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Abstract The field of productive efficiency analysis is

currently divided between two main paradigms: the deter-

ministic, nonparametric Data Envelopment Analysis

(DEA) and the parametric Stochastic Frontier Analysis

(SFA). This paper examines an encompassing semipara-

metric frontier model that combines the DEA-type non-

parametric frontier, which satisfies monotonicity and

concavity, with the SFA-style stochastic homoskedastic

composite error term. To estimate this model, a new two-

stage method is proposed, referred to as Stochastic Non-

smooth Envelopment of Data (StoNED). The first stage of

the StoNED method applies convex nonparametric least

squares (CNLS) to estimate the shape of the frontier

without any assumptions about its functional form or

smoothness. In the second stage, the conditional expecta-

tions of inefficiency are estimated based on the CNLS

residuals, using the method of moments or pseudolikeli-

hood techniques. Although in a cross-sectional setting

distinguishing inefficiency from noise in general requires

distributional assumptions, we also show how these can be

relaxed in our approach if panel data are available. Per-

formance of the StoNED method is examined using Monte

Carlo simulations.

Keywords Data envelopment analysis (DEA) � Frontier

estimation � Nonparametric least squares � Productive

efficiency analysis � Stochastic frontier analysis (SFA)
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1 Introduction

The literature of productive efficiency analysis and frontier

estimation is large and growing, consisting of several

thousands of studies in the fields of applied economics,

econometrics, operations research, and statistics (see e.g.,

Fried et al. 2008, for an up-to-date introduction and liter-

ature review). This field is currently dominated by two

approaches: the nonparametric data envelopment analysis

(DEA: Farrell 1957; Charnes et al. 1978) and the para-

metric stochastic frontier analysis (SFA: Aigner et al. 1977;

Meeusen and van den Broeck 1977). The main appeal of

DEA lies in its axiomatic, nonparametric treatment of the

frontier, which does not assume a particular functional

form but relies on the general regularity properties such as

free disposability, convexity, and assumptions concerning

the returns to scale. However, the conventional DEA

attributes all deviations from the frontier to inefficiency,

and ignores any stochastic noise in the data. The key

advantage of SFA is its stochastic treatment of these

deviations, which are decomposed into a non-negative

inefficiency term and a random disturbance term that

accounts for measurement errors and other random noise.

However, SFA builds on the parametric regression tech-

niques, which require an ex ante specification of the

functional form. Since the economic theory rarely justifies

a particular functional form, the flexible functional forms,

such as the translog or generalized McFadden are
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frequently used. In contrast to DEA, the flexible functional

forms often violate the monotonicity, concavity/convexity

and homogeneity conditions. Further, imposing these con-

ditions can sacrifice the flexibility (see e.g., Sauer 2006).

In summary, it is generally accepted that the virtues of

DEA lie in its general, nonparametric treatment of the

frontier, while the virtues of SFA lie in its stochastic,

probabilistic treatment of inefficiency and noise.

Bridging the gap between SFA and DEA has been rec-

ognized as one of the most important research objectives in

this field, and contributions to this end have accumulated

since the early 1990s. The emerging literature on semi/

nonparametric stochastic frontier estimation has thus far

mainly departed from the SFA side, replacing the para-

metric frontier function by a nonparametric specification

that can be estimated by kernel regression or local maxi-

mum likelihood (ML) techniques. Fan et al. (1996) and

Kneip and Simar (1996) were among the first to apply

kernel regression to frontier estimation in the cross-sec-

tional and panel data contexts, respectively. Fan et al.

(1996) proposed a two-step method where the shape of the

frontier is first estimated by kernel regression, and the

conditional expected inefficiency is subsequently estimated

based on the residuals, imposing the same distributional

assumptions as in standard SFA. Kneip and Simar (1996)

similarly use kernel regression for estimating the frontier,

but they make use of panel data to avoid the distribu-

tional assumptions. Other semi/nonparametric panel data

approaches include Park et al. (1998, 2003, 2006) and

Henderson and Simar (2005), among others. Recently,

Kumbhakar et al. (2007) proposed a more flexible SFA

method based on local polynomial ML estimation. While

the model is parametrized in a similar way to the standard

SFA models, all model parameters are approximated by

local polynomials. Simar and Zelenyuk (2008) have further

extended the local polynomial ML method to multi-output

technologies, building upon results by Hall and Simar

(2002) and Simar (2007). Interestingly, Simar and

Zelenyuk (2008) also apply DEA to the fitted values of the

Kumbhakar et al. (2007) method in order to impose

monotonicity and concavity.

Departing from the DEA side, Banker and Maindiratta

(1992) were the first to consider ML estimation of the

stochastic frontier model subject to the global free dis-

posability and convexity axioms adopted from the DEA

literature. While their theoretical model combines the

essential features of the classic DEA and SFA models,

solving the resulting ML problem has proved extremely

difficult, if not impossible in practical applications. We are

not aware of any reported empirical applications of the

Banker and Maindiratta’s constrained ML method.

While the earlier semi/nonparametric developments

come a long way in bridging the gap between DEA

and SFA approaches, further elaboration of the interface

between these two paradigms is clearly desirable. Since

conventional DEA literature emphasizes the fundamental

philosophical difference between DEA and the regression

techniques (e.g., Cooper et al. 2004), the intimate links

between DEA and regression analysis may not have

attracted sufficient attention. In this respect, the recent

studies Kuosmanen (2008) and Kuosmanen and Johnson

(2010) have shown that DEA can be understood as a

constrained special case of nonparametric least squares

subject to shape constraints. More specifically, Kuosmanen

and Johnson (2010) prove formally that the classic output-

oriented DEA estimator can be computed in the single-

output case by solving the convex nonparametric least

squares (CNLS) problem (Hildreth 1954; Hanson and

Pledger 1976; Groeneboom et al. 2001a,b; Kuosmanen

2008) subject to monotonicity and concavity constraints

that characterize the frontier, and a sign constraint on the

regression residuals. Thus, DEA can be naturally viewed as

a nonparametric counterpart to the parametric program-

ming approach of Aigner and Chu (1968). Building on this

analogue, Kuosmanen and Johnson (2010) propose a non-

parametric counterpart to the classic COLS method

(Greene 1980), which has generally a higher discriminatory

power than the conventional DEA in the deterministic

setting. However, the deterministic frontier shifting method

of Kuosmanen and Johnson (2010) is more sensitive to

stochastic noise than the conventional DEA.

Departing from Kuosmanen and Johnson (2010), this

paper introduces a stochastic noise term explicitly into the

theoretical model to be estimated, and takes it into account

in the estimation. In the spirit of Banker and Maindiratta

(1992), we examine an encompassing semiparametric

frontier model that includes the classic SFA and DEA

models as its constrained special cases. More specifically,

we assume that the observed data deviates from a non-

parametric, DEA-style piecewise linear frontier production

function due to a stochastic SFA-style composite error

term, consisting of homoskedastic noise and inefficiency

components. To estimate this theoretical model, we

develop a new two-stage method, referred to as stochastic

non-smooth envelopment of data (StoNED).1 In line with

Kuosmanen and Johnson (2010), we first estimate the

shape of the frontier by applying the CNLS regression,

which does not assume a priori any particular functional

form for the regression function. CNLS identifies the

function that best fits the data from the family of

1 In earlier working papers Kuosmanen (2006) and Kuosmanen and

Kortelainen (2007) the term ‘‘stochastic nonparametric envelopment

of data’’ was used. However, as the Associate Editor and two

anonymous reviewers of this journal correctly noted, the proposed

method is actually semi-parametric due the parametric distributional

assumptions imposed on the inefficiency and noise terms.
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continuous, monotonic increasing, concave functions that

can be non-differentiable. In the second stage, we estimate

the variance parameters of the stochastic inefficiency and

noise terms based on the skewness of the CNLS residuals.

The noise term is assumed to be symmetric, so the skewness

of the regression residuals is attributed to the inefficiency

term. Given the parametric distributional assumptions

of the inefficiency and the noise terms, we can estimate the

variance parameters by using the method of moments

(Aigner et al. 1977) or pseudolikelihood (Fan et al. 1996)

techniques. The conditional expected value of the ineffi-

ciency term can obtained by using the results of Jondrow

et al. (1982).

The proposed StoNED method differs from the para-

metric and semi/nonparametric SFA treatments in that we

do not make any assumptions about the functional form or

its smoothness, but build upon the global shape constraints

(monotonicity, concavity). These shape constraints are

equivalent to the free disposability and convexity axioms

of DEA. Compared to DEA, the StoNED method differs in

its probabilistic treatment of inefficiency and noise.

Whereas the DEA frontier is typically spanned by a small

number of influential observations, which makes it sensi-

tive to outliers and noise, the StoNED method uses infor-

mation contained in the entire sample of observations for

estimating the frontier, and infers the expected value of

inefficiency in a probabilistic fashion.

While this paper focuses on the cross-sectional model,

we will also briefly suggest how the approach could be

extended to the panel data setting. In that case, the time-

invariant inefficiency components can be estimated in a

fully nonparametric fashion by resorting the standard fixed

effects treatment analogous to Schmidt and Sickles (1984).

In the cross-sectional setting, imposing some distributional

assumptions seems necessary, otherwise inefficiency can-

not be distinguished from noise. However, the parametric

distributional assumptions should not be taken as the main

limitation. While the absolute levels of our frontier and the

inefficiency estimates critically depend on the distribu-

tional assumptions, the shape of the estimated frontier and

the relative rankings of the evaluated units are not affected

by these assumptions. In contrast, the classic homosked-

astic inefficiency term must be recognized as a more crit-

ical assumption. Indeed, even the shape of the frontier and

the efficiency rankings tend to be biased if the homoske-

dasticity assumption is violated (see Sect. 4.5 for a more

detailed discussion of this point). Dealing with heteros-

kedastic inefficiency is left as an interesting and important

issue to be addressed in the future research.2

The remainder of the paper is organized as follows.

Section 2 introduces the semiparametric model of frontier

production function that encompasses the classic DEA and

SFA models as its special cases. Section 3 introduces the

two-stage estimation strategy of the StoNED method: Sect.

3.2 elaborates the first stage consisting of nonparametric

estimation of the production function by employing CNLS

regression. Based on the CNLS residuals, we estimate the

inefficiency and noise terms by means of method of

moments and pseudolikelihood techniques, as described in

Sect. 3.3. Section 4 discusses some useful extensions to the

proposed approach. Section 5 examines how the proposed

techniques perform in a controlled environment of Monte

Carlo simulations. Finally, Sect. 6 makes concluding

remarks. An illustrative example is presented in the

‘‘Appendix’’. Further supplementary material such as

graphical illustrations, example applications, and compu-

tational codes are available in the working papers

Kuosmanen (2006), Kuosmanen and Kortelainen (2007),

and the website: http://www.nomepre.net/stoned/.

2 Encompassing frontier model

This section introduces the theoretical model of frontier

production functions to be estimated and the assumptions

that will be maintained throughout the paper, except for

Sect. 4.1 where a panel data model will be considered.

Even in the cross-sectional setting we will later introduce

more specific assumptions as they become necessary. To

maintain direct contact with SFA, we describe the model

for the single-output multiple input case. The m-dimen-

sional input vector is denoted by x 2 <m
þ and the scalar

output by y 2 <þ. The production technology is repre-

sented by the frontier production function f : <m
þ ! <þ

that indicates the maximum output that can be produced

with the given inputs. Following the classic DEA approach,

we assume that function f belongs to the class of continu-

ous, monotonic increasing and globally concave functions

that can be nondifferentiable. In what follows, this class of

functions will be denoted by F2. In contrast to the tradi-

tional SFA literature, no specific functional form for f is

assumed a priori; our specification of the production

function proceeds along the nonparametric lines of the

DEA literature.

The observed output yi of firm i may differ from f(xi)

due to inefficiency and noise. We follow the SFA literature

and introduce a composite error term ei = vi - ui, which

2 In the SFA literature, the problem of heteroskedasticity was

recognized in the early 1990s (Caudill and Ford 1993; see also

Florens and Simar 2005). The econometric literature provides many

Footnote 2 continued

useful tools for dealing with heteroskedasticity, but suitability of these

tools to the present setting deserves a thorough examination that falls

beyond the scope of the present study.
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consists of the inefficiency term ui [ 0 and the random

disturbance term vi, formally,

yi ¼ f ðxiÞ þ ei ¼ f ðxiÞ � ui þ vi; i ¼ 1; . . .; n: ð1Þ

Terms ui and vi (i = 1,…,n) are assumed to be statistically

independent of each other as well as of inputs xi. It will be

assumed throughout the paper that the disturbance terms vi

have a symmetric distribution with zero mean and a con-

stant, finite variance r2
v . The inefficiency terms ui have an

asymmetric distribution with a positive expected value l
and a finite variance r2

u. More specific distributional

assumptions on ui and vi will be introduced as they become

necessary (Sect. 3.3).

In model (1), the deterministic part (i.e., production

function f) is defined analogous to DEA, while the sto-

chastic part (i.e., composite error term ei) is defined similar

to SFA. As a result, model (1) encompasses the classic SFA

and DEA models as its constrained special cases. Specifi-

cally, if f is restricted to some specific functional form

(instead of the class F2), model (1) boils down to the classic

SFA model by Aigner et al. (1977). On the other hand, if

we impose the parameter restriction r2
v ¼ 0, we obtain the

single-output DEA model with an additive output-ineffi-

ciency, first considered by Afriat (1972) [see also Banker

(1993)]. In this sense, the classic SFA and DEA models can

both be seen as constrained special cases of the encom-

passing model (1).

Although the encompassing frontier model (1) described

above is considerably more general than the classic DEA

and SFA models, it does impose a number of assumptions

that may be viewed as restrictive. From the perspective of

DEA, assuming the single-output case is clearly restrictive.

The multi-output technology could be modeled by using

distance functions, but this is left as a topic for future

research.3 Further, the assumption of global concavity has

been subject to debate, but we here restrict to the standard

DEA specification.4 From the econometric perspective, the

additive structure of the composite error term and its

components may be restrictive; a more standard multipli-

cative model will be examined in Sect. 4.3. Finally,

assuming homoskedastic inefficiency and noise terms (i.e.,

r2
v and r2

u are constant across firms) can be very restrictive,

as noted in the introduction. Extending the theoretical

model to the heteroskedastic setting would be straightfor-

ward, but the methods developed in this paper assume the

homoskedastic model. We will briefly discuss the possible

consequences of the violations of this assumption in

Sect. 4.5.

3 Stochastic non-smooth envelopment of data

(StoNED) approach

3.1 Two-stage estimation strategy

It is not difficult to write a theoretical model like (1);

developing an operational estimator proves more challeng-

ing. In this section we outline a new two-stage estimation

strategy for estimating the encompassing model of the pre-

vious section, referred to as stochastic non-smooth envel-

opment of data (StoNED). Our objective is to estimate the

deterministic part of the model in a nonparametric fashion

imposing a minimal set of assumptions, in the spirit of DEA.

We estimate the shape of the frontier by exploiting the

standard axioms of DEA (i.e., monotonicity and concavity of

f), free of any distributional assumptions or assumptions

about the functional form of f or its smoothness. However, in

the cross-sectional setting it is impossible to distinguish

between inefficiency and noise without imposing some dis-

tributional assumptions (see Hall and Simar 2002, for a

detailed analysis). Having estimated the shape of function f,

we introduce parametric distributional assumptions adopted

from the SFA literature to estimate the expected location of

the frontier f, and the firm-specific conditional expected

values for the inefficiency term. In summary, the StoNED

method consists of two-stages:

Stage 1: Estimate the shape of function f by Convex

Nonparametric Least Squares (CNLS) regression.

Stage 2: Imposing additional distributional assumptions,

estimate the variance parameters r2
u; r

2
v based on the

skewness of the CNLS residuals obtained in Stage 1,

using the method of moments or pseudolikelihood

techniques. Given estimates of parameters r2
u; r

2
v , com-

pute the conditional expected values of inefficiency.

We elaborate the implementation of Steps 1 and 2 in

Sects. 3.2 and 3.3, respectively.

Our two-step estimation strategy parallels the modified

OLS (MOLS) approach to estimating parametric SFA

models, originating from Aigner et al. (1977).5 Although

SFA models are commonly estimated by maximum

3 Simar (2007) presents a formal description of a data generation

process for a stochastic multi-output frontier model, which could be a

useful starting point for multi-output extensions (see also Simar and

Zelenyuk 2008). The working paper Kuosmanen (2006) suggests how

the CNLS problem could be formulated in terms of the directional

distance function.
4 There is a considerable stream of axiomatic DEA-style literature

devoted to nonparametric estimation of non-convex technologies (see,

e.g., Afriat 1972; Deprins et al. 1984; Petersen 1990; Tulkens 1993;

Bogetoft 1996; Kuosmanen 2001, among others).

5 MOLS should not be confused with the deterministic COLS

(= corrected OLS) approach (Greene, 1980), where the frontier is

shifted upward according to the largest OLS residual so as to envelop

all observations.
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likelihood (ML) techniques, MOLS provides a consistent

method for estimating the SFA model. While the ML

estimators are known to be asymptotically efficient, pro-

vided that the distributional assumptions are correct, the

MOLS estimators tend to be more robust to violations

of the distributional assumptions about inefficiency terms

ui and noise vi. Note that in MOLS the distributional

assumptions about the composite error term do not influ-

ence the slope coefficients of f estimated in Step 1. We

consider this relative robustness of MOLS with respect to

ML as an attractive property, keeping in mind the present

semiparametric setting. As mentioned in the introduction,

Fan et al. (1996) have earlier explored a parallel two-stage

approach in the context of kernel estimation.

3.2 Stage 1: CNLS estimation

The main obstacle in the least squares estimation of model

(1) is that the expected value of the composite error term is

negative due to the inefficiency term

EðeiÞ ¼ �EðuiÞ ¼ �l\0: ð2Þ

Thus, the composite error term violates the Gauss-Markov

assumptions. However, the Gauss-Markov properties can

be restored by rephrasing the model as

yi ¼ f ðxiÞ � l½ � þ ei þ l½ � ¼ gðxiÞ þ ti; i ¼ 1; . . .; n;

ð3Þ

where gðxÞ � f ðxÞ � l can be interpreted as an ‘‘average-

practice’’ production function (in contrast to the ‘‘best-

practice’’ frontier production function f), and ti � ei

þl; i ¼ 1; . . .; n, is a modified composite error term. It is

easy to verify that function g inherits the monotonicity and

concavity properties of f since l is a constant. Further, the

modified errors ti satisfy the Gauss-Markov conditions

under the maintained assumptions of model (1). Thus, the

average-practice production function g can be meaningfully

estimated by nonparametric regression techniques.

The CNLS estimator for function g is obtained as the

optimal solution to the problem

min
g

Xn

i¼1

ðyi � gðxiÞÞ2 s:t: g 2 F2: ð4Þ

In words, the CNLS estimator of g is a monotonic increasing

and concave function that minimizes the L2-norm of the

residuals. Note that the CNLS problem (4) does not restrict

the functional form of g, but searches for the best-fit function

from the family F2, which includes an infinite number of

functions. This makes problem (4) generally hard to solve.

In the univariate setting (m = 1), where input vector

x 2 <m
þ reduces to a scalar x 2 <þ, the CNLS problem can

be solved by sorting the data in ascending order according

to the scalar-valued input (x1 B x2 B _ B xn), and

‘‘parametrizing’’ problem (4) using the fitted values ŷi ¼
ĝðxiÞ as

min
ŷ

Xn

i¼1

ðyi � ŷiÞ2

ŷi� ŷi�1 8i ¼ 2; 3; . . .; n

ŷi � ŷi�1

xi � xi�1

� ŷi�1 � ŷi�2

xi�1 � xi�2

8i ¼ 3; . . .; n: ð5Þ

Hanson and Pledger (1976) proposed this estimator, and

proved its consistency. Groeneboom et al. (2001a, b)

present a thorough and rigorous investigation of the sta-

tistical properties, showing that the fitted values ŷi con-

verge to g(xi) at rate n-2/5, and that the limit behavior of

the estimator can be characterized by a canonical stochastic

process that can be associated with the integrated Brownian

motion. Other related work in statistics include Nemirovski

et al. (1985), Mammen (1991), and Mammen and Thomas-

Agnen (1999).

The univariate, single-input estimator is obviously too

restrictive for the purposes of productive efficiency anal-

ysis. Earlier known computational algorithms for the

CNLS estimator all relate to the univariate setting where

the scalar-valued input data can be sorted to ensure

g(xi) C g(xi-1). However, the input vector x 2 <m
þ cannot

be sorted prior to the estimation such that g(xi) C g(xi-1),

i = 2,…,n. To resolve this challenge, Kuosmanen (2008)

has shown that the infinite dimensional CNLS problem (4)

has an equivalent finite dimensional representation, which

can be stated as the following quadratic programming (QP)

problem

min
t;a;b

Xn

i¼1

t2
i

yi ¼ ai þ b0ixi þ ti

ai þ b0ixi� ah þ b0hxi 8h; i ¼ 1; . . .; n

bi� 0 8i ¼ 1; . . .; n ð6Þ

The rationale of this formulation is the following. The first

constraint of problem (6) can be interpreted as the regres-

sion equation. Note that coefficients ai, bi are specific to

each observation i:i = 1,…,n, which reveals a technical

similarity to the random parameters SFA models (e.g.,

Greene 2005). In the present setting, however, the coeffi-

cients ai, bi are not parameters of the estimated function g,

but rather, they characterize tangent hyperplanes to the

unknown function g at point xi. The inequality constraints

in (6) can be interpreted as a system of Afriat inequalities

(compare with Afriat 1967, 1972; and Varian 1984). When

all inequalities of (6) are satisfied, we can employ the

Afriat’s Theorem to show that there exist a continuous,

monotonic increasing and concave function ĝ that satisfies

J Prod Anal (2012) 38:11–28 15
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yi ¼ ĝðxiÞ þ ti for all i = 1,…,n. As Kuosmanen (2008)

emphasizes, the Afriat inequalities are the key to modeling

the concavity axiom in the general multiple regression

setting where there is no unambiguous way of sorting input

vectors x.

For estimating the shape of the production function, the

coefficients (ai,bi) have a compelling economic interpre-

tation: vector bi can be interpreted as the subgradient

vector rgðxiÞ, and thus it represents the vector of marginal

products of inputs at point xi. Thus, coefficients bi could be

used for nonparametric estimation of substitution and scale

elasticities. Note that equation y ¼ ai þ b0ix can be inter-

preted as the tangent hyperplane to the estimated function

g at point xi. Therefore, the coefficients of the QP problem

(6) provide a local first-order Taylor series approximation

to any arbitrary function g in the neighborhood of the

observed points xi. In contrast to the flexible functional

forms that can be interpreted as second-order Taylor

approximations around a single, unknown expansion point,

the CNLS estimator uses all n observations as expansion

points for the local linear approximation.

The CNLS problems (4) and (6) are equivalent in the

following sense (see Kuosmanen 2008, ‘‘Appendix’’, for a

formal proof).

Theorem 3.1 Denote the optimal solution to the infinite

dimensional CNLS problem (4) by s2
CNLS and the optimal

solution to the finite quadratic programming problem (6)

by s2
QP. Then for any arbitrary data, s2

CNLS ¼ s2
QP.

This result shows that the CNLS estimator can be

computed in the general multivariate setting. Indeed, it is

easy to verify that the univariate CNLS formulation (5) by

Hanson and Pledger (1976) is obtained as a special case of

(6) when m = 1. We would conjecture that the known

statistical properties of the univariate CNLS estimator

(consistency, rate of convergence) carry over to the mul-

tivariate setting, but this remains to be formally shown.

Regarding the rates of convergence, Stone (1980, 1982) has

established n-2d/(2d?m) as the optimal rate of convergence

for any arbitrary nonparametric regression estimator, where

d equals the degree of differentiability of the true but

unknown g. We note that the rate of convergence estab-

lished by Groeneboom et al. (2001a, b) for the univariate

CNLS estimator falls below this optimal rate. Although the

rate of convergence for the multivariate CNLS estimator

remains unknown, Stone’s general result can be viewed as

the theoretical upper bound that the CNLS estimator cannot

exceed even under ideal conditions. This is a useful

reminder that the CNLS estimator is subject to the ‘‘curse

of dimensionality’’, similar to the conventional DEA esti-

mators (see, e.g., Simar and Wilson 2000, for discussion).

In practice, this means that the sample size n needs to be

large and the number of inputs m must be sufficiently small

for any meaningful estimation. It might be possible to

improve the rate of convergence by imposing further

restrictions on the third and higher order partial derivatives

of g, but it is unclear how the higher derivatives could be

utilized in the CNLS estimator. Further, it would be

interesting to link the non-smooth CNLS estimator to the

kernel regression and other nonparametric smoothing

techniques (see e.g., Mammen and Thomas-Agnen 1999;

Yatchew 2003). On the other hand, the non-smooth CNLS

estimator is closely related to the classic DEA estimator,

which is an appealing property for the purposes of the

present paper.

Consider for a moment the deterministic case where

r2
v ¼ 0. In this setting, all deviations from the frontier can

be attributed to the inefficiency term u. Hence, we could

impose an additional sign-constraint ti� 0 8i ¼ 1; . . .; n for

the composite error terms of the QP problem (6), analogous

to the classic parametric programming (PP) approach of

Aigner and Chu (1968). Interestingly, Kuosmanen and

Johnson (2010) have formally shown that the resulting

sign-constrained CNLS problem is in fact equivalent to the

classic variable returns to scale DEA estimator: the output

oriented DEA efficiency estimates are directly obtained

from the CNLS residuals. In light of these results, the

classic DEA can be interpreted as a sign-constrained

variant of the CNLS problem (6). Further, the results of

Kuosmanen and Johnson (2010) reveal DEA as a non-

parametric counterpart to Aigner and Chu’s PP method.

Returning to the stochastic setting, we next elaborate the

connection between CNLS and DEA further. Note that

Kuosmanen and Johnson (2010) consider the CNLS esti-

mator ŷi ¼ âi þ b̂0ixi only at the observed input levels xi,

i = 1,…,n. It can be shown that the QP problem (6) always

has a unique optimum, and that the fitted values ŷi are

unique. However, estimating the function g at unobserved

input levels x proves more complicated.

It is well known in the DEA literature that the input–

output weights (shadow prices) of the multiplier-side DEA

problem are generally not unique. The same is true for

the CNLS estimator: the coefficients âi; b̂i obtained as the

optimal solution to (6) need not be unique, even though the

fitted values ŷi are unique for the observed xi,

i = 1,…,n. In general, there are many ways to fit a

monotonic and concave function through the finite number

of points ðxi; ŷiÞ. As Kuosmanen (2008) notes, even the

original CNLS problem (4) does not generally have a

unique solution: there generally exists a family of alternate

optima F�2 .

To address the non-uniqueness issue, Kuosmanen

(2008) has established the following lower and upper

bounds for the alternate optima within F�2:
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ĝminðxÞ ¼ min
a2<;b2<m

þ
aþ b0x aþ b0xij � ŷi 8i ¼ 1; . . .; nf g;

ð7Þ

ĝmaxðxÞ ¼ max
/2<;a2<n;b2<m	n

þ

�
/
��/� ai þ b0ix 8i;

ai þ b0ixi ¼ ŷi 8i; ai þ b0ixh� ŷh 8h 6¼ i
�
:

ð8Þ

More specifically, Kuosmanen (2008, Theorem 4.1) shows

that function ĝmin is the tightest possible lower bound

for the family of functions F�2 (i.e., ĝminðxÞ ¼
min

f
f ðxÞ s:t: f 2 F�2), and ĝmax is the tightest possible upper

bound (i.e., ĝmaxðxÞ ¼ max
f

f ðxÞ s:t: f 2 F�2). Recall that for

the observed points xi, the fitted values are always unique:

gðxiÞ ¼ ĝminðxiÞ ¼ ĝmaxðxiÞ 8i ¼ 1; . . .; n:

Interestingly, the lower bound function ĝmin can be

interpreted as the variable returns to scale DEA frontier

applied to the predictions ðxi; ŷiÞ of the CNLS estimator.

Applying the duality theory of linear programming, we can

prove the following6:

Theorem 3.2 The lower bound function ĝmin character-

ized by (7) is equivalent to the variable returns to scale

DEA frontier estimator applied to the data ðxi; ŷiÞ. Spe-

cifically, for any input vector x 2 <m
þ,

ĝminðxÞ

¼max
k2<n

þ

Xn

h¼1

khŷh x�
Xn

h¼1

khxh

����� ;
Xn

h¼1

kh ¼ 1; kh�0

( )
:

ð9Þ

In line with the classic DEA, we can resolve the non-

uniqueness of the CNLS estimator by resorting to the

minimum function ĝmin, which is always unique. Based on

Theorems 3.1 and 3.2, we can give function ĝmin the

following minimum extrapolation interpretation (compare

with Afriat 1972, and Banker et al. 1984): function ĝmin is

the minimum function that satisfies the axioms of free

disposability and concavity and minimizes the sample

variance of deviations ðyi� ĝminðxiÞÞ. Recall that the

classic DEA estimator has a similar minimum

extrapolation property, with the exception that the DEA

frontier envelopes all observed data, whereas ĝmin does not.

In the deterministic setting, enveloping all observed data

can be desirable. In the stochastic setting, replacing the

envelopment axiom by some other axiom seems preferable.

Minimization of the sample variance of deviations

ðyi� ĝminðxiÞÞ seems a natural candidate for such an

axiom.

Theorem 3.2 is also important for establishing a formal

connection between CNLS and DEA estimators for the

unobserved input levels x, complementing the results of

Kuosmanen and Johnson (2010). Not only do the CNLS

and DEA share the same axioms, the DEA estimator has a

compelling regression interpretation as a sign-constrained

variant of CNLS. On the other hand, to interpolate the fitted

values of the CNLS regression, the classic DEA estimator

provides the tightest lower bound for the family of func-

tions that solve the problem (4).

Despite these compelling links and interpretations, we

must recall that the piece-wise linear lower bound ĝminðxÞ
does not estimate the frontier f(x) but the average-practice

production function g(x). In the present setting, the shape

of the average-practice function g(x) is exactly the same as

that of the frontier f(x), because the expected inefficiency l
was assumed to be constant across all firms and thus

g(x) = f(x) - l. In the next section we show how the

expected inefficiency l and the unknown variance param-

eters r2
u; r

2
v can be estimated based on the skewness of the

CNLS residuals.

3.3 Efficiency estimation

Given the CNLS residuals t̂ � ðt̂1; . . .; t̂nÞ, the next chal-

lenge is to disentangle inefficiency from noise. At this

point, more specific distributional assumptions must be

imposed.7 We will follow the classic SFA study by Aigner

et al. (1977) and assume the half-normal inefficiency term

and a normally distributed noise term: ui 

i:i:d

Nð0; r2
uÞ

�� �� and

vi 

i:i:d

Nð0; r2
vÞ. Other distributions such as gamma or

exponential are also used for the inefficiency term ui (e.g.,

Kumbhakar and Lovell 2000), but in this paper we restrict

to the half-normal specification.

Since the noise term has a symmetric distribution, the

negative skewness of the CNLS residuals signals that an

asymmetric inefficiency term is present. Of course, the

residuals might be skewed in a small sample just by

coincidence; it would be advisable to test whether the

negative skewness is statistically significant prior to esti-

mation (see, e.g., Kuosmanen and Fosgerau 2009). If

skewness is significant, there are at least two possible

approaches for estimating the variance parameters r2
u; r

2
v :

the method of moments and pseudolikelihood estimation.

We next briefly describe both these approaches and adapt

them for our purposes.

6 The proof involves straightforward mechanical calculations and it is

hence omitted. Details of the proof are available from the authors

by request.

7 In the deterministic setting, one could shift the estimated CNLS

curve upward by the largest residual to ensure that all observations

will be enveloped, similar to the COLS approach (Greene 1980). This

approach is examined in detail by Kuosmanen and Johnson (2010).
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3.3.1 Method of moments

Originating from the seminal paper by Aigner et al. (1977),

the method of moments (MM) is commonly used in the

MOLS estimation of SFA models (e.g., Greene 2008).

Under the maintained assumptions of half-normal ineffi-

ciency and normal noise, the second and third central

moments of the composite error distribution are given by

M2 ¼
p� 2

p

� �
r2

u þ r2
v ð10Þ

M3 ¼
ffiffiffi
2

p

r !
1� 4

p

� �
r3

u: ð11Þ

These can be estimated based on the distribution of the

CNLS residuals as

M̂2 ¼
Xn

i¼1

ðt̂i � ÊðtiÞÞ2=n ð12Þ

M̂3 ¼
Xn

i¼1

ðt̂i � ÊðtiÞÞ3=n: ð13Þ

Note that the third moment (which represents the skewness

of the distribution) only depends on the standard deviation

parameter ru of the inefficiency distribution. Thus, given

the estimated M̂3 (which should be negative), we can

estimate ru parameter by

r̂u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M̂3ffiffi
2
p

q� 	
1� 4

p


 �3

vuut : ð14Þ

Subsequently, the standard deviation of the error term rv is

estimated using Eq. 10 as

r̂v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M̂2 �
p� 2

p

� �
r̂2

u

s

: ð15Þ

These MM estimators are unbiased and consistent (Aigner

et al. 1977; Greene 2008), but not necessarily as efficient as

the maximum likelihood estimators.

3.3.2 Pseudolikelihood estimation

An alternative way to estimate the standard deviations ru,

rv is to apply the pseudolikelihood (PSL) method sug-

gested by Fan et al. (1996). Compared to the MM, PSL is

potentially more efficient, but is computationally somewhat

more demanding.

Like in the MM approach, our starting point is the

CNLS residuals t̂ � ðt̂1; . . .; t̂nÞ. In the PSL approach we

set parameters r � ru þ rv and k � ru=rv to maximize the

concentrated log-likelihood function. One of the main

contributions of Fan et al. (1996) was to show that the

log-likelihood can be expressed as a function of a single

parameter (k) as,

ln L kð Þ ¼ �n ln r̂þ
Xn

i¼1

ln U
�êik

r̂

� �
� 1

2r̂2

Xn

i¼1

ê2
i ; ð16Þ

êi ¼ t̂i �
ffiffiffi
2
p

kr̂
� 	.

p 1þ k2
� 
 �1=2

; ð17Þ

r̂ ¼ 1

n

Xn

j¼1

t̂2
i

,
1� 2k2

p 1þ kð Þ

� �( )1=2

: ð18Þ

Note that êi and r̂ cannot be computed from the CNLS

residuals as they depend on the unknown parameter k. In

practice, we maximize the log-likelihood function (16) by

enumerating over k values, using a simple grid search or

more sophisticated search algorithms. After the pseudo-

likelihood estimate k̂ that maximizes (16) is found, esti-

mates for ei and r are obtained from (17) and (18).

Subsequently, we obtain r̂u ¼ r̂k̂=ð1þ k̂Þ and r̂v ¼ r̂=

ð1þ k̂Þ. Fan et al. (1996) show that estimators k̂ and r̂
converge to the true k and r at the standard parametric rate

n�1=2.

3.3.3 Estimation of the inefficiency term

Given a consistent estimator r̂u (obtained by either MM or

PSL), the frontier production function f can be consistently

estimated as f̂ ðxÞ ¼ ĝminðxÞ þ r̂u

ffiffiffiffiffiffiffiffi
2=p

p
. In practice, this

means that frontier is obtained by shifting the CNLS esti-

mate of the average-practice production function upwards

by the expected value of the inefficiency term, analogous to

the MOLS approach.

Regardless of how ru, rv are estimated, the firm-specific

inefficiency component ui must be inferred indirectly in the

cross-sectional setting. Jondrow et al. (1982) have shown

that the conditional distribution of inefficiency ui given ei is

a zero-truncated normal distribution with mean l� ¼
�eir

2
u=ðr2

u þ r2
vÞ and variance r2

� ¼ r2
ur

2
v=ðr2

u þ r2
vÞ. As a

point estimator for ui, one can use the conditional mean

Eðui eij Þ ¼ l� þ r�
/ð�l�=r�Þ

1� Uð�l�=r�Þ

� �
; ð19Þ

where / is the standard normal density function, and U is

the standard normal cumulative distribution function.

Given the estimated r̂u; r̂v parameters, the conditional

expected value of inefficiency can be computed as

Êðui êi

�� Þ ¼ � êir̂
2
u

r̂2
u þ r̂2

v

þ r̂2
ur̂

2
v

r̂2
u þ r̂2

v

/ð̂ei=r̂
2
vÞ

1� Uðêi=r̂2
vÞ

� �
; ð20Þ

where êi ¼ t̂i � r̂u

ffiffiffiffiffiffiffiffi
2=p

p
is the estimator of the composite

error term (compare with (17)), not the CNLS residual. The

conditional expected value (20) is an unbiased but
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inconsistent estimator of ui: irrespective of the sample size

n, we have only a single observation of the firm i (see, e.g.,

Greene 2008, Section 2.8.2, for further discussion).

4 Possible extensions

This section briefly outlines some potential extensions of

the proposed method and suggests some interesting ave-

nues for future research. While some extensions are readily

implementable, we must emphasize that every topic

discussed in this section deserves a more systematic and

rigorous examination of its own.

4.1 Panel data model

Panel data enables us to relax the distributional assump-

tions, and estimate the model in a fully nonparametric

fashion. In the following we describe the fixed effects

approach to estimating time-invariant inefficiency. Alter-

native panel data approaches such as random effects

modeling, time-varying inefficiency, and modeling tech-

nical progress are left as interesting topics for future

research.

Assuming a balanced panel where each firm is observed

over time periods t = 1,…,T, the frontier model with time-

invariant inefficiency can be described as

yi;t ¼ f ðxi;tÞ � ui þ vi;t; i ¼ 1; . . .; n; t ¼ 1; . . .; T;

ð21Þ

where ui C 0 is a time-invariant inefficiency term of firm

i and vi,t is the stochastic noise term for firm i in period

t. Production function f is assumed to be monotonic

increasing and concave as before. We assume that the noise

components vit are uncorrelated random variables with

Eðvi;tÞ ¼ 0 8i; t; Eðv2
i;tÞ ¼ r2

v\18i; t; and Eðvj;svi;tÞ ¼
0 8j 6¼ i; s 6¼ t. Importantly, no distributional assumptions

are imposed: model (21) is fully nonparametric.

It might be tempting to leave the inefficiency terms in

the composite error term, and estimate the model (21)

analogous to the cross-sectional approach examined

above. However, the time-invariant ui would make the

composite error term heteroskedastic across firms and

autocorrelated across time periods. To avoid the problems

of heteroskedasticity and autocorrelation, we can elimi-

nate the time-invariant inefficiency terms from the

regression equation by rewriting the model (21) in terms

of the first differences

yi;t � yi;t�1 ¼ f ðxi;tÞ � f ðxi;t�1Þ þ vi;t � vi;t�1;
i ¼ 1; . . .; n; t ¼ 2; 3; . . .; T :

ð22Þ

We can take equality (22) as the regression equation to be

estimated by CNLS. Specifically, the CNLS problem can

be stated as

min
a;b;t

XT

t¼1

Xn

i¼1

t2
i;t

yi;t � yi;t�1 ¼ ðai;t þ b0i;txi;tÞ � ðai;t�1 þ b0i;t�1xi;t�1Þ
þ ti;t � ti;t�1; i ¼ 1; . . .; n; t ¼ 2; 3; . . .; T

ai;t þ b0i;txi;t� ah;s þ b0h;sxi;t 8h; i 2 1; . . .; nf g;
s; t 2 1; . . .; Tf g

bi;t� 0 8i ¼ 1; . . .; n; t ¼ 1; . . .; T ð23Þ

This is a quadratic programming problem with

(nT)2 ? 2nT - n linear constraints. As the number of

constraints is a quadratic function of both n and T, the

problem is computationally demanding. Developing effi-

cient computational algorithms or heuristics must be rec-

ognized as one important challenge for further research.

Given the optimal solution to (23), we can compute the

firm-specific ‘‘fixed effects’’ as

di ¼
1

T

XT

t¼1

yi;t � ðai;t þ b0i;txi;tÞ
� 

: ð24Þ

Following Schmidt and Sickles (1984), we can take the

most efficient firm in the sample as the reference, and

estimate the time-invariant inefficiency terms ui by using

ûi ¼ max
h2 1;...;nf g

dh � di: ð25Þ

In a finite sample, the estimator of Schmidt and Sickles

(1984) is upward biased; the most efficient firm in the

observed sample may be inefficient compared to the true

but unobserved frontier. Consistency of this estimator

requires that there is a strictly positive probability of

observing a perfectly efficient firm with ui = 0. Park and

Simar (1994) present a more detailed investigation of

consistency and the rates of convergence of this estimator

in the semiparametric setting.

To estimate the frontier, we can directly apply the DEA

formulation of lower bound function presented in (9). Given

this lower bound function, we can estimate the frontier as

f̂ ðxÞ ¼ ĝminðxÞ þ max
h2f1;...;ng

dh: ð26Þ

4.2 Returns to scale

We have thus far left returns to scale (RTS) unrestricted. In

many applications, it is meaningful to impose further

structure on RTS or it is interesting to test for alternative

RTS assumptions. Imposing RTS is straightforward in the

QP problems (6) and (23). In problem (6) we can simply

add the following constraints:
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• constant returns to scale (CRS): ai ¼ 0 8i ¼ 1; . . .; n

• non-increasing returns to scale (NIRS): ai� 0 8i ¼
1; . . .; n

• non-decreasing returns to scale (NDRS): ai� 0 8i ¼
1; . . .; n

Rationale of these constraints is directly analogous to

the standard multiplier-side DEA formulations where

parallel constraints are employed for enforcing RTS

assumptions.

While the CNLS regression is easily adapted to alter-

native RTS assumptions, the implications to the efficiency

estimation are somewhat trickier. Specifically, if one esti-

mates the average-practice technology g subject to CRS,

and subsequently shifts the frontier upward by the esti-

mated expected inefficiency, the resulting best-practice

frontier does not generally satisfy CRS. This is due to the

mismatch of the additive structure of the inefficiency and

noise terms assumed in (1) and the multiplicative nature of

the scale properties. If one imposes CRS, NIRS, or NDRS

assumptions, it is logically consistent to employ the mul-

tiplicative specification of inefficiency and noise, to be

discussed next.

4.3 Multiplicative model

Most SFA studies employ a multiplicative error model due

to the log-transformations applied to the data (e.g., when

the popular Cobb-Douglas or translog functional forms are

used). As noted above, the CRS assumption requires a

multiplicative error structure. Moreover, multiplicative

error specification might help to alleviate heteroskedastic-

ity from different scale sizes (cf. Caudill and Ford 1993).

Adhering to the standard multiplicative formulation

from SFA, we can rephrase model (1) as

yi ¼ f ðxiÞ � expðeiÞ ¼ f ðxiÞ � expðvi � uiÞ; i ¼ 1; . . .; n:

ð27Þ

We maintain the same assumptions on production function

f and the composite error term as in model (1). Applying

the log-transformation to Eq. 27, we obtain

ln yi ¼ ln f ðxiÞ þ ei ; i ¼ 1; . . .; n: ð28Þ

Note that the log-transformation is applied to function f,

not directly to inputs x. Next, we may apply the

decomposition presented in (3) to restore the Gauss-

Markov conditions, rephrasing model (28) as

ln yi ¼ ln f ðxiÞ � l½ � þ ei þ l½ � ¼ gðxiÞ þ ti; i ¼ 1; . . .; n;

ð29Þ

where l is the expected inefficiency and g is the average-

practice production function as before. To estimate g by

CNLS, we may rephrase the QP problem (6) as

min
ŷ;a;b

Xn

i¼1

ðln yi � ln ŷiÞ2

ŷi ¼ ai þ b0ixi

ai þ b0ixi� ah þ b0hxi 8h; i ¼ 1; . . .; n

bi� 0 8i ¼ 1; . . .; n ð30Þ

This yields a convex programming problem with a convex

objective function and a system of linear inequality con-

straints. Note that the fitted values ŷi are model variables in

(30): we cannot use data transformations to linearize this

problem. The input–output data must be kept in the original

units in order to use the Afriat inequalities for imposing

concavity. Although the objective function involves loga-

rithms of model variables, global convexity of the objec-

tive function of problem (30) presents an important

advantage compared to the constrained ML problem sug-

gested by Banker and Maindiratta (1992). With today’s

computational capacity, convex programming problems are

not considered less tractable than linear programming.

Given the composite residuals from model (30) (i.e.,

ti ¼ ln yi � ln ŷi), the standard MM or PSL procedures can

be applied, as described in Sect. 4. The log-transformation

only concerns Step 1, and makes no difference in the

estimation of Step 2. However, the interpretation of inef-

ficiency term ui changes: exp(ui) provides the Farrell output

efficiency measure.

4.4 Cost functions

The duality theory has established that the production

technology can be equivalently modeled by means of

monetary representations, such as the cost function, which

is formally defined as

Cðy;wÞ ¼ min
x

w0x fj ðxÞ ¼ yf g: ð31Þ

Vector w represents the exogenously given input prices.

The cost function indicates the minimum cost of producing

a given target output at given input prices. Note that if data

for the input and output quantities (x,y) are available, we

could first estimate the production function f using the

techniques developed in the previous sections, and simply

apply the definition (31) to recover the cost function from

the estimated production function f. This is a common

approach in the DEA literature (see, e.g., Fried et al. 2008).

In this section we briefly explore the more challenging case

where the data of input quantities (or the cost shares of

inputs) are not available, and we only observe the output yi,

input prices wi, and the total cost Ci for firms i = 1,…,n.

According to the microeconomic theory, the cost func-

tion C is non-negative and non-decreasing function of both

input prices w and the output y. Further, the cost function is

known to be continuous, concave and homogenous of
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degree one in input prices w (Shephard 1953). The known

regularity properties of cost functions provide useful shape

constraints that can be utilized in the semi- and nonpara-

metric estimation.

If the production function f is concave, as assumed in

DEA, then the cost function is a convex function of output

y. In contrast, the cost function must be concave in input

prices w. As a step towards resolving this mismatch

between convexity in y and concavity in w, we note that the

cost function can be factored as Cðy;wÞ ¼ aðwÞ � bðyÞ if

and only if the technology satisfies the assumption of input

homotheticity (Shephard 1953). If we impose a stronger

assumption that production function f exhibits constant

returns to scale (which implies input homotheticity), the

cost function becomes separable in the following sense:

Cðy;wÞ ¼ aðwÞ � y: ð32Þ

Note that the function aðwÞ ¼ Cðy;wÞ=y has a compelling

interpretation as the average cost function. Further, this

average cost function depends only on input prices w, and

it inherits the concavity and homogeneity properties of the

cost function C.

In the stochastic cost frontier models (e.g., Kumbhakar

1997), the observed costs Ci (i = 1,…,n) are assumed to

differ from the cost function due to a composite error term

(ei) which is the sum of a non-negative inefficiency term

(ui) and a noise term (vi). To ensure homogeneity of degree

one in prices w, we postulate a multiplicative error term as

in Sect. 4.3, that is,

Ci ¼ Cðyi;wiÞ � expðeiÞ ¼ Cðyi;wiÞ � expðvi þ uiÞ: ð33Þ

Note the changed sign of the inefficiency term in (33). To

estimate the cost frontier in the cross-sectional setting, we

assume ui are half-normal and vi are normally distributed.

To estimate the average cost function a by CNLS, take

logarithms of both sides of Eq. 33, and utilize the CRS

assumption to rephrase the equation as

ln Ci ¼ ½ln aðwiÞ þ ln yi þ l� þ ½vi þ ui � l�: ð34Þ

Parameter l represents the expected value of cost

inefficiency (compare with (3)). To obtain a least squares

estimator for the average cost function, we formulate the

CNLS problem as follows:

min
b;â;l

Xn

i¼1

ln Ci � ðln âi þ ln yi þ lÞ½ �2

s:t:

âi ¼ b0iwi 8i ¼ 1; . . .; n

b0iwi� b0hwi 8h; i ¼ 1; . . .; n

b0i� 0 8i ¼ 1; . . .; n ð35Þ

The fitted values âi for the average cost function are model

variables: problem (35) is a convex programming problem

with linear constraints, similar to problem (30). Coeffi-

cients bi indicate the marginal cost of input prices (which

represent the input substitution possibilities). The second

set of constraints is the system of Afriat inequalities that

enforces concavity in input prices w. By excluding the

intercept, we force the estimated average cost function to

be homogenous of degree one in prices w, as required by

the microeconomic theory. Importantly, this homogeneity

property enables us to identify the parameter l directly; we

insert it to the objective function of the least squares

problem (35) to obtain the least squares estimate. Given the

half-normal specification of the inefficiency term, we can

utilize the equation l ¼ ru

ffiffiffiffiffiffiffiffi
2=p

p
to estimate ru directly

based on the l̂ obtained from (35). The parameter rv can be

estimated based on the residuals using Eq. 15. The condi-

tional expected values of cost inefficiency can be estimated

using the result of Jondrow et al. (1982; as described in

Sect. 4). Note the changed sign of the inefficiency com-

ponent in the present setting.

The interpretation of the inefficiency term also changes

from the production function setting: ui represents (overall)

cost inefficiency that captures both technical and allocative

aspects of inefficiency. If data of input quantities or cost

shares is available, one could disentangle technical ineffi-

ciency from allocative inefficiency. Further, one could

incorporate the share equations to the CNLS model (35)

(see Kumbhakar 1997, for details). Incorporating the share

equations, multiple outputs, and variable returns to scale to

the CNLS formulation present interesting avenues for

future research.

4.5 Heteroskedasticity

We have thus far assumed that standard deviations ru, rv are

the same across all firms. This assumption is referred to as

homoskedasticity, and it forms one of the maintained

assumptions of the classic SFA model by Aigner et al. (1977).

As Caudill and Ford (1993) and Florens and Simar (2005)

demonstrate, violation of the homoskedasticity assumption

leads to potentially serious problems in the context of para-

metric frontier estimation. Clearly, similar problems carry

over to the present semiparametric setting as well. Thus, a

brief discussion about robustness of the proposed method to

heteroskedasticity is necessary, although more systematic and

rigorous treatment of the topic is left for a separate study.

Firstly, we must distinguish between (1) heteroskedas-

ticity of the noise term (i.e., parameter rv varies across

firms) and (2) heteroskedasticity of the inefficiency term

(i.e., ru varies across firms). Let us first consider heter-

oskedasticity of type (1). Of course, both types of heter-

oskedasticity may be present at the same time. However,

their impacts on the StoNED estimators differ.
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Note first that the expected inefficiency l ¼ ru

ffiffiffiffiffiffiffiffi
2=p

p

does not depend on rv. Therefore, the shape of the average-

practice production function g remains identical to that of

the frontier f even if the noise terms are heteroskedastic.

Hence, the proposed approach is not particularly sensitive

to heteroskedasticity of type (1). Least squares estimators

(incl. CNLS) are known to be unbiased and consistent

under symmetric heteroskedasticity, even though more

efficient estimators are possible if heteroskedasticity is

modeled correctly. Given unbiased CNLS residuals, het-

eroskedastic rv will likely increase variance of the

parameter estimators r̂u; r̂v. However, since ru is estimated

based on the skewness of the residual distribution, and

heteroskedasticity in the symmetric noise component does

not affect skewness, the estimator r̂u remains consistent.

Thus, frontier f and expected inefficiency l can be con-

sistently estimated even under heteroskedasticity of type

(1). The only problem is that the conditional expected

value of inefficiency Êðui êij Þ is a function of heterosked-

astic r̂v. Thus, firm-specific efficiency scores and rankings

can be affected by heteroskedasticity of type (1).

Heteroskedasticity of type (2) is a much more serious

problem because ru does directly influence the expected

inefficiency E(ui). When ru is heteroskedastic, the expected

inefficiency E(ui) differs across firms, and thus the shape of

the average-practice production function g is no longer

identical to that of the frontier f. We stress that this problem

arises only in case (2), not in case (1). Since the proposed

StoNED method relies on consistent estimation of the

average-practice production g in the step (1), the estimates

can be sensitive to the violation of the homoskedasticity

assumption for ru (see the next section for some evidence

from Monte Carlo simulations). Therefore, it is critically

important to develop statistical tests of the homoskedas-

ticity assumption and more general estimation methods that

can deal with heteroskedastic inefficiency. Fortunately,

such tests and methods have been developed for the least

squares estimation in the context of the linear regression

model (consider, e.g., the generalized least squares (GLS)

method). The main challenge is to adapt and extend

existing techniques from the linear regression analysis to

the CNLS framework. This forms an important topic for

future research.

4.6 Statistical inferences

Even though we impose parametric distributional

assumption for the inefficiency and noise terms, the con-

ventional methods of statistical inference do not directly

apply to the present setting. For example, one might apply

the likelihood ratio test for testing significance of two

alternative hierarchically nested model variants, but the

degrees of freedom are difficult to specify (see Meyer

2003, 2006, for discussion). One could also construct

confidence intervals based on the known conditional dis-

tribution of the inefficiency term (see Horrace and Schmidt

1996, for details). However, such confidence intervals do

not take into account the sampling distribution of the

inefficiency estimators, and consequently, have poor cov-

erage properties (Simar and Wilson 2010). In light of these

complications, the parametric bootstrap method similar to

Simar and Wilson (2010) would appear to be the best

suited approach to statistical inference in the present con-

text. Adapting the procedure to the present setting seems

straightforward, but it is first important to ensure that the

method is consistent and provides valid inferences even in

finite samples. We leave this as an interesting research

question for future research.

Related to the previous point, we should note that the

least-squares residuals are often skewed in the wrong

direction (M̂3 [ 0). In the SFA literature, the usual

approach is to set r̂u ¼ 0, which means that all firms are

diagnosed as efficient. It may also occur that the skewness

is so great that r̂u [ r̂, and thus r̂v becomes negative. In

that case, the typical approach is to set r̂v ¼ 0 and attribute

all observed variation to inefficiency (as in DEA). The

‘‘wrong skewness’’ is conventionally seen as a useful built-

in diagnostic, which signals model misspecification or

inappropriate data (Greene 2008). Indeed, inspecting the

distribution of residuals might reveal some possible sources

of model misspecification. However, evidence from several

Monte Carlo studies shows that wrongly skewed residuals

can arise even in correctly specified frontier models (e.g.,

Fan et al. 1996; Carree 2002; Simar and Wilson 2010).

This is not only a problem for the method of moments, it

equally affects the pseudolikelihood method. Interestingly,

if Simar and Wilson’s (2010) bootstrap procedure is

applicable in the present setting, it could alleviate the

wrong skewness problem as well.

5 Monte Carlo simulations

In this section we examine performance of the StoNED

method in the controlled environment of Monte Carlo

simulations. Our objective is to compare performance of

the StoNED method with the standard DEA and SFA under

alternative conditions where the distributional assumptions

of the StoNED model are violated.8 The data generating

processes used in the simulations has been adopted from

8 For an illustrative example of the functioning and performance of

the method with simulated data under ideal conditions, see Appendix.

Further examples are available in the working papers Kuosmanen

(2006) and Kuosmanen and Kortelainen (2007).
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Simar and Zelenyuk (2008). Systematic performance

comparisons with other semi- and nonparametric methods

is left as a topic for future research.9

We consider performance in terms of the standard mean

squared error (MSE) criterion, applying it to estimates of

the frontier f and the inefficiency term u. For the frontier

estimates, the MSE statistic is defined as

MSEf ¼
1

nR

XR

r¼1

Xn

i¼1

ðf̂rðxiÞ � f ðxiÞÞ
2
; ð36Þ

where f̂ denotes the estimated frontier function (estimated

by DEA, SFA, or StoNED), and r = 1,…,R is the index of

replications of a given scenario. Analogously, the MSE of

the inefficiency estimates is defined as

MSEu ¼
1

nR

XR

r¼1

Xn

i¼1

ðûi;r � uiÞ2: ð37Þ

For DEA, the standard output-oriented variable returns to

scale (VRS) specification is used. Given the DEA efficiency

score h ¼ f̂ DEAðxiÞ=yi, the DEA inefficiency estimator is

obtained as ûDEA
i ¼ ðh� 1Þyi. For SFA, we use the Cobb-

Douglas production function with the half-normal

inefficiency term. The MOLS estimator is used to ensure

comparability with the StoNED method. For the StoNED

method, we assume the multiplicative specification (27) and

the half-normal inefficiency distribution. Since the MC

simulations are computationally intensive, we restrict to the

simpler method of moment (MM) estimator in this section.

In the MM estimation of SFA and StoNED models, we have

dealt with the wrong skewness problem as follows. If M̂3 is

non-negative, we set M̂3 = -0.0001. On the other hand, if

r̂v is negative, we set r̂v = 0.0001. These settings ensure

that the algorithm runs smoothly even in those scenarios

where the DGP is inconsistent with the model assumptions

(e.g., there are outliers or no inefficiency). Of course, the

wrong skewness can be a signal of model misspecification

(e.g., in scenarios involving outliers), but in these MC

simulations we disregard this potentially useful information

and force the postulated skewness to the estimated

distributions of the composite error term.

5.1 Univariate Cobb-Douglas frontier

We start by replicating the first six scenarios of Simar and

Zelenyuk (2008) as reported in their Section 3.1.1. The

DGP is characterized by the univariate Cobb-Douglas

model

yi ¼ x0:5
i � expð�uiÞ � expðviÞ; ð38Þ

where xi
Uni½0; 1�; ui
Exp½l ¼ 1=6� with parameter l
representing the expected inefficiency, and vi
Nð0; r2

vÞ
where rv ¼ qnts � l and parameter qnts represents the noise-

to-signal ratio. Using this DGP, Simar and Zelenyuk con-

struct six alternative scenarios corresponding to different

values of sample size n and parameter qnts. Before pro-

ceeding to the results, we note that the SFA estimator

assumes the correct functional form for the frontier.

However, both SFA and StoNED estimators assume a

wrong distribution for the inefficiency term.

Table 1 describes the six scenarios and reports the

average MSEs over 50 replications for the frontier esti-

mates. We note first that the results for the DEA frontier

estimator come reasonably close to those reported by Simar

and Zelenyuk (2008). We see that the SFA estimator has a

larger MSE than DEA in scenario (a) that does not involve

any noise whatsoever, but it performs considerably better

than DEA in other scenarios involving outliers or noise.

Interestingly, the StoNED estimator has a lower MSE than

the SFA estimator in all scenarios, even though the func-

tional form of SFA is correct.

Table 2 reports the corresponding statistics for the

inefficiency estimates. Interestingly, while the DEA esti-

mator captures the frontier better than SFA or StoNED in

scenario (a) that involves no noise, the DEA inefficiency

estimator has a higher MSE than the two stochastic alter-

natives. While the SFA and StoNED estimators over-esti-

mate the frontier when the true DGP has no noise, in the

case of efficiency estimation, attributing a part of the total

variance to the noise term will tend to offset the upward

bias in the frontier estimation. This explains the better

performance of SFA and StoNED in efficiency estimation

in scenario (a). On the other hand, in the noisy scenarios,

the advantages of SFA and StoNED are not so great in

Table 1 Performance in estimating frontier f; univariate C-D frontier

Scenario Description MSEDEA MSESFA MSEStoNED

a) n = 100, qnts = 0 0.0002 0.0060 0.0052

b) n = 103, 3 outliers 0.0999 0.0068 0.0064

c) n = 100, qnts = 1 0.0398 0.0070 0.0067

d) n = 200, qnts = 1 0.0640 0.0068 0.0067

e) n = 500, qnts = 1 0.0966 0.0058 0.0057

f) n = 500, qnts = 2 0.7053 0.0077 0.0075

9 Since we replicate some of the simulations conducted by Simar and

Zelenyuk (2008), an interested reader may compare our results with

those reported by Simar and Zelenyuk for their local maximum

likelihood estimator. However, it is worth noting that the synthetic

data sets used in the different simulations are not exactly identical, but

each random draw from the DGP yields unique data, which may have

effect on the performance of estimators. The results reported here are

averages over 50 replications of each scenario, whereas Simar and

Zelenyuk (2008) report results of a single simulation run for each

scenario.
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terms of inefficiency estimates as they are in the case of

frontier estimation. Estimating inefficiency at the firm level

in a cross-sectional setting is a notoriously challenging task

when both the frontier and the evaluated input–output

vector are subject to noise.

5.2 Trivariate Cobb-Douglas frontier

We next extend the previous six scenarios to the three-

input case, characterized by the Cobb-Douglas model

yi ¼ x0:4
1;i � x0:3

2;i � x0:2
3;i � expð�uiÞ � expðviÞ; ð39Þ

where xj;i
Uni½0; 1�; j ¼ 1; 2. The inefficiency and the

noise terms are drawn in the identical manner to Sec-

tion 6.1. The purpose of these scenarios is to examine how

the curse of dimensionality might affect performances of

alternative estimators.

Table 3 describes the six scenarios and reports the

average MSEs over 50 replications for the frontier esti-

mates. Table 4 presents the corresponding MSE statistics

for the inefficiency estimates. We must emphasize that the

MSEs reported in Tables 3 and 4 are not directly compa-

rable with those of Tables 1 and 2 because the scale of

output values is somewhat different. As expected, the DEA

estimator performs best in scenarios (a) and (b) involving

little or no noise. Its precision deteriorates dramatically

when the noise to signal ratio increases. The MSEs of SFA

and StoNED estimators are more stable across scenarios.

StoNED performs better than SFA in most scenarios,

except for (c) and (f) that involve the largest noise to signal

ratios at given sample sizes.

5.3 Trivariate Cobb-Douglas frontier

with heteroskedastic inefficiency

We next adapt the DGP of the previous section by intro-

ducing heteroskedasticity in the inefficiency term u. Fol-

lowing Simar and Zelenyuk (2008) Section 3.1.4, we draw

inefficiency terms from the half-normal distribution as

ui xij 
 Nð0; ðruðx1;i þ x2;iÞ=2Þ2Þ
�� ��, where ru = 0.3. Note

that variance of inefficiency distribution depends on inputs

1 and 2, which results as heteroskedasticity. The noise term

is homoskedastic normal, vi
Nð0; r2
vÞ, where rv ¼

qnts � ru �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� 2Þ=p

p
. Parameter qnts can be interpreted as

the average noise to signal ratio, and it is varied across

scenarios.

Table 5 reports the average MSEs over 50 replications

for the frontier estimates. The MSEs reported in Tables 3

and 5 are comparable as we have used the same production

function, the same sample sizes, and the same noise to

signal ratios; the only difference is the heteroskedastic

inefficiency term. Interestingly, although DEA is a distri-

bution-free method, MSEs of the DEA estimator increase

notably. This is because observations with large values of

inputs 1 and 2 are likely to have larger inefficiencies. This

will directly affect the local DEA approximation of the

frontier in the region where x1 and x2 are greater than 0.5.

By contrast, the MSEs of the SFA estimator decrease in all

scenarios. The SFA frontier is more rigid by construction,

and hence less sensitive to local heteroskedasticity.

Moreover, the SFA benefits from the correct functional

Table 2 Performance in estimating inefficiency term u; univariate

C-D frontier

Scenario Description MSEDEA MSESFA MSEStoNED

a) n = 100, qnts = 0 0.0161 0.0109 0.0097

b) n = 103, 3 outliers 0.0854 0.0322 0.0317

c) n = 100, qnts = 1 0.0424 0.0294 0.0282

d) n = 200, qnts = 1 0.0600 0.0301 0.0288

e) n = 500, qnts = 1 0.0829 0.0265 0.0258

f) n = 500, qnts = 2 0.6236 0.0377 0.0362

Table 3 Performance in estimating frontier f; trivariate C-D frontier

Scenario Description MSEDEA MSESFA MSEStoNED

a) n = 100, qnts = 0 0.0014 0.0028 0.0020

b) n = 100, qnts = 0.5 0.0013 0.0028 0.0021

c) n = 100, qnts = 1 0.0063 0.0028 0.0029

d) n = 200, qnts = 1 0.0084 0.0037 0.0036

e) n = 300, qnts = 1 0.0137 0.0031 0.0028

f) n = 300, qnts = 2 0.1583 0.0073 0.0080

Table 4 Performance in estimating inefficiency term u; trivariate

C-D frontier

Scenario Description MSEDEA MSESFA MSEStoNED

a) n = 100, qnts = 0 0.0334 0.0011 0.0010

b) n = 100, qnts = 0.5 0.0295 0.0163 0.0135

c) n = 100, qnts = 1 0.0283 0.0267 0.0250

d) n = 200, qnts = 1 0.0268 0.0309 0.0297

e) n = 300, qnts = 1 0.0284 0.0265 0.0262

f) n = 300, qnts = 2 0.1288 0.0512 0.0511

Table 5 Performance in estimating frontier f; trivariate C-D frontier

with heteroskedastic inefficiency

Scenario Description MSEDEA MSESFA MSEStoNED

a) n = 100, qnts = 0 0.0036 0.0016 0.0042

b) n = 100, qnts = 0.5 0.0024 0.0015 0.0038

c) n = 100, qnts = 1 0.0051 0.0030 0.0051

d) n = 200, qnts = 1 0.0071 0.0017 0.0038

e) n = 300, qnts = 1 0.0067 0.0011 0.0023

f) n = 300, qnts = 2 0.0895 0.0036 0.0041
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form of the (half-normal) inefficiency term, even though it

fails to account for the heteroskedasticity. Performance of

the StoNED estimator deteriorates for similar reasons to

those noted in the case of DEA. While the StoNED esti-

mator is more sensitive to local heteroskedasticity than

SFA, its MSE remains lower than that of DEA in all noisy

scenarios where the average noise to signal ratio is equal to

one or higher.

For completeness, Table 6 presents the corresponding

MSEs of the inefficiency estimates. Compared to Table 4,

the MSEs of all three methods increase. In particular,

performances of SFA and StoNED deteriorate in all sce-

narios, but especially in (a) and (b) involving little or no

noise. Still, SFA and StoNED outperform DEA in those

two scenarios. As the sample size and the noise to signal

ratio increase, the StoNED estimator becomes more com-

petitive in comparison to SFA.

In conclusion, the proposed StoNED estimator proved a

competitive alternative to the conventional DEA and SFA

estimators in the simulations adopted from Simar and

Zelenuyk (2008). We should note that the distributional

assumptions for the inefficiency term were incorrect in all

scenarios that were considered. Despite this specification

error, the StoNED estimator performed better than the

distribution-free DEA estimator in many of the scenarios

considered. This suggests it may often be preferable to

model noise even at the risk of making a specification error

in the distributional assumptions than assume away noise

completely. The StoNED estimator also achieved a lower

MSE than the corresponding SFA estimator in a majority

of scenarios, even though the functional form of the fron-

tier was correctly specified for the SFA estimator (the

inefficiency term was wrongly specified, exactly the same

way as for the StoNED estimator). It appears that the better

empirical fit in the estimation of the frontier can also partly

offset the possible specification errors in the estimation of

the inefficiency distribution. Of course, evidence from any

Monte Carlo study is limited, and the present comparison is

restricted to the most basic variants of DEA and SFA. We

recognize the need to compare the performance of the

proposed method with other recently developed

semiparametric and nonparametric approaches that were

briefly reviewed in the Introduction, but we also realize

that designing and implementing a comparison of many

computationally intensive methods in a fair and objective

manner is a daunting task that deserves a thorough inves-

tigation of its own.

6 Conclusions and discussion

We have developed a new encompassing framework for

productive efficiency analysis, referred to as stochastic

non-smooth envelopment of data (StoNED). One of our

main objectives was to show how the StoNED method can

be used to estimate a semiparametric frontier model that

combines a nonparametric DEA-like frontier with a sto-

chastic SFA-like inefficiency and noise terms. We also

demonstrated that both classic DEA and SFA can be

viewed as special cases of this encompassing model,

obtainable by imposing some more restrictive assumptions

to the model.

In our approach, we employed a two-stage estimation

strategy that is commonly used in many areas of econo-

metrics. In the first stage, the shape of the frontier is con-

sistently estimated by using convex nonparametric least

squares (CNLS), which does not assume any smoothing

parameters, building upon the same shape constraints as

DEA. In the second stage, we apply method of moments or

pseudolikelihood techniques, adopted from the SFA liter-

ature, to disentangle the inefficiency and noise components

from the CNLS residuals. Although this stepwise estima-

tion strategy may not be as efficient as the constrained

maximum likelihood, it has some important advantages,

including the relative robustness of the CNLS estimator to

distributional assumptions of inefficiency and noise terms,

and substantially lower computational barriers (i.e., the

constrained ML estimators are often computationally

infeasible in the present setting).

This study has established further connections between

CNLS regression and DEA, complementing the prior work

of Kuosmanen (2008) and Kuosmanen and Johnson (2010).

We find that DEA can be formulated as a constrained

special case of the CNLS regression, and that CNLS has a

minimum extrapolation interpretation analogous to that of

the conventional DEA. While we mainly focused on the

estimation of production functions under variable returns to

scale, we also demonstrated how the method can be

extended to the estimation of cost functions and to allow

one to postulate for alternative specifications of returns to

scale. Moreover, the performance of the approach was

examined in the controlled environment of Monte Carlo

simulations. The evidence from the simulations suggests

the proposed method is a competitive alternative to

Table 6 Performance in estimating inefficiency term u; trivariate

C-D frontier with heteroskedastic inefficiency

Scenario Description MSEDEA MSESFA MSEStoNED

a) n = 100, qnts = 0 0.0574 0.0108 0.0192

b) n = 100, qnts = 0.5 0.0498 0.0191 0.0210

c) n = 100, qnts = 1 0.0439 0.0401 0.0363

d) n = 200, qnts = 1 0.0371 0.0370 0.0377

e) n = 300, qnts = 1 0.0358 0.0346 0.0335

f) n = 300, qnts = 2 0.0651 0.0629 0.0613
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standard DEA and SFA methods even when the distribu-

tion of the inefficiency term is wrongly specified.

The proposed StoNED approach shares many common

features with SFA and DEA, being an amalgam of the two.

Thus, many of the existing tools and techniques for SFA

and DEA can be incorporated into the proposed frame-

work. The hybrid nature of StoNED also implies that there

are many important differences to both SFA and DEA,

which should be kept in mind. For example, the interpre-

tation of the StoNED input coefficients differs considerably

from those of SFA coefficients. Moreover, in contrast to

DEA, all observations influence the shape of the frontier.

While the StoNED approach combines the appealing fea-

tures of DEA and SFA, it also shares many of their limi-

tations. Similar to DEA, the nonparametric orientation of

StoNED can make it vulnerable to the curse of dimen-

sionality, which means that the sample size needs to be

very large when the number of input variables is high. On

the other hand, the composite error term assumptions of

SFA are rather restrictive, and might often be inappropri-

ate. In this respect, we again emphasize that the focus of

this paper has been on the development of an operational

estimation strategy for an encompassing model that

includes the classic DEA and SFA models as its special

cases. Improving upon DEA and/or SFA aspects of the

model is another challenge, which falls beyond the scope

of the present study.

Further exploration of the connections established in this

paper offers a number of interesting challenges for future

research. We have identified and discussed a number of

open research questions in the previous sections. To sum-

marize, we consider the following twelve issues the most

promising avenues for future research:

1. Adapting the known econometric and statistical

methods for dealing with heteroskedasticity, endoge-

neity, sample selection, and other potential sources of

bias, to the context of CNLS and StoNED estimators.

2. Extending the proposed approach to a multiple output

setting.

3. Extending the proposed approach to account

for relaxed concavity assumptions (e.g., quasi-

concavity).

4. Developing more efficient computational algorithms

or heuristics for solving the CNLS problem.

5. Examining the statistical properties of the CNLS

estimator, especially in the multivariate case.

6. Investigating the axiomatic foundation of the CNLS

and StoNED estimators.

7. Implementing alternative distributional assumptions

and estimating the distribution of the inefficiency

term by semi- or nonparametric methods in the cross-

sectional setting.

8. Distinguishing time-invariant inefficiency from het-

erogeneity across firms, and identifying inter-tempo-

ral frontier shifts and catching up in panel data

models.

9. Extending the proposed approach to the estimation of

cost, revenue, and profit functions as well as to

distance functions.

10. Developing a consistent bootstrap algorithm and/or

other statistical inference methods.

11. Conducting further Monte Carlo simulations to

examine the performance of the proposed estimators

under a wider range of conditions, and comparing the

performance with other semi- and nonparametric

frontier estimators.

12. Applying the proposed method to empirical data, and

adapting the method to better serve the needs of

specific empirical applications.

These twelve points could be seen as limitations of the

proposed approach, but also as an outline of a research

program to address these challenges. We hope this study

could inspire other researchers to join us in further theo-

retical and empirical work along the lines sketched above,

and to expand our list of research questions further. Finally,

we hope that this study could contribute to further cross-

fertilization and unification of the parametric and non-

parametric streams of productive efficiency analysis.
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Appendix 1: illustrative example

The purpose of this ‘‘Appendix’’ is to illustrate the esti-

mated StoNED frontiers graphically in a single-input sin-

gle-output setting. Further examples and illustrations can

be found in working papers Kuosmanen (2006) and

Kuosmanen and Kortelainen (2007). Some computational

codes for the GAMS and Matlab software are available at

the website: http://www.nomepre.net/stoned/.

In the present example, the input data were randomly

sampled from Uni[1,11] for a random sample of 100 firms,

independently for each input and firm. The efficient output

levels were calculated using the production function

f(xi) = ln(xi) ? 2. From the efficient output level, we

subtracted a random inefficiency term ui 

i:i:d

Nð0; r2
uÞ

�� �� and

added a random error vi 

i:i:d

Nð0; r2
vÞ, to obtain the

‘‘observed’’ output data used in estimation as yi =

ln(xi) ? 2 ? vi - ui. The standard deviations of the inef-

ficiency and noise terms are ru = 0.6 and rv = 0.3.
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We applied the shape constrained CNLS method with

additive error structure without restrictions on RTS to this

simulated data, and subsequently computed the MM and

PSL estimators using the CNLS residuals. Figure 1 illus-

trates the results by plotting a scatter of the sample data

(points 9), the true frontier (thick black curve), the CNLS

estimate of the average-practice production function (thick,

grey, piece-wise linear curve), and the StoNED frontiers

estimated by the MM (solid, thin, piece-wise linear curve)

and PSL (broken, piece-wise linear curve), respectively.

The CNLS curve consists of five different line segments

(segments 3 and 4 are difficult to distinguish in Fig. 1). In

this Scenario, the MM curve indicates slightly higher

output levels than the PSL curve. Nevertheless, both curves

closely approximate the true frontier.
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