), 
and thus also the productivity changes, even if the firm operates on the frontier but in a 
different scale (or size). Therefore, we define also scale effect as a part of productivity 
change. 

In addition to changes in levels of inputs and outputs, in a multiple input multiple output 
case, input and output mixes may change over time. These changes may also affect 
productivity change. In this regards e.g. Kumbhakar and Lovell (2000) emphasize that 
also price or market effects should be taken into account when TFP changes are 
evaluated. 

In order to measure productivity change, time has to be incorporated. Let's denote t and 
t+1 two adjacent periods. Thus, t t tD (x , y ) refers to the evaluation of the firm's distance 
in the period t from the frontier of the same period. When evaluated against the 
technology of the period t, the Malmquist productivity index is: 

(6)  
t t 1 t 1

t
t t t

D (x , y )
M

D (x , y )

+ +

=   
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but, when evaluated against the technology of the period t+1 it is written as: 

(7)  
t 1 t 1 t 1

t 1
t 1 t t

D (x , y )
M

D (x , y )

+ + +
+

+= . 

However, the choice of the time period is arbitrary. Caves et al. (1982) presented that 
under the assumption of technical and allocative efficiency (s.t. translog functional 
form) productivity change is equal to a geometric mean of these two indices: 

(8)  

1
t t 1 t 1 t 1 t 1 t 1 2

t t t t 1 t t

D (x , y ) D (x , y )
M

D (x , y ) D (x , y )

+ + + + +

+

� �
= � �
� �

. 

Recently Orea (2002) suggested a generalized Malmquist productivity index. Starting 
from Diewert’s (1976) quadratic identity lemma he derived a natural logarithmic 
productivity index that can be defined as the difference of the weighted average rates of 
growth of outputs and inputs. The weights are output and (negative) input distance 
elasticities (Orea 2002, p. 10). After some rearrangements the index is written as 
follows: 

(9)
1 1

1 1 ln ( , , 1) ln ( , , )1
ln ln ( , , 1) ln ( , , )

2

t t t t
t t t t o o

o o o

D x y t D x y t
M D x y t D x y t

t t

+ +
+ + � �∂ + ∂

� �= + − − +� �� � ∂ ∂� �
. 

The first term in (9) corresponds to technical efficiency change and the second term to 
technical change. Structurally this corresponds to the traditional output-oriented 
Malmquist productivity index (Färe et al 1994): 

(10)  

1
t 1 t 1 t 1 t t 1 t 1 t t t 2
c c c

c t t t t 1 t 1 t 1 t 1 t t
c c c

D (x , y ) D (x , y ) D (x , y )
M

D (x , y ) D (x , y ) D (x , y )

+ + + + +

+ + + +

� �
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� �
.  

Thus lnMo is a parametric counterpart to Mc when the output-oriented distance function 
is translog but here the subscript c indicates that the frontier is defined under the 
assumption of constant returns to scale. The decomposition can be extended to allow 
also non-constant returns to scale. This is possible if scale effect will be taken into 
account.  

Starting from the ideas of Denny et al. (1981) Orea (2002) proposed a generalized 
output-oriented Malmquist productivity index where he aggregated growth in inputs by 
distance elasticity shares instead of distance elasticities: 

(11)  

1 1 1

1 1 1

ln ln

ln ( , , 1) ( , , )1
1 ( 1) 1 ( ) ln

2 ln ln

o o

t t t t tn n n
o o k

k k t
k k kk k k

G M

D x y t D x y t x
e t e t

x x x

+ + +

= = =

= +

� �� 	 � 	 � 	∂ + ∂− − ⋅ + + − − ⋅ ⋅� �
 � 
 � 
 �∂ ∂�  �  � � �
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where 
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(12) 
1

ln ( , , ) / ln
( )

ln ( , , ) / ln

t t
o k

k n t t
o kk

D x y t x
e t

D x y t x
=

∂ ∂=
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. 

The scale effect is determined by scale elasticities and changes in input quantities. The 
effect vanishes under constant returns to scale and/or constant values of inputs. In this 
case, the scale effect is defined without the concept of scale efficiency, which is Central 
for example for Balk’s (2001) method of decomposition. 

The scale effect presented by Orea (2002) is formally similar to that in the Brümmer et 
al. (2002) decomposition. The Brümmer et al. decomposition is actually an extension of 
Kumbhakar and Lovell (2000)’s production function approach to distance functions. 
Their decomposition of TFP growth includes in addition to the above mentioned effects 
also output price and input price effects. They are related to allocative effects. These 
allocative effects are derived from violations of the first-order conditions of profit 
maximization. As Brümmer et al. (2002) have stated these effects are not connected to 
the technology as technical change, technical efficiency change or scale effect. They 
claim that allocative effects are caused by market and behavioural conditions. In spite of 
this, they are components of technological productivity measure but connected to 
market. Formally their decomposition can be presented as follows: 

(13)  
1

1

1

1 1 1
1

1

ln ln

1
( ( 1) ) ( ( ) ln

2
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where 

(14) 
1
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Sk is the observed cost share of the input xk, (

1

k k
k n

k k
k

w x
S

w x
=

=
�

), Rm is the observed revenue 

share, ( 

1

m m
m q

m m
m

p y
R

p y
=

=
�

), p and w are the price vectors of inputs and outputs. 

According to Kumbhakar and Lovell (2000, p. 284), the allocative inefficiency 
component described above may represent either allocative inefficiency or scale 
inefficiency. 

 

3. The Data 

Our unbalanced panel data from 1989-2000 consist of 72 Finnish bookkeeping farms 
specialized in milk production. From 1992, the panel is complete. The panel includes, 
overall, some 812 observations over 12 years. The number of observations of a given 
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farm varies from 9 to 12. In 1989-1994, the sample farms were chosen following the 
principle that at least 60% of the sales return of the farm be generated from milk 
production in each year. Since 1995, the share has varied due to a considerable change 
in price relations but the target group has remained the same. This way, we were able to 
focus our analysis on farms, which had made a strategic choice for specialising in milk 
production. Thus, we could follow the changes of productivity in a relatively 
homogeneous group.  

The main reason for concentrating the analysis in specialised farms was that it was not 
possible to separate inputs used in milk production from those used jointly in other 
production lines. Keeping the share of other production small gives an opportunity to 
get a more detailed picture about the development in milk production. The disadvantage 
is that the number of farms in the analysis becomes relatively small. Naturally, dairy 
farms produce also products other than milk for sale. These products are mainly animal 
products. In addition to this, it is common for farms to produce most of their feed 
locally. The self-sufficiency in roughage is typically the minimum requirement. Arable 
farming is therefore an essential part of the Finnish dairy farming system.  

The Malmquist productivity index does not require data on input and output prices. 
However, prices are used to aggregate inputs and outputs to a smaller number. In our 
analysis, we apply two outputs: Milk output per farm (Ym) is measured as the quantity 
of fat-corrected milk produced within a year. Other output (Yo) covers outputs other 
than milk. The latter is measured in current values but deflated by respective indices to 
the fixed 1990-prices. Direct payments are excluded. The inputs used in the analysis 
include labour, land, material, and capital. Labour (L) and land (A) are measured in 
physical quantities, hours and hectares, while material (M) and capital (K) are measured 
in monetary values and transformed to fixed 1990-prices. The capital variable is an 
aggregate of machinery, building and animal capital. Machinery, buildings and animals 
(K) are measured as stock variables. Material input consists of purchased feed, 
fertilisers, energy and miscellaneous expenditures. The costs are measured in real 1990 
price level. Table 1 presents the descriptive statistics of the data set. 

 Table 1. Descriptive statistics, 812 observations. 

Variables Measure Mean Std dev Minimum Maximum 
Outputs:      
Milk (Ym) Litres 143,977 50,203 48,702 371,690 
Other outputs (Yo) � 17,039.29 10,569.43 105.96 80,680.25 
Inputs:      
Labour (L) Hours 5,129 1,316 2,143 11,459 
Land (A) Hectares 28.6 11.2 10.2 79.5 
Materials (M) � 38,230.46 16,529.51 4,928.58 130,903.19 
Capital (K) � 101,838.97 59,521.37 20,865.90 484,059.15 
Cows (C) Numbers 19 6 8 50 

 
Finnish farms are typically small. Table 1 shows that the mean arable land area of the 
sample farms was 28.6 hectares, with the number of cows being 19. Milk output was on 
average 144,000 litres. In 1990, milk output per farm has increased almost by 55% but 
the quantity of other outputs increased only slightly (Figure 1a). In fact, it decreased 
after EU accession. The fall is probably partially induced by the value changes in 
inventories and the need to use more animals for reproduction when the number of cows 
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was increased. Partially, this indicates that specialised dairy farms have become even 
more specialised in milk production.  

Milk output per farm started to grow more rapidly a couple of years before the Finnish 
EU accession in 1995 when milk quotas became tradable. Finland had introduced milk 
quotas in 1984. The quotas became an effective constraint for milk production slowing 
down structural development. Only administrative transfers of quotas were allowed. 
This involved partial transfer of the quota of farmers who stopped milk production to 
active producers. The quota system met its objective in preventing the increase in 
production and the total production decreased considerably. The quota system became 
more flexible in 1993-1994 when part of the quotas became tradable or could be leased 
among milk producers. 
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Milk Other Labour Land Material Capital
 

 Figure 1a. Development of mean inputs and outputs by average farm (1989 = 100).  
 
EU accession has speeded up the ceasing of milk production, but simultaneously 
investment aid has since 1996–1997 boosted the building and renovating of cowsheds 
on surviving farms. Milk output has increased faster than the number of cows per farm. 
The average number of cows per farm has increased by a little more than 30% from 17 
to almost 23 cows. Simultaneously, milk yield per cow has increased by 17%. The 
changes in output measured in per unit of cow are presented in Figure 1b.  

In relative terms, capital stock per farm has increased more rapidly than milk output, 
73.4% (see Figure 1a). Investment in agriculture was at the record high level in 1989-
1990. Since then, investment activity has dropped and was at its lowest in the middle of 
1990s, at the time of the Finnish EU accession. After EU accession, considerable public 
investment aids have boosted investment activities, and in dairy farming as well. In the 
middle of 1990s, a large share of investment in animal farms was made in the 
renovation and enlargement of manure storage areas. The average size of farms has 
started to grow more rapidly not before the late 1990s. However, structural change in 
Finnish agriculture is still slower than in many other western European countries.  

 



 9 

0
20
40
60
80

100
120
140
160
180
200

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Milk Other Labour Land Material Capital
 

Figure 1b. Development of mean inputs and outputs by cow (1989 = 100). 

 

Capital stock per cow has remained almost unchanged since 1991. Capital has also 
substituted for labour, since the growth of labour input is only 8% during the time 
period under study. This follows that the labour input per cow has dropped by almost 
20% during the research period. Although the total labour input in agriculture has 
decreased because of the decreasing number of farms, simultaneously, farms increasing 
in size have had to increase their total labour input, but relatively less than other inputs. 

The arable land area on sample farms has increased by 40%. Up to 1995, there was 
almost no growth in cultivated arable land area. This is largely due to the extensive set-
aside programs in early 1990s. A mandatory set-aside system came into effect in 1991. 
According to the system, the farmer had to leave fallow 15% of his arable land area. 
Through increased premiums and stricter obligations for large farms the set-aside area 
increased by up to 500,000 hectares, which covered more than 20% of the arable land 
area. During EU membership, the proportion of fallow land has been less than half of 
that. The use of materials per farm has also increased by approximately 50% during the 
sample period. The growth rate per cow has been less than 17%. This rate is similar to 
the increase in per cow milk yield. 

For regression analysis, it is important that the regressors correlate with the dependent 
variable but the collinearity among independent variables may make the parameters 
insignificant, confounded and unstable. When we are interested in, for example, the 
elasticity of specific inputs as we have to use estimated coefficients which may be 
unreliable due to problems of collinearity. The correlation coefficients by per farm and 
per cow are reported in Table 2. In general, correlations are higher in the case per farm 
than per cow. The Table shows that measured per cow the input variables with the 
exception (of cows and labour, 0.63) do not correlate highly significantly among 
themselves. The correlations between the milk output and inputs are higher except in 
the case of labour and land, but they are relatively low. The correlations between inputs 
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and the other output are even less significant. The correlation is higher among the two 
outputs (0.27) than in the per farm model (0.15). When the farm level data is used, 
multicollinearity is probably a less significant problem since the within-group 
correlations among the different groups of outputs and outputs are considerably smaller 
than the between-groups of inputs and outputs. Thus, results based on per farm level 
data are expected to be more reliable. 

Table 2. Pearson correlation matrix of variable measured in per farm (upper triangle) 
and per cow (lower triangle), p-values in parenthesis (NT=812). 

 MILK OTHER LABOUR LAND MATERIAL CAPITAL COWS TIME 
MILK 1 0.1494 -0.5377 -0.7004 -0.7867 -0.7165 0.8705 0.3680 

  (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 
OTHER 0.2659 1 0.0708 0.0104 -0.0234 0.0940 0.0193 0.2632 

 (0.0001)  (0.0436) (0.7654) (0.5044) (0.0073) (0.5833) (0.0001) 
LABOUR -0.0551 0.1161 1 0.5188 0.4252 0.4162 -0.5693 -0.1037 

 (0.1162) (0.0009)  (0.0001) (0.0001) (0.0001) (0.0001) (0.0031) 
LAND -0.1411 0.0668 0.2443 1 0.5542 0.5824 -0.7069 -0.3036 

 (0.0001) (0.0569) (0.0001)  (0.0001) (0.0001) (0.0001) (0.0001) 
MATERIAL -0.3896 0.0124 -0.0104 0.0256 1 0.5897 -0.7060 -0.3464 

 (0.0001) (0.7239) (0.7657) (0.4652)  (0.0001) (0.0001) (0.0001) 
CAPITAL -0.1898 0.1765 -0.0683 0.0976 0.1057 1 -0.7085 -0.2673 

 (0.0001) (0.0001) (0.0515) (0.0054) (0.0026)  (0.0001) (0.0001) 
COWS -0.0763 0.0192 -0.6301 -0.1641 -0.0228 0.1016 1 0.2670 

 (0.0295) (0.5833) (0.0001) (0.0001) (0.5163) (0.0037)  (0.0001) 
TIME 0.2954 0.2632 0.2196 -0.1139 -0.2246 -0.1347 0.2670 1 

 (0.0001) (0.0001) (0.0001) (0.0011) (0.0001) (0.0001) (0.0001)  
 

4. Specification and Estimation of the Model 
We assume that the following translog distance function defines the (milk) production 
process at the farm:5 

(15)  

4 4 4 3
t t t t t
mi 0 k ki kj ki ji op p oi

k 1 k j 1 p 1

3 4 4
t 2 t t t

oop p oi km ki oi t t kt ki
p 1 k 1 k 1

it it

1ln y ln x ln x ln x D ln y2

1 D (ln y ) ln x ln y D ln x t2

u v

= ≤ = =

= = =

− = β + β + β + β

+ β + β + β + β

+ +

� �� �

� � �  

where i represents the farm (i=1,…,72) and t the year of observation (t=1,…,12). The 
output variables applied in the analysis are: milk output (ym) measured in litres of milk 
and other outputs (yo) measured in monetary terms divided by the milk output. The 
input variables denoted as x1 to x4 are: labour (L) input in hours, arable land area (A) in 
hectares, capital stock (K) in euro, and materials (M) in euro. The variables expressed in 
monetary values are transformed to fixed 1990 prices. 

                                                           
5  The distance translog function differs from a standard translog production function in the way the left 

hand variable is defined and normalized. The sign of the coefficients are also reversed. The 
differences in the formulation have no implication for the properties and estimation procedure.  
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The variables denoted as Dt are time dummies to capture year-to-year neutral technical 
change and Dp is the time interval for the regression coefficient of other output 
representing years 1989-1994, 1995-1997 and 1998-2000. The interaction of Dp and yo 
allows for heterogeneity in slopes associated with other outputs due to the effects of 
changes in policy over time and its implications for composition of outputs produced by 
individual farms. Non-neutral technical change is defined as a cross term of inputs or 
the other output and the time trend. 

The error term is decomposed into two components. The first component, vit, is a 
standard random variable capturing effects of unexpected stochastic changes in 
production conditions, measurement errors in milk output or the effects of left-out 
explanatory variables. It is assumed to be independent and identically distributed with 
N(0, 2

vσ ). The second component, uit, is a non-negative random variable, associated with 
the technical inefficiency in production, given the level of inputs. The uits are 
independently distributed with a truncation at zero of N( 2,it uµ σ ), where itµ  is modelled 
in terms of determinants of inefficiency as: 

(16)  
3 3

0
1 1

it sc sc re re
sc re

D Dµ δ δ δ
= =

= + +� �  

where Dsc refers to size class dummy variables and Dre to regional dummies. Farms 
were classified as small if they belonged, according to the number of cows, to the lower 
quartile in a specific year. Farms were classified as large ones if they belonged to the 
upper quartile in a specific year. Middle sized farms were those farms whose size was 
between lower and upper quartiles. The size classification of a farm may thus change 
from year to year due to structural change. In the analysis, the reference size was that of 
small farms. The region refers to the geographic location - Southern, Central and 
Northern Finland – of the farm, Central Finland being the reference group. Theδ :s are 
respective efficiency effects regression coefficients. The inefficiency effects part of the 
equation makes it possible to test whether technical efficiencies differ by size class and 
regional location.  

The parameters of the model are estimated by the method of maximum likelihood. We 
applied the computer program Frontier 4.1 (Coelli 1996). The variance parameters are 
defined as 2 2 2

s v uσ σ σ= +  and 2 2/u sγ σ σ=  where γ  takes the value between 0 and 1. 
Parameters of the stochastic frontier model can be tested using the generalised 
likelihood ratio statistics. Given the translog stochastic frontier specification of output 
distance function, technical efficiency of production can be obtained from the 
conditional expectation of exp( )it itTE U= − , given the random variable �it (�it.= vit - uit; 
Battese and Coelli 1988). The level of technical efficiency is by definition between 0 
and 1, and varies across farms, and over time.  

It should be noted that prior to the estimation the inputs and outputs are transformed to 
deviations from their sample means since each variable has been divided by its own 
mean. Thus, the first order coefficients are the distance elasticities at the sample mean. 
Linear homogeneity of outputs is imposed by dividing the two outputs by milk output. 
This ratio form as an explanatory variable has been discussed in the literature. 
Kumbhakar and Lovell (2000) have argued that the outcome of a normalisation is not 
independent of the choice of specific normalising output variable. Brümmer et al. 
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(2002) state, however, that the use of the norm model would lead to increasing 
multicollinearity and, thus, unstable estimates. Another related question is the possible 
endogeneity of output ratios. Coelli and Perelman (1999) have stated that transformed 
output variable in the ratio model are actually measures of output mix which are more 
likely exogenous than the variables in the norm model.6 Furthermore, according to 
Mundlak (1996), in the case of expected profit maximisation, the ratio variables in the 
production function do not suffer from endogeneity. This result can be generalised to 
output ratio variables in output distance functions (Brümmer et al. 2002).  

 

5. Empirical Results 

5.1 The parameter estimates 
Farm level estimated parameters of the output distance function described above are 
presented in Table 3. Several nested model specifications for the translog distance 
functions were estimated and tested prior to the selection of the final model. Nested 
likelihood ratio tests for various model specifications showed that the Cobb-Douglas 
specification was not a sufficient representation to describe the input-output technical 
relationship on Finnish dairy farms. The neutral technical change specification was also 
rejected against the non-neutral technical change specification (see Table 4). The 
hypothesis of the presence of inefficiency in the operation of farms could not be rejected 
either. Likelihood ratio test value for one-sided error is 111.983 indicating that the 
variance of inefficiency effects is a significant part of the error term variances We could 
also observe that the coefficients in the model explaining inefficiency were not jointly 
zero.  

Farm level estimation results suggest that efficiency increases by size class and those 
farms located in the middle of Finland are technically among the most efficient farms. 
Thus, analyses of the result presented below are based on the specification and 
estimation of a stochastic frontier translog distance model incorporating both non-
neutral representation of technical change and the technical efficiency effect model. 

Respective estimation results per cow are presented in Appendix A. Nested likelihood 
specification tests showed that the full translog specification is the best specification of 
those considered. In the per cow case, technical efficiency increased by size class but by 
location, there was no significant differences.  

Although the nested tests showed that the non-neutral technical change stochastic 
frontier translog specification is the best representation of the technology of those 
considered, 13 of the 39 coefficients in the regression model were not statistically 
significantly different from zero in the per farm model (with 18 of 39 in the per cow 
model).  

                                                           
6  In the norm model, all outputs are divided by Euclidean norm of outputs 2

ii
y y= � . In the ratio 

model, one of the outputs serves as denominator for all outputs.  
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Table 3. Estimated (farm level) parameters of the translog distance function, NT=812 
observations. 

Variable Param Coeff. Std err t-ratio  Variable Param Coeff. Std err t-ratio 
Constant �0 0.0660 0.0232 2.8428  ln(L)2 �LL 0.1102 0.0728 1.5153 
ln(Yo)89-94 �o1 0.1734 0.0205 8.4514  ln(A)2 �AA 0.1493 0.0588 2.5373 
ln(Yo)95-97 �o2 0.1203 0.0166 7.2455  ln(M)2 �MM -0.1348 0.0288 -4.6879 
ln(Yo)98-00 �o3 0.1340 0.0206 6.4962  ln(K)2 �KK 0.0564 0.0262 2.1548 
ln(L) �L -0.2472 0.0569 -4.3454  ln(L)ln(A) �LA -0.1417 0.0976 -1.4518 
ln(A) �A -0.2550 0.0501 -5.0933  ln(L)ln(M) �LM 0.0652 0.0803 0.8122 
ln(M) �M -0.3035 0.0383 -7.9356  ln(L)ln(K) �LK -0.0002 0.0801 -0.0030 
ln(K) �K -0.1038 0.0363 -2.8611  ln(A)ln(M) �AM 0.1979 0.0572 3.4574 
D1990 �t2 -0.0406 0.0258 -1.5727  ln(A)ln(K) �AK -0.1889 0.0581 -3.2524 
D1991 �t3 -0.0215 0.0270 -0.7940  ln(M)ln(K) �MK 0.0566 0.0502 1.1276 
D1992 �t4 -0.0525 0.0252 -2.0872  ln(L)T �Lt -0.0158 0.0076 -2.0605 
D1993 �t5 -0.0384 0.0254 -1.5113  ln(A)T �At -0.0115 0.0061 -1.8759 
D1994 �t6 -0.0561 0.0254 -2.2070  ln(K)T �Kt 0.0046 0.0049 0.9513 
D1995 �t7 -0.0122 0.0263 -0.4628  ln(M)T �Mt 0.0133 0.0048 2.7388 
D1996 �t8 -0.0116 0.0264 -0.4378  Dsc1 �sc1 0.0705 0.0451 1.5619 
D1997 �t9 -0.0282 0.0275 -1.0255  Dsc2 �sc2 0.2108 0.0224 9.4209 
D1998 �t10 -0.0500 0.0274 -1.8251  Dre1 �reg1 -0.0880 0.0301 -2.9178 
D1999 �t11 -0.0486 0.0274 -1.7749  Dre2 �reg2 -0.7340 0.3491 -2.1024 
D2000 �t12 -0.1146 0.0276 -4.1500    σ2 0.0240 0.0025 9.6306 
ln(Yo)289-94 �oo1 0.0256 0.0287 0.8893   γ  0.4165 0.0853 4.8820 
ln(Yo)295-97 �oo2 0.0262 0.0069 3.7952       
ln(Yo)298-00 �oo3 0.0680 0.0175 3.8912       

Log likelihood test value is 519.423.  
 

Table 3. Generalised likelihood ratio tests for parameters of the translog stochastic 
frontier model. 

Null hypothesis Test statisticsa Critical value 
Cobb Douglas – no TC vs. neutral TC (d.f. 11) 50.020 19.675 
Cobb Douglas – neutral TC vs. Translog – neutral TC (d.f. 13) 81.986 22.362 
Translog – neutral TC vs. non-neutral TC (d.f. 4) 121.080 9.488 
No technical inefficiency (d.f. 5)b 111.983 14.325 
No technical efficiency effect (d.f. 4) 111.506 9.488 
a  Log likelihood ratio test -2(logL(H0)-logL(H1)) 
b  The critical value is obtained from Table 1 in Kodde and Palm (1986) which shows the statistics for a 

mixed Chi-square distribution with degrees of freedom equal to 5. 
 

5.2 The distance elasticities 
The first order coefficients as expected show that, at the sample mean, the output 
distance function is decreasing in inputs and increasing in outputs. In the per farm 
model, the distance elasticities are highest for labour, land and materials. The per cow 
model is largest for materials. The elasticity of capital is always the lowest. However, 
input elasticities should be negative at every point.7 Otherwise the scale elasticity will 

                                                           
7  Due to the functional form and negative sign on the front of dependent variable, the sign of the 

coefficients are reversed. Here, a negative input elasticity is interpreted as output is increasing in 
inputs.  
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be biased. Therefore, Table 5 shows the number of positive and negative point 
elasticities.  

In the upper part of the Table, per farm results show that input elasticities for labour, 
land and materials are negative at every point of observation. For capital input, the 
monotonicity fails to hold in 41.5% of observations. Thus, we can conclude that the 
effect of scale economies cannot be measured accurately for the whole sample. The 
magnitude of bias should however be very small as the capital elasticity is the smallest, 
only -0.058 and insignificant. 

In the lower part of Table 5, per cow results indicate monotonicity violations in other 
elasticities except materials, the elasticity of labour being the most often violated. The 
number of violations is approximately equal both in per farm and per cow models. In 
the per cow case, the magnitude of bias is probably larger since the mean elasticities of 
land and labour are higher and more significant than that of capital.  

 Table 5. Monotonicity of elasticities in the per farm and per cow model formulations. 

Elasticities per farm Mean Std errora t-value Positive Negative 
Milk output (Ym)  0.852   812 0 
Other output (Yo)  0.148 0.016  9.250 810 2 
Labour (L) -0.354 0.106 -3.336 0 812 
Land (A) -0.333 0.090 -3.704 0 812 
Materials (M) -0.272 0.069 -3.925 0 812 
Capital (K) -0.058 0.068 -0.855 337 475 
Returns to scale    Decreasing RTS Increasing or constant RTS 
Scale elasticityb -0.967 0.099 -9.748 323 152 
 

Elasticities per cow Mean Std errora t-value Positive Negative 
Milk output (Ym)  0.892     
Other output (Yo)  0.108 0.013  8.438 812 0 
Labour (L) -0.146 0.072 -2.042 87 725 
Land (A) -0.144 0.077 -1.860 163 649 
Materials (M) -0.229 0.064 -3.561 0 812 
Capital (K) -0.077 0.058 -1.334 110 702 
Returns to scale    Decreasing RTS Increasing or constant RTS 
Scale elasticityb -0.590 0.125 -4.724 543 6 
a  Standard errors calculated at the sample mean. 
b  Includes only observations not violating monotonicity. 
 

When standard errors of some regression coefficients are large, the standard errors8 of 
calculated elasticities also become large. The elasticity of capital is the only 
insignificant elasticity among the inputs. Another problem related to input elasticities 

                                                           
8 The standard errors for individual input elasticities are obtained using the delta method. It gives the 
distribution of a function of random variables for which one has a distribution. In our case, standard errors 

for elasticities of xk are obtained from the square root of the diagonal elements of 
'( ) cov( , )( )

k k

y y
x xy x∂ ∂

∂ ∂  

(Heshmati 2001).�
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and the decomposition of productivity changes is that the correlations between several 
variables are high. This multicollinearity in inputs may also affect the reliability of 
individual coefficients and associated input elasticities.  

The average scale elasticity in the per farm model is less than 1.0 indicating on the 
average decreasing returns to scale (RTS). In 68% of observations, RTS is decreasing, 
while in 32% it is increasing. In the per cow model, RTS is increasing only in 1% of 
cases and the average scale elasticity is less than 0.6. Thus, a 1% growth in all inputs 
per cow produces a 0.6 percent increase in output. In Table 5, scale elasticity is 
calculated only for those observations where the monotonicity condition is not violated. 
An inclusion of the violating observations in the calculation will bias upward (less 
negative) the scale measure.  

The sample mean scale elasticity based on the per farm model with the exception of 
1989, 1990 and 1995 does not differ significantly from constant returns to scale in any 
of the observed years. Over time, the sample average RTS has increased slightly but we 
have to take into account that the number of valid observations decreases at the same 
time. In the per cow case, RTS is in every year significantly less than one but the scale 
elasticity is steadily increasing over time. 

Table 6. Mean distance elasticities over time per farm and per cow models. 

Year/Model 
 

Milk Other output Labour Land Materials Capital RTS 
Per farm        
1989 0.818 0.182 -0.263 -0.258 -0.311 -0.100 -0.928 
1990 0.818 0.182 -0.283 -0.291 -0.297 -0.086 -0.952 
1991 0.823 0.177 -0.290 -0.346 -0.292 -0.069 -0.973 
1992 0.820 0.180 -0.304 -0.333 -0.298 -0.057 -0.977 
1993 0.823 0.177 -0.317 -0.322 -0.304 -0.049 -0.966 
1994 0.821 0.179 -0.334 -0.340 -0.294 -0.044 -0.971 
1995 0.881 0.119 -0.353 -0.322 -0.278 -0.050 -0.951 
1996 0.888 0.112 -0.374 -0.337 -0.263 -0.041 -0.973 
1997 0.897 0.103 -0.394 -0.350 -0.249 -0.042 -0.980 
1998 0.878 0.122 -0.411 -0.364 -0.239 -0.045 -1.017 
1999 0.872 0.128 -0.424 -0.349 -0.242 -0.036 -0.976 
2000 0.861 0.139 -0.448 -0.355 -0.221 -0.025 -0.985 
Average 0.852 0.148 -0.354 -0.333 -0.272 -0.058 -0.967 
Per cow        
1989 0.892 0.108 -0.108 -0.142 -0.210 -0.070 -0.510 
1990 0.891 0.109 -0.118 -0.144 -0.220 -0.070 -0.530 
1991 0.888 0.112 -0.126 -0.138 -0.253 -0.079 -0.574 
1992 0.890 0.110 -0.140 -0.147 -0.244 -0.081 -0.586 
1993 0.887 0.113 -0.153 -0.151 -0.234 -0.085 -0.583 
1994 0.889 0.111 -0.156 -0.134 -0.241 -0.083 -0.597 
1995 0.922 0.078 -0.152 -0.122 -0.225 -0.077 -0.560 
1996 0.917 0.083 -0.148 -0.139 -0.229 -0.073 -0.584 
1997 0.910 0.090 -0.148 -0.150 -0.229 -0.072 -0.605 
1998 0.866 0.134 -0.163 -0.156 -0.232 -0.079 -0.628 
1999 0.871 0.129 -0.164 -0.147 -0.217 -0.082 -0.647 
2000 0.881 0.119 -0.151 -0.156 -0.214 -0.072 -0.635 
Average 0.892 0.108 -0.146 -0.144 -0.229 -0.077 -0.590 
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In the per farm case, distance elasticities are on average highest for labour, with land 
followed by materials. In the per cow model, the elasticities are in general lower but the 
elasticity of materials is the highest, and it is almost as high as in the per farm model. 
Elasticities of capital are very low and do not differ significantly from zero. Table 6 
shows how the elasticities evolve over the time period under investigation. The 
elasticities in the per cow case stay relatively stable. The only exception is the increase 
in the elasticity of labour. There are larger changes in the per farm case. Elasticities of 
labour and land increase considerably but those of materials and capital have been 
decreasing. At the beginning of the period, the partial elasticity of materials is the 
highest but, at the end, the highest elasticity is related to labour. The pattern of change 
indicates the presence of substantial substitution and complementarity among the inputs 
in milk production. Despite increased capital intensity in production, the role of capital 
is declining. The elasticity of capital has been decreasing steadily and, especially at the 
end of the period, the monotonicity assumption is often violated. The distance elasticity 
of other output has also decreased indicating a transformation of technology to a higher 
degree of specialisation on sample farms over time. 

Table 7 shows whether the distance elasticities differ between size classes and regions. 
The elasticity of materials is a decreasing function of the farm size. In the per farm 
model, this concerns also land but in the per cow model the elasticity of land increases 
by farm size. There is a similar qualitative difference when RTS is considered. Only for 
the group of small farms does the average RTS exceeds one in the per farm case. 
However, RTS is the highest on large farms in the per cow case. When looking at mean 
values by location, the biggest differences are in elasticities of land and materials. The 
elasticity of land decreases when moving from the South to the North in both models. 
Instead, the elasticity of materials is the highest in the northern part of Finland when the 
per farm model is considered but in the per cow model the direction is the opposite. 
Returns to scale has a tendency to fall in going from South to North. 

Table 7. Distance elasticities by farm size class and regional location of farms.  

 
 

Milk Other output Labour Land Material Capital RTS 
Farm size classes:        
Per farm model        
Small 0.851 0.149 -0.349 -0.351 -0.328 -0.055 -1.019 
Medium 0.854 0.146 -0.358 -0.337 -0.270 -0.053 -0.978 
Large 0.848 0.152 -0.352 -0.311 -0.232 -0.068 -0.920 
Per cow model        
Small 0.893 0.107 -0.153 -0.104 -0.257 -0.077 -0.559 
Medium 0.890 0.110 -0.144 -0.126 -0.229 -0.077 -0.576 
Large 0.896 0.104 -0.144 -0.198 -0.208 -0.077 -0.626 
Regional location:        
Per farm model        
South 0.855 0.145 -0.346 -0.392 -0.272 -0.067 -1.013 
Central 0.848 0.152 -0.357 -0.340 -0.262 -0.062 -0.973 
North 0.860 0.140 -0.352 -0.288 -0.296 -0.046 -0.933 
Per cow model        
South 0.890 0.110 -0.171 -0.213 -0.272 -0.090 -0.745 
Central 0.894 0.106 -0.139 -0.144 -0.231 -0.075 -0.589 
North 0.887 0.113 -0.151 -0.115 -0.205 -0.076 -0.536 
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5.3 Technical efficiency 
In the per farm model, technical efficiency (TE) on the sample farms was on average 
0.933 and the standard deviation being 0.053. This would mean that the farms should on 
average be able to increase their outputs by 6.7% without increasing their input use. The 
per cow model indicates slightly smaller efficiency: TE is 0.904 and standard deviation 
0.052. The average efficiencies are relatively high compared to the efficiency scores 
obtained by other model specifications (e.g. Sipiläinen 2003). Sipiläinen used data 
envelopment analysis (DEA) to obtain efficiency scores. The DEA does not distinguish 
between inefficiency and random error terms. A composed effect is labelled as 
inefficiency which explains the lower efficiency resulted from the use of DEA based on 
the same data. However, in this study, the efficiency scores are not directly comparable 
to those of Sipiläinen since different methods and models are used. Empirical evidence 
suggests that the level of efficiency is not independent of the estimation or computation 
method. The maximum technical efficiency (TE) is 0.990 and the minimum 0.674 in the 
per farm case. The respective values in the per cow model are 0.980 and 0.543. 

The point efficiency estimates do not have a standard error. Therefore we cannot infer 
about their significance levels. Confidence intervals for individual point estimates of 
technical efficiency scores were obtained using the approach proposed by Horrace and 
Schmidt (1996) and applied by Hjalmarsson et al. (1996) and Battese et al. (2000). For 
details on the construction of confidence intervals for the efficiency point estimates, see 
Appendix B. 
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Figure 2. Average technical efficiencies and 95 % confidence intervals for 1989–2000 
(per farm). 

 
In Figure 2, we present the annual confidence intervals for average technical efficiency 
of the sample farms for 1989–2000. The average efficiency remains relatively stable 
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over the period. The confidence interval does not change much either. The interval is 
wider in 1989 and at the time of the EU accession as well as post the accession period. 
In 2000, the interval becomes narrower and it is as large as that found before EU 
accession.  

Table 8 presents technical efficiencies and confidence intervals by farm size class and 
regional location of farms. The results suggest a positive association between efficiency 
and size of farms when per farm results are considered. It shows that the efficiency of 
small farms is on average the lowest and also the range of lower and upper limits of 
confidence intervals is the highest among the three groups of farms. Technical 
efficiency of large farms is significantly higher than that of medium sized farms, and it 
has a small dispersion round its mean value. It should, however, be noted that in the per 
cow model, we do not observe much efficiency differences between the three farm size 
classes. This contradicts the result of the technical efficiency effect model in the per 
cow model.  

The average technical efficiency of farms is as expected the lowest in the northern 
region in both models. The width of the confidence interval is also the largest. In the per 
cow case, regional averages deviate less from each other than in the per farm case. It 
should be kept in mind as Battese et al. (2000) have stated that these confidence interval 
predictions may be conservative in measuring the confidence and dispersion in 
efficiency. 
 
Table 8. Average technical efficiencies and 95% confidence intervals by size class and 
regional location of farms. 

Farm size classes: Lower Mean Upper Range 
Per farm model     
Small 0.786 0.883 0.981 0.195 
Medium 0.841 0.925 0.994 0.153 
Large 0.953 0.986 1 0.047 
Per cow model     
Small 0.826 0.898 0.981 0.155 
Medium 0.849 0.909 0.989 0.139 
Large 0.853 0.898 0.988 0.135 
Regional location of farm:     
Per farm model     
South 0.859 0.935 0.996 0.136 
Central 0.883 0.953 0.998 0.115 
North 0.799 0.882 0.980 0.181 
Per cow model     
South 0.851 0.896 0.988 0.137 
Central 0.858 0.916 0.991 0.133 
North 0.811 0.878 0.977 0.165 

 
The cumulative frequency distributions of technical efficiencies in the per farm model 
are presented in Figure 3 for all observations and the entire period. There are no shifts in 
efficiency distributions over time but between size classes and regions the cumulative 
distributions differ. Table 8 already shows that average efficiencies are lowest on small 
farms and highest on large farms. Almost all large farms do, in fact, belong to the 
highest efficiency class, that is, between 0.975–1.0, although none of those are fully 
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efficient. On the contrary, none of the smaller farms was evaluated as highly efficient. It 
should be noted that the current sample consists of relatively small dairy farms and the 
frontier is build on the sample best practice farms, which might differ from the 
population best practice technology.  

0

20

40

60

80

100

120

-7
00

70
07

25

72
57

50

75
07

75

77
58

00

80
08

25

82
58

50

85
08

75

87
59

00

90
09

25

92
59

50

95
09

75

97
59

99

All Small Medium Large
 

Figure 3. The cumulative distribution of technical efficiencies by size class (per farm; 
e.g. 700725 stands for technical efficiency of 0.700 – 0.725). 
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Figure 4. The cumulative distribution of technical efficiencies by region (per farm). 
 
Cumulative distributions show clearly these systematic efficiency differences since 
there are no crossings in distribution curves. Those in the right hand side are dominating 
those to the left. The same concerns Figure 4 where cumulative distributions are 
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presented by the regional location. The latter figure shows that the efficiency scores of 
the cumulative distribution curve are in Central Finland at every point larger than in 
Southern Finland. It is important to compare distributions since two series with the 
same mean may have different distributions. 

The frequency distributions discussed above despite of being very informative cannot 
determine whether the dominance of one distribution over another is statistically valid 
or not. In the next section, we perform first and second order dominance tests by using 
bootstrapping techniques. The test will consider dominance in the distribution of 
efficiency by a number of common characteristics, such as year of observation, size of 
farm, regional location, capital and labour intensities. 

5.4 Evaluating dominance ranking of (in)efficiency by farm attributes 
In this section, we examine the evolution of inefficiency, measured both at farm and at 
per cow levels. We employ the extended Kolmogorov-Smirnov tests of first and second 
order stochastic dominance as implemented by Maasoumi and Heshmati (2000). We 
offer partial control for many farm-specific attributes, such as size, location and 
production factor intensities by comparing group cells. This avoids having to specify 
and estimate models of dependence of inefficiency on these attributes, but lacks the 
multiple controls that is the promise of such techniques. We find a number of strong 
second order rankings between groups at the farm level but not over time or at the cow 
level. 

5.4.1 Bootstrap procedure for dominance rankings 
In recent years, methods have been developed to examine the existence of uniform weak 
orders between welfare outcomes measured by total real incomes. Partial strong orders 
are commonly used in evaluation on the basis of specific utility functions and their 
corresponding indices of such as inequality or poverty in welfare. Such strong orderings 
do not command consensus. Based on the expected utility paradigm, Stochastic 
Dominance (SD) relations of various orders attempt to resolve this problem. In 
evaluating distributed outcomes, average outcomes mask the differential impact on 
different participants and render index based assessments as blunt instruments for policy 
analysis. SD analysis reveals all of the distributional changes, especially amongst the 
target groups. For more details on these issues see Maasoumi and Heshmati (2004) and 
Appendix C. 

In this paper, we follow an alternative bootstrap procedure for estimating the probability 
of rejection of the SD hypotheses with a suitably extended Kolmogorov-Smirnov (KS) 
test for first and second order stochastic dominance. Alternative simulation and 
bootstrap implementations of this test have been examined previously by several 
authors including McFadden (1989), Klecan, McFadden, and McFadden (1991), Barrett 
and Donald (2003) and Linton et al. (2003). They prove that the resulting test is 
consistent against all nonparametric alternatives.  

5.4.2 Testing for SD among dairy farms 
We compare 12 years of survey data on dairy production for the years 1989 to 2000. 
The data is defined in per farm and per cow levels. The efficiency in production is 
obtained from the estimation of a stochastic production function. For comparisons over 
time, we have chosen 1989, 1996 and 2000 covering both pre- and post-reform periods 
associated with Finland’s accession to the European Union. The years were chosen to 
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be representative as well as sufficiently far apart so that reform policy would have time 
to produce measurable effects. It is to be noted that for the bootstrapping test we use 
percent inefficiency (100-efficiency) rather than percent efficiency. This implies that the 
cumulative distribution function (CDF) to the right (more inefficient) are dominated by 
those to the left (more efficient). In addition to unconditional comparison of the 
inefficiency distribution over time, inefficiency is compared conditional on a number of 
farm characteristics used in our previous analysis. The farm characteristics that we 
control for are: farm size, regional location of farms, and capital and labour factor 
intensity in production. 

In defining farm size, we have divided the sample into three groups: small, medium and 
large. As to regional location, the sample is divided into South, Central and North. For 
the factor intensity, the sample is divided by intensity in the use of capital and labour in 
production into three groups: low, medium and high factor intensities. Small size and 
low factor intensity correspond to the first quartile, the medium to the second and third 
quartiles, while large size and high factor density to the fourth quartile of the 
distribution of size and factor intensities, respectively. Our analysis is carried out in two 
parts. Part one comprises unconditional tests for SD over the years for the entire 
distribution of inefficiency, with no controls for farm attributes. Part two comprises 
conditional tests by having controls for the above attributes. Summary statistics of the 
two inefficiency definitions by farm and by cow and various sub-groups of farms are 
given in the first parts of Appendix C, Table C1-C5. In the second part of the above 
Tables, the dominance test results including the means, standard errors and probabilities 
are reported. Graphs of the CDF by various sub-groups and data levels are found in 
Appendix C, Figure C1-C5.  

All results are based on 1,000 bootstrap samples, with 5% inefficiency partitions. In 
comparing two distributions, the first group is denoted the X-distribution, and the 
second by Y-distribution. Thus, FSDxoy denotes first order stochastic dominance of X 
over Y, and SSDxoy is similarly defined for second order dominance of X over Y. The 
FOmax and SOmax denote the joint tests of X vs. Y and Y vs. X., referred to as 
maximality by McFadden (1989). The probability (denoted as “prob” in the Tables) 
rejects the null of no dominance when the statistics are negative.  

5.4.3 The dominance test results 
This first part of Table C1 summarizes our data by years of observation. The second 
part of the period is based on a balanced panel. The mean inefficiency does not change 
from 1989 (9.64) to 2000 (9.62) when inefficiency is based on cow level data. The 
corresponding inefficiency according to the farm level is increasing slightly from 6.85 
to 7.08. The standard deviations are diminishing over time. In the second part of Table 
C1, our test statistics are summarized by their mean and standard errors, as well as the 
probability of the test statistic being negative or zero (the null hypothesis). None of the 
six test cases indicate presence of any first or second order dominance over time 
regardless of unit of observation. The distributions of inefficiency over time are not first 
and second order maximal (unrankable). The farm level inefficiency distributions 
dominate the cow levels (see Figure C1).  

As mentioned previously, the farms are distinguished by the farm characteristics. Table 
C2 summarizes the results for different size classes, and separately for the two per farm 
and per cow units of measurement. The mean inefficiency and its dispersion measured 
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by per farm is a decreasing function of the farm size. No such relationship is found 
when the inefficiency is obtained by per cow data. The inefficiency is related to the 
optimality of the size of farm but not to the productivity of cows. The second part of 
Table C2 shows that there is no FSD or SSD between size classes when inefficiency 
measured by the cow level data. However, there is SSD when inefficiency is measured 
at the farm level where large farms SSD dominate the small and medium size farms (see 
also Figure C2). The distribution of inefficiency by size class is second order maximal.  

Table C3 summarizes the results for different regional locations. The mean inefficiency 
measured at the farm level is not a clearly increasing function of the distance from the 
fertile South. The sub-sample of South is quite small. Farms located in Central Finland 
are better off in terms of inefficiency and its dispersion regardless of the level of 
measurement. When measured at the cow level, North weakly SSD dominates the 
Central location. However, when measured at the farm level North SSD dominates both 
Central and South regions (see Figure C3). The distributions of inefficiency by location 
measured at the farm level are second order maximal. 

Comparisons of distribution by capital intensity are reported in Table C4. Unlike in the 
case of farm size, the inefficiency and its variation is increasing by degree of capital 
intensity when results are based on the cow level data. A low level of capital intensity is 
the most optimal when distribution is analyzed at the cow level. No such distinction is 
made at the farm level. The low and high intensity levels are second order maximal in 
both definition cases (see also Figure C4).  

Table C5 provides a summary of the results for different labour intensities in 
production. At both units of measurement, inefficiency in production is positively 
associated with labour intensity. However, at the cow level no first or second order 
dominance is observed. The distributions at this level are not rankable. On the other 
hand, at the farm level higher labour intensity SSD dominates the lower levels of labour 
intensity (Figure C5). The distributions here are second order maximal. It is worth 
recalling that SD rankings are transitive. 

In summary, the test results based on the sample of dairy farms over time are basically 
the same regardless of the farm or cow unit of observation. The average inefficiency 
and its dispersion are found to be quite constant over time. Based on our 
implementation of the KS type FSD and SSD tests, we were able to show a number of 
cases of dominance between conditional inefficiency distributions. These rankings are 
due to many other characteristics that may explain inefficiency differentials between 
subgroups of farms. Here the examination is offered by conducting SD tests for 
inefficiency of different groups identified by farm characteristics. Second order 
dominance is observed when the data is measured in per farm level but none when 
inefficiency is measured at the per cow level. The cows perform quite homogenously at 
the farm level. The differences in performance seem to a high degree be related non-
cow production factors or characteristics. The farms are rankable in performance by 
size, location and labour intensity, but not with respect to capital intensity in production. 
An alternative approach to the one presented above is to examine regression-based 
simultaneous controls for the multiple of characteristics. In a regression-based approach, 
as that in Maasoumi and Heshmati (2004), one avoids the problem of small cell sizes 
that would arise in current approach. 
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5.5 The Components of TFP growth 
The productivity growth on the dairy farms in the sample is calculated applying the 
approach of Orea (2002). The productivity growth is decomposed to technical change, 
technical efficiency change and scale effect. The actual values are calculated on the 
basis of estimated per farm model coefficients in the translog model presented in Table 
2. The TFP growth results are presented in Table 9.  
 
Table 9.  Average productivity change and its components (the decomposition of Orea, 

2002). 

Period (per farm) Productivity 
Technical 
efficiency Neutral technical 

 
Non-neutral technical Scale 

 % Change % Change % Change % Change % Effecta 
1989/1990 2.92 0.38 4.06 -0.03 -1.49 
1990/1991 -2.02 0.68 -1.92 -0.02 -0.76 
1991/1992 2.83 -0.40 3.11 0.04 0.08 
1992/1993 -1.76 -0.02 -1.41 0.05 -0.38 
1993/1994 2.13 0.17 1.77 0.07 0.12 
1994/1995 -3.85 0.11 -4.39 0.03 0.40 
1995/1996 -0.50 -0.33 -0.06 -0.05 -0.06 
1996/1997 1.87 0.29 1.67 -0.05 -0.04 
1997/1998 1.22 -0.87 2.18 0.01 -0.10 
1998/1999 0.05 -0.02 -0.15 0.10 0.12 
1999/2000 6.83 0.21 6.61 0.12 -0.11 
Per farm values:      
Cumulative 9.72 0.20 11.47 0.27 -2.23 
Annual average 0.88 0.02 1.04 0.02 -0.20 
Per cow unit values:      
Cumulative 8.60 0.19 9.38 0.05 -1.02 
Annual average 0.78 0.02 0.85 0.00 -0.09 

a Calculated as a distance from 1 only for those observations, which do not violate monotonicity 
restriction. 

 
According to the analysis, productivity growth on dairy farms has been low during the 
1990s. The patterns are similar both in per farm and in per cow models. The average 
productivity growth is 0.9% (0.8% at the cow level) interpreted as the annual growth 
rate in output larger than the weighted average growth in inputs. High growth rates were 
observed both at the beginning and at the end of the decade. Before EU accession in 
1995, productivity growth varied from positive to negative in sequential years. Slow 
productivity growth is probably a result of several production restrictions, which were 
in use or were introduced during that period. At the time of EU accession in 1995, the 
productivity declined significantly. This drop may partially be caused by data when the 
prices changed drastically, principally over a single night. After EU accession in 1995, 
productivity growth has been mostly positive. However, the growth rate has been 
relatively modest until the end of the research period. The annual cow level results are 
presented in Appendix D, Table D1. 

The technical progress has mainly been based on pure (neutral) technical change. The 
most important sources for the progress are probably the relief of milk quota restrictions 
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and set-aside requirements. Both enlargements of the farms together with the adoption 
of modern production technology and good weather conditions at the end of the decade 
have contributed to productivity growth by shifting the production frontier upwards.  

Technical efficiency change did not show any particular pattern and the changes 
between sequential years are found to be relatively small, as it was observed earlier. 
During the research period, there is practically no change in average technical efficiency 
as the previous chapter has already shown. The scale effect was almost negligible but its 
cumulative effect was negative over the research period. Even at the end of the period 
when milk production at the farm level increases most rapidly, the average scale effect 
is negative. We should also mention that the magnitude of the scale effect varies by 
farms. Monotonicity condition fails to hold in a large number of data points which is 
associated with the capital input variable in per farm case (the monotonicity in land and 
labour are also violated in the per cow model). The violated points are not considered in 
the calculation of returns to scale. Therefore, the number of observations when 
calculating scale effect is considerably smaller than the total number of observations in 
the sample.  

Allocative inefficiency component is a result of the violations against the first-order 
condition of profit maximisation, for example, output elasticity shares of inputs deviate 
from their actual expenditure shares. Although the Malmquist index does not require 
any behavioural assumption to be made, we find it important to take into account the 
allocative effects. These violations may occur due to market imperfections like 
transactions costs, risk, quantitative restrictions, or imperfect information (Brümmer et 
al. 2002). Kumbhakar and Lovell (2000, p. 284) have stated that price data are required 
for calculating allocative inefficiencies. Aggregated cost and return data are actually 
sufficient for the analysis if uniform prices facing all farmers can be assumed. 

Table 10 shows the input, output and their joint price effects. When evaluated over the 
whole period, the price effect is negligible but on average negative. At cow level, the 
average effect is larger than at farm level. However, in specific years the price effects 
(price distortions) can be considerably larger than technical change effect. The inputs 
distortions are found to be largest at the beginning of the research period and at the time 
of the EU accession. The main source of distortions has been the land input in the farm 
level model but capital and material inputs in the cow level model (see Appendix D, 
Table D2). In the first part of the research period, compulsory set-aside programs are a 
probable cause of land input price distortion at the farm level model. We should also 
keep in mind that the rental prices of land do not necessary follow directly the 
productivity changes of land in the short run i.e. year-to-year variations in yield since 
the contracts have usually been made on a long-term basis covering several years and on 
the basis of fixed prices. The terms of such contracts in addition to productivity of land 
may also somehow reflect the expected output prices. 

Over and under utilisation of resources typically varies a great deal over time and take 
out each other thereby the cumulative effect turns out to be relatively small. On the 
output side, the distortions are smaller than on the input side.  

Table 11 presents the farm level joint productivity change, which consists of the sum of 
technical effects and price effects. Depending on the point of time these effects may 
accumulate or partially replace each other. The series shows that at the beginning of 
1990s the productivity growth was relatively rapid but at the time of EU accession a 
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considerable regress could be observed. It was not before than at the end of the period 
when the productivity seemed to start to grow faster again.  

Table 10. Input, output and joint price effects (PE).  

 Inputs Outputs Joint 

 
Labour  

(%) 
Land  
(%) 

Material  
(%) 

Capital  
(%) 

IPE 
(%) 

Other 
(%) 

Milk 
(%) 

OPE 
(%) 

PE 
(%) 

By year:          
1989/1990 0.28  8.96  -2.06  -5.88  1.30  -2.39  2.19  -0.20  1.11  
1990/1991 0.33  4.00  -0.78  0.39  3.95  0.41  0.11  0.52  4.47  
1991/1992 -0.08  -0.13  -0.18  0.94  0.55  -0.35  0.13  -0.23  0.32  
1992/1993 0.00  2.30  -0.07  -0.74  1.50  0.72  -0.07  0.65  2.15  
1993/1994 -0.04  -0.25  -0.06  0.46  0.11  -0.37  -0.06  -0.43  -0.32  
1994/1995 0.11  -3.76  0.30  0.35  -2.99  -0.06  -0.02  -0.08  -3.07  
1995/1996 0.09  -1.19  -0.01  0.22  -0.89  -0.87  0.00  -0.87  -1.76  
1996/1997 0.02  -1.29  -0.10  0.87  -0.51  1.21  -0.26  0.95  0.45  
1997/1998 0.04  -1.07  0.47  1.25  0.69  -1.12  -0.19  -1.30  -0.62  
1998/1999 -0.21  -1.45  1.05  0.48  -0.14  -0.65  -0.37  -1.02  -1.17  
1999/2000 0.14  -2.59  0.24  1.10  -1.11  -1.00  -0.63  -1.64  -2.75  
Per farm:          
Cumulative 0.68  3.54  -1.22  -0.55  2.45  -4.48  0.83  -3.65  -1.20  
Average 0.06  0.32  -0.11  -0.05  0.22  -0.41  0.08  -0.33  -0.11  
Per cow:          
Cumulative -0.14  0.52  -1.40  -2.84  -3.87  -0.92  0.90  -0.02  -3.88  
Average -0.01  0.05  -0.13  -0.26  -0.35  -0.08  0.08  0.00  -0.35  

Note: IPE, OPE and PE are inputs, outputs and joint price effects.  
 

Table 11. Technical effect and price effects of productivity change (per farm). 

Period Price effects % Technical effect % Both effects % 
1989/90 1.11 2.92 4.03 
1990/91 4.47 -2.02 2.45 
1991/92 0.32 2.83 3.15 
1992/93 2.15 -1.76 0.39 
1993/94 -0.32 2.13 1.81 
1994/95 -3.07 -3.85 -6.92 
1995/96 -1.76 -0.50 -2.26 
1996/97 0.45 1.87 2.32 
1997/98 -0.62 1.22 0.60 
1998/99 -1.17 0.05 -1.12 
1999/2000 -2.75 6.83 4.08 
Cumulative -1.20 9.72 8.52 
Average -0.11 0.88 0.77 
 

Table 12 shows the respective price and technical components at the cow level. When 
comparing Tables 11 and 12, we can see that, although the average technical effects are 
almost similar both at farm and at cow level, annual averages may differ considerably. 
Even the signs of the effects may be the opposite. We can also observe that the negative 
price effect on productivity growth is considerably (three times) larger in the per cow 
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model than in the per farm model. This follows that the average annual productivity 
growth over the whole period is only 0.43% at the cow level when at the farm level a 
growth rate of 0.77% is shown. This indicates that the growth of farms in respect to the 
number of animals is an important source of productivity growth. 

Table 12. Technical effect and price effects of productivity change (per cow). 

Period Price effect. % Technical effect. % Both effects. % 
1989/90 -1.73 1.61 -0.12 
1990/91 5.31 -7.28 -1.97 
1991/92 -1.83 3.90 2.08 
1992/93 1.15 3.05 4.21 
1993/94 -0.40 0.80 0.40 
1994/95 -3.01 0.92 -2.09 
1995/96 0.33 -3.49 -3.17 
1996/97 -0.36 3.32 2.97 
1997/98 0.05 -1.32 -1.26 
1998/99 -0.38 1.70 1.33 
1999/2000 -3.02 5.37 2.35 
Cumulative -3.88 8.60 4.72 
Average -0.35 0.78 0.43 

 
6. Discussion of the Results and Conclusions 

In this paper, we have studied the productivity change applying the Malmquist 
productivity index. Several suggestions have been made to decompose the index in 
order to define the sources of productivity growth (e.g. Färe et al. 1994, Ray and Desli 
1997, Lovell 2003). Many of the applications have been nonparametric. In our case, we 
have identified the components of productivity growth from the stochastic output 
distance function. We have applied the approaches suggested by Orea (2002), Brümmer 
et al. (2002) and Kumbhakar and Lovell (2000). 

In Orea’s (2002) decomposition of the Malmquist index, the specification of scale effect 
does not lean on the concept of scale efficiency and scale efficiency change as often is 
the case in nonparametric approach. It is possible to calculate also for Cobb-Douglas 
and ray-homogenous technologies. In our case, neither of the previously mentioned 
technologies are adequate representations of the production technology in Finnish dairy 
farming. 

Productivity growth was relatively slow in the 1990s but it speeded up at the end of the 
study period. The growth related mostly to technical change. The result is reasonable 
when taking into account that the enlargement investments on dairy farms started to 
increase in 1996-1997 because of the introduction of state-sponsored investment 
subsidies and less restrictive policies. Simultaneously milk quota restrictions and set-
aside requirements were relieved. Uncertainties related to EU accession in 1995 were 
also likely to postpone farmers’ development strategies and their implementations. 

Technical efficiency change does not show any systematic pattern over the research 
period. Technical efficiency varied over time, which was partially linked to weather 
conditions. The Finnish production system is largely based on on-farm produced feed. 
The quantity and quality of this feed depends on the weather, thus affecting the need to 
purchase externally produced inputs. The weather has also a direct effect on milk 
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production. Since the weather conditions may differ in different regions of the country 
within a year, it may influence the variation in the technical efficiency. The stochastic 
weather conditions may also affect the general shift of the frontier, i.e. technical change 
effect.  

According to the analysis, EU accession did not seem to have a significant effect on 
technical efficiency. Instead, farm size and regional location could explain a significant 
share of the variation in technical efficiency among dairy farms at the farm level 
analysis. The test results for stochastic dominance over time are basically the same 
regardless of the unit of observation, per farm or per cow. However, we were able to 
show a number of cases of dominance between conditional inefficiency distributions. 
These rankings are due to many characteristics that may explain inefficiency 
differentials between sub-groups of farms. Second order dominance was observed when 
the data were measured in per farm level but none when using per cow level data. The 
farms are rankable in performance by size, location and labour intensity, but not with 
respect to capital intensity in production.  

The average returns to scale at farm level models was smaller than one but not 
significantly, indicating on average decreasing returns to scale. Although RTS improved 
during the research period, the analysis showed that the role of the scale effect in 
productivity growth was small. The cumulative scale effect over the whole period was 
slightly negative. Thus, the input output relations did not improve despite the increase in 
the scale of production. The distance elasticity of capital was also very low. Even the 
monotonicity condition (an increase in inputs also increases output) was violated at 
several data points at the end of the research period in the farm level model. At the cow 
level analysis, violations were more evenly distributed over labour, capital and land 
inputs. 

An important issue is that why the scale effect is so small? There might be several 
factors resulting in the absence of positive scale effects in Finnish agriculture. One is 
that capital has substituted for labour. It is evident that productivity of labour increases 
with the capital intensity. However, family labour is often a binding restriction to the 
scale of operation of farms. Increased capital input has made it possible to increase 
production with only a relatively small increase in labour input. We can conclude that 
the average size of dairy farms is such that an increase in farm size, combined with 
appropriate capital investments, may contribute markedly on labour productivity. 

There seems also to be considerable substitution effect between land and materials 
inputs at the farm level. The elasticity of land has increased simultaneously with the 
decrease in the elasticity of materials. Over time land input has increased less than milk 
output, but the use of materials (e.g. purchased feed) has increased by the same 
proportion as milk output. Despite of the input substitution, in the cow level data 
elasticities of land, material and capital inputs have not diminished.  

The farm level distance elasticities differ considerably from those presented by 
Brümmer et al. (2002) and Newman and Matthews (2003). In the above mentioned 
studies, the largest elasticities are related to intermediate inputs (materials) but, in 
Finland, the elasticities of land and labour are the highest followed by materials. In all 
other countries, the elasticity of labour is low compared to that of Finland. The 
differences are probably associated with differences in farming and dairy production 
systems in different countries. For example, in the Netherlands, elasticity of land was 
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almost as high as in Finland and the Polish elasticity of capital is approximately as low 
as that of Finland (Brümmer et al. 2002). In Finland, the share of purchased feed 
compared to on-farm produced feed has increased over time simultaneously with the 
increase in milk output per farm and per cow. 

The results of our analysis on productivity change are similar to those based on the 
DEA analysis (Sipiläinen 2003). The nonparametric analysis also indicated that the 
main source of productivity change was a technical change. The only major difference 
was in the level of technical efficiency, which was considerably lower in the DEA based 
analysis. However, the effect of technical efficiency change on productivity change was 
minor. Thus, in both approaches, the level of technical efficiency was unchanged over 
time.  

The allocative distortions were studied by comparing actual cost and return shares to 
those derived on the basis of elasticities. These differences can be interpreted as 
deviations from the first order conditions of profit maximisation. The largest distortions 
were observed in land input at the farm level model but in capital and materials at the 
cow level model. In general, output price distortions (the deviations from the optimum) 
were smaller than input distortions. Over and under utilisation of resources varied 
considerably over time and the cumulative effects were small. However, in specific 
years, the average price effect may be even larger than the technical effect. The highest 
distortions could be observed at the beginning and at the end of the research period. In 
addition, the Finnish EU accession caused a considerable peak in distortions. It should 
be kept in mind, however, that due to milk quota restrictions, an imposition of cost 
minimisation behaviour could be more applicable approach than profit maximisation. 

Although at the time of EU accession the prices and relative prices changed 
dramatically and a large share of income started to come from direct payments, 
technical efficiency has remained unchanged on dairy farms. The process of the EU 
accession seems to have affected the productivity growth, at first, as reducing and 
postponing investment and then as boosting it. The changes in behaviour are related 
both to uncertainty and support measures like investment aids. Increased investment has 
led to growing herd sizes in the latter part of the 1990s. The growth of farms makes it 
possible to utilise modern technology and improve productivity but it is too early to say 
if the productivity growth will speed up from the low level of less than 1% per year. 
Productivity growth should be faster if Finnish dairy farms wanted to keep up with, or 
even catch up with, dairy farms in other countries. 

The study provides a detailed decomposition of productivity change taking into account 
both technical and price effects. The applied distance function approach is a flexible 
method for analysis of factors causing productivity change. Identification and separation 
of such effects remain unobserved when TFP index numbers are applied. This approach 
can also be used when the variation in prices is insufficient for cost or profit function 
analysis of production.  
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Appendix A. Estimated (per cow level) parameters of the translog distance function, 

NT=812 observations. 

Table a. Estimated parameters of the translog distance function, NT=812 observations. 

Variable Param Coeff. Std err t-ratio  Variable Param Coeff. Std err t-ratio 

Constant �0 0.0698 0.0192 3.6270  ln(L)2 �LL 0.0792 0.0485 1.6322 

ln(Yo)89-94 �o1 0.1154 0.0162 7.1149  ln(A)2 �AA -0.0034 0.0488 -0.0692 

ln(Yo)95-97 �o2 0.0769 0.0132 5.8389  ln(M)2 �MM -0.0987 0.0269 -3.6646 

ln(Yo)98-00 �o3 0.1236 0.0165 7.5082  ln(K)2 �KK 0.0102 0.0239 0.4249 

ln(L) �L -0.0961 0.0399 -2.4089  ln(L)ln(A) �LA -0.3485 0.0680 -5.1260 

ln(A) �A -0.0830 0.0432 -1.9232  ln(L)ln(M) �LM 0.1812 0.0577 3.1387 

ln(M) �M -0.1988 0.0353 -5.6373  ln(L)ln(K) �LK 0.0236 0.0533 0.4426 

ln(K) �K -0.0699 0.0305 -2.2878  ln(A)ln(M) �AM -0.1692 0.0641 -2.6391 

D1990 �t2 -0.0347 0.0202 -1.7156  ln(A)ln(K) �AK -0.2028 0.0489 -4.1459 

D1991 �t3 -0.0037 0.0213 -0.1716  ln(M)ln(K) �MK 0.0697 0.0452 1.5398 

D1992 �t4 -0.0302 0.0200 -1.5125  ln(L)T �Lt -0.0042 0.0049 -0.8572 

D1993 �t5 -0.0486 0.0202 -2.4052  ln(A)T �At -0.0026 0.0052 -0.4965 

D1994 �t6 -0.0566 0.0200 -2.8339  ln(K)T �Kt -0.0045 0.0046 -0.9861 

D1995 �t7 -0.0373 0.0206 -1.8121  ln(M)T �Mt 0.0010 0.0042 0.2375 

D1996 �t8 -0.0214 0.0207 -1.0306  Dsc1 �sc1 0.0568 0.0297 1.9097 

D1997 �t9 -0.0609 0.0216 -2.8160  Dsc2 �sc2 0.0986 0.0197 5.0014 

D1998 �t10 -0.0432 0.0215 -2.0088  Dre1 �reg1 -0.0312 0.0266 -1.1726 

D1999 �t11 -0.0430 0.0212 -2.0324  Dre2 �reg2 0.0066 0.0267 0.2457 

D2000 �t12 -0.0928 0.0214 -4.3285    σ2 0.0201 0.0023 8.8260 

ln(Yo)289-94 �oo1 0.0205 0.0225 0.9113   γ  0.7254 0.0614 11.8201 

ln(Yo)295-97 �oo2 0.0201 0.0050 3.9924       

ln(Yo)298-00 �oo3 0.0559 0.0131 4.2819       

Log likelihood test value is 676.372.  
 

Table b. Generalised likelihood ratio tests for parameters of the model. 

Null hypothesis Test statisticsa Critical value 
Cobb Douglas – no TC vs. neutral TC (d.f. 11) 40.664 19.675 
Cobb Douglas – neutral TC vs. Translog – neutral TC (d.f. 13) 90.016 22.362 
Translog – neutral TC vs. non-neutral TC (d.f. 4) 10.074 9.488 
No technical inefficiency (d.f. 5)b 52.698 14.328 
No technical efficiency effect (d.f. 4) 22.278 9.488 
a  Log likelihood ratio test -2(logL(H0)-logL(H1)) 
b  The critical value is obtained from Table 1 in Kodde and Palm (1986) which shows the statistics for a 

mixed Chi-square distribution with degrees of freedom equal to 5. 
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Appendix B. Confidence intervals for point estimates of technical efficiency 

Given the distributional specification for iu , it can be shown that upper and lower 
bounds of a confidence predictor for iu  at (1-�) confidence interval can be defined as: 

(1)  [ ]1( ) 1 (1 / 2) ( / )i i iU lower µ σ α µ σ−= + Φ − − Φ  and 

(2)  [ ]1( ) 1 ( / 2) ( / )i i iU upper µ σ α µ σ−= + Φ − Φ  

where (.)Φ  refers to the standard normal distribution function. The confidence predictor 
at (1-�) for [exp(Ui)-1] can be defined by: 

(3)  [ ]{ [ ] }exp ( ) 1,exp ( ) 1i iU lower U upper− − .  

Horrace and Schmidt (1996, p. 261-262) have suggested that the confidence prediction 
should be based on conditional distribution of iu , given ii uv −  in the context of a 
production function. However, the conditional distribution of iu  )( iii uv +=ε  is the 
truncation at zero of the normal distribution with mean and variance:  

(4)  
2 2

*
2 2

i i v
i

v

ε σ µ σµ
σ σ

− +=
+

, 
2 2

2
* 2 2

v

v

σ σσ
σ σ

=
+

.  

The variance of this distribution is smaller than the variance for iu . The previous 
confidence interval predictors are likely to be conservative (Battese et al. 2000). 
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Appendix C. Bootstrap procedure for dominance rankings 
 

Let 1X  and 2X  be two variables (such as efficiency in production) at either two 
different points in time or for different attributes like regional location. Let kiX , i = 1, 

..., N; k = 1, 2 denote the not necessarily i.i.d. observations. Let 1U  denote the class of 
all von Neumann-Morgenstern type utility functions, u, such that 0≥′u , (increasing). 
Also, let 2U  denote the class of all utility functions in 1U  for which 0≤′′u  (strict 
concavity). Let )1( pX  and )2( pX  denote the p-th quantiles, and )(1 xF  and )(2 xF denote 
the cumulative distribution functions, respectively. Following the notation in Maasoumi 
and Heshmati (2004) the first and second order SD are defied as follows. 

1X  First Order Stochastic Dominates 2X , denoted 21 XFSDX , if any of the following 
equivalent conditions holds:  

(1)  [ ] [ ])()( 21 XuEXuE ≥  for all 1Uu ∈ , with strict inequality for some u; or 

(2)  )()( 21 xFxF ≤  for all x with strict inequality for some x; or 

(3)  )2()1( pp XX ≥  for all 10 ≤≤ p , with strict inequality for some p. 

1X  Second Order Stochastic Dominates 2X , denoted 21 XSSDX , if any of the 
following equivalent conditions holds: 

(4)   [ ] [ ])()( 21 XuEXuE ≥  for all 2Uu ∈ , with strict inequality for some u; or  

(5)  � �≤
∞− ∞−

x x

dttFdttF )()( 21  for all x with strict inequality for some x; or  

(6)  � �=Φ≥=Φ
p p

tt dtXpdtXp
0 0

)2(2)1(1 )()(  for all 10 ≤≤ p , with strict inequality for 

some value(s) p. 

Weak orders of SD are obtained by eliminating the requirement of strict inequality at 
some point. When these conditions are not met, as when Generalized Lorenz Curves of 
two distributions cross, unambiguous First and Second order SD is not possible. Any 
strong ordering by specific indices that correspond to the utility functions 1U  and 2U  
classes, will not enjoy general consensus.  

This approach fixes the critical value (zero) at the boundary of our null, and estimates 
the associated significance level by bootstrapping the sample or its blocks. This renders 
our tests asymptotically similar and unbiased on the boundary. This is similar in spirit to 
inference based on p-values. This method could also be used to compare the two 
distributions up to any desired quantile, for instance, for performance rankings. The test 
statistics are as follows. 

Suppose that there are 2 prospects 1X , 2X  and let { }2,1: == kXA k . Let 
{ }NiX ki ,...,2,1: = be realizations of kX  for k=1,2. Let ),( 21 xxF be the joint c.d.f. of 

),( 21 ′XX . Now define the following functionals of the joint distribution: 
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(7)  [ ])()(supmin xFxFd lk
xlk

−=
∈≠ χ

   

(8)  [ ]�
∞−∈≠

−=
x

lk
xlk

dttFtFs )()(supmin
χ

 

where χ  denotes a given set contained in the union of the supports of kiX  for k=1,2, 
that are assumed to be bounded. The hypotheses of interest are: 

(9) 0:.0: 10 >≤ dHvsdH dd  

(10) 0:.0: 10 >≤ sHvssH ss  

The null hypothesis dH 0  implies that the prospects in A  are not first-degree 
stochastically maximal, i.e., there exists at least one prospect in A  which first-degree 
dominates the others. Likewise applies for the second order case. 

In our applications, we report probabilities }0{ ≤Nd  and }0{ ≤Ns  and are able to 
identify which distribution dominates, if any. These are the maximum test sizes 
associated with our critical value of zero which is clearly the boundary of our null. 
Thus, we are reporting the critical level associated with this non-rejection region. 
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Table C.1 Comparisons of mean inefficiency by YEAR of observation. 
 By cow level data By farm level data 
 N Mean Std dev N Mean Std dev 
1989 49 9.4224 4.9351 49 6.8522 5.0851 
1996 72 9.5590 4.7583 72 6.7161 5.2800 
2000 72 9.6223 4.3501 72 7.0755 5.1875 
 Mean Std err Prob. Mean Std err Prob. 
1989(x) vs 1996(y)     
FSDxoy 0.1086 0.0680 0.000 0.1007 0.0520 0.000 
FSDyox 0.1278 0.0582 0.000 0.1169 0.0722 0.000 
FOmax 0.0710 0.0392 0.000 0.0635 0.0375 0.000 
SSDxoy 0.0066 0.3318 0.000 0.3291 0.4683 0.000 
SSDyox 0.4595 0.4863 0.000 0.5130 0.5445 0.000 
SOmax 0.0529 0.0739 0.000 0.0418 0.0760 0.000 
1989(x) vs 2000(y)     
FSDxoy 0.1432 0.0749 0.000 0.0894 0.0624 0.682 
FSDyox 0.0897 0.0469 0.000 0.0936 0.0532 0.000 
FOmax 0.0660 0.0343 0.000 0.0488 0.0277 0.682 
SSDxoy 0.5637 0.5325 0.000 0.3211 0.4581 0.345 
SSDyox 0.2658 0.3765 0.000 0.4115 0.4860 0.000 
SOmax 0.0645 0.0718 0.000 0.0273 0.0774 0.345 
1996(x) vs 2000(y)     
FSDxoy 0.1237 0.0599 0.000 0.1098 0.0654 0.018 
FSDyox 0.0869 0.0411 0.000 0.0900 0.0488 0.005 
FOmax 0.0656 0.0275 0.000 0.0581 0.0340 0.023 
SSDxoy 0.4428 0.4164 0.000 0.4899 0.4768 0.135 
SSDyox 0.1830 0.2521 0.000 0.2712 0.4110 0.230 
SOmax 0.0492 0.0556 0.000 0.0357 0.0852 0.365 

Note:  First (Second) Order Stochastic Dominance of x over y FSDxoy (SSDxoy), 
First (Second) Order maximum FOmax (SOmax). 

Figure C.1 CDF of inefficiency distribution measured per cow and per farm by 
year of observation. 
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Table C.2 Comparisons of mean inefficiency by SIZE of farm. 
 By cow level data By farm level data 
 N Mean Std dev N Mean Std dev 
Small 175 10.2261 4.5852 175 11.6541 5.2507 
Medium 418 9.0995 4.9756 418 7.4849 4.1227 
Large 219 10.2224 5.8792 219 1.3921 0.3123 
 Mean Std err Prob. Mean Std err Prob. 
Small(x) vs Medium(y)     
FSDxoy 0.0137 0.0096 0.000 0.0001 0.0001 0.000 
FSDyox 0.1310 0.0369 0.000 0.4321 0.0317 0.000 
FOmax 0.0137 0.0094 0.000 0.0001 0.0001 0.000 
SSDxoy 0.0066 0.0084 0.000 0.0000 0.0000 0.000 
SSDyox 0.5176 0.1816 0.000 2.8071 0.2985 0.000 
SOmax 0.0063 0.0066 0.000 0.0000 0.0000 0.000 
Small(x) vs Large(y)     
FSDxoy 0.0571 0.0259 0.000 -0.0056 0.0060 0.682 
FSDyox 0.1073 0.0386 0.000 0.9975 0.0031 0.000 
FOmax 0.0509 0.0205 0.000 -0.0056 0.0060 0.682 
SSDxoy 0.0721 0.1332 0.000 -0.4851 0.0336 1.000 
SSDyox 0.3576 0.2040 0.000 7.9609 0.3086 0.000 
SOmax 0.0331 0.0544 0.000 -0.4851 0.0336 1.000 
Medium(x) vs Large(y)     
FSDxoy 0.0969 0.0310 0.000 -0.0001 0.0001 0.344 
FSDyox 0.0081 0.0136 0.000 0.9779 0.0072 0.000 
FOmax 0.0078 0.0126 0.000 -0.0001 0.0001 0.344 
SSDxoy 0.5368 0.2107 0.000 -0.7818 0.0285 1.000 
SSDyox 0.0070 0.0178 0.000 3.9517 0.1235 0.000 
SOmax 0.0065 0.0156 0.000 -0.7818 0.0285 1.000 

Note:  First (Second) Order Stochastic Dominance of x over y FSDxoy (SSDxoy), 
First (Second) Order maximum FOmax (SOmax). 

 
 

Figure C.2 CDF of inefficiency distribution measured per cow and per farm by 
size of farm.
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Table C.3 Comparisons of mean inefficiency by REGION of location. 
 By cow level data By farm level data 
 N Mean Std dev N Mean Std dev 
South 100 10.4491 5.6848 100 6.5060 4.1221 
Central 505 8.4355 4.4701 505 4.7109 2.8871 
North 207 12.2077 5.5479 207 11.8041 6.7376 
 Mean Std err Prob. Mean Std err Prob. 
South(x) vs Central(y)     
FSDxoy 0.0067 0.0073 0.000 0.0055 0.0147 0.000 
FSDyox 0.1857 0.0454 0.000 0.2293 0.0480 0.000 
FOmax 0.0067 0.0073 0.000 0.0055 0.0147 0.000 
SSDxoy 0.0022 0.0077 0.000 0.0117 0.0343 0.000 
SSDyox 1.1596 0.3367 0.000 1.9254 0.4957 0.000 
SOmax 0.0022 0.0077 0.000 0.0117 0.0343 0.000 
South(x) vs North(y)     
FSDxoy 0.2707 0.0554 0.000 0.4668 0.0445 0.000 
FSDyox 0.0290 0.0285 0.000 0.0182 0.0280 0.280 
FOmax 0.0289 0.0282 0.000 0.0182 0.0280 0.000 
SSDxoy 0.7818 0.2480 0.000 3.3718 0.3813 0.000 
SSDyox 0.0016 0.0169 0.000 -0.1971 0.0661 0.993 
SOmax 0.0015 0.0148 0.000 -0.1971 0.0661 0.993 
Central(x) vs North(y)     
FSDxoy 0.3729 0.0376 0.000 0.6299 0.0033 0.000 
FSDyox 0.0052 0.0034 0.025 0.0002 0.0022 0.507 
FOmax 0.0052 0.034 0.025 0.0002 0.0022 0.507 
SSDxoy 1.6826 0.1784 0.000 4.5354 0.2936 0.000 
SSDyox -0.0019 0.0019 0.645 -0.2562 0.0232 1.000 
SOmax -0.0019 0.0019 0.645 -0.2562 0.0232 1.000 

Note:  First (Second) Order Stochastic Dominance of x over y FSDxoy (SSDxoy), 
First (Second) Order maximum FOmax (SOmax). 

 

Figure C.3 CDF of inefficiency distrubution measured per cow and per farm 
by reginal location.
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Table C.4 Comparisons of mean inefficiency by CAPITAL intensity. 
 By cow level data By farm level data 
 N Mean Std dev N Mean Std dev 
Low 200 7.6609 3.9661 200 6.0557 4.4543 
Medium 408 9.9455 4.8794 408 6.9657 5.6354 
High 204 10.9897 6.1828 204 6.9604 5.2660 
 Mean Std err Prob. Mean Std err Prob. 
Low(x) vs Medium(y)     
FSDxoy 0.2590 0.0399 0.000 0.1070 0.0315 0.000 
FSDyox 0.0004 0.0021 0.000 0.0450 0.0325 0.052 
FOmax 0.0004 0.0021 0.000 0.0414 0.0271 0.052 
SSDxoy 1.5225 0.2490 0.000 0.6586 0.3250 0.020 
SSDyox 0.0000 0.0000 0.000 0.0482 0.0809 0.268 
SOmax 0.0000 0.0000 0.000 0.0355 0.0590 0.288 
Low(x) vs High(y)     
FSDxoy 0.2680 0.0449 0.000 0.1417 0.0490 0.000 
FSDyox 0.0001 0.0001 0.240 0.0264 0.0254 0.113 
FOmax 0.0001 0.0001 0.240 0.0249 0.0230 0.113 
SSDxoy 1.4002 0.2269 0.000 0.4639 0.2785 0.039 
SSDyox -0.0052 0.050 0.649 0.0142 0.0775 0.506 
SOmax -0.0052 0.0050 0.649 -0.0026 0.0451 0.545 
Medium(x) vs High(y)     
FSDxoy 0.0813 0.0263 0.000 0.0683 0.0360 0.004 
FSDyox 0.0288 0.0288 0.000 0.0626 0.0237 0.000 
FOmax 0.0248 0.0224 0.000 0.0453 0.0204 0.004 
SSDxoy 0.3879 0.2022 0.000 0.1755 0.1463 0.103 
SSDyox 0.0111 0.0297 0.000 0.1771 0.2083 0.283 
SOmax 0.0085 0.0209 0.000 0.0387 0.0785 0.386 

Note:  First (Second) Order Stochastic Dominance of x over y FSDxoy (SSDxoy), 
First (Second) Order maximum FOmax (SOmax). 

 

Figure C.4 CDF of inefficiency distribution measured per cow and per farm by 
capital intensity.
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Table C.5 Comparisons of mean inefficiency by LABOUR intensity. 
 By cow level data By farm level data 
 N Mean Std dev N Mean Std dev 
Low 208 7.7976 3.8448 208 4.6145 4.9879 
Medium 393 9.5624 4.9594 393 6.6247 4.6924 
High 211 11.6203 5.9905 211 9.0508 5.6797 
 Mean Std err Prob. Mean Std err Prob. 
Low(x) vs Medium(y)     
FSDxoy 0.1682 0.0387 0.000 0.3355 0.0401 0.000 
FSDyox 0.0043 0.0059 0.000 0.0242 0.0153 0.008 
FOmax 0.0043 0.0059 0.000 0.0242 0.0153 0.008 
SSDxoy 1.2452 0.2735 0.000 1.7167 0.3012 0.000 
SSDyox 0.0046 0.0067 0.000 -0.1618 0.0328 1.000 
SOmax 0.0046 0.0067 0.000 -0.1618 0.0328 1.000 
Low(x) vs High(y)     
FSDxoy 0.3204 0.0401 0.000 0.5113 0.0427 0.000 
FSDyox 0.0001 0.0001 0.000 0.0010 0.0034 0.171 
FOmax 0.0001 0.0001 0.000 0.0010 0.0034 0.171 
SSDxoy 1.6903 0.2154 0.000 2.7761 0.3279 0.000 
SSDyox 0.0000 0.0000 0.000 -0.3510 0.0387 1.000 
SOmax 0.0000 0.0000 0.000 -0.3510 0.0387 1.000 
Medium(x) vs High(y)     
FSDxoy 0.1774 0.0355 0.000 0.2403 0.0395 0.000 
FSDyox 0.0102 0.0143 0.096 0.0007 0.0028 0.276 
FOmax 0.0102 0.0143 0.096 0.0007 0.0028 0.276 
SSDxoy 0.8244 0.1984 0.000 1.4350 0.2770 0.000 
SSDyox -0.0026 0.0025 0.650 -0.0813 0.0275 0.999 
SOmax -0.0026 0.0025 0.650 -0.0813 0.0275 0.999 

Note:  First (Second) Order Stochastic Dominance of x over y FSDxoy (SSDxoy), 
First (Second) Order maximum FOmax (SOmax). 

 

Figure C.5 CDF of inefficiency distribution measured as per cow and per farm 
by labor intensity.
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Appendix D. 
 
Table a. Average productivity change and its components (the decomposition of Orea, 
 2002). 

Period (per cow) Productivity 
Technical 
Efficiency Pure technical 

Non-neutral 
technical Scale 

 % Change % Change % Change % Change % Effecta 
1989/1990 1.61 -0.03 3.47 0.00 -1.83 
1990/1991 -7.28 -0.04 -3.04 0.03 -4.23 
1991/1992 3.90 0.60 2.69 0.06 0.55 
1992/1993 3.05 -0.36 1.83 0.02 1.56 
1993/1994 0.80 0.11 0.81 0.00 -0.13 
1994/1995 0.92 -0.08 -1.93 -0.02 2.95 
1995/1996 -3.49 0.03 -1.59 -0.03 -1.90 
1996/1997 3.32 -0.72 3.95 -0.01 0.10 
1997/1998 -1.32 -0.05 -1.77 0.01 0.50 
1998/1999 1.70 0.49 -0.01 0.00 1.22 
1999/2000 5.37 0.24 4.97 -0.01 0.17 
Cumulative (per cow) 8.60 0.19 9.38 0.05 -1.02 
Annual average (per cow) 0.78 0.02 0.85 0.00 -0.09 
a  Calculated as a distance from 1 only for those observations, which do not violate monotonicity 

restriction. 

 

Table b. Input, output and joint price effects (PE) at the cow level.  

 Inputs Outputs Joint 

Period 
Labour 

(%) 
Land 
(%) 

Material 
(%) 

Capital 
(%) 

IPE 
(%) 

Other 
(%) 

Milk 
(%) 

OPE 
(%) 

PE 
(%) 

1989/1990 0.87  1.10  1.00  -3.92  -0.96  -2.19  1.42  -0.78  -1.73  
1990/1991 -0.02  2.46  1.05  0.08  3.57  1.66  0.08  1.74  5.31  
1991/1992 -0.56  -0.27  -0.34  0.40  -0.76  -1.14  0.07  -1.06  -1.83  
1992/1993 -0.04  0.45  -0.38  -0.04  -0.02  1.74  -0.57  1.17  1.15  
1993/1994 0.30  -0.37  0.51  0.03  0.47  -0.83  -0.03  -0.87  -0.40  
1994/1995 0.02  -2.08  -1.60  -0.21  -3.87  0.96  -0.11  0.86  -3.01  
1995/1996 -0.49  0.57  1.09  -0.34  0.83  -0.74  0.24  -0.50  0.33  
1996/1997 -0.04  -0.43  -0.50  0.29  -0.67  0.69  -0.38  0.32  -0.36  
1997/1998 0.16  0.26  -1.26  0.52  -0.32  0.04  0.34  0.37  0.05  
1998/1999 0.06  -0.46  -0.49  0.32  -0.56  0.04  0.14  0.19  -0.38  
1999/2000 -0.40  -0.71  -0.49  0.04  -1.56  -1.15  -0.31  -1.46  -3.02  
Cumulative -0.14  0.52  -1.40  -2.84  -3.87  -0.92  0.90  -0.02  -3.88  
Average -0.01  0.05  -0.13  -0.26  -0.35  -0.08  0.08  0.00  -0.35  
Note: IPE, OPE and PE are inputs, outputs and joint price effects.  
  




